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Abstract. We apply the averaging theory of first order to study
analytically families of periodic orbits for the cored and logarithmic
Hamiltonians
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which are relevant in the study of the galactic dynamic. We first
show, after introducing a scale transformation in the coordinates and
momenta with a parameter ε, that both systems give essentially the
same set of equations of motion up to first order in ε. Then the
conditions for finding families of periodic orbits, using the averaging
theory up to firs order in ε, apply equally for both systems in every
energy level H = h > 0 with H either HC or HL. We prove the exis-
tence of two periodic orbits if q is irrational, for ε small enough, and
we give an analytic approximation for the initial conditions of these
periodic orbits. Finally, the previous periodic orbits provide infor-
mation about the non-integrability of the cored and the logarithmic
Hamiltonian systems.

1. Introduction and statement of the main results

We study the following two potentials

(1)

VC =
√
R2 + x2 + y2/q2 −R

VL =
1

2
log(R2 + x2 + y2/q2)
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called the cored and logarithmic potentials, respectively, which have an
absolute minimum and reflection symmetry with respect to both axes.
These potentials are of interest in problems of galactic dynamics as mod-
els for elliptical galaxies.

The logarithmic potential is a model of a core embedded in a dark
matter halo, with R the core radius [11]. Papaphilippou and Laskar
[10] use the Laskar’s frequency map analysis applied to study the nu-
merically integrated orbits, giving a global vision of the dynamics in the
phase space. Contopoulos and Seimenis [6] have applied the Prendergast
method to approximate solutions of the logarithmic potential in the form
of rational functions. An analogous method to the Pendergrast based in
series expansions computed by inverting the normalizing canonical trans-
formation was used by Pucacco et. al. [12] to find periodic orbits. The
structure of the phase space related to the logarithmic potential has been
approximated with resonant detuned normal forms constructed with the
method based on the Lie transform by Pucacco et.al. [11, 12] and Bel-
monte et. al. [4]. Detuned resonant normal forms allow to study several
features of the non-linear oscillations. The existence of periodic orbits
associated to the non-linear resonant normal modes is assumed on the
basis of the symmetry of the potential. Here we give a formal proof of
their existence.

We can choose R = 1 without loss of generality, and the energy may
take in both cases any non-negative value. The parameter q gives the
ellipticity of the potential, which ranges in the interval 0.6 ≤ q ≤ 1.
Lower values of q have no physical meaning, and greater values of q are
equivalent to reverse the role of the coordinate axes.

It is well known that integrable and non–integrable Hamiltonian sys-
tems can have infinitely many periodic orbits. However it is difficult to
find a whole family of periodic orbits in an analytical way, specially if
the Hamiltonian system is non–integrable. Here we find two families in
every positive level of the Hamiltonian.

We start with the Hamiltonian systems associated to the cored and
logarithmic potentials (1), both having the first integral given by the
total energy HC = K + VC and HL = K + VL, respectively

(2) HC =
1

2

(
p2x + p2y

)
+

√
1 + x2 +

y2

q2
− 1 ,
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whose cored Hamiltonian system is

(3)

ẋ =
∂HC

∂px
= px ,

ẏ =
∂HC

∂y
= py ,

ṗx = −∂HC

∂x
= − x√

1 + x2 +
y2

q2

,

ṗy = −∂HC

∂y
= − y

q2

√
1 + x2 +

y2

q2

.

The logarithmic Hamiltonian is

(4) HL =
1

2

(
p2x + p2y

)
+

1

2
log

(
1 + x2 +

y2

q2

)
,

whose logarithmic Hamiltonian system is given by

(5)

ẋ =
∂HL

∂px
= px ,

ẏ =
∂HL

∂y
= py ,

ṗx = −∂HL

∂x
= − x

1 + x2 +
y2

q2

,

ṗy = −∂HL

∂y
= − y

q2
(

1 + x2 +
y2

q2

) .

We first show in section 3 that, after introducing a non–canonical scale
transformation in the coordinates and momenta with a parameter ε of
the form

{x, y, px, py} → {
√
εx,
√
εy,
√
εpx,
√
εpy} ,
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both Hamiltonian systems (3) and (5) can be reduced to study the dif-
ferential system

(6)

ẋ = px ,
ẏ = py ,

ṗx = −x+
ε x

2

(
x2 +

y2

q2

)
+O(ε2) ,

ṗy = − y

q2
+
ε y

2q4
(q2x2 + y2) +O(ε2) ,

having the first integral

(7) H =
1

2

(
p2x + p2y + x2 +

y2

q2

)
− ε(q2x2 + y2)

2

8q4
+O(ε2) .

Thus, the conditions for finding families of periodic orbits using the
averaging theory up to first order in ε, apply equally for both systems.

We apply the averaging theory of first order in the small parameter
ε to compute periodic orbits of a perturbed periodic differential system
depending on ε. We recall in section 2 the basic theorem of this tool: the
Averaging Theorem of first order. This theorem provides, under certain
conditions, perturbed periodic orbits for ε sufficiently small that bifurcate
from some unperturbed periodic orbits for ε = 0. The method goes back
to Malkin [13] and Roseau [15], and a shorter proof is given by Buică et.
al. [5]. For a general introduction to the averaging theory see the books
of Sanders, Verhulst and Murdock [16], and of Verhulst [18].

We find two families of periodic orbits parametrized by the energy
when the parameter q is irrational, all of them bifurcating from unper-
turbed periodic orbits around the center: one bifurcating from the two
dimensional plane (x, 0, px, 0), and another one from the two dimensional
plane (0, y, 0, py). When q is rational, the Averaging Theorem gives no
information about periodic orbits.

Our main results on the periodic orbits of the cored and logarithmic
Hamiltonian systems are summarized in the next two theorems, which
are proved in sections 4 and 5, respectively.

Theorem 1. For ε > 0 sufficiently small and q irrational, at every energy
level H = h > 0 the perturbed differential system (6) has at least one peri-
odic solution (x(t), y(t), px(t), py(t)) such that (x(0), y(0), px(0), py(0))→
(
√

2h, 0, 0, 0).
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Theorem 2. For ε > 0 sufficiently small and q irrational, at every energy
level H = h > 0 the perturbed differential system (6) has at least one peri-
odic solution (x(t), y(t), px(t), py(t)) such that (x(0), y(0), px(0), py(0))→
(0,
√

2h q, 0, 0).

Putting together Theorems 1 and 2 we shall have at every energy level
H = h > 0 at least two periodic orbits if q is irrational.

The case q rational was also studied in cartesian coordinates but we
did not obtain information because we could not solve the variational
equations. Working with a generalization of polar coordinates, we tried
to find isolated periodic solutions, but the averaging method did not give
information.

Finally, the existence of these two families of periodic orbits found
with averaging theory give sufficient conditions in order to claim that
there cannot exist any second first integral of class C1 whose gradient be
independent with the Hamiltonian gradient on the points of some of the
periodic orbits that we have found.

Theorem 3. For the cored and logarithmic Hamiltonian systems (3) and
(5) with q irrational,

(a) either they are not Liouville–Arnold integrable with any second
first integral C1,

(b) or they are Liouville–Arnold integrable with a second first integral
C and the gradients of H and C are linearly dependent on some
point for every periodic orbit found in Theorems 1 and 2.

As the case (b) of Theorem 3 is exceptional, the case (a) holds generi-
cally, see for more details section 6. This is important because most of the
results about integrability deals with analytic or meromorphic integrals
of motion.

Theorem 3 is proved in section 6, where the definition of integrability in
the sense of Liouville–Arnold is also recalled. Similar results to Theorems
1 and 2 were obtained by the authors for the Henon–Heiles [9] and Yang–
Mills [8] Hamiltonian systems with 2 parameters using the averaging
theory of second and first order, respectively. Besides, as it is established
in [9], the averaging method for finding isolated periodic orbits is an
useful and relatively simple tool in order to find necessary conditions for
showing the non–integrability of a Hamiltonian system.
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We use a result due to Poincaré [2, 7, 14] for proving the non Liouville–
Arnold integrability, based on the existence of the periodic orbits of The-
orems 1 and 2 having multipliers of the monodromy matrix of the varia-
tional equations different from 1.

2. The averaging theory of first order

In this section we recall the basic results from averaging theory of first
order that we shall need for proving the main results of this paper.

