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Abstract—Public policies and private initiatives share the will
to explore outer space and to monitor the Earth from space
sensors. Recent years have seen an increased number of space
missions, while the sensors on board aircrafts or spacecrafts have
also significantly improved their acquisition capabilities. Given
this huge volume of remote sensing data and the detailed char-
acteristics of the acquired images, a data compression process is
in order to allow as large a transmission rate as possible.

In this paper we provide an overview of several standards
for remote sensing data compression, notably of those recently
approved by the Consultative Committee for Space Data Systems,
although the use of other ISO/IEC image coding standards is also
dealt with. Discussion embraces both mono band and multi band
compression, and lossless, lossy and near-lossless compression.

Illustrative results are reported for a set of AVIRIS and Hy-
perion images, indicating that exploiting the spectral correlation
—either in prediction-based or in transform-based schemes— is
paramount to achieve improved coding performance.

Index Terms—image compression, multispectral and hyper-
spectral images, CCSDS, prediction, transform coding, DPCM,
rate control.

I. INTRODUCTION

Image compression has been studied for a long time now.
The development of new compression techniques had led to
plenty of image compression standards such as JPEG and
JPEG2000 that are routinely used in many consumer applica-
tions. Alongside, the image compression problem has become
increasingly more important for a particular class of images,
namely those acquired by remote satellites with on-board
cameras. Such cameras can be of very different kinds, as they
can acquire visual information globally in the visible spectrum
(mono band images) or specifically at different wavelengths
(multi band images). How many wavelengths are sampled
dictates the spectral resolution, and increasing degrees of such
resolution, from a few to several tens, hundreds or thousands of
bands, give rise to multispectral, hyperspectral or ultraspectral
images. It is clear that such a large amount of data can match
the available downlink bandwidth only if image compression
techniques are employed. This has spurred a lot of research
aimed at developing image compression algorithms for on-
board compression of remote sensing images. At the same
time, when the images are received by the ground stations and
properly processed (e.g., calibrated and rectified), they have to
be delivered to the final users. This is typically done via web
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browsing, whereby the compression algorithm must be able to
handle very large images in a way that meets the requirements
of the final users.

A. Motivation

Image compression techniques can be roughly divided into
lossless and lossy. Lossless compression algorithms are those
where the image reconstructed after the decoding process is
perfectly identical to the original image. This is generally a
highly desirable feature, as it guarantees that the compression
process is perfectly transparent in terms of image quality.
However, lossless compression typically achieves a limited
compression ratio. On the other hand, lossy compression al-
gorithms introduce some distortion between the reconstructed
and the original image, since not all the information contained
in the original image is encoded into the compressed file. This
allows to achieve significant compression gains, all the more
so as the distortion becomes larger. The lossy compression
process raises the issue of ensuring that the quality of the
reconstructed image is still adequate for the intended scien-
tific use. Therefore, usually only small amounts of distortion
are tolerated; however, this allows to obtain much higher
compression ratios, and is becoming an increasingly popular
approach in remote sensing missions. The tolerated amount
of distortion may depend on several factors. In general, if
the distortion is “small” with respect to the inherent image
acquisition noise, then its effect is likely going to be negligible.
However, in some specific applications it is found that even
higher noise levels are acceptable, and will not seriously
reduce the application performance. In mono-band images, it
is particularly important to avoid generating visual artifacts,
whereas in multi-band images it is desirable that image anal-
ysis techniques (e.g., classification, anomaly detection and so
forth) produce almost the same results as if they were applied
on the original image. This concept is further discussed in Sec.
IVv.

A particular kind of lossy compression, termed near-
lossless, is based on the paradigm of controlling image quality
by imposing the constraint that, no matter what operations
are performed by the compression algorithm, the absolute
maximum error between each pixel of the original and recon-
structed image is bounded by some user-defined value. This
is a simple way to avoid occasional large errors that could be
harmful for image interpretation, e.g., triggering false detection
of anomalies. The theory of data and image compression is
well established and its review is out of the scope of this
paper. The interested reader can refer to one of the many
available books for more information, e.g., [1], [2]. Even
in the specific case of remote sensing image compression,
there is a large number of available algorithms that have
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been developed over the years. The purpose of this paper
is not to provide a survey of the available techniques, as
this can already be found in existing material, e.g., [3],
[4], [5]. Rather, we specifically focus on algorithms that
have been developed in the framework of the Consultative
Committee for Space Data Systems (CCSDS) [6]. In the last
few years, this committee has defined several techniques for
lossless data compression, lossless and lossy compression of
monoband images, lossless compression of multidimensional
images, and is currently working towards the definition of
lossy compression algorithms for multicomponent images such
as multispectral and hyperspectral images. These algorithms
are defined for application to on-board compression, where
the specific requirements in terms of memory, computational
capability and available hardware are typically the main design
driver. While describing these algorithms, we will also touch
upon the JPEG 2000 family of coding standards [7], which are
more amenable for use at the ground segment. In short, the
objective of this paper is to provide a tutorial introduction
to the most recent image compression standards for space
applications, and give an outlook to future developments aimed
at filling feature or functionality gaps that are not covered by
the existing standards.

B. Compression requirements

As has been said, designing a compression algorithm for
on-board use must take into account a number of constraints
dictated by the structure of the on-board processing system.
Fig. 1 shows the operational mode of an on-board sensor on
an airplane.

Fig. 1: AVIRIS operation mode (courtesy NASA/JPL-Caltech).

Such on-board processing system typically has limited com-
putational capabilities due to power, size and radiation hard-
ening issues. Therefore, low encoder complexity is highly
desirable. In addition to this, the encoder design must be
such that the algorithm should be easy to implement in
the available hardware. The typical hardware for on-board
processing has evolved over the years and still is. The usual
preferred choice is a field-programmable gate array (FPGA),
which requires a description of the algorithm in a hardware
description language such as VHDL. Therefore, the algorithm
should not employ operations that are difficult to map to a
VHDL description.

Another requirements is the ability to properly handle raw
data. What this means is that an on-board compression algo-
rithm will have as input the original digital numbers generated
by the sensor, prior to any processing other than binning.
Therefore, all sensors imperfections, such as noise, striping,
misregistration and so on, which are typically corrected at the
ground segment, will be present in the image. This implies that
such imperfections will yield a loss in compression efficiency,
and this loss could become rather large unless the algorithms
are somewhat robust. E.g., as will be seen in Section II, the
CCSDS-123 recommendation defines prediction modes that
are robust towards striping noise.

Moreover, it is known that image transmission from the
remote platform to the ground station can undergo errors or
packet losses. This phenomenon is rather strong for deep space
missions because of the very large distance, and very weak
for Earth observation satellites. Nevertheless, since even one
packet loss may render the compressed image file completely
undecodable, another requirement lies in the provision of some
kind of error resilience, i.e., the image decoding process
should not break down completely, nor excessively impair the
data, upon occurrence of occasional errors or packet losses.
While there are a lot of sophisticated error resilience tech-
niques available for image compression, for Earth observation
the most typical approach is to reset the compression algorithm
every once in a while, so as to create a set of independently
decodable image units, thereby limiting the scope of any
information loss due to communication errors.

It should be noted that the requirements above mostly apply
to on-board compression, whereas another typical application
of compression algorithms is at the ground segment. In this
case, however, the requirements are rather different, as there is
no significant limitation of computational power and memory
to perform compression, and the objective is also different,
namely to distribute the images to the final users. Since in
this case most of the communications occur via the TCP/IP
protocol, which performs retransmissions until the compressed
image file has been received without errors, error resilience is
also less important. On the other hand, some specific issues
arise as a consequence of the way the images are accessed
by the users. In particular, users typically connect to search
engines via web browsers or specific software, which allows
them to browse the images and their metadata to facilitate the
choice of the products of interest. Given the very large size of
these images, this remote browsing process is only possible
if a flexible compression algorithm is employed, avoiding to
send the complete compressed file, since this has a huge size,
but sending subunits of this file that can be employed at the
decoder to reconstruct specific regions of interest that the user
has selected dragging a box in a preview image. Moreover, in
order to speed up the image selection process, it is important
that the compression algorithm offers scalability, i.e., it allows
sending first a low-quality version of the subimage of interest,
and then one or more quality improvement layers, so that
delays can be avoided if the user performs an early rejection
of a subimage they have chosen, and moves on to another
subimage.

C. Structure of the paper

As has been said, this paper is mostly concerned with
CCSDS standards, which have been designed for on-board
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compression, while we will briefly discuss the JPEG2000
standard that is more suitable for compression at the ground
segment. In particular, we will first cover the two most recent
CCSDS standards, namely the new CCSDS-123 standard for
lossless compression of multispectral and hyperspectral im-
ages (Section II), and the CCSDS-122 standard for lossless and
lossy compression of monoband images (Section III). These
two standards cover a lot of possible applications; however,
there is still no standard defined for lossy compression of
multispectral and hyperspectral images. In Section IV we
take a more general approach, and discuss a set of possible
modifications to the CCSDS-123 standard, including near-
lossless, lossy compression and rate control. Unlike Section II
and III, which aim at describing the main steps of the
existing standards in a tutorial way, Section IV has a more
general scope and reviews more about the underlying theory,
highlighting open research issues and possible solutions, as
well as other possible approaches. It has to be mentioned that,
while this paper describes extensions of CCSDS-123, other
options are also being considered, such as a three-dimensional
extension of CCSDS-122.

D. Dataset

Throughout the paper we will provide compression results
aimed at assessing the performance of the techniques presented
in the paper. To this end, a set of hyperspectral images will
be employed, as shown in Table I. These are AVIRIS!:?
and Hyperion®3 hyperspectral images, publicly available for
download. Technical names and sizes are provided in Table I,
along with the zero-order entropy of the images. All images
are 16 bits per pixel per band (bpppb), except for Hawaii
and Maine that are 12 bpppb. Uncalibrated images are stored
as unsigned integers, whereas calibrated images are stored
as signed integers. Considered calibrated images are radiance
images.

For both AVIRIS and Hyperion images, the multi-
component volume can be used to produce a spectral signature
for each of the spatial pixels. These spectral signatures are
then employed in remote sensing analysis as classification or
anomaly detection. Fig. 2 illustrates one AVIRIS image and a
spectral signature for some pixels.

II. LOSSLESS DATA COMPRESSION

As pointed out in Section I, we summarise here the most
recent standard for remote sensing data compression. The
CCSDS created the Multispectral Hyperspectral Data Com-
pression (MHDC) Working Group in June 2007 to issue a
Recommended Standard for Multi- and Hyperspectral image
compression. The motivation for creating this Working Group
is explained in this excerpt from [8]: On-board data compres-
sion is needed to make full use of limited spacecraft resources
like data storage and downlink capacity. Multispectral &
hyperspectral images can occupy enormous data volumes,
and so compression algorithms specifically designed to exploit
the three-dimensional structure of such images can provide
tremendous benefit to space missions.

Thttp://avirir.jpl.nasa.gov
Zhttp://compression.jpl.nasa.gov/hyperspectral/
3http://earthexplorer.usgs.gov

vegetation

Fig. 2: AVIRIS Volume and Spectral Signature at various
locations.

Thanks to the work of several member space agencies,
observer space agencies and committed participants, the Work-
ing Group was able to deliver CCSDS-123 standard [9] in
May 2012. The standard is intended for on-board lossless
compression of multi- and hyperspectral images. The cod-
ing technique is built upon Fast Lossless (FL) compression
algorithm [10] and is able to provide state-of-the-art coding
performance for a large collection of remote sensing sensors.
As it is oriented towards on-board operation, i.e., in resource-
constrained scenarios, the design was carefully conceived to
require a very low computational complexity.

Next we will provide a brief overview of this recommended
standard and then we will show its coding performance for
lossless compression as compared to other coding techniques.

A. The CCSDS-123 Recommended Standard

As is the case for the previous Recommended Standard for
mono band lossless and lossy data compression issued by the
CCSDS in November 2005, CCSDS-122 [11], the CCSDS-123
standard defines the encoding process and is also structured in
two functional parts (see Section III below). Fig. 3 illustrates
these functional parts.

Input Image

Predictor

}

Mapped Prediction Residuals

|

Encoder

|

Encoded File

Fig. 3: CCSDS MHDC Functional Parts: Prediction followed
by Encoding.

In the first stage, a predictor is used to estimate the value
of the current pixel based on previously visited pixels. In the
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TABLE I: AVIRIS and Hyperion images used in the experiments. Technical names, sizes and zero-order entropies (in bpppb)

are provided.

’ Sensor ‘ Name ‘ Technical Name ‘ Size (x X y X 2) ‘ Entropy ‘
Hawaii Uncalibrated f011020t01p03r05 614 x 512 x 224 9.09
AVIRIS Maine Uncalibrated f030828t01p00r05 680 x 512 x 224 8.55
Yellowstone Radiance ScO f060925t01p00r12 677 x 512 x 224 10.33
Yellowstone Uncalibrated ScO f060925t01p00r12 680 x 512 x 224 12.62
Agricultural Calibrated | EO1H0280342004074110PX | 256 x 3129 x 242 10.05
Coral Reef Calibrated | EO1H0830742003120110PW | 256 x 3127 x 242 8.46
Hyperion Urban Calibrated | EO1H0440342002212110PY | 256 x 3176 x 242 10.01
Erta Ale Uncalibrated | EO1H1680502010057110KF | 256 x 3242 x 242 9.46
Lake Monona Uncalibrated | EO1H0240302009166110PF | 256 x 3352 x 242 9.91

second stage, an entropy encoder is applied to achieve data
compaction. This second stage can be carried out on a sample-
adaptive or on a block-adaptive basis. Block-adaptive entropy
encoding had been already employed in the first CCSDS
Recommended Standard for data compression, intended for
mono band image lossless compression [12] and issued in May
1997. Although block-adaptive encoding is not as efficient as
sample-adaptive encoding, it is also contemplated to favour
still-in-use implementations of the former standard.

1) Predictor: Regarding the first stage, the predictor is
asked to provide an estimation or prediction of the current
pixel based on previously scanned pixels. Given the original
pixel x; ; ;. (row ¢, column j, component k) and the predicted
pixel Z; ; 1, a prediction error e; ; ; can be computed, similar
to the classical definition e; j , = %; jx —T4,j,x. This prediction
error is then mapped to a non-negative integer \; j r, named
mapped prediction residual. As seen in Fig. 3, these mapped
prediction residuals are passed to the second stage, the entropy
coder.

The predicted pixel T; ; ;, is estimated based on neighbour-
ing pixels, both in a spatial or in a spectral sense. These
neighbouring pixels are combined to produce a local sum
05,5,k When it is expected that the sensed signal has a larger
correlation in the vertical direction, only the pixel above the
current pixel is employed to compute the local sum; otherwise,
four spatial neighbours are used. As mentioned, in addition to
spatial neighbours, spectral neighbours from P previous bands,
with P € {0, .., 15}, might also be taken into account.

Fig. 4 illustrates the spatial neighbours used to compute
the local sum. In case of a neighbour-oriented local sum,
0;,4,k is computed as the sum of the four spatial neighbours,
Ok = Ti—1j—1,k T Ti—1jk + Ti—1,j4+1,k + Tij—1,k In case
of a column-oriented local sum, o; ;. is computed as four
times the pixel immediately above the pixel to be predicted,
0i4k = 4-w;_1 . For pixels in the border of the image, the
computations are adapted accordingly.

This local sum o5 ;j is then scaled and used to predict
pixel x; ;. The local sum is a preliminary estimate of
the to-be-predicted pixel, and, as it might be not accurate
enough, the difference between the computed local sum and
their corresponding —scaled— original pixel is tracked and
stored in a local difference vector U; jj for some samples.
There are two possible prediction modes, full or reduced,
depending on whether both spectral and spatial neighbours
are considered, or only spectral neighbours. In mathematical
form, the local difference vector U ;;, for the full prediction

i—1,j+1,k

(a) Neighbor-oriented local sum

Ti-1j-1,kl Vi—-1,45k |Li—1j+1,k

Tij—1.k

(b) Column-oriented local sum

Fig. 4: Pixels used to calculate the local sum o ; 1.

mode is expressed as

— N . — -
di ik 4-Ti 15k —0ijk
J J J
A\
di'k 4-xij 1k = Oijk
i 4 @it o1k = Ok
Ly
Uijk = =
dijk—1 4.2 k-1 —0ijk-1
di j k—2 4T j k-2 — 0ijk—2
L dijk—p 1 L4 Tijk-P—0ijr-P |

In this vector, the first three components stand for spatial
directional local differences, where the superscript identifies
the cardinal orientation (North, West, or NorthWest). The other
components stand for spectral local differences.
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If reduced prediction mode is employed, the spatial di-
rectional local difference components, i.e., the first three
components of U, , ., are not used.

The prediction itself is a little bit more convoluted. First,
the local difference vector U; ;1 is further scaled through an
inner product by a weight vector W, ; ;, yielding (Z”k =
WZT ik Uik, an estimation of the local differences d; ;.
The weight vector is adaptive and is employed to account
for the usefulness of each component in the local difference
vector when predicting the pixel to-be-coded. These weight
vectors can be initialised by default or by a custom user-
defined method. R

The estimation of the local differences d; ;5 and the local
sum o; ;) are then finally employed to produce a scaled
predicted sample value, ¥; ; through a rounding operation
that takes into account the magnitude of the interval where
these coefficients lie and the precision of the registers used
for storing them.

Next, as explained previously, a scaled prediction error is
defined as €; ;5 = 2 %k — Z; k. However, contrary to
what happens in most prediction-based lossless compression
methods, these scaled prediction errors are not being sent to
the entropy coder, but only used to adapt the weight vector
considering their sign.

In the end, the scaled predicted sample value z; ; 1 are em-
ployed to compute a predicted sample value, &; j, = | =4~ |,
which, in their turn, are used to compute the prediction
residual Ai,j,k =T 5,k — -i'i,ij

The prediction residuals are signed integer values and need
to be translated to non-negative integer values, producing the
mapped prediction residual A; ;. In practice, the mapped
non-negative integers are computed from the signed predic-
tion residuals A; ; 5, the predicted pixel Z; ;, and the least
significant bit of the scaled predicted pixel Z; ;. The non-
negative mapped residuals A; ;. are the final output of the
predictor, sent to the next stage, the entropy encoder. At the
decoder side, the original pixels can be recovered without loss
from A; ;1.

2) Encoder: The second functional part, the encoder, en-
codes the mapped prediction residual A; ; ;. without loss. Re-
call that the entropy encoding can be applied on a sample basis
or on a block basis, with commonly a higher performance for
sample-adaptive encoders. In addition, the user can select the
order in which the prediction residuals are encoded, either in
Band Interleaved by Line (BIL), in Band Interleaved by Pixel
(BIP), or in Band Sequential (BSQ) order. This encoding order
might be independent of the order with which the sensed pixels
are captured, and also independent of the order with which
the predicted residuals are produced. The encoding order will
not affect the coding performance if sample-adaptive encoding
is used, though it usually affects the coding performance of
block-adaptive encoding. Notice that the encoding order can
impact the memory requirements, as extra buffering might be
needed.

As mentioned, block-adaptive encoding is based on the pre-
vious CCSDS standard [13] for mono band lossless compres-
sion, and is not further discussed here. For sample-adaptive
encoding, variable-length binary codewords are used to encode
each mapped prediction residual, similar to the process in

JPEG-LS standard [14], [15], which the reader may be more
familiar with.

In a nutshell, two internal variables are used in the sample-
adaptive encoder, an accumulator ¥; ;;, and a counter T'; ;.
After encoding a given mapped predicted residual A; ; 1, this
ik 18 added to the accumulator and the counter is incre-
mented by 1. The quotient % estimates the average value
of the mapped prediction residual, and is used to select the
parameter of a Golomb-power-of-two (GPO2) code [16]. Each
component or band in the multi-component image can have
its own initial accumulator and counter values to determine a
different GOP2 code for each band, with the goal to improve
the overall coding performance.

As a final remark regarding practical issues, we note that
whenever the counter reaches a given limit (the so-called
rescaling counter size), both the counter and the accumulator
are halved, and that the length of each encoded sample is also
tested against another given limit (the so-called unary length
limit), and in case of a codeword exceeding this limit length, a
unary sequence is signalled and the mapped prediction residual
is simply written in unsigned binary form. This control may
prove useful when the first functional part, the predictor, is
not able to provide a good enough estimate.

B. Performance assessment

We now here report the lossless coding performance of
CCSDS-123 for the images in the considered data set. Ta-
ble II provides a comparison among three coding standards:
classical JPEG2000 [17], RKLT+JPEG2000 —described in
Section III-, and CCSDS-123, along with comparison against
M-CALIC [18], which is a multi-component-only extension of
CALIC [19]. CALIC was devised as a proposal for the ISO
standard for lossless and near-lossless compression, JPEG-
LS [14], and although it provides a higher coding performance,
the less computationally complex LOCO-I [15] was finally
selected.

For JPEG2000, no multi-component transform is applied
along the spectral dimension and 5 levels of the integer
wavelet transform are applied in the spatial dimensions. For
RKLT+JPEG2000, the reversible Karhunen-Loéve Transform
(RKLT) is applied along the spectral dimension and, again,
5 levels of the reversible wavelet transform in the spatial
dimensions; see Section III-C for further details on this partic-
ular technique. For M-CALIC, default parameter settings have
been used, and BSQ image ordering. For CCSDS-123, AVIRIS
images have been compressed setting neighbour-oriented local
sum and full prediction mode, while for Hyperion images
we have resorted to column-oriented local sum and reduced
prediction mode; the other tuneable parameters are set by
default as suggested in [20], notably the number of previous
bands used for prediction is fixed to 3.

Kakadu software [21] has been used for JPEG2000 encod-
ings. RKLT has been computed with the Spectral Transform
software [22]. M-CALIC software [23] has been used for
M-CALIC. Finally, Emporda software [24] has been run for
CCSDS-123.

As expected, classical JPEG2000 yields the poorer perfor-
mance, as the spectral correlation is not exploited. Among the
three other coding techniques, the results are rather similar.
For uncalibrated images, i.e., images as produced on-board the
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TABLE II: Lossless coding performance for multi-component remote sensing data compression

’ Sensor \ Name Compression Technique
JPEG2000 || RKLT+JPEG2000 || M-CALIC || CCSDS-123
Hawaii Uncalibrated 4.62 2.85 2.84 2.71
AVIRIS Maine Uncallbrat.ed 4.55 2.97 2.89 2.78
Yellowstone Radiance Sc0 7.14 3.86 4.13 3.96
Yellowstone Uncalibrated ScO 9.46 6.07 6.32 6.19
Agricultural Calibrated 6.58 5.73 5.44 5.68
Coral Reef Calibrated 5.71 5.39 5.05 5.42
Hyperion | Urban Calibrated 6.88 5.76 5.44 5.71
Erta Ale Uncalibrated 5.07 4.44 4.76 4.30
Lake Monona Uncalibrated 5.08 4.58 4.95 443
y Average [ e ] 4.62 [ 464 ] 4.57 |

satellite, CCSDS-123 yields the highest performance for both
sensors (except for AVIRIS Yellowstone). For Hyperion cali-
brated images, M-CALIC is the best performing. AVIRIS Yel-
lowstone images have the highest zero-order entropy among
all images in the selected dataset, and RKLT+JPEG2000 is
able to take advantage of its more convoluted processing to
provide the best results. On average, CCSDS-123 seems to
provide the best coding performance.

Being CCSDS-123 a coding technique intended for on-
board operation, and the one with the lowest computational
complexity, it is worth remarking that this technique usually
achieves better results for uncalibrated images and still a
very competitive performance for calibrated ones. It should
be noted that M-CALIC employs an arithmetic entropy coding
stage, which yields better coding efficiency than the Golomb
code employed by CCSDS-123, but also entails a larger
complexity.

In addition to the experiments reported above, the reader is
referred to a recent paper by Augé et al. [20] that contains a
thorough analysis of the influence of the different parameters
in the final coding performance. It is concluded that parameters
involved in the prediction stage have a more significant impact
than those involved in the entropy coding stage.

III. LOSSY DATA COMPRESSION
A. Monoband Compression

In the mid-90s, the field of still image data compression
had seen a significant revolution with the advent of coding
techniques based on the wavelet transform followed by bit
plane coding, of which EZW [25] and SPIHT [26] are two
outstanding representatives. Already in 1998, CCSDS defined
a list of requirements for their next on-board 2-dimensional
(2D) progressive lossy-to-lossless coding system [27] for
remote sensing data, including, e.g., frame and non-frame
(push-broom) data processing, variable recovered image qual-
ity or target bitrate, real-time operation, and capability to
deal with input images from 4 to 16 bits per pixel (signed
or unsigned). In 2005, a Blue Book for CCSDS-122 [11]
was approved as an international standard for Image Data
Compression (IDC)*. Two years later, a Green Book [28]
furnishing guidance and further explanations was approved.
In the mid-time, an ISO/IEC International Standard [17] had

4CCSDS-122 and CCSDS-IDC will be used indistinguishably in this text.

been approved gathering the most advanced features for 2D
image coding at that time, JPEG2000.

The primary features of CCSDS-IDC Recommendation
consist of a design for remote-sensing scenarios, a care-
ful trade-off between coding performance and computational
complexity, and an adjustable choice of several parameters.
However, it lacks some features like capability for interactive
transmission or decoding, and extension to multi-component
data. The Blue Book provides several reasons as to why
ISO/IEC JPEG2000 [7] standard was not well suited for space
missions and a new coding technique had to be devised.
These reasons had to do with on-board operation, which asked
for reduced computational complexity and radiation-hardened
software and hardware, and with a focus on compression
instead of distribution of coded data. Also, since CCSDS-IDC
Recommendation is employed on-board many different space
equipment, the coding system had to be designed to comply
with such memory and computation restrictions.

Input Image

|

DWT

BPE

|

Encoded File

Fig. 5: CCSDS-IDC Functional parts: Discrete Wavelet Trans-
form followed by Bit Plane Encoding.

CCSDS-IDC Blue Book defines the encoding process. Fol-
lowing the then well-established paradigm, there are two main
functional parts: first a spatial wavelet transform is carried out;
then, a bit-plane encoder is run on the wavelet coefficients.
Fig. 5 illustrates these functional parts. In the first stage,
a 2D separable wavelet transform is applied with a fixed
number of levels, 3. If lossy compression is targeted, the
9/7 biorthogonal filter is employed. If lossless compression
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is targeted, a non-linear approximation is employed. The first
one is called 9/7 Float DWT and requires a rounding-to-the-
nearest-integer step before bit-plane encoding. The second one
is called 9/7 Integer DWT and requires a weighting of the
wavelet coefficients before bit-plane encoding; it has a lower
computational complexity.

Before entering the bit-plane encoder, wavelet coefficients
are subject to a re-arrangement into blocks of size 8§ x8. These
blocks contain 1 coefficient from the residual sub band LLg
(the so-called DC' coefficient), 3 coefficients from decom-
position level 3 (1 coefficient from each oriented sub band,
HLs, LHs and H Hj3; these coefficients are referred to as
parent coefficients), 12 coefficients from decomposition level
2 (4 coefficients for each oriented sub band; these coefficients
are referred to as children coefficients), and 48 coefficients
from decomposition level 1 (16 coefficients for each oriented
sub band; these coefficients are referred to as grandchildren
coefficients). Excluding the DC' coefficient, the remaining 63
coefficients are called AC coefficients. Fig. 6 illustrates this
re-arrangement. In a sense, each of this 8§ x 8 block corresponds
to a spatial area in the original input image.

LL_3 HL_3

HL_2 HL_1

HH_1

8x8 Block Construction

3-level Discrete Wavelet Transform

Fig. 6: CCSDS-IDC: 8x8 Block re-arrangement.

The 8x8 blocks are then grouped into segments. Memory
availability and raster mode dictate the number of