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ABSTRACT

Deciding whether a sound is anomalous is accomplished by com-
paring it to a learnt distribution of inliers. Therefore, learning a
distribution close to the true population of inliers is vital for anoma-
lous sound detection (ASD). Data engineering is a common strategy
to aid training and improve generalisation. However, in the context
of ASD, it is debatable whether data engineering indeed facilitates
generalisation or whether it obscures characteristics that distinguish
anomalies from inliers. We conduct an exploratory investigation
into this by focusing on frequency-related data engineering. We
adapt local model explanations to anomaly detectors and show that
models rely on higher frequencies to distinguish anomalies from
inliers. We verify this by filtering the input data’s frequencies and
observing the change in ASD performance. Our results indicate that
sifting out low frequencies by applying high-pass filters aids down-
stream performance, and this could serve as a simple pre-processing
step for improving anomaly detectors.

Index Terms— anomaly detection, DCASE challenge, data en-
gineering, interpretablity

1. INTRODUCTION

Anomalous sound detection (ASD) is the task of deciding whether
a sound produced from an object is normal or anomalous. This is
conducted by comparing the sound to a learnt distribution of inliers.
ASD is useful for machine condition monitoring and can result in
more timely repairs after unusual sounds are identified. In practice,
this task is difficult because only inliers are available for training.
In addition, it is hard to anticipate the types of anomalies that may
appear (for example, if they manifest in certain frequency bands or
at specific times). The task has received more attention in recent
years, featuring within the Detection and Classification of Acoustic
Scenes and Events (DCASE) challenges for three consecutive years
to date [1]. In 2021, the ASD challenge received a total of 75 sub-
missions [2]. Analysing the top submissions, we note they share
many similarities. The majority utilise ensembles and use meta-
data to pre-train their anomaly detection models. However, there is
more variability in the usage of data engineering. Notably, the top
three entrants do not apply any data engineering through either data
augmentations or pre-processing [3, 4].

Data engineering typically modifies the training data using
pre-defined rules to improve model generalisation. Whether data
engineering helps or harms anomaly detection is debatable within
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the machine learning community. However, existing studies have
focused on the computer vision domain [5, 6]. In this paper, we
seek to address this question for ASD. There are many types of
data engineering steps that could be applied to audio such as speed
perturbations, adding noise, and frequency masking [7]. We choose
to focus on frequency-related data engineering, as [8] proposes
the high-frequency hypothesis: anomaly detectors use higher
frequencies to identify anomalies. If this is the case, methods
such as random frequency masking could remove discriminative
features between inliers and anomalies. This hypothesis could
partly explain why the top three submissions outperform the others.

However, [8] does not explicitly substantiate their claim. We
conduct a series of experiments in this paper to verify the high-
frequency hypothesis. We firstly adapt Sound LIME (SLIME) [9]
to a one-class anomaly detector. SLIME can provide an insight into
how modifications at an individual sound clip level can affect model
predictions through approximating changes in output using a linear
model, hence even providing explanations for models with complex
global behaviour. We find the majority of the datasets in the DCASE
ASD challenge rely on higher-frequency information to make the
correct decisions. Moreover, we quantitatively verify SLIME’s re-
sult by re-training and re-testing our anomaly detectors by applying
low and high pass filters to input data in a sequential manner. Our
results corroborate that focusing on higher frequencies helps ASD,
and simple frequency filtering instead of complicated data engi-
neering is a more measured approach to improving performance.

2. APPROACH

2.1. Dataset

We use the DCASE 2021 Task 2 dataset for our experiments. This
dataset combines subsets of the ToyADMOS2 [10] (ToyCar, Toy-
Train) and the MIMII DUE [11] (Fan, Gearbox, Pump, Slider,
Valve) datasets. All recordings are single channel, 10 seconds in
duration and downsampled to 16 kHz. We refer to the subsets as
different machines.

