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ABSTRACT

This paper presents a sound event detection system basedlon m
frequency cepstral coefficients and a hon-parametriciilersSys-

tem performance is tested using the training and developmen
datasets corresponding to the second task of the DCASE 26 c
lenge. Results indicate that the most relevant spectratrimdtion

for event detection is below 8000 Hz and that the generalesbép
the spectral envelope is much more relevant than its finélsleta

Index Terms— Sound event detection, spectral envelope, cep-
stral analysis

1. INTRODUCTION

Automatic sound event detection is a rather recent resasscie
and any advance related to it may impact a variety of apjicat
fields [1]. Probably, the most intuitive approach to sounscdie-
tion for event detection consists in parameterising itscspen.
Specifically, mel-frequency cepstral coefficients (MFC@)vide
a low-dimensional procedure for coding the shape of thetsgdec
envelope that has been successfully applied to speechssinge
tasks such as speaker verification [2] or laryngeal patlyottegec-
tion [3]. In fact, this type of coefficients has also been &apto
sound event detection [1, 4, 5]. Yet, it is known that sound@e-
tion not only works in spectral domain, but also in tempoahdin
[6]. Such temporal dimension may be included in sound event d
tection by different means such as calculating MFCC devieaf
training hidden Markov models for classification, or both41
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Figure 1: Power spectral density (PSD) of synthetic noiseéyated
from a 6.5 second-length fragment using the Welch methadH&j
reference purposes, ‘A Weighting’ and ‘CCIRR 468-4’ cur{&s]

have also been plotted.

2. MATERIALS

Audio recordings were provided by IRCCYNEcole Centrale
de Nantes. They correspond to 11 sound event types (see
Tab.1) recorded in a quiet environment, using a condensetomi
phone (AT8035, manufactured by Audio-Technica) connetted
a portable recorder (H4n, manufactured by Zoom). Audioagn
were sampled at 44.1 kHz and recorded with a single micraphon
(monophonic recordings). The microphone pass band ramges f
40 to 20,000 Hz.

20 events from each type were recorded, hence resulting 220

When it comes to detecting several sound events happen-recordings each one containing a single sound event. Fifaval

ing simultaneously, proposed approaches include decatigpos
of sound spectra in several components prior to classificg#],
adding complexity to the classification stage to allow forltiple
event detection [1], or combinations of both [8].

In our view, a priori decomposition of sound spectra in sev-
eral components is problematic, since the addition of tgaals in
temporal domain does not necessarily result in the additfdheir
power spectra. For this reason, we approach the problenréstiyi
coding the spectrum of the recorded signal using MFCC. Time te
poral dimension of the event detection problem is acknogéedy
calculating the first derivatives of MFCCs and by splittihg sound
signal into frames before processing. In this work, we cotrege
on the design of the datasets and the signal analysis; comsty)
no assumption is made regarding the distribution of theutated
signal parameters. For this reason, a non-parametricifodass
chosen.

This work has been partially financed by the Spanish Govenyme
through project grant number TEC2012-38630-C04-01.

tion purposes, an additional dataset was built using theiqus
220 recordings as a basis. This consists of 18 recordings 2vit
minute durations. These were obtained by combining somkeof t
single-event recordings into a single file and adding nasended

in an independent session. Overlapping between events was a
lowed in 50% of the resulting files. Noise was approximatelyyg
(Fig.1) and several levels of event-to-background ratBREwere
allowed: -6, 0 and 6 dB.

3. SIGNAL ANALYSIS

3.1. Inspection of sound spectra

Fig.2 depicts the estimated spectra, averaged for eactofypent.
While some types have distinct spectral envelope shapeh, au
key drops or phone ringing, there are others for which thetsale
envelopes are similar. This is especially the case of cotlgbat
clearing, laughter and speech, since all these soundsateqad as
outputs of the same acoustic filter: the human vocal traacth $act
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Type# | Type name | Event
1 Clearthroat | Throat clearing
Cough Cough
Doorslam | Door slam
Drawer Drawer sliding
Keyboard | Typewritting
Keys Keys dropping on a des
Knock Knocking on a door
Laughter | Laughter
Pageturn | Paper page turning
Phone Phone ringing
Speech French speech
Back Background noise

PR
SEBovwo~N~oobrwd

Table 1: Event types. Recordings corresponding to tHé fybe
(back were obtained by cutting out event-free segments from the
validation dataset.

suggests that parameterisation schemes based only oratsgm
the average spectral envelope are likely to have poor peeoces.

From another point of view, all spectra exhibit a decay at fre
quencies above 13 kHz. However, the power spectral density o
background noiseb@cktype in Fig.2) grows from 13 to 22 kHz, as
also shown in Fig.1. As a consequence, the EBR above 13 kHz is a
decreasing function of frequency.

3.2. Parameter computation

Considering aforementioned characteristics of the taspemind
event spectra, we propose a parameterisation scheme basee o
calculation of mel-frequency cepstral coefficients (MFL@sd
their derivatives. The proposed signal processing schemgises
the next stages:

1. Windowing Each digital audio signal is first normalised to
yield a unit power discrete-time signal[n], composed by
N samples® = 0... N — 1). This signal is segmented in
speech frames of length equal fosamples through multi-
plication by a framing windovw [n]:

zp [n] =z [n+p(L—lo)]-wn] @

wherel, is the number of overlapping samples between con-
secutive frames angis the frame index.

2. Fourier transform From each speech frame, the short-term
Discrete Fourier Transform (stDFT) is computed as:

Z 2pln] - Foer @

whereNprr is the number of points of the sStDFNppr >
Landk:O...NDFT — 1.

The absolute frequency value that corresponds to each stDFT
coefficient is:

foombe i< g
= 3
Jr { Iy KrDiT if k> Mo (3

being fs the sampling frequency.
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3. Mel distortion After the computation of the stDFT, the next

step is frequency distortion in spectral domain. This is enad
according to [11, chap. 2]:

£~ san [fk]~2595'10g10< + |7JE)I€()|) @

. Mel spectrum smoothing his is done by integrating the en-

ergy present in the spectrum of the processed speech frame
along a set of pre-defined mel-frequency bands. These are
M equal-width bands linearly distributed betwegfi, and

mel with 50% overlap between consecutive bands. Each
one is characterised by its centre mel frequency and it$widt
Thest" centre frequency is

mel __ pmel mel mel {
i = Jvan + ( MAX — MIN) e (5)
ot M+1

wherei = 1...M. Thus, each band covers the range
et = mfll, 1], yielding bandwidth
1 Max — flin
A mel _ 2. JMAX — JMIN 6
! M+1 ©

Integration along bands is commonly done using triangular
windows [12, chap. 6]. Thus, the result for each band is:

Li=1 3

* rmel  mel
fRe ey

mel mel
k — Jc,i—1
Afmel
2

QIN;

where the normalising term; ensures that for each band
the mean energy is computed without any bias:

A= Y

mel & ymel
fe ey

fmel _ pmel
dk~ Joizl

c,i—1 1
Afmel
2

(8)

. Transformation into cepstral domaiithe last step in MFCC

computation is transformation of the afore-mentioned
smoothed mel spectrum into cepstral domain. Such transfor-
mation can be realised by calculating the inverse DFT of the
logarithm of the power spectrum [13]. Given that the speech
signal is real-valued, it may be assumed that its spectrum is
symmetric. Furthermore, iX,, (0) is defined to be equal to

1, which simply means adding a constant value to the signal
in temporal domain, then the power cepstrum of the mel-
wrapped and spectrally smoothed signal can be written as:

Xl = 2M+1 21_7M log (X (z)) IR
(5, 0) s ()

The coefficientsY,, [¢] are called MFCC and they may be
computed using an expression that resembles the discrete
cosine transform (DCT) of the logarithm of the smoothed
mel-wrapped spectrum of the speech framdn]. In fact,

the original MFCC formulation [14] directly uses the sec-
ond form of the DCT (DCT-2) [15, chap. 8]. Herein, (9) is
preferred because it has a simpler relation to the DFT.

. Derivation Derivation of MFCC to obtailMMFCC is per-

formed using a eighth-order discrete differentiating filte
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Figure 2: Average power spectral density for each type ofievBpectra have been averaged for all 20 recordings belgrigieach type.

Estimation has been carried out using the Welch method [9].

A%l = X-ald - 5X-sld + 52 d

— X1 (g + Xpta gl - % v+2 [q]

P N I (10)

3 4

4. CLASSIFICATION

The feature vectors describing sound frames that resuit tiee
previous signal analysis scheme have probability distiobs with
shapes that significantly differ between distinct sounchesceFor
instance, the distributions for tlspeechandkeysclasses illustrated
in Fig.3 present different shapes. From another point ofvvie
is known that for classification problems, the choice of siféer is
much less relevant than the availability of as many data asiple
[16]. For these reasons, a non-parametric discriminantozgh
based on the k-nearest-neighbours (kNN) rule [17] was selec

5. POST-PROCESSING

Let NV; (p) be the number of neighbours belonging to event type

assigned to thg'" sound frame by the kNN rule, therefore:

12
> Ni(p)=k (11)
t=1

Then, a straightforward application of this classificatiole would

lead to assigning event ty(¥ (p) to thep'® sound frame such that:

T (p) = arg max N¢ (p) (12)

Figure 3: Distribution of frames belonging speech(left) andkeys
(right) classes in the feature space defined by the threepfiirst
cipal components of the feature vectors including 15 MFCG+ 1
AMFCC parameters.

However, the following procedure was used in order to smooth
the effect of outlier frames:

1. Low-pass filtering of the number of neighbours by comput-
ing the local average using a sliding Hamming window

P, )
Ny (o) = ZAp:*PIP th (p+ Ap) - wn [Ap] (13)
Ap=—p, Wh [Ap]

2. Discarding events for which the filtered number of neigh-
bours is below a certain threshold:

N (p) = {Nf (p) N () 2 Nowes 4 _q 1

(14)

3. Assigning an event type to each frame, in case the smoothed
number of neighbours corresponding to some class is above
the threshold; otherwise, the frame is considered to belong
to thebackclass:

0 otherwise
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Param. Value Explanation
L 1324 30 ms frames withfs = 44.1 kHz
lo 331 25% overlap between adjacent frames
w [n] Hamming window
Nprr 1324 Same as frame length
mel | 62.63 mel| Corresponding t¢f = 40 Hz
mel | 3582 mel | Corresponding tg = 13 kHz
M 40
k 25
P 5 200 ms filter length
Nthres 6.75
P 1 Corresponding to 25 ms
ATyIN 2s
T™vIN 300 ms

Table 2: Parameter values for the reference system.

if maxy Nt (p) > 0

12 otherwise

t=1...12

T(p) = {arg max; Ny (p)

(15)

4. Discarding events that are not detected in a minimum num-

ber of consecutive frames:

F(p) = {T(p) if 300 _p T (p+Ap)=2P+1
12 otherwise

(16)

After classification of every sound frame, decision on thefn
times of sound events is made based on the next rules:
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Perform. | Refer. Training 8000 Hz

Measure | System | with noise | 15 MFCC

Segment| F 9.61% 70.06% 67.65%
based ER 0.9569 0.4706 0.4973
Event F 6.07% | 62.99% 60.22 %
based ER 1.059 0.6616 0.6902

Table 3: Event detection results in terms of F-scdrg énd Error
Rate ER).

Average | Clearthroat Cough Knock
F 34.2% 54.0% 25.0% 42.4%
ER 2.2537 0.7510 0.9053 1.8566
Doorslam Drawer Keyboard Keys
F 4.5% 33.1% 67.5% 12.5%
ER 3.0628 0.9033 0.5426 1.1156
Laughter Pageturn Phone Speech
F 47.6% 5.6% 71.3% 12.8%
ER 0.7647 0.9744 0.4793 | 13.4350

Table 4: Class average evaluation results (segment-based)

training dataset then the system performance can be skymifjc
improved, as shown in the middle column of Tab.3.

Results in the right column of Tab.3 indicate that the mokt re
evant information is concentrated below 8000 HZ{x = 2840)
and that it can be described using only 15 MFCCs plus theivaler
tives without any big loss of performance. This being a sénpl
configuration, a more robust performance is to be expected.

Last, it should be noted that the post-processing rule B im-
plicitly allows event overlapping. In fact, detection parhance
for the recordings in the validation set with overlappednése

A. An event is considered to be formed by a set of consecutive (F = 65.84%, ER = 0.5030 for the segment-based evaluation;

frames corresponding to the same valu@ ¢p). In such a case,
the event type is defined by (p) and its starting and ending
times are defined by the central time instants of the firstasd |
frames of the set, respectively.

B. Two events of the same type are merged into a single one if th
time difference between the starting time of the second ode a
the ending time of the first one is less than a certain threshol
Amvin. The resulting event duration is from the starting time
of the first original event to the ending time of the second one

C. A minimum event duratioffiyix is defined. If the duration of a
given event is shorter, then its starting point is advancetlis
ending point delayed so that its duration equélsn.

6. EXPERIMENTS & RESULTS

The previously described system, with the parameter vaues
marised in Tab.2, was used as a reference and applied totte de
tion of sound events in the additional dataset describeedtion
2. Results for 20 MFCC + 2AAMFCC are summarised on the left
column of Tab.3.

System performance can be significantly improved by buiidin
a training dataset with features as similar as possibledsetiof the
validation dataset. In this case, if noise sequences éattdoom
the additional dataset are added to the 220 training reagsdiith
the same levels of SNR as in the validation dataset, namelg -6

F = 59.18%, ER = 0.6869 for the event-based evaluation) is
similar to the overall performance (Tab.3).

7. CONCLUSIONS

The reported results in sound event detection, obtainet)#ssys-
tem based on MFCC parameters and a non-parametric clakesifier
to two main conclusions. In the first place, system perfocean
is critically affected by a proper selection of the soundordings
used for training the system. In this particular case, usaugprd-
ings with noise levels similar to those in the testing setdilsved

a significant improvement in performance. Secondly, thedpsc-
tral information for sound event detection seems to be aunated
below 8000 Hz. Additionally, the fact that 15 MFCCs provide a
most the same performance as 20 MFCCs reveals that theiaksent
information is in the overall shape of the spectral envelape not
in its fine details, be them either narrow peaks or narroveyall

APPENDIX: EVALUATION RESULTS

Performance of the proposed system (15 MFCCs; 40-8000 Hz) fo
the DCASE 2016 evaluation dataset is reported in [18]. Thezal/
indicators for the segment-based evaluation weie¢ = 2.0870
andF' = 25.0%; for the event-based evaluations, they werB =

and 6 dB, and the resulting 660 sound signals are used aswhe ne 1.3064 andF' = 25.7%. Per-class results are summarised in Tab.4.
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