We consider the problem of the bifurcation of T-periodic solutions from
the differential system

(8) ẋ(t) = F0(t,x) + εF1(t,x) + ε2F2(t,x, ε),

with ε 6= 0 sufficiently small. Here the functions F0, F1 : R × Ω → Rn

and F2 : R×Ω× (−εf , εf )→ Rn are C2 functions, T-periodic in the first
variable, and Ω is an open subset of Rn. One of the main assumptions is
that the unperturbed system

(9) ẋ(t) = F0(t,x)

has a k–dimensional submanifold of T–periodic solutions. We assume
that the coordinates have been taken in such a way that the k–dimensional
submanifold of periodic orbits is contained in {(x1, . . . , xk, 0, . . . , 0) ∈
Ω }. A solution of this problem is given using the averaging theory.

Let x(t, z) be the solution of the unperturbed system (9) such that
x(0, z) = z. We write the linearization of the unperturbed system along
the periodic solution x(t, z) as

(10) ẏ(t) = DxF0(t,x(t, z))y .

In what follows we denote by Mz(t) some fundamental matrix of the
linear differential system (10), and by ξ : Rk×Rn−k → Rk the projection
of Rn onto its first k coordinates; i.e. ξ : (x1, ..., xn) = (x1, ..., xk).

Averaging Theorem (first order). Let V ⊂ Rk be open and bounded,
and let β0 : Cl(V )→ Rn−k be a C2 function. We assume that

(i) Z = {zα = (α, β0(α)) , α ∈ Cl(V )} ⊂ Ω and that for each zα ∈ Z
the solution x(t, zα) of (9) is T -periodic;

(ii) for each zα ∈ Z there is a fundamental matrix Mzα(t) of (10)
such that the matrix M−1

zα (0) − M−1
zα (T ) has in the upper right

corner the k × (n− k) zero matrix, and in the lower right corner
a (n− k)× (n− k) matrix ∆α with det ∆α 6= 0.
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We consider the function F : Cl(V )→ Rk

(11) F(α) = ξ

(∫ T

0

M−1
zα (t)F1(t,x(t, zα))dt

)
.

If there exists a ∈ V with F(a) = 0 and

(12) det((dF/dα)(a)) 6= 0 ,

then there is a T -periodic solution ϕ(t, ε) of system (8) such that ϕ(0, ε)→
zα as ε→ 0.

We briefly repeat the proof given in [5]. The idea is to find the zeros
zα of the function f(z, ε) = x(T, z, ε) − z or equivalently of g(z, ε) =
M−1

z (T )f(z, ε), since they provide periodic orbits of the perturbed sys-
tem. The authors first show that

dg

dz
(zα, 0) = M−1

zα (0)−M−1
zα (T ) .

From the definition of g(z, ε)

(13)
∂g

∂ε
(z, 0) = M−1

z (T )
∂x

∂ε
(T, z, 0) .

The function (∂x/∂ε)(t, z, 0) is the unique solution of the initial value
problem

y′ = DxF0(t,x(t, z, 0))y + F1(t,x(t, z, 0)), y(0) = 0,

then
∂x

∂ε
(t, z, 0) = Mz(t)

∫ t

0

M−1
z (s)F1(s,x(t, z, 0))ds .

The equation (13) results in

∂g

∂ε
(z, 0) =

∫ T

0

M−1
z (s)F1(s,x(t, z, 0))ds .

Then
∂(ξg)

∂ε
(zα, 0) = ξ

(∫ T

0

M−1
zα (t)F1(t,x(t, zα))dt

)
.

Finally, the authors show that there exist αε ∈ V such that g(zαε , ε) = 0
and f(zαε , ε) = 0, then the solution x(t, zαε , ε) is periodic.

The case when k = n is called perturbations of an isochronous set and
it was proved in Corollary 1 of Buică et. al. of [5]. We tried to use
this corollary to study the case q rational, but we could not get positive
information in this case.
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3. The scale transformation and the first order
differential system

Of course, the Hamiltonian systems (3) and (5) are not into the normal
form (8) for applying the averaging theory. So we first introduce a non–
canonical rescaling transformation with a factor

√
ε in order to have a

small parameter ε > 0 in the differential system

{x, y, px, py} → {
√
εx,
√
εy,
√
εpx,
√
εpy} .

We will show that both the cored and logarithmic systems provide the
same differential system up to first order in ε, then the conditions for
finding families of periodic orbits using the averaging theory shall apply
equally for both systems.

We first consider the differential system (3) of the cored potential in
the rescaled variables

(14)

ẋ = px ,
ẏ = py ,

ṗx = − x√
1 + ε

(
x2 +

y2

q2

) ,

ṗy = − y

q2

√
1 + ε

(
x2 +

y2

q2

) ,

with the first integral

(15) H =
ε

2

(
p2x + p2y

)
+

√
1 + ε

(
x2 +

y2

q2

)
.

As the change to the new variables is only a rescaling transformation,
the differential system (14) for all ε > 0 is topologically equivalent to the
cored Hamiltonin system (3). Therefore studying the differential system
(14) for small values of ε 6= 0, we are also studying the original cored
Hamiltonian system (3) with ε = 1.

The differential system (14) has a unique singular point, the origin.
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Now we expand equations (14) in powers of the small parameter ε and
the first integral H up to first order in ε, thus we have,

(16)

ẋ = px ,
ẏ = py ,

ṗx = −x+
ε x

2

(
x2 +

y2

q2

)
+O(ε2) ,

ṗy = − y

q2
+
ε y

2q4
(q2x2 + y2) +O(ε2) ,

and the first integral becomes

K = 1 +
ε

2

(
p2x + p2y + x2 +

y2

q2

)
− ε2 (q2x2 + y2)

2

8q4
+O(ε3) .

As K is a first integral, also H = (K− 1)/ε is a first integral, and we are
going to use this first integral

(17) H =
1

2

(
p2x + p2y + x2 +

y2

q2

)
− ε(q2x2 + y2)

2

8q4
+O(ε2) .

If we do the same with the logarithmic Hamiltonian system (5) in
the rescaled variables, we obtain the same differential equations (16) but
with ε/2 instead of ε. Then we shall consider only the differential system
(16), and our results will apply equally for the cored and logarithmic
Hamiltonian systems.

The unperturbed equations with ε = 0 represent a bidimensional har-
monic oscillator that can be easily solved with arbitrary initial conditions
x(0) = x0 , y(0) = y0 , px(0) = px0 , py(0) = py0

(18)

x(t) = x0 cos t+ px0 sin t ,
px(t) = px0 cos t− x0 sin t ,

y(t) = y0 cos

(
t

q

)
+ py0 q sin

(
t

q

)
,

py(t) = py0 cos

(
t

q

)
− y0

q
cos

(
t

q

)
.

If q is irrational, the periodic orbits of the unperturbed system are
contained in two planes: one at the two dimensional plane (x, 0, px, 0),
and another at the two dimensional plane (0, y, 0, py).

If q is rational, the unperturbed periodic orbits live in the four dimen-
sional phase space. However, we could not find periodic orbits with the
averaging method of section 2, and only the irrational case of q will be
studied in this paper.
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4. Proof of Theorem 1

We consider the case q irrational and the unperturbed periodic orbit
at the plane (x, 0, px, 0)

(19)

x(t) = x0 cos t+ px0 sin t ,
px(t) = px0 cos t− x0 sin t ,
y(t) = 0 ,
py(t) = 0 ,

with the first integral (17) when ε = 0 taking the energy value

(20) h =
(
p2x0 + x20

)
/2 .

Generically, the periodic orbits of a Hamiltonian system with more
than one degree of freedom are on cylinders filled of periodic orbits.
Therefore we cannot apply directly the Averaging Theorem to the Hamil-
tonian system, since the determinant (12) would be always zero. Then we
must apply Averaging Theorem to every Hamiltonian fixed level where
the periodic orbits generically are isolated. This allows to eliminate one
of the coordinates, say px, and to reduce the study to dimension 3 .

We thus compute px at the energy level H = h with h given by (17)

(21) px = ±
√
x20 + p2x0 − x2 − p2y −

y2

q2
+ ε

(
x4

4
+
x2y2

2q2
+

y4

4q4

)
.

We first consider the positive solution for px. The expansion to first order
in ε is

px =

√
x20 + p2x0 − x2 − p2y −

y2

q2
+

ε (q2x2 + y2)
2

8q4

√
x20 + p2x0 − x2 − p2y −

y2

q2

+O(ε2) ,

The equations of motion (16) on the energy level H = h are given by
(22)

ẋ =

√
x20 + p2x0 − x2 − p2y −

y2

q2
+

ε (q2x2 + y2)
2

8q4

√
x20 + p2x0 − x2 − p2y −

y2

q2

+O(ε2) ,

ẏ = py ,

ṗy = − y

q2
+
ε y

2q4
(q2x2 + y2) +O(ε2) .
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Now the differential system (22) has the form of (8), where

