default search action
Zvika Brakerski
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c86]Madalina Bolboceanu, Zvika Brakerski, Devika Sharma:
On Algebraic Embedding for Unstructured Lattices. Public Key Cryptography (3) 2024: 123-154 - [c85]James Bartusek, Zvika Brakerski, Vinod Vaikuntanathan:
Quantum State Obfuscation from Classical Oracles. STOC 2024: 1009-1017 - [i95]James Bartusek, Zvika Brakerski, Vinod Vaikuntanathan:
Quantum State Obfuscation from Classical Oracles. CoRR abs/2401.10200 (2024) - [i94]Zvika Brakerski, Nir Magrafta:
Real-Valued Somewhat-Pseudorandom Unitaries. CoRR abs/2403.16704 (2024) - [i93]James Bartusek, Zvika Brakerski, Vinod Vaikuntanathan:
Quantum State Obfuscation from Classical Oracles. IACR Cryptol. ePrint Arch. 2024: 82 (2024) - [i92]Zvika Brakerski, Nir Magrafta:
Real-Valued Somewhat-Pseudorandom Unitaries. IACR Cryptol. ePrint Arch. 2024: 487 (2024) - 2023
- [j15]Zvika Brakerski, Nico Döttling, Sanjam Garg, Giulio Malavolta:
Candidate iO from Homomorphic Encryption Schemes. J. Cryptol. 36(3): 27 (2023) - [c84]Zvika Brakerski:
Black-Hole Radiation Decoding Is Quantum Cryptography. CRYPTO (5) 2023: 37-65 - [c83]Zvika Brakerski, Alexandru Gheorghiu, Gregory D. Kahanamoku-Meyer, Eitan Porat, Thomas Vidick:
Simple Tests of Quantumness Also Certify Qubits. CRYPTO (5) 2023: 162-191 - [c82]Zvika Brakerski, Maya Farber Brodsky, Yael Tauman Kalai, Alex Lombardi, Omer Paneth:
SNARGs for Monotone Policy Batch NP. CRYPTO (2) 2023: 252-283 - [c81]Zvika Brakerski, Ran Canetti, Luowen Qian:
On the Computational Hardness Needed for Quantum Cryptography. ITCS 2023: 24:1-24:21 - [c80]Divesh Aggarwal, Huck Bennett, Zvika Brakerski, Alexander Golovnev, Rajendra Kumar, Zeyong Li, Spencer Peters, Noah Stephens-Davidowitz, Vinod Vaikuntanathan:
Lattice Problems beyond Polynomial Time. STOC 2023: 1516-1526 - [c79]Amit Behera, Zvika Brakerski, Or Sattath, Omri Shmueli:
Pseudorandomness with Proof of Destruction and Applications. TCC (4) 2023: 125-154 - [i91]Amit Behera, Zvika Brakerski, Or Sattath, Omri Shmueli:
Pseudorandomness with Proof of Destruction and Applications. IACR Cryptol. ePrint Arch. 2023: 543 (2023) - [i90]Zvika Brakerski, Stav Medina:
Limits on Adaptive Security for Attribute-Based Encryption. IACR Cryptol. ePrint Arch. 2023: 952 (2023) - [i89]Zvika Brakerski, Maya Farber Brodsky, Yael Tauman Kalai, Alex Lombardi, Omer Paneth:
SNARGs for Monotone Policy Batch NP. IACR Cryptol. ePrint Arch. 2023: 1050 (2023) - 2022
- [c78]Nir Bitansky, Zvika Brakerski, Yael Tauman Kalai:
Constructive Post-Quantum Reductions. CRYPTO (3) 2022: 654-683 - [c77]Zvika Brakerski, Pedro Branco, Nico Döttling, Sihang Pu:
Batch-OT with Optimal Rate. EUROCRYPT (2) 2022: 157-186 - [c76]Zvika Brakerski, Nico Döttling, Sanjam Garg, Giulio Malavolta:
Factoring and Pairings Are Not Necessary for IO: Circular-Secure LWE Suffices. ICALP 2022: 28:1-28:20 - [c75]Zvika Brakerski, Vinod Vaikuntanathan:
Lattice-Inspired Broadcast Encryption and Succinct Ciphertext-Policy ABE. ITCS 2022: 28:1-28:20 - [c74]Zvika Brakerski, Henry Yuen:
Quantum garbled circuits. STOC 2022: 804-817 - [i88]Nir Bitansky, Zvika Brakerski, Yael Tauman Kalai:
Constructive Post-Quantum Reductions. CoRR abs/2203.02314 (2022) - [i87]Zvika Brakerski, Ran Canetti, Luowen Qian:
On the computational hardness needed for quantum cryptography. CoRR abs/2209.04101 (2022) - [i86]Zvika Brakerski:
Black-Hole Radiation Decoding is Quantum Cryptography. CoRR abs/2211.05491 (2022) - [i85]Divesh Aggarwal, Huck Bennett, Zvika Brakerski, Alexander Golovnev, Rajendra Kumar, Zeyong Li, Spencer Peters, Noah Stephens-Davidowitz, Vinod Vaikuntanathan:
Lattice Problems Beyond Polynomial Time. CoRR abs/2211.11693 (2022) - [i84]Nir Bitansky, Zvika Brakerski, Yael Tauman Kalai:
Constructive Post-Quantum Reductions. IACR Cryptol. ePrint Arch. 2022: 298 (2022) - [i83]Zvika Brakerski, Pedro Branco, Nico Döttling, Sihang Pu:
Batch-OT with Optimal Rate. IACR Cryptol. ePrint Arch. 2022: 314 (2022) - [i82]Zvika Brakerski, Ran Canetti, Luowen Qian:
On the computational hardness needed for quantum cryptography. IACR Cryptol. ePrint Arch. 2022: 1181 (2022) - 2021
- [j14]Zvika Brakerski, Paul F. Christiano, Urmila Mahadev, Umesh V. Vazirani, Thomas Vidick:
A Cryptographic Test of Quantumness and Certifiable Randomness from a Single Quantum Device. J. ACM 68(5): 31:1-31:47 (2021) - [j13]Benny Applebaum, Zvika Brakerski:
Obfuscating Circuits Via Composite-Order Graded Encoding. J. Cryptol. 34(2): 14 (2021) - [j12]Benny Applebaum, Zvika Brakerski, Rotem Tsabary:
Perfect Secure Computation in Two Rounds. SIAM J. Comput. 50(1): 68-97 (2021) - [c73]Zvika Brakerski, Noah Stephens-Davidowitz, Vinod Vaikuntanathan:
On the Hardness of Average-Case k-SUM. APPROX-RANDOM 2021: 29:1-29:19 - [c72]Gorjan Alagic, Zvika Brakerski, Yfke Dulek, Christian Schaffner:
Impossibility of Quantum Virtual Black-Box Obfuscation of Classical Circuits. CRYPTO (1) 2021: 497-525 - [c71]Nir Bitansky, Zvika Brakerski:
Classical Binding for Quantum Commitments. TCC (1) 2021: 273-298 - [i81]Zvika Brakerski, Devika Sharma, Guy Weissenberg:
Unitary Subgroup Testing. CoRR abs/2104.03591 (2021) - [i80]Madalina Bolboceanu, Zvika Brakerski, Devika Sharma:
On Algebraic Embedding for Unstructured Lattices. IACR Cryptol. ePrint Arch. 2021: 53 (2021) - [i79]Nir Bitansky, Zvika Brakerski:
Classical Binding for Quantum Commitments. IACR Cryptol. ePrint Arch. 2021: 1001 (2021) - 2020
- [c70]Zvika Brakerski, Omri Shmueli:
Scalable Pseudorandom Quantum States. CRYPTO (2) 2020: 417-440 - [c69]Zvika Brakerski, Venkata Koppula, Tamer Mour:
NIZK from LPN and Trapdoor Hash via Correlation Intractability for Approximable Relations. CRYPTO (3) 2020: 738-767 - [c68]Zvika Brakerski, Nico Döttling, Sanjam Garg, Giulio Malavolta:
Candidate iO from Homomorphic Encryption Schemes. EUROCRYPT (1) 2020: 79-109 - [c67]Zvika Brakerski, Nico Döttling:
Hardness of LWE on General Entropic Distributions. EUROCRYPT (2) 2020: 551-575 - [c66]Zvika Brakerski, Yael Tauman Kalai, Raghuvansh R. Saxena:
Deterministic and Efficient Interactive Coding from Hard-to-Decode Tree Codes. FOCS 2020: 446-457 - [c65]Benny Applebaum, Zvika Brakerski, Sanjam Garg, Yuval Ishai, Akshayaram Srinivasan:
Separating Two-Round Secure Computation From Oblivious Transfer. ITCS 2020: 71:1-71:18 - [c64]Zvika Brakerski, Yael Kalai:
Witness Indistinguishability for Any Single-Round Argument with Applications to Access Control. Public Key Cryptography (2) 2020: 97-123 - [c63]Zvika Brakerski, Nico Döttling:
Lossiness and Entropic Hardness for Ring-LWE. TCC (1) 2020: 1-27 - [c62]Zvika Brakerski, Pedro Branco, Nico Döttling, Sanjam Garg, Giulio Malavolta:
Constant Ciphertext-Rate Non-committing Encryption from Standard Assumptions. TCC (1) 2020: 58-87 - [c61]Zvika Brakerski, Sanjam Garg, Rotem Tsabary:
FHE-Based Bootstrapping of Designated-Prover NIZK. TCC (1) 2020: 657-683 - [c60]Zvika Brakerski, Venkata Koppula, Umesh V. Vazirani, Thomas Vidick:
Simpler Proofs of Quantumness. TQC 2020: 8:1-8:14 - [i78]Zvika Brakerski, Omri Shmueli:
Scalable Pseudorandom Quantum States. CoRR abs/2004.01976 (2020) - [i77]Zvika Brakerski, Venkata Koppula, Umesh V. Vazirani, Thomas Vidick:
Simpler Proofs of Quantumness. CoRR abs/2005.04826 (2020) - [i76]Gorjan Alagic, Zvika Brakerski, Yfke Dulek, Christian Schaffner:
Impossibility of Quantum Virtual Black-Box Obfuscation of Classical Circuits. CoRR abs/2005.06432 (2020) - [i75]Zvika Brakerski, Henry Yuen:
Quantum Garbled Circuits. CoRR abs/2006.01085 (2020) - [i74]Zvika Brakerski, Noah Stephens-Davidowitz, Vinod Vaikuntanathan:
On the Hardness of Average-case k-SUM. CoRR abs/2010.08821 (2020) - [i73]Zvika Brakerski, Yael Tauman Kalai, Raghuvansh Saxena:
Deterministic and Efficient Interactive Coding from Hard-to-Decode Tree Codes. Electron. Colloquium Comput. Complex. TR20 (2020) - [i72]Benny Applebaum, Zvika Brakerski, Sanjam Garg, Yuval Ishai, Akshayaram Srinivasan:
Separating Two-Round Secure Computation from Oblivious Transfer. IACR Cryptol. ePrint Arch. 2020: 116 (2020) - [i71]Zvika Brakerski, Nico Döttling:
Hardness of LWE on General Entropic Distributions. IACR Cryptol. ePrint Arch. 2020: 119 (2020) - [i70]Zvika Brakerski, Vinod Vaikuntanathan:
Lattice-Inspired Broadcast Encryption and Succinct Ciphertext-Policy ABE. IACR Cryptol. ePrint Arch. 2020: 191 (2020) - [i69]Zvika Brakerski, Venkata Koppula, Tamer Mour:
NIZK from LPN and Trapdoor Hash via Correlation Intractability for Approximable Relations. IACR Cryptol. ePrint Arch. 2020: 258 (2020) - [i68]Zvika Brakerski, Nico Döttling, Sanjam Garg, Giulio Malavolta:
Candidate iO from Homomorphic Encryption Schemes. IACR Cryptol. ePrint Arch. 2020: 394 (2020) - [i67]Zvika Brakerski, Nico Döttling, Sanjam Garg, Giulio Malavolta:
Factoring and Pairings are not Necessary for iO: Circular-Secure LWE Suffices. IACR Cryptol. ePrint Arch. 2020: 1024 (2020) - [i66]Zvika Brakerski, Sanjam Garg, Rotem Tsabary:
FHE-Based Bootstrapping of Designated-Prover NIZK. IACR Cryptol. ePrint Arch. 2020: 1168 (2020) - [i65]Zvika Brakerski, Nico Döttling:
Lossiness and Entropic Hardness for Ring-LWE. IACR Cryptol. ePrint Arch. 2020: 1185 (2020) - [i64]Zvika Brakerski, Pedro Branco, Nico Döttling, Sanjam Garg, Giulio Malavolta:
Constant Ciphertext-Rate Non-Committing Encryption from Standard Assumptions. IACR Cryptol. ePrint Arch. 2020: 1186 (2020) - [i63]Zvika Brakerski, Henry Yuen:
Quantum Garbled Circuits. IACR Cryptol. ePrint Arch. 2020: 1401 (2020)
2010 – 2019
- 2019
- [c59]Madalina Bolboceanu, Zvika Brakerski, Renen Perlman, Devika Sharma:
Order-LWE and the Hardness of Ring-LWE with Entropic Secrets. ASIACRYPT (2) 2019: 91-120 - [c58]Dorit Aharonov, Zvika Brakerski, Kai-Min Chung, Ayal Green, Ching-Yi Lai, Or Sattath:
On Quantum Advantage in Information Theoretic Single-Server PIR. EUROCRYPT (3) 2019: 219-246 - [c57]Benny Applebaum, Zvika Brakerski, Rotem Tsabary:
Degree 2 is Complete for the Round-Complexity of Malicious MPC. EUROCRYPT (2) 2019: 504-531 - [c56]Zvika Brakerski, Vadim Lyubashevsky, Vinod Vaikuntanathan, Daniel Wichs:
Worst-Case Hardness for LPN and Cryptographic Hashing via Code Smoothing. EUROCRYPT (3) 2019: 619-635 - [c55]Zvika Brakerski, Omri Shmueli:
(Pseudo) Random Quantum States with Binary Phase. TCC (1) 2019: 229-250 - [c54]Zvika Brakerski, Nico Döttling, Sanjam Garg, Giulio Malavolta:
Leveraging Linear Decryption: Rate-1 Fully-Homomorphic Encryption and Time-Lock Puzzles. TCC (2) 2019: 407-437 - [p2]Zvika Brakerski:
Fundamentals of fully homomorphic encryption. Providing Sound Foundations for Cryptography 2019: 543-563 - [i62]Dorit Aharonov, Zvika Brakerski, Kai-Min Chung, Ayal Green, Ching-Yi Lai, Or Sattath:
On Quantum Advantage in Information Theoretic Single-Server PIR. CoRR abs/1902.09768 (2019) - [i61]Zvika Brakerski, Omri Shmueli:
(Pseudo) Random Quantum States with Binary Phase. CoRR abs/1906.10611 (2019) - [i60]Benny Applebaum, Zvika Brakerski, Rotem Tsabary:
Degree 2 is Complete for the Round-Complexity of Malicious MPC. IACR Cryptol. ePrint Arch. 2019: 200 (2019) - [i59]Dorit Aharonov, Zvika Brakerski, Kai-Min Chung, Ayal Green, Ching-Yi Lai, Or Sattath:
On Quantum Advantage in Information Theoretic Single-Server PIR. IACR Cryptol. ePrint Arch. 2019: 232 (2019) - [i58]Zvika Brakerski, Nico Döttling, Sanjam Garg, Giulio Malavolta:
Leveraging Linear Decryption: Rate-1 Fully-Homomorphic Encryption and Time-Lock Puzzles. IACR Cryptol. ePrint Arch. 2019: 720 (2019) - 2018
- [j11]Zvika Brakerski, Gil Segev:
Function-Private Functional Encryption in the Private-Key Setting. J. Cryptol. 31(1): 202-225 (2018) - [j10]Zvika Brakerski, Ilan Komargodski, Gil Segev:
Multi-input Functional Encryption in the Private-Key Setting: Stronger Security from Weaker Assumptions. J. Cryptol. 31(2): 434-520 (2018) - [c53]Zvika Brakerski:
Quantum FHE (Almost) As Secure As Classical. CRYPTO (3) 2018: 67-95 - [c52]Zvika Brakerski, Alex Lombardi, Gil Segev, Vinod Vaikuntanathan:
Anonymous IBE, Leakage Resilience and Circular Security from New Assumptions. EUROCRYPT (1) 2018: 535-564 - [c51]Boaz Barak, Zvika Brakerski, Ilan Komargodski, Pravesh K. Kothari:
Limits on Low-Degree Pseudorandom Generators (Or: Sum-of-Squares Meets Program Obfuscation). EUROCRYPT (2) 2018: 649-679 - [c50]Zvika Brakerski, Paul F. Christiano, Urmila Mahadev, Umesh V. Vazirani, Thomas Vidick:
A Cryptographic Test of Quantumness and Certifiable Randomness from a Single Quantum Device. FOCS 2018: 320-331 - [c49]Ben Berger, Zvika Brakerski:
Brief Announcement: Zero-Knowledge Protocols for Search Problems. ICALP 2018: 105:1-105:5 - [c48]Zvika Brakerski, Elena Kirshanova, Damien Stehlé, Weiqiang Wen:
Learning with Errors and Extrapolated Dihedral Cosets. Public Key Cryptography (2) 2018: 702-727 - [c47]Ben Berger, Zvika Brakerski:
Zero-Knowledge Protocols for Search Problems. SCN 2018: 292-309 - [c46]Zvika Brakerski, Aayush Jain, Ilan Komargodski, Alain Passelègue, Daniel Wichs:
Non-trivial Witness Encryption and Null-iO from Standard Assumptions. SCN 2018: 425-441 - [c45]Benny Applebaum, Zvika Brakerski, Rotem Tsabary:
Perfect Secure Computation in Two Rounds. TCC (1) 2018: 152-174 - [c44]Zvika Brakerski, Nico Döttling:
Two-Message Statistically Sender-Private OT from LWE. TCC (2) 2018: 370-390 - [i57]Zvika Brakerski, Paul F. Christiano, Urmila Mahadev, Umesh V. Vazirani, Thomas Vidick:
Certifiable Randomness from a Single Quantum Device. CoRR abs/1804.00640 (2018) - [i56]Zvika Brakerski:
Fundamentals of Fully Homomorphic Encryption - A Survey. Electron. Colloquium Comput. Complex. TR18 (2018) - [i55]Zvika Brakerski, Vadim Lyubashevsky, Vinod Vaikuntanathan, Daniel Wichs:
Worst-Case Hardness for LPN and Cryptographic Hashing via Code Smoothing. Electron. Colloquium Comput. Complex. TR18 (2018) - [i54]Zvika Brakerski, Vadim Lyubashevsky, Vinod Vaikuntanathan, Daniel Wichs:
Worst-Case Hardness for LPN and Cryptographic Hashing via Code Smoothing. IACR Cryptol. ePrint Arch. 2018: 279 (2018) - [i53]Zvika Brakerski:
Quantum FHE (Almost) As Secure as Classical. IACR Cryptol. ePrint Arch. 2018: 338 (2018) - [i52]Zvika Brakerski, Yael Tauman Kalai:
Monotone Batch NP-Delegation with Applications to Access Control. IACR Cryptol. ePrint Arch. 2018: 375 (2018) - [i51]Ben Berger, Zvika Brakerski:
Zero-Knowledge Protocols for Search Problems. IACR Cryptol. ePrint Arch. 2018: 437 (2018) - [i50]Zvika Brakerski, Renen Perlman:
Order-LWE and the Hardness of Ring-LWE with Entropic Secrets. IACR Cryptol. ePrint Arch. 2018: 494 (2018) - [i49]Zvika Brakerski, Nico Döttling:
Two-Message Statistical Sender-Private OT from LWE. IACR Cryptol. ePrint Arch. 2018: 530 (2018) - [i48]Benny Applebaum, Zvika Brakerski, Rotem Tsabary:
Perfect Secure Computation in Two Rounds. IACR Cryptol. ePrint Arch. 2018: 894 (2018) - 2017
- [j9]Zvika Brakerski, Guy N. Rothblum:
Obfuscating Conjunctions. J. Cryptol. 30(1): 289-320 (2017) - [c43]Zvika Brakerski, Yael Tauman Kalai, Renen Perlman:
Succinct Spooky Free Compilers Are Not Black Box Sound. ASIACRYPT (3) 2017: 159-180 - [c42]Zvika Brakerski, Nishanth Chandran, Vipul Goyal, Aayush Jain, Amit Sahai, Gil Segev:
Hierarchical Functional Encryption. ITCS 2017: 8:1-8:27 - [c41]Daniel Benarroch, Zvika Brakerski, Tancrède Lepoint:
FHE over the Integers: Decomposed and Batched in the Post-Quantum Regime. Public Key Cryptography (2) 2017: 271-301 - [c40]Zvika Brakerski, Justin Holmgren, Yael Tauman Kalai:
Non-interactive delegation and batch NP verification from standard computational assumptions. STOC 2017: 474-482 - [c39]Zvika Brakerski, Rotem Tsabary, Vinod Vaikuntanathan, Hoeteck Wee:
Private Constrained PRFs (and More) from LWE. TCC (1) 2017: 264-302 - [c38]Zvika Brakerski, Shai Halevi, Antigoni Polychroniadou:
Four Round Secure Computation Without Setup. TCC (1) 2017: 645-677 - [i47]Zvika Brakerski, Elena Kirshanova, Damien Stehlé, Weiqiang Wen:
Learning With Errors and Extrapolated Dihedral Cosets. CoRR abs/1710.08223 (2017) - [i46]Boaz Barak, Zvika Brakerski, Ilan Komargodski, Pravesh Kothari:
Limits on Low-Degree Pseudorandom Generators (Or: Sum-of-Squares Meets Program Obfuscation). Electron. Colloquium Comput. Complex. TR17 (2017) - [i45]Daniel Benarroch, Zvika Brakerski, Tancrède Lepoint:
FHE Over the Integers: Decomposed and Batched in the Post-Quantum Regime. IACR Cryptol. ePrint Arch. 2017: 65 (2017) - [i44]Boaz Barak, Zvika Brakerski, Ilan Komargodski, Pravesh K. Kothari:
Limits on Low-Degree Pseudorandom Generators (Or: Sum-of-Squares Meets Program Obfuscation). IACR Cryptol. ePrint Arch. 2017: 312 (2017) - [i43]Zvika Brakerski, Shai Halevi, Antigoni Polychroniadou:
Four Round Secure Computation without Setup. IACR Cryptol. ePrint Arch. 2017: 386 (2017) - [i42]Zvika Brakerski, Rotem Tsabary, Vinod Vaikuntanathan, Hoeteck Wee:
Private Constrained PRFs (and More) from LWE. IACR Cryptol. ePrint Arch. 2017: 795 (2017) - [i41]Zvika Brakerski, Aayush Jain, Ilan Komargodski, Alain Passelègue, Daniel Wichs:
Non-Trivial Witness Encryption and Null-iO from Standard Assumptions. IACR Cryptol. ePrint Arch. 2017: 874 (2017) - [i40]Zvika Brakerski, Yael Tauman Kalai, Renen Perlman:
Succinct Spooky Free Compilers Are Not Black Box Sound. IACR Cryptol. ePrint Arch. 2017: 887 (2017) - [i39]Zvika Brakerski, Alex Lombardi, Gil Segev, Vinod Vaikuntanathan:
Anonymous IBE, Leakage Resilience and Circular Security from New Assumptions. IACR Cryptol. ePrint Arch. 2017: 967 (2017) - 2016
- [c37]Zvika Brakerski, Renen Perlman:
Lattice-Based Fully Dynamic Multi-key FHE with Short Ciphertexts. CRYPTO (1) 2016: 190-213 - [c36]Zvika Brakerski, Vinod Vaikuntanathan:
Circuit-ABE from LWE: Unbounded Attributes and Semi-adaptive Security. CRYPTO (3) 2016: 363-384 - [c35]Zvika Brakerski, Christina Brzuska, Nils Fleischhacker:
On Statistically Secure Obfuscation with Approximate Correctness. CRYPTO (2) 2016: 551-578 - [c34]Zvika Brakerski, Ilan Komargodski, Gil Segev:
Multi-input Functional Encryption in the Private-Key Setting: Stronger Security from Weaker Assumptions. EUROCRYPT (2) 2016: 852-880 - [c33]Zvika Brakerski, Vinod Vaikuntanathan, Hoeteck Wee, Daniel Wichs:
Obfuscating Conjunctions under Entropic Ring LWE. ITCS 2016: 147-156 - [c32]Zvika Brakerski, Or Dagmi:
Shorter Circuit Obfuscation in Challenging Security Models. SCN 2016: 551-570 - [c31]Nir Bitansky, Zvika Brakerski, Yael Tauman Kalai, Omer Paneth, Vinod Vaikuntanathan:
3-Message Zero Knowledge Against Human Ignorance. TCC (B1) 2016: 57-83 - [c30]Zvika Brakerski, David Cash, Rotem Tsabary, Hoeteck Wee:
Targeted Homomorphic Attribute-Based Encryption. TCC (B2) 2016: 330-360 - [i38]Zvika Brakerski, Justin Holmgren, Yael Tauman Kalai:
Non-Interactive RAM and Batch NP Delegation from any PIR. Electron. Colloquium Comput. Complex. TR16 (2016) - [i37]Zvika Brakerski, Vinod Vaikuntanathan:
Circuit-ABE from LWE: Unbounded Attributes and Semi-Adaptive Security. IACR Cryptol. ePrint Arch. 2016: 118 (2016) - [i36]Nir Bitansky, Zvika Brakerski, Yael Tauman Kalai, Omer Paneth, Vinod Vaikuntanathan:
3-Message Zero Knowledge Against Human Ignorance. IACR Cryptol. ePrint Arch. 2016: 213 (2016) - [i35]Zvika Brakerski, Christina Brzuska, Nils Fleischhacker:
On Statistically Secure Obfuscation with Approximate Correctness. IACR Cryptol. ePrint Arch. 2016: 226 (2016) - [i34]Zvika Brakerski, Renen Perlman:
Lattice-Based Fully Dynamic Multi-Key FHE with Short Ciphertexts. IACR Cryptol. ePrint Arch. 2016: 339 (2016) - [i33]Zvika Brakerski, Or Dagmi:
Shorter Circuit Obfuscation in Challenging Security Models. IACR Cryptol. ePrint Arch. 2016: 418 (2016) - [i32]Zvika Brakerski, Justin Holmgren, Yael Tauman Kalai:
Non-Interactive RAM and Batch NP Delegation from any PIR. IACR Cryptol. ePrint Arch. 2016: 459 (2016) - [i31]Zvika Brakerski, David Cash, Rotem Tsabary, Hoeteck Wee:
Targeted Homomorphic Attribute Based Encryption. IACR Cryptol. ePrint Arch. 2016: 691 (2016) - 2015
- [c29]Prabhanjan Ananth, Zvika Brakerski, Gil Segev, Vinod Vaikuntanathan:
From Selective to Adaptive Security in Functional Encryption. CRYPTO (2) 2015: 657-677 - [c28]Zvika Brakerski, Vinod Vaikuntanathan:
Constrained Key-Homomorphic PRFs from Standard Lattice Assumptions - Or: How to Secretly Embed a Circuit in Your PRF. TCC (2) 2015: 1-30 - [c27]Zvika Brakerski, Gil Segev:
Function-Private Functional Encryption in the Private-Key Setting. TCC (2) 2015: 306-324 - [c26]Benny Applebaum, Zvika Brakerski:
Obfuscating Circuits via Composite-Order Graded Encoding. TCC (2) 2015: 528-556 - [i30]Benny Applebaum, Zvika Brakerski:
Obfuscating Circuits via Composite-Order Graded Encoding. IACR Cryptol. ePrint Arch. 2015: 25 (2015) - [i29]Zvika Brakerski, Vinod Vaikuntanathan:
Constrained Key-Homomorphic PRFs from Standard Lattice Assumptions Or: How to Secretly Embed a Circuit in Your PRF. IACR Cryptol. ePrint Arch. 2015: 32 (2015) - [i28]Zvika Brakerski, Ilan Komargodski, Gil Segev:
From Single-Input to Multi-Input Functional Encryption in the Private-Key Setting. IACR Cryptol. ePrint Arch. 2015: 158 (2015) - [i27]Zvika Brakerski, Craig Gentry, Shai Halevi, Tancrède Lepoint, Amit Sahai, Mehdi Tibouchi:
Cryptanalysis of the Quadratic Zero-Testing of GGH. IACR Cryptol. ePrint Arch. 2015: 845 (2015) - [i26]Zvika Brakerski, Gil Segev:
Hierarchical Functional Encryption. IACR Cryptol. ePrint Arch. 2015: 1011 (2015) - 2014
- [j8]Zvika Brakerski, Yael Tauman Kalai, Moni Naor:
Fast Interactive Coding against Adversarial Noise. J. ACM 61(6): 35:1-35:30 (2014) - [j7]Zvika Brakerski, Gil Segev:
Better Security for Deterministic Public-Key Encryption: The Auxiliary-Input Setting. J. Cryptol. 27(2): 210-247 (2014) - [j6]Zvika Brakerski, Vinod Vaikuntanathan:
Efficient Fully Homomorphic Encryption from (Standard) $\mathsf{LWE}$. SIAM J. Comput. 43(2): 831-871 (2014) - [j5]Zvika Brakerski, Craig Gentry, Vinod Vaikuntanathan:
(Leveled) Fully Homomorphic Encryption without Bootstrapping. ACM Trans. Comput. Theory 6(3): 13:1-13:36 (2014) - [c25]Zvika Brakerski, Vinod Vaikuntanathan:
Lattice-based FHE as secure as PKE. ITCS 2014: 1-12 - [c24]Zvika Brakerski, Guy N. Rothblum:
Black-box obfuscation for d-CNFs. ITCS 2014: 235-250 - [c23]Zvika Brakerski, Guy N. Rothblum:
Virtual Black-Box Obfuscation for All Circuits via Generic Graded Encoding. TCC 2014: 1-25 - [i25]Zvika Brakerski, Gil Segev:
Function-Private Functional Encryption in the Private-Key Setting. IACR Cryptol. ePrint Arch. 2014: 550 (2014) - [i24]Prabhanjan Ananth, Zvika Brakerski, Gil Segev, Vinod Vaikuntanathan:
The Trojan Method in Functional Encryption: From Selective to Adaptive Security, Generically. IACR Cryptol. ePrint Arch. 2014: 917 (2014) - 2013
- [c22]Zvika Brakerski, Guy N. Rothblum:
Obfuscating Conjunctions. CRYPTO (2) 2013: 416-434 - [c21]Zvika Brakerski, Craig Gentry, Shai Halevi:
Packed Ciphertexts in LWE-Based Homomorphic Encryption. Public Key Cryptography 2013: 1-13 - [c20]Zvika Brakerski, Moni Naor:
Fast Algorithms for Interactive Coding. SODA 2013: 443-456 - [c19]Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, Damien Stehlé:
Classical hardness of learning with errors. STOC 2013: 575-584 - [c18]Zvika Brakerski:
When Homomorphism Becomes a Liability. TCC 2013: 143-161 - [i23]Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, Damien Stehlé:
Classical Hardness of Learning with Errors. CoRR abs/1306.0281 (2013) - [i22]Zvika Brakerski, Moni Naor:
Fast Algorithms for Interactive Coding. Electron. Colloquium Comput. Complex. TR13 (2013) - [i21]Zvika Brakerski, Guy N. Rothblum:
Obfuscating Conjunctions. IACR Cryptol. ePrint Arch. 2013: 471 (2013) - [i20]Zvika Brakerski, Vinod Vaikuntanathan:
Lattice-Based FHE as Secure as PKE. IACR Cryptol. ePrint Arch. 2013: 541 (2013) - [i19]Zvika Brakerski, Guy N. Rothblum:
Black-Box Obfuscation for d-CNFs. IACR Cryptol. ePrint Arch. 2013: 557 (2013) - [i18]Zvika Brakerski, Guy N. Rothblum:
Virtual Black-Box Obfuscation for All Circuits via Generic Graded Encoding. IACR Cryptol. ePrint Arch. 2013: 563 (2013) - 2012
- [c17]Zvika Brakerski:
Fully Homomorphic Encryption without Modulus Switching from Classical GapSVP. CRYPTO 2012: 868-886 - [c16]Zvika Brakerski, Yael Tauman Kalai:
Efficient Interactive Coding against Adversarial Noise. FOCS 2012: 160-166 - [c15]Zvika Brakerski, Craig Gentry, Vinod Vaikuntanathan:
(Leveled) fully homomorphic encryption without bootstrapping. ITCS 2012: 309-325 - [c14]Zvika Brakerski, Yael Tauman Kalai:
A Parallel Repetition Theorem for Leakage Resilience. TCC 2012: 248-265 - [i17]Zvika Brakerski, Yael Tauman Kalai:
Efficient Interactive Coding Against Adversarial Noise. Electron. Colloquium Comput. Complex. TR12 (2012) - [i16]Zvika Brakerski:
Fully Homomorphic Encryption without Modulus Switching from Classical GapSVP. IACR Cryptol. ePrint Arch. 2012: 78 (2012) - [i15]Mihir Bellare, Zvika Brakerski, Moni Naor, Thomas Ristenpart, Gil Segev, Hovav Shacham, Scott Yilek:
Hedged Public-key Encryption: How to Protect against Bad Randomness. IACR Cryptol. ePrint Arch. 2012: 220 (2012) - [i14]Zvika Brakerski:
When Homomorphism Becomes a Liability. IACR Cryptol. ePrint Arch. 2012: 225 (2012) - [i13]Zvika Brakerski, Craig Gentry, Shai Halevi:
Packed Ciphertexts in LWE-based Homomorphic Encryption. IACR Cryptol. ePrint Arch. 2012: 565 (2012) - 2011
- [j4]Zvika Brakerski, Boaz Patt-Shamir:
Distributed discovery of large near-cliques. Distributed Comput. 24(2): 79-89 (2011) - [c13]Zvika Brakerski, Vinod Vaikuntanathan:
Fully Homomorphic Encryption from Ring-LWE and Security for Key Dependent Messages. CRYPTO 2011: 505-524 - [c12]Zvika Brakerski, Gil Segev:
Better Security for Deterministic Public-Key Encryption: The Auxiliary-Input Setting. CRYPTO 2011: 543-560 - [c11]Zvika Brakerski, Vinod Vaikuntanathan:
Efficient Fully Homomorphic Encryption from (Standard) LWE. FOCS 2011: 97-106 - [c10]Zvika Brakerski, Shafi Goldwasser, Yael Tauman Kalai:
Black-Box Circular-Secure Encryption beyond Affine Functions. TCC 2011: 201-218 - [c9]Zvika Brakerski, Jonathan Katz, Gil Segev, Arkady Yerukhimovich:
Limits on the Power of Zero-Knowledge Proofs in Cryptographic Constructions. TCC 2011: 559-578 - [p1]Zvika Brakerski, Oded Goldreich:
From Absolute Distinguishability to Positive Distinguishability. Studies in Complexity and Cryptography 2011: 141-155 - [i12]Zvika Brakerski, Craig Gentry, Vinod Vaikuntanathan:
Fully Homomorphic Encryption without Bootstrapping. Electron. Colloquium Comput. Complex. TR11 (2011) - [i11]Zvika Brakerski, Vinod Vaikuntanathan:
Efficient Fully Homomorphic Encryption from (Standard) LWE. Electron. Colloquium Comput. Complex. TR11 (2011) - [i10]Zvika Brakerski, Gil Segev:
Better Security for Deterministic Public-Key Encryption: The Auxiliary-Input Setting. IACR Cryptol. ePrint Arch. 2011: 209 (2011) - [i9]Zvika Brakerski, Yael Tauman Kalai:
A Parallel Repetition Theorem for Leakage Resilience. IACR Cryptol. ePrint Arch. 2011: 250 (2011) - [i8]Zvika Brakerski, Craig Gentry, Vinod Vaikuntanathan:
Fully Homomorphic Encryption without Bootstrapping. IACR Cryptol. ePrint Arch. 2011: 277 (2011) - [i7]Zvika Brakerski, Vinod Vaikuntanathan:
Efficient Fully Homomorphic Encryption from (Standard) LWE. IACR Cryptol. ePrint Arch. 2011: 344 (2011) - 2010
- [c8]Zvika Brakerski, Shafi Goldwasser:
Circular and Leakage Resilient Public-Key Encryption under Subgroup Indistinguishability - (or: Quadratic Residuosity Strikes Back). CRYPTO 2010: 1-20 - [c7]Zvika Brakerski, Yael Tauman Kalai, Jonathan Katz, Vinod Vaikuntanathan:
Overcoming the Hole in the Bucket: Public-Key Cryptography Resilient to Continual Memory Leakage. FOCS 2010: 501-510 - [i6]Zvika Brakerski, Yael Tauman Kalai:
A Framework for Efficient Signatures, Ring Signatures and Identity Based Encryption in the Standard Model. IACR Cryptol. ePrint Arch. 2010: 86 (2010) - [i5]Zvika Brakerski, Shafi Goldwasser:
Circular and Leakage Resilient Public-Key Encryption Under Subgroup Indistinguishability (or: Quadratic Residuosity Strikes Back). IACR Cryptol. ePrint Arch. 2010: 226 (2010) - [i4]Zvika Brakerski, Yael Tauman Kalai, Jonathan Katz, Vinod Vaikuntanathan:
Overcoming the Hole In The Bucket: Public-Key Cryptography Resilient to Continual Memory Leakage. IACR Cryptol. ePrint Arch. 2010: 278 (2010)
2000 – 2009
- 2009
- [c6]Mihir Bellare, Zvika Brakerski, Moni Naor, Thomas Ristenpart, Gil Segev, Hovav Shacham, Scott Yilek:
Hedged Public-Key Encryption: How to Protect against Bad Randomness. ASIACRYPT 2009: 232-249 - [c5]Zvika Brakerski, Boaz Patt-Shamir:
Distributed discovery of large near-cliques. PODC 2009: 324-325 - [c4]Zvika Brakerski, Shafi Goldwasser, Guy N. Rothblum, Vinod Vaikuntanathan:
Weak Verifiable Random Functions. TCC 2009: 558-576 - [c3]Zvika Brakerski, Boaz Patt-Shamir:
Distributed Discovery of Large Near-Cliques. DISC 2009: 206-220 - [i3]Zvika Brakerski, Boaz Patt-Shamir:
Distributed Discovery of Large Near-Cliques. CoRR abs/0905.4147 (2009) - [i2]Zvika Brakerski, Oded Goldreich:
From absolute distinguishability to positive distinguishability. Electron. Colloquium Comput. Complex. TR09 (2009) - [i1]Zvika Brakerski, Shafi Goldwasser, Yael Tauman Kalai:
Black-Box Circular-Secure Encryption Beyond Affine Functions. IACR Cryptol. ePrint Arch. 2009: 485 (2009) - 2006
- [j3]Zvika Brakerski, Aviv Nisgav, Boaz Patt-Shamir:
General Perfectly Periodic Scheduling. Algorithmica 45(2): 183-208 (2006) - [j2]Zvika Brakerski, Boaz Patt-Shamir:
Jitter-approximation tradeoff for periodic scheduling. Wirel. Networks 12(6): 723-731 (2006) - 2004
- [c2]Zvika Brakerski, Boaz Patt-Shamir:
Jitter-Approximation Tradeoff for Periodic Scheduling. IPDPS 2004 - 2003
- [j1]Zvika Brakerski, Vladimir Dreizin, Boaz Patt-Shamir:
Dispatching in perfectly-periodic schedules. J. Algorithms 49(2): 219-239 (2003) - 2002
- [c1]Zvika Brakerski, Aviv Nisgav, Boaz Patt-Shamir:
General perfectly periodic scheduling. PODC 2002: 163-172
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-07 22:13 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint