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ABSTRACT

In this paper, Non-negative Matrix Factorization is applied
for isolating the contribution of road traffic from acoustic
measurements in urban sound mixtures. This method is
tested on simulated scenes to enable a better control of the
presence of different sound sources. The presented first re-
sults show the potential of the method.

Index Terms— Non-negative Matrix Factorization, road
traffic noise mapping, urban measurements

1. INTRODUCTION

Noise in cities is one of the main sources of annoyance es-
sentially caused by road, air an rail traffic. To know better the
noise spatial distribution, the number of people impacted and
to preserve quiet areas, the European Directive 2002/49/EC
[1] requires that cities over 250 000 inhabitants produce noise
maps for road, air and rail traffic. Road traffic noise maps are
produced based on a census of the traffic volumes and mean
speeds along the main roads which allows estimating their
acoustic emission. Assuming knowledge of the city topogra-
phy, the acoustic propagation within the streets is then calcu-
lated. In addition, noise observatories are being deployed in
some agglomerations. They aim to facilitate both the manda-
tory five year update of maps and the validation of the simu-
lated noise maps. Combining classical noise maps with mea-
sures would also be a promising approach to go towards more
accurate noise maps [2] [3].

However, to achieve those important goals, we have
to isolate the road traffic contribution from measurements
of the sound mixture that contain many other sources.
Indeed, urban sound environments are composed of a large
variety of sounds as traffic noise, horn, bird whistles, foot
steps, construction sound noise, voices . . . Each has its own
spectral properties and temporal structure and may overlap
with the other sound sources. Without distinction between
these, the traffic noise level estimation is calculated with

some sources which do not belong to a traffic car class and is
then overestimated. In this study car horn and braking noise
are not considered as a traffic car noise as they are not taken
into account in traffic noise map.

Different techniques exist and were shown relevant for
recognition or detection in urban environment [4] [5] but they
do not take into account the overlap between the sources.
Methods for source separation, such as Computational Audi-
tory Scene Analysis [6] or Independent Component Analysis
[7] are efficient but are, to the best of our understanding, not
suitable for urban applications. Indeed, the first one has been
primarily developed to simulate the human auditory system
whereas the second one requires as many sensors as sound
sources, which is unrealistic in a urban context.

Non-negative Matrix Factorization (NMF) [8] has the ad-
vantage to deal with the overlap between the sound sources.
It has been used for many applications in audio domain such
as polyphonic music transcription [9] or for source separation
of musical content [10]. Thus the NMF seems to be a suitable
method for the isolation of the contribution of road traffic
from measurements. We propose to apply an NMF scheme
on a corpus of urban sound mixtures to validate its ability
to estimate the noise level of road traffic. The specificity of
urban sound environments, and the fact that the method has,
to the best of our knowledge, never been used in this setting,
stands as a challenge and requires specific adaptations.

In this paper, we present the implementation of our ex-
perimental plan and some first results. Section 2 exposes the
structure of the proposed system based on the NMF frame-
work. Then the experimental protocol is presented in Sec-
tion 3 and preliminary results are discussed in section 4.

2. PROPOSED APPROACH

The aim of the system is to estimate the level of some pre-
defined sources in the mixture coming from measurements
of the urban scene. As can be seen in Figure 1, the signal is



Detection and Classification of Acoustic Scenes and Events 2016 3 September 2016, Budapest, Hungary

Source separation

fixed 
W

source 1

...

road 
traffic

Urban 
mixture

NMF 
supervised HSTFT Leq,traffic

~

Figure 1: Block diagram of the proposed method

first mapped to a time-frequency plane using the Short Time
Fourier Transform. Using the NMF framework, the contri-
bution of the road traffic is isolated and its level, L̃eq,tr, is
estimated.

2.1. Non-Negative Matrix Factorization

Non-negative Matrix Factorization is a dimension-reduction
technique expressed by

V ≈ Ṽ = WH (1)

where VF×N , is the power spectrogram of an audio, Ṽ is
the approximate power spectrogram determined by the NMF,
WF×K , is the basis matrix (called dictionary), in our case,
representing a set of sound spectra usually found in urban
areas. HK×N is the feature matrix standing for the tempo-
ral variation of each spectrum. All these elements are con-
strained to be positive leading to additive combinations only.
The approximation (1) is determined by a minimization prob-
lem

min
W,H≥0

D(V||WH). (2)

D(V||WH) is called cost function, a dissimilarity mea-
sure usually belonging to the β-divergence for the NMF. 3
popular expressions are compared in this study namely the
Euclidean distance (β = 2),

DEUC(V||WH) = ||V −WH||, (3)

the Kullback-Leibler divergence, (β = 1),

DKL(V ||WH) = V log
V

WH
−V + WH, (4)

and the Itakura-Sato divergence, (β = 0),

DIS(V ||WH) =
V

WH
− log

V

WH
− 1. (5)

Note that decimal β values between 0 and 2 will be investi-
gated in a further study. Here, the supervised NMF is con-
sidered where W is fixed and only H is updated iteratively.
The choosen algorithm is the maximisation-minimisation al-
gorithm proposed by Févotte and Idier [11].

Hk+1 ←− Hk.

WT
[
(WHk)β−2.V

]
WT

[
WHk

]β−1


γ(β)

(6)

where γ(β) = 1 for β ∈ [1 2] and γ(β) =
1

2
for β = 0.

2.2. Method

Our approach consists in considering an audio signal
recorded in an urban context, sampled at 44, 1 kHz and
expressed in the time-frequency plan using a Short Time
Fourier Transform. The size of the Hanning window is 5000
points with an overlap of 50 % and NFFT = 4096 points.
The temporal resolution chosen is, for the moment, very low
(∆t ≈ 0, 05 s).

The supervised NMF is then performed with the spec-
trogram V in the input, a fixed dictionary W and Ṽ in the
output. Currently, H is updated for a number of iterations
fixed at 100. When the iteration is over, it is possible to esti-
mate the level of the elements of interest. In the case of road
traffic, Ṽtr = [WH]tr which allows to calculate the sound
pressure level L̃p for each temporal frame

L̃p,tr,n = 20 log

∑
f ṽn,tr

p0
(7)

with ṽn,tr, the n-th temporal frame of the matrix Ṽtr and
p0 = 2× 10−5 Pa, the reference sound pressure. The equiv-
alent traffic sound level estimated, L̃eq,tr, is then determined
by
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L̃eq,tr =
1

T

∑
n

10 log
(

10L̃p,tr,n/10
)

(8)

where T is the duration of V.

3. EXPERIMENT

To evaluate the ability of the NMF framework to estimate
the road traffic level, we consider simulated sounds mixtures
where the actual level of contribution of the traffic is known.
This solution ensures controlling the road traffic level, Leq,tr,
relatively to the other sources in comparison to real record-
ings where it would not be correctly determined. Further-
more, working on simulated sound mixtures will create a
controlled framework where the time of presence of each
source is exactly known. Thus allows the production of spe-
cific sound environments (animated streets, parks . . . ).

The mixtures are simulated with simScene software de-
veloped by Mathias Rossignol and Gregoire Lafay [12]1

which synthesizes sound mixtures from a sound database of
isoled sound events. This tool can control multiple parame-
ters as the event/background ratio, the sample duration, the
time between samples . . . Each of these parameters is coupled
with a standard deviation to bring some variability between
the scenes produced. In the output, an audio file of each
sound class is created that allows us to compute the specific
contribution of each class present in the scene. The sound
database we use is composed of sound samples provided with
the software and completed by others sounds found online2.
The scenes are built with the first half of the database, the
second half being considered as the dictionary W. For tests
of feasibility, the first constructed scenes are simple but more
realistic scenes fully consistent will be soon produced.
For this preliminary study, 20 scenes are created with a du-
ration of 15 s. Each one is composed of 3 classes of sounds
that can typically be heard in urban areas: car, bird and car
horn and a noise background (voice hubbub). Currently, our
dataset for creating these scenes is composed of 30 audio
samples for the car class and 3 samples for bird and horn
classes. The dictionary W is then composed of the same
number of samples but extracted form the second half of our
database. The aim of this preliminary study is to see the in-
fluence of some parameters of the NMF (such as the diver-
gence calculation or the number of iteration) on the quality of
the traffic noise levels estimation. The NMF is performed on
each scene i and Lieq,tr is compared with the computational
level L̃ieq,tr to evaluate the performance of the method by
computing the error,

1Open-source project available at: https://bitbucket.org/
mlagrange/simscene

2www.freesound.org

RSME =

√√√√ 1

N

N∑
i=1

(Lieq,tr − L̃ieq,tr)2 (9)

where N , the number of scenes created.

4. RESULTS

Figure 2 presents the spectrograms obtained by simScene
(on left) and by the NMF (on right) for one scene with the
Euclidean distance (3) after 100 updates of H. We can
observe the bird on the frequency range [3000− 6000] Hz,
the horn is characterized by its harmonic content whereas
the car is mainly composed of low frequencies with a slower
temporal evolution. From each sound mixture, comparison
between Lp,n and L̃p,n for Euclidean distance (EUC),
Kullback-Leibler (K-L) and Itakura-Sato (I-S) divergences
can be made (Figure 3 for the scene presented in Figure 2).

For this scene, in the time interval [1.5− 4.5] s, there is
no traffic, the actual sound level is then zero. But we can
see in Figure 3 that the class car contributes to describe
the noise background level. This result is the consequence
of the minimization problem (2) where this sound class is
activated to reduce the cost function even though there is no
traffic. Nevertheless, the noise background is low enough
in comparison with the other class sounds to not distort the
estimations.

Let us now consider the error RMSE with respect to the
number of iterations of the NMF computed on the N scenes
for the three β-divergences on Figure 4. The error between
Leq,tr and the equivalent sound pressure of the global
mixture, Leq (global error), is added. This corresponds to
the error that would be made if no source separation was
done and all the sound sources were taken into account
without distinction.

Even if the global error is low (≈ 2dB), the use of the
NMF to compute the traffic noise level produces a better es-
timation than taking the sound mixture with all the sound
source. The Kullback-Leibler divergence produced the most
interesting results with the lowest and the most stable RMSE.
Surprisingly, the Itakura-divergence, despite its scale invari-
ant property [11], has an error similar to the Euclidean dis-
tance. This result may change in the future with more com-
plex and more realistic scenes.

5. CONCLUSION

In this article, we proposed to use the supervised NMF
framework to estimate the road traffic noise levels based
on acoustic measurements achieved in an urban context. In
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Figure 2: Spectrograms of a sound mixture composed with 3 sound classes (car, horn, bird). On the left, the initial audio
spectrogram given by simScene, in the middle, the estimation Ṽ given by the NMF, on the right, the traffic car noise estimated
Ṽtr after the source separation.
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Figure 3: Evolution, according to time, of the actual sound
pressure level, Lp,tr, and the estimated levels .

our opinion, such approach would find many applications in
the environmental acoustics field such other than improving
noise maps with acoustic measurements, for example acous-
tic biodiversity monitoring.

This method is tested on sound mixtures simulated using
the simScene software which allows us to get the exact traffic
contribution separately from the other sounds. The method is
tested by comparing the equivalent sound level between the
traffic element of simScene and the estimation given by the
NMF for three cost functions. The first results show that this
method gives a better estimation of the sound level than if the
source separation is not done, thus demonstrating its interest.
Both the road traffic time of presence and amplitude are ac-
curately estimated, advocating for the use of the NMF for
isolating the road traffic contribution. The Kullback-Leibler
divergence results in the lowest errors and will therefore re-
ceive specific attention for future work.

Further investigations with more realistic and complex
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Figure 4: RMSE evolution

scenes are now required to confirm the behavior of the
Kullabck-divergence. Then, some refinements of the NMF
including acoustics considerations should improve the good-
ness of the road traffic noise levels estimation. For instance,
the addition of some temporal constraints with a smoothness
constraint within the NMF framework such as [13] [14] [15]
to better model the temporal evolution of the traffic elements
is currently investigated.
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