Each machine is subdivided into six sections, which correspond
to different properties. Anomaly detectors are evaluated at the sec-
tion level, using area under the curve (AUC) as the performance
metric. Furthermore, each section contains data from two domains:
the source domain (for which there is an abundant number of audio
clips available) and the target domain representing a domain shift
(where only a few clips are available).

The dataset is curated in a one-class fashion: the training split
only contains inliers, whereas the test split contains both inliers and
anomalies. The training split contains about 1,000 inliers for each
of the six sections and is further subdivided into a development set
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Figure 1: Schematic of the experimental workflow. The different coloured backgrounds correspond to the various stages. For fine-tuning, the
AST is tasked with classifying metadata (the correct subset and section). For anomaly detection, the metadata and corresponding classification
layer are disregarded. Instead, the embedding at the pre-logits layer of the fine-tuned model are extracted and used to train a k-NN. For SLIME,
the input spectrograms are perturbed by segmenting via the frequency axis (denoted by the dotted lines in the spectrogram). The predicted
distances produced by the trained k-NN are converted to a classification decision by using the equal error rate as a threshold. SLIME then
approximates the classifier locally with an interpretable linear model to produce a heatmap explanation.

containing the first three sections and an evaluation set consisting
of the latter three sections. The test split contains the same number
of samples for both domains: about 100 inliers and 100 anomalies
per section.

2.2. Anomaly detection model

Table 1: Mean AUC scores (%) across all six subsections (source
and target) by anomaly detection model. Bold denotes the best re-
sult.

Fan Gearbox Pump Slider ToyCar ToyTrain Valve

Autoencoder (Baseline) 64.0 66.8 63.7 69.2 63.2 63.0 53.7
MobileNetV2 (Baseline) 64.7 68.2 64.2 62.6 60.0 59.2 57.1

AST with Mel spectrogram 74.5 73.9 69.3 76.5 75.9 64.9 76.4

AST with STFT spectrogram 71.6 81.0 73.2 75.5 78.9 65.0 75.1

We use the same anomaly detection method for our experi-
ments. Namely, we extract features from fine-tuned Audio Spectro-
gram Transformers (ASTs, 87m parameters) [12] and feed these to a
shallow anomaly detection model. We choose to use ASTs as Trans-
formers have demonstrated good anomaly detection performance in
other domains [13, 14, 15]. Based on the success of using metadata
in the DCASE 2021 submissions for learning representations, we
fine-tune ASTs to classify both the machine and section (resulting
in a 42-dimensional classification layer) using a cross-entropy loss.
We choose to include all seven machines in the fine-tuning stage in-
stead of fine-tuning an AST per machine, as we found that this im-
proved anomaly detection performance. We choose cross-entropy
instead of angular losses to reduce the number of hyperparameters
that need to be tuned. Starting from ASTs pre-trained on AudioSet
[16], we trained our models for a maximum of 10 epochs using the
Adam optimiser and a learning rate of 1e−5. Our fine-tuned model
achieved a classification accuracy of 94%.

As an initial experiment to examine the importance of high fre-
quencies, we use both STFT spectrograms and Mel spectrograms
(128 bands) as input. We use Torchaudio [17] to compute the input
features, using a frame length of 25ms and a hop size of 10ms. In
line with the original AST implementation, we also normalise the
spectrograms across both the time and frequency axes so that the
dataset mean and standard deviation are 0 and 0.5 respectively. Af-

ter fine-tuning, we extract training features at the pre-logits layer,
resulting in a 768-dimensional representation. We use the features
to train a k-NN. For inference, we extract test features in the same
manner and use the mean distance from a test datum to its nearest
neighbours as the anomaly score. We set k = 1 after validation.
We tried other methods such as maximum softmax probability [18],
Mahalanobis distance and isolation forest [19] and found the nearest
neighbour approach worked best.

Table 1 illustrates our initial results. Excluding Fan, the AST
trained with STFT spectrograms either matches or exceeds the AST
trained with Mel spectrograms. As Mel weighting loses spectral
resolution at high frequencies, this substantiates the high-frequency
hypothesis for the majority of machines.

2.3. Preliminaries: Is it appropriate to analyse frequencies?
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Figure 2: Mean spectral centroids (with standard deviations) across
all inlier training samples, calculated using Librosa [20] with
n fft= 2048 and hop length= 512.

To verify whether it is appropriate to examine how frequencies
affect ASD, we checked whether the frequency distributions remain
stable across different audio clips and times. We measured stability
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Figure 3: Top: change in classification accuracy after applying frequency filters on Mel spectrograms. Bottom: changes in mean AUC (across
all six sections) after applying frequency filters. Applying low-pass filters (left) significantly affects fine-tuning classification accuracy and
downstream ASD performance. Conversely, referring to Table 1, classification performance and ASD is remains stable after applying high-
pass filtering (right). This indicates low-frequencies potentially obscure discriminative features. The same trends are observed when using
STFT spectrograms as input.

by computing the average spectral centroids per frame in the train-
ing split for each machine. The spectral centroid is stable across
time for most datasets (Figure 2), suggesting it is appropriate to
examine the aggregate frequency features across time. We observe
some variations to this in ToyCar and ToyTrain. For these machines,
the spectral centroids are stable for most of the clips but dip at the
start and end. We speculate this may be due to the 10-second clips
being collected in ToyADMOS2 in a different systematic way.

2.4. Adapting local explanations to one-class detectors
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Figure 4: Median heatmaps generated by SLIME on Source Section
0, segmented by subset and condition {inlier, anomaly} . Yellow re-
gions indicate frequency ranges that are more important for correct
decisions while purple regions do not contribute to the ASD deci-
sion.

The differences in ASD performance using STFT spectrograms
instead of Mel spectrograms in subsection 2.2 indicates that gen-
erally, maintaining spectral resolution at high frequencies is help-
ful. However, these AUC scores only give us a global insight into
a detector’s behaviour and do not account for differences at a sec-
tion level. Sound local interpretable model-agnostic explanations
(SLIME) [9] can provide a localised understanding. SLIME gen-

erates synthetic samples by firstly segmenting input spectrograms
into fixed components in the time or frequency axis. It then ran-
domly occludes input components using the segments and observes
the changes in a model’s behaviour by approximating the output us-
ing a linear model. The changes in a model’s decision are visualised
in a heatmap. In particular, the heatmaps depict regions contribut-
ing or detracting from the prediction. However, SLIME is typically
used to interpret classifiers with distinct decision boundaries. Such
boundaries are not necessarily present in anomaly detectors. In-
stead, a detector’s output often measures the distance from the inlier
training distribution. Examples of these types of anomaly detectors
include Mahalanobis distance, k-nearest neighbours and one-class
support vector machines.

To adapt SLIME to work for distance-based ASD, we convert
the distances to labels L = {0 = inlier, 1 = anomaly} using
the equal error rate (EER) as the threshold. EER indicates the dis-
tance where the false-positive rate equals the false-negative rate. We
choose EER as the threshold because it summarises overall ASD
performance. Given λ as the value at which the EER occurs, and si
as the score output by the anomaly detector for a test datum xi, this
decision can be can be expressed as follows:

L = 1[si ≥ λ] (1)

The SLIME region of Figure 1 (denoted by green dashes) il-
lustrates our workflow. We run adapted SLIME to conduct a post-
hoc evaluation on the test splits and by section. We segment the
spectrograms by frequency as section 2.3 indicates the frequency
distributions are relatively stable across time for the subsets. The
time domain is not in scope for our experiments. As SLIME’s out-
puts are sensitive to its training hyperparameters [9, 21], we di-
vide the input spectrograms into eight fixed interpretable compo-
nents and set the number of synthesised samples to 1,000. Figure
4 shows median heatmaps for Gearbox and ToyCar, split by condi-
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(a) 400Hz low-pass filter. AUC: 46.6%
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(b) No filters applied. AUC: 86.7%
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(c) 400Hz high-pass filter. AUC: 93.0%