(23) F0(x, y, py) =



√
x20 + p2x0 − x2 − p2y −

y2

q2
, py,−

y

q2


 ,

and

(24) F1(x, y, py) =




(q2x2 + y2)
2

8q4

√
x20 + p2x0 − x2 − p2y −

y2

q2

, 0,
y(q2x2 + y2)

2q4



,

with the unperturbed solution (x0 cos t+px0 sin t, 0, 0).Note that the order
{x, y, py} in the system (22) is important to accomplish the hypothesis
(ii) of the Averaging Theorem. Here k = 1, n = 3, α = x0, zα = (x0, 0, 0)
is the initial condition of the unperturbed periodic orbit, and for each
zx0 the solution x(t, zx0) = (x0 cos t+ px0 sin t, 0, 0) is 2π-periodic.

Now we compute the linearization of the unperturbed system along
the periodic solution DxF0(t,x(t, zx0))

(25)




−x0 cos t+ px0 sin t

px0 cos t− x0 sin t
0 0

0 0 1

0 − 1

q2
0


 ,

and the fundamental matrix is obtained solving (10)

(26) Mzx0
(t) =




cos t− x0 sin t

px0
0 0

0 cos(t/q) q cos(t/q)

0 −sin(t/q)

q
cos(t/q)


 ,

which satisfies Mzx0
(0) = I, and the inverse is given by

(27) M−1
zx0

(t) =




px0
px0 cos t− x0 sin t

0 0

0 cos(t/q) −q sin(t/q)

0
sin(t/q)

q
cos(t/q)


 .
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In order to apply the Averaging Theorem, we verify the condition det ∆x0 6=
0, thus we compute

M−1
zx0

(0)−M−1
zx0

(2π) =




0 0 0
0 2 sin2(π/q) q sin(2π/q)
0 − sin(2π/q)/q 2 sin2(π/q)


 .

In the upper right corner, the 1×2 matrix is zero, and for each zx0 in the
lower right corner the matrix ∆x0 has determinant non zero, det ∆x0 =
4 sin2(π/q).

The function F1 along the periodic orbit is given by

F1(t,x(t, zx0)) =

(
(x0 cos t+ px0 sin t)4

8(px0 cos t− x0 sin t)
, 0, 0

)
,

and we must apply to it the inverse of the fundamental matrix

(28) M−1
zx0

(t)F1(t,x(t, zx0)) =

(
px0(x0 cos t+ px0 sin t)4

8(px0 cos t− x0 sin t)2
, 0, 0

)
.

The function F(x0) defined in (11) is the projection ξ in the first
component of the integral of (28) in one period

(29) F(x0) =

∫ 2π

0

px0(x0 cos t+ px0 sin t)4

8(px0 cos t− x0 sin t)2
dt = −3

8
π px0

(
x20 + p2x0

)
,

where px0 = ±
√

2h− x20 at the energy level (20), thus

(30) F(x0) = −3

4
π h
√

2h− x20 .

Now we look for the zeros of F(x0) = 0: x0 = ±
√

2h, which implies
px0 = 0. Every simple zero of F(x0) provides a periodic orbit for the
perturbed differential system in the energy level H = h > 0. Finally, the
negative solution of (21) provides the same solutions than the positive

one because px0 = 0. Note that both initial conditions (±
√

2h, 0, 0, 0)
provides the same periodic orbits. Theorem 1 is proved.

5. Proof of Theorem 2

This proof proceeds analogously as the previous one. Now the unper-
turbed periodic orbit lies on the (0, y, 0, py) plane

(31)

x(t) = 0 ,
px(t) = 0 ,
y(t) = y0 cos(t/q) + py0q sin(t/q) ,
py(t) = (py0q cos(t/q)− y0 sin(t/q))/q ,
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with the first integral (17) when ε = 0 taking the value

(32) h =
1

2

(
p2y0 +

y20
q2

)
.

We solve for py from (17) at the energy level H = h with h given by
(32)

(33) py = ±
√
y20
q2

+ p2y0 − x2 − p2x −
y2

q2
+ ε

(
x4

4
+
x2y2

2q2
+

y4

4q4

)
.

We take px0 ≥ 0.

The expansion up to first order in ε is

py =

√
y20
q2

+ p2y0 − x2 − p2x −
y2

q2
+

ε (q2x2 + y2)
2

8q4

√
y20
q2

+ p2y0 − x2 − p2x −
y2

q2

+O(ε2) ,

The equations of motion (16) on the energy level H = h are
(34)
ẋ = px ,

ẏ =

√
y20
q2

+ p2y0 − x2 − p2x −
y2

q2
+

ε (q2x2 + y2)
2

8q4

√
y20
q2

+ p2y0 − x2 − p2x −
y2

q2

+O(ε2) ,

ṗx = −x+
ε x

2

(
y2

q2
+ x2

)
+O(ε2) .

We must write the system in the order {y, x, px} in the system (34) to
accomplish the hypothesis (ii) in the Averaging Theorem, with α = y0,
zy0 = (y0, 0, 0) and the solution x(t, zy0) = (y0 cos(t/q)+py0 sin(t/q), 0, 0)
being 2πq-periodic.

The linearization of the unperturbed system along the periodic solution
is
(35)

DxF0(t,x(t, zy0)) =



− y0 cos(t/q) + py0q sin(t/q)

q (py0q cos(t/q)− y0 sin(t/q))
0 0

0 0 1
0 −1 0


 ,
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and the fundamental matrix is obtained solving (10)

(36) Mzy0
(t) =




cos(t/q)− y0 sin(t/q)

py0q
0 0

0 cos t sin t
0 − sin t cos t


 ,

which satisfys Mzy0
(0) = I, with the inverse

(37) M−1
zy0

(t) =




py0q

py0q cos(t/q)− y0 sin(t/q)
0 0

0 cos t − sin t
0 sin t cos t


 .

In order to apply the Averaging Theorem we compute

(38) M−1
zy0

(0)−M−1
zy0

(2πq) =




0 0 0
0 2 sin2(π q) sin(2π q)
0 − sin(2π q) 2 sin2(π q)


 .

In the upper right corner the 1 × 2 matrix is zero, and in the lower
right corner the 2× 2 matrix ∆y0 has

det ∆x0 = 4 sin2(πq) 6= 0

and we can apply the averaging method.

The function F1 along the periodic orbit is given by

F1(t,x(t, zy0)) =

(
(y0 cos(t/q) + py0q sin(t/q))4

8q3(py0q cos(t/q)− y0 sin(t/q))
, 0, 0

)
,

and then

(39) M−1
zy0

(t)F1(t,x(t, zy0)) =

(
py0(y0 cos(t/q) + py0q sin(t/q))4

8q2(py0q cos(t/q)− y0 sin(t/q))2
, 0, 0

)
.

The function F(y0) defined in (11) as the first component of the inte-
gral in a period 2πq of (39) is given by

(40) F(y0) = −3

4
π h q

√
2h− y20

q2
,

where we have used that py0 =
√

2h− y20/q2 at the fixed energy level
(32). Every simple zero y0 = ±√2hq of F(y0) provides a periodic orbit
for the perturbed differential system in the energy level H = h > 0. But
since the initial conditions (0, 0,±√2hq, 0) provide the same periodic
orbit, Theorem 2 follows. It is easy to realize that the two signs in (33)
provide the same initial conditions (0, 0,±√2hq, 0) of the periodic orbit.
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As we mentioned before, the case q rational was also studied in carte-
sian coordinates but we did not obtain information because we could not
solve the variational equations. We also tried to work with a generaliza-
tion of polar coordinates, but we could not get information in this case
from the averaging method.

6. Proof of Theorem 3

This section follows essentially from section 4 of the reference [8]. We
summarize some facts on the Liouville–Arnold integrability of the Hamil-
tonian systems, and on the theory of the periodic orbits of the differential
equations. See [1, 3] and the subsection 7.1.2 of [3]. We present these re-
sults for Hamiltonian systems of two degrees of freedom, but these results
work for an arbitrary number of degrees of freedom.

We recall that a Hamiltonian system with Hamiltonian H of two de-
grees of freedom is integrable in the sense of Liouville–Arnold if it has a
first integral C independent with H (i.e. the gradient vectors of H and C
are independent in all the points of the phase space except perhaps in a
set of zero Lebesgue measure), and in involution with H (i.e. the paren-
thesis of Poisson of H and C is zero). For Hamiltonian systems with
two degrees of freedom the involution condition is redundant, because
the fact that C is a first integral of the Hamiltonian system, implies that
the mentioned Poisson parenthesis is always zero. A flow defined on a
subspace of the phase space is complete if its solutions are defined for all
time.

Now we state the Liouville–Arnold Theorem [1, 3] restricted to Hamil-
tonian systems of two degrees of freedom.

Liouville-Arnold Theorem. Suppose that a Hamiltonian system with
two degrees of freedom defined on the phase space M has its Hamiltonian
H and the function C as two independent first integrals in involution. If
Ihc = {p ∈M : H(p) = h and C(p) = c} 6= ∅ and (h, c) is a regular value
of the differentiable map (H,C), then the following statements hold.

(a) Ihc is a two dimensional submanifold of M invariant under the
flow of the Hamiltonian system.

(b) If the flow on a connected component I∗hc of Ihc is complete, then
I∗hc is diffeomorphic either to the torus S1× S1, or to the cylinder
S1 × R, or to the plane R2. If I∗hc is compact, then the flow on it
is always complete and I∗hc ≈ S1 × S1.

(c) Under the hypothesis (b) the flow on I∗hc is conjugated to a linear
flow on S1 × S1, on S1 × R, or on R2.



16 L. JIMÉNEZ–LARA AND J. LLIBRE

We consider the autonomous differential system

(41) ẋ = f(x),

where f : U → Rn is C2, U is an open subset of Rn and the dot denotes
the derivative with respect to the time t. We write its general solution as
φ(t, x0) with φ(0, x0) = x0 ∈ U and t belonging to its maximal interval
of definition.

We say that φ(t, x0) is T–periodic with T > 0 if and only if φ(T, x0) =
x0 and φ(t, x0) 6= x0 for t ∈ (0, T ). The periodic orbit associated to the
periodic solution φ(t, x0) is γ = {φ(t, x0), t ∈ [0, T ]}. The variational
equation associated to the T–periodic solution φ(t, x0) is

(42) Ṁ =

(
∂f(x)

∂x

∣∣∣
x=φ(t,x0)

)
M,

where M is an n×n matrix. The monodromy matrix associated to the T–
periodic solution φ(t, x0) is the solution M(T, x0) of (42) satisfying that
M(0, x0) is the identity matrix. The eigenvalues λ of the monodromy
matrix associated to the periodic solution φ(t, x0) are called the multi-
pliers of the periodic orbit. For an autonomous differential system, one
of the multipliers is always 1, the corresponding eigenvector is tangent
to the periodic orbit, and another is 1 due to the existence of the first
integral given by the Hamiltonian.

The following theorem of Poincaré [14] gives us a method for proving
that the non Liouville–Arnold integrability, based on the existence of the
two periodic orbits of Theorems 1 and 2, must be for any second first
integral of class C1.
Poincaré Theorem. If a Hamiltonian system with two degrees of free-
dom and Hamiltonian H is Liouville–Arnold integrable, and C is a second
first integral such that the differentials of H and C are linearly indepen-
dent at each point of a periodic orbit of the system, then all the multipliers
of this periodic orbit are equal to 1.

The main problem to use this theorem is to show analytically the
existence of periodic orbits having multipliers different from 1.

Proof of Theorem 3. We assume that we are under the assumptions of
Theorems 1 and 2, i.e. q is irrational and the energy level is positive.
Then there exist the two periodic orbits given by Theorems 1 and 2.
Moreover their associated Jacobians (12) are different from 1, in fact,
they go to infinity. Since the Jacobians are the product of the multipliers
of these periodic orbits, all the multipliers cannot be equal to 1. Hence,



THE CORED AND LOGARITHM GALACTIC POTENTIALS 17

if q is irrational and H = h > 0, by the Poincaré Theorem, either the
cored and logarithmic Hamiltonian systems cannot be Liouville–Arnold
integrable with any second first integral C, or the system is Liouville–
Arnold integrable and the differentials of H and C are linearly dependent
at some point for every periodic orbit of Theorems 1 and 2. Therefore
the theorem is proved. �

7. Conclusions

We introduced a small parameter by means of a non–canonical scale
transformation, which allowed to us to study Hamiltonian systems near
Liouville–Arnold integrable ones, in our case near the bidimentional har-
monic oscillator. We have used averaging theory to show the existence
of two families of periodic orbits of the cored and logarithmic Hamilton-
ian systems, and we gave analytically their initial conditions up to first
order in ε > 0 in their fixed positive energy levels. Then we have used
these periodic orbits and the Poincaré Theorem to study that the non–
integrability in the sense of Liouville–Arnold of those two Hamiltonian
systems.
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08193 Bellaterra, Barcelona, Catalonia, Spain

E-mail address: jllibre@mat.uab.cat


