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ABSTRACT 

The trade-off between the quality and quantity of training data is 
considered for the detection of minke whale (Balaenoptera 
acutorostrata) vocalisations. The performance of two different 
detectors is measured across a range of label strengths using 
training sets of different sizes. A detector based on spectrogram 
correlation and a convolutional neural network (CNN) are 
considered. The results show that increasing label strength does 
not benefit either detector past a certain point, corresponding here 
to a label density of 60 to 70%. Performance is found to be good 
even when labels are extremely weak (4% label density). 
Additionally, it is noted that performance of the spectrogram 
correlation plateaus beyond the use of 5 training calls, whereas the 
CNN’s performance continues to increase up to the maximum 
training set size tested. Finally, interaction effects are observed 
between label strength and quantity, indicating that larger training 
sets are more robust to weaker labels. Overall, these findings 
suggest that there is indeed a benefit to collecting more, lower 
quality data when training a CNN, but that for a correlation-based 
detector this is not the case. 

Index Terms— Weak labels, marine bioacoustics, CNN, 
spectrogram correlation, sound event detection 

1. INTRODUCTION 

Passive acoustic monitoring (PAM) forms a major part of marine 
mammal conservation. Acoustic surveys are an effective and non-
invasive means to further our understanding of species-wise geo-
graphic distributions, migration patterns and feeding grounds, 
monitor ecosystem health, and help to mitigate the impacts of hu-
man activity. Automated analysis of survey data can improve our 
ability to achieve these goals, whilst substantially reducing the 
manual effort required [1]. 

It is generally accepted that larger training sets allow deep 
neural networks to build richer representations and improve per-
formance across many classification tasks [2]–[4]. However, la-
belling large-scale datasets is expensive and time-consuming, so 
weak labels are commonly used to allow more training data to be 
collected [4]–[7]. This has resulted in a “quantity over quality” 
mantra which is at risk of being rashly applied without giving due 
consideration to the data distributions, labelling techniques, and 
algorithms pertinent to a particular application. So, work is needed 
to empirically determine whether “quantity over quality” retains 
its relevance in marine bioacoustics. 

 
* Thanks to BAE Systems and the Engineering and Physical Sciences Research Council for funding. 

Weak data in PAM can take many forms [1], but this study 
will consider the effects of label noise – when some training in-
stances do not represent the label they are assigned. This is com-
mon when audio is labelled without exact temporal localisation of 
the signal of interest, which is the scenario presented here. The 
longer the label, the more irrelevant or even confounding infor-
mation is likely to be present. The question is then how long the 
labels need to be in order to make best use of the analysts’ time – 
accepting some label noise allows the analyst to work faster and 
thus collect more samples. 

Label noise can also be introduced through computer-assisted 
labelling. In PAM, manual labelling is often combined with ge-
neric energy detection and unsupervised clustering to reduce an-
notation effort, at the cost of increased label noise [8]–[10]. Here, 
the relevant parameter is the sensitivity threshold for the energy 
detectors. A lower threshold yields more training samples, but also 
results in more erroneous labels. 

Regardless of the origin of the label noise, the recurring 
theme is that a direct trade-off exists between the strength and 
quantity of the training data created. Determining the best labelling 
strategy therefore requires a quantification of exactly how classi-
fication performance is affected by these two opposing variables. 
The impact of label noise has been already been investigated for a 
range of audio tasks [11]–[13]. Additionally, the effect of training 
set size is often reported when new models are developed [4]. 
However, varying both strength and quantity concurrently, and in 
a controlled manner, has not been previously considered. Conduct-
ing a two-way study is important, since the impacts of the two are 
not necessarily independent (termed factor interaction). Thus, the 
description of a method to determine the presence of any interac-
tion effects has broader relevance to other audio domains as well. 

Once the training data has been collected, several weak learn-
ing techniques can be applied. Strong label assumption training 
(SLAT) is a basic option that splits the audio into frames and then 
assigns the same parent label to each [4]. This creates more, 
smaller training instances, both of which benefit smaller datasets, 
but a portion of these may be incorrectly labelled. In this case, 
prior estimates of the size of this portion can be used to improve 
performance [14]. Other options include multiple-instance learn-
ing [15] and scalable variants [16], or the use of attention or recur-
rence mechanisms [17]. 

For many years, template matching techniques such as 
matched filtering [18], [19] and spectrogram correlation [19], [20] 
have been the PAM algorithms of choice for detecting call types 
with limited variation (known as stereotyped vocalisations). Fol-
lowing widespread adoption in many other disciplines, CNNs have 
also recently found success in this field [1], [10], [21], [22]. Since 
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these methods differ significantly, but are both extensively used, 
an implementation of each will be tested. We stress that the objec-
tive of this is not to directly compare the performance of the two 
detection algorithms, but to identify any differences in how gradi-
ent-based learning and traditional signal processing methods are 
affected by the quality and quantity of data used. 

In summary, this paper contributes the following: 

 Design of two detectors for minke whale vocalisations, one 
based on spectrogram correlation, and the other a CNN. 

 A quantification of how label strength affects the perfor-
mance of these detectors. This is the first such study in ma-
rine bioacoustics, and also tests more datapoints than simi-
lar studies in other audio domains. 

 The addition of a second dimension to the problem space, 
so as to explore the impact of both quantity and quality of 
labels simultaneously. Comments are also provided regard-
ing interaction effects between the two factors. 

2. DATA 

The scenario considered is the detection of minke whales in towed-
array data from the 2017 Hawaiian Islands Cetacean and Ecosys-
tem Assessment Survey [23]. The dataset comprises over 23,000 
60-second audio files, sampled at 500 kHz on 6 channels. The 
channels have varying signal-to-noise ratios (SNRs) based on the 
distances between the hydrophones and the ship. Like other marine 
mammals, minke whales are under threat from human activities 
including vessel strikes, fishing gear entanglement, noise pollution, 
and ingestion of debris, so collecting regular and accurate abun-
dance estimates is important [24]. 

The minke whales in this area produce stereotyped “boing” 
calls. A boing comprises a brief pulse followed by a longer, fre-
quency and amplitude modulated component, and has a peak fre-
quency of 1.4 kHz, harmonics up to 9 kHz, and source levels 
around 150 dB re 1 μPa·m [25], Figure 1. Note that this image is 
thresholded to improve clarity for illustrative purposes, but the 
spectrograms used for the experiments are unthresholded to max-
imise detectability and for better generalisability of the results. 

 

For this experiment, 40 calls are identified, and selected such 
that no audio file contains more than one call. These are strongly 
labelled by hand, with the start and end times determined to 0.1 s 

precision. Call durations range from 1.4 to 4.3 s, with a mean of 
2.7 s. For the non-target class, 40 files are manually verified to 
contain only ambient noise. All audio is taken from the same sur-
vey day to minimise data leakage. The files are split into 4 valida-
tion folds, each containing 30 training calls and 10 test calls. Here-
inafter, audio will be referred to as positive if it contains a call, and 
negative otherwise. 

In addition to the strong labels, 7 sets of weaker labels are 
generated by increasing the length of the label. Thus, weakly-la-
belled positive audio will contain varying amounts of ambient 
noise in addition to a call, depending on the label length. For the 
first 3 sets, the label length is variable, and is equal to the call 
length plus a fixed time quantity of 0.5, 1 or 1.5 s. Since no call is 
longer than 5 s, for weaker sets, the label length is fixed, and varies 
from 5 to 60 s. The extra time added is split randomly between the 
start and end of the strong label, so the calls can occur at any point 
in the audio. The strength of each set can be quantitively measured 
by considering the call duration as a percentage of the overall label 
length, referred to as the label density [11]. Table 1 shows the label 
density for each training case. 
 
Table 1: Average label density for each of the label strengths 
tested. 

Spectrogram representations of the audio are generated using 
250 ms Hamming windows with 75% overlap. The spectrograms 
are cropped to a narrow band between 1.3 and 1.6 kHz, containing 
only the peak frequency and one additional harmonic, as per Fig-
ure 1. The spectrograms are then divided into 1 s frames with 50% 
overlap, discarding any excess beyond the length of the label. The 
resulting frames measure 76 by 16 pixels. Each audio channel is 
treated independently, resulting in 6 times as many samples. Since 
the channels have varying SNRs, this acts as a form of data aug-
mentation and helps to regularise the data. SLAT is then applied, 
so all the frames are assigned the label from their parent audio seg-
ment. Note that: 

 The “Strong” set contains only samples where the calls en-
tirely fill the frames. 

 The “Strong +0.5 s” and “Strong +1 s” sets also include 
samples that only partially contain calls. 

 The weaker sets include partial samples as well as samples 
that do not contain calls at all (but are still labelled positive). 

For each label strength, the number of calls in the training sets 
is varied from 30 down to 1. Training on a single channel of one 
call is also considered. The test data is the same for every training 
case in the fold, and is always strongly labelled. 

In every case, the negative audio contains only ambient 
sounds, which is not unrealistic for PAM data. Thus, the label 
noise is entirely one-sided, effectively rendering this a positive-
unlabelled (PU) learning problem [26]. The classes are kept bal-
anced by randomly undersampling from the negative audio. 

 
Figure 1: A typical minke whale boing. 
 

Training Set Label Density 
Strong 100% 

Strong +0.5 s 84% 
Strong +1 s 72% 

Strong +1.5 s 63% 
5 s 52% 

10 s 26% 
20 s 13% 
60 s 4% 
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3. DETECTORS 

Design of the spectrogram correlation detector follows Mellinger 
and Clark [20]. For each test sample, a 2D correlation is performed 
with each positive training sample and the highest correlation 
value is taken as the recognition score. The negative training sam-
ples are unused. The decision threshold is then set as the median 
recognition score across the test samples. Thus, this implementa-
tion implicitly assumes that half of the test samples are positive. 
However, this can easily be modified to use a fixed threshold or a 
threshold-moving algorithm for imbalanced data [27]. 

A simple CNN is designed with three convolutional layers 
and one dense layer. The convolutional layers have 3 by 3 kernels, 
[2, 2] stride, 8, 16 and 32 filters, and are followed by batch nor-
malisation [28] and RELU activations. The network has 7,170 
trainable parameters in total. Spectrogram values are rescaled to 
the range [0, 1] before input. Training is performed using the 
Adam optimiser [29] with an initial learning rate of 0.003, a batch 
size of 50, and early stopping. 

4. RESULTS 

The average detection accuracies and standard deviations across 
the 4 validation folds are shown in Table 2. The results are also 
given graphically, also called interaction plots, in Figure 2. 

As expected, the overall trend is that the detectors perform 
better when trained with stronger labels, and higher quantities of 
data. However, the results show that both methods can tolerate 
some label noise (corresponding to a label density of 60 to 70%) 
without a meaningful reduction in performance. This has an im-
portant corollary: increasing the strength of the labels does not im-
prove performance beyond a certain point. 

Since the analysis frames are 1 s long, “Strong +1.5 s” is the 
first dataset for which samples can be labelled positive but not 

contain even a partial call, and this coincides with the accuracy 
beginning to drop. This suggests a possible interaction between the 
length of the analysis frames and the strength of the labels, espe-
cially for the CNN. However, further work is needed to establish 
to what extent, if at all, this is the case, and determine whether 
frame length should also be considered when choosing a label 
strength. 

The spectrogram correlation responds similarly to increasing 
label quantity, with performance plateauing beyond the use of 5 
training calls. Performance of the CNN, however, continues to in-
crease up to the maximum training set size tested. Thus, the CNN 
is shown to scale better with the quantity of training data available. 
On the other hand, the spectrogram correlation is more robust to 
fewer training samples, with the accuracy dropping at most only a 
few percent between the highest and lowest values tested. 

It is observed that using all 6 audio channels instead of only 
one actually makes the spectrogram correlation perform worse. 
This is because channels for the same call are highly correlated, so 
comparing additional channels provides insufficient new infor-
mation to compensate for the reduced SNR, which only serves to 
confuse the detector. On the other hand, the varying SNR is shown 
to be an effective regulariser for the CNN, improving accuracy by 
an average of 20%. When only a single channel is available, it is 
likely that similar gains can be achieved by varying the SNR arti-
ficially (i.e., standard data augmentation). 

Both methods perform well even when labels are extremely 
weak. In the weakest case, only 4% of the positive audio distin-
guishes it from the non-target class. The spectrogram correlation 
has far better robustness to label noise, with its accuracy dropping 
by at most only 6%. This is likely because samples of ambient 
noise correlate poorly with each other, as well as with samples of 
minke whale call. The CNN, on the other hand, does not hold this 
bias, making it susceptible to overfitting, and learning to errone-
ously discriminate the two classes based on spurious information 
in the background noise. With only 7,000 parameters, the ex-
tremely small capacity of the model may have helped to avoid this. 

Table 2: Average detection accuracies and standard deviations for different sized training sets and label strengths. 
 

№ 
Calls 

Strong Strong +0.5 s Strong +1 s Strong +1.5 s 5 s 10 s 20 s 60 s 

 Spectrogram Correlation 

30 99.0 (0.8) 98.6 (0.7) 99.0 (0.8) 98.4 (1.2) 98.0 (1.2) 97.5 (1.4) 97.6 (1.7) 95.9 (2.1) 

20 99.0 (0.8) 98.8 (0.9) 99.0 (0.8) 98.4 (1.1) 98.1 (1.2) 97.5 (1.5) 97.3 (1.7) 96.1 (2.1) 

10 98.9 (0.9) 99.1 (0.7) 98.8 (0.7) 98.5 (0.8) 98.7 (1.4) 97.4 (1.5) 97.2 (1.4) 95.7 (2.0) 

5 99.1 (0.7) 98.9 (1.0) 98.9 (0.5) 98.5 (0.8) 98.2 (1.5) 97.1 (1.5) 97.0 (1.6) 94.9 (1.7) 

1 96.7 (1.7) 96.5 (2.1) 96.8 (1.6) 96.6 (2.2) 96.7 (2.2) 95.4 (2.9) 93.7 (3.7) 90.9 (4.6) 

1/6 96.4 (2.2) 96.6 (2.1) 96.6 (2.1) 97.3 (2.2) 96.8 (2.1) 96.3 (2.6) 96.2 (2.3) 93.1 (3.8) 

 CNN 

30 98.4 (1.5) 98.0 (2.0) 98.1 (1.1) 96.0 (1.0) 94.1 (0.6) 86.9 (1.2) 82.0 (8.2) 83.5 (3.9) 

20 97.5 (2.3) 98.0 (2.0) 97.4 (1.7) 95.7 (1.7) 93.2 (2.0) 83.8 (6.4) 83.1 (5.3) 79.4 (5.7) 

10 94.4 (5.7) 96.6 (3.0) 96.7 (2.2) 93.7 (1.8) 92.1 (1.8) 81.6 (1.4) 80.4 (4.0) 78.4 (8.6) 

5 94.8 (5.8) 95.9 (3.8) 96.1 (2.7) 93.6 (1.9) 88.9 (1.9) 82.5 (3.5) 79.5 (1.7) 76.0 (6.4) 

1 85.6 (2.8) 88.4 (6.1) 85.1 (2.5) 90.9 (5.1) 81.9 (3.7) 75.2 (1.9) 73.2 (5.0) 61.9 (11.3) 

1/6 76.2 (8.9) 62.6 (15.0) 66.2 (11.9) 61.4 (20.5) 60.9 (15.4) 54.5 (10.9) 51.7 (10.8) 47.8 (5.6) 
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The presence of factor interaction is indicated by the lines in 
an interaction plot being nonparallel. In general, the lines in each 
plot of Figure 2 can be seen to spread out from left to right, show-
ing that some interaction between label strength and quantity is 
occurring. Specifically, the results indicate that stronger labels are 
more robust to smaller training sets, and larger training sets are 
more robust to weaker labels. The presence of interaction also 
demonstrates the importance of conducting multi-factor studies. 

5. CONCLUSION 

This paper studied the effects of volume and strength of training 
data on the performance of two detectors for minke whale calls. 
The aim was to determine the relevance to marine bioacoustics of 
the oft-quoted principle of “quantity over quality”. Given the 
CNN’s good scalability to larger training sets, and the performance 
saturation that occurs when enhancing label strength, the study 
concludes that “quantity over quality” does indeed hold for CNNs 
for the call detection scenario presented. Consistency in other ma-
chine learning domains suggests that this conclusion is likely to be 
valid for other gradient-based models as well. However, this is not 
the case for the spectrogram correlation, which is found to be 

incapable of exploiting additional training data. On the other hand, 
the spectrogram correlation demonstrates greater robustness to 
noisy labels and smaller training sets, making it more appropriate 
for few-shot learning scenarios. 

Future work includes investigating the effects of frame length, 
mixing labels of different strengths, and using larger training sets 
to find the saturation points of the CNN’s performance. Extensions 
can also be made to include more advanced weak learning methods, 
and classification of multiple marine mammal species. Finally, sta-
tistical significance tests such as two-way analysis of variance can 
be used to provide a more objective measure of factor interaction. 
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