Figure 5: Qualitative visualisations of Gearbox Source Section 1. Top: Histograms of normalised (cosine) k-nearest neighbour similarities.
Bottom: t-SNE scatter plots. Applying a low-pass filter (left) decreases separability between inliers and anomalies while applying a high-pass
filter increases separability and improves inlier generalisation, as evidenced through the change in scoring distribution.

tion. The heatmaps show that occluding the low-frequency regions
makes inliers appear more anomalous, leading to more incorrect
decisions. Correspondingly, occluding the high-frequency regions
makes anomalies appear more benign. We observe similar patterns
across sections and machines, and on the STFT spectrograms. This
behaviour appears to validate the high-frequency hypothesis.

2.5. Re-training the detectors with filtered audio

Our final step to empirically validate the high-frequency hypoth-
esis is to apply low and high-pass filters to the input data, repeat
fine-tuning on the ASTs and redo anomaly detection. If high fre-
quencies are important, then we would expect low-pass filters to
decrease ASD. We filtered the input spectrograms at both the fine-
tuning and anomaly detection stages to prevent discrepancies be-
tween the training and test distributions [22]. This intervention re-
moves the possibility that any changes in performance are caused
by distribution shifts. In line with previous studies that looked at
frequency artefacts in the speech domain [23], we vary the cutoff
frequencies between 400 Hz and 8 kHz in increments of 400 Hz
for both the low-pass and high-pass filters. We applied the filters
directly on the input audio before converting to spectrograms.

Figure 3 depicts our Mel spectrogram results. The low-pass re-
sults indicate removing high-frequency information decreases sepa-
rability between classes, causing fine-tuning classification accuracy
and ASD performance across subsets to drop significantly. Separa-
bility between classes is still good after applying high-pass filters,
and so downstream ASD performance is retained or even improves.
We note that classification accuracy drops from the baseline fine-
tuning accuracy of 94% (Section 2.2), which suggests separability
between classes is an important but not necessary component for
ASD. Overall, our results illustrate that high frequencies are helpful
for ASD, except for Fan, where informative frequencies likely lie
in sub-bands. Although Fan exhibits similar trends to the other ma-

chines, applying high-pass filters causes performance to drop signif-
icantly compared to the benchmark AST. We show Figure 3’s results
qualitatively by visualising the change in normalised k-NN (cosine)
similarities and t-SNE [24] on the 768-dimensional learnt embed-
dings. Figure 5 illustrates an example on Gearbox. Aggressive low-
pass filtering decreases separability between inliers and anomalies
while high-pass filtering increases the dissimilarity. We also visu-
alise a similar phenomenon for the other machines.

3. CONCLUSION AND FUTURE WORK

We test if higher frequencies aid ASD in three ways: (1) by vary-
ing the input spectrograms used to train the anomaly detector, (2)
evaluating the heatmaps produced by SLIME, and (3) re-training
the anomaly detectors after filtering frequencies of differing mag-
nitudes. Our results corroborate the high-frequency hypothesis and
suggest high-pass filtering to remove noisy information is a simple
pre-processing step to boost performance. The scope of adapted
SLIME in our experiments was isolated to frequency segmenta-
tions. Some avenues for future work include analysing changes
in ASD after segmenting input spectrograms by time, investigating
SLIME outputs on alternative anomaly detection architectures, or
using more sophisticated thresholds in place of EER. Furthermore,
the exceptional results on Fan suggest that some anomalies may
manifest in sub-band frequencies. Future work could extend the re-
training approach by using band-pass filters, which could provide a
more fine-grained analysis of anomalous artefacts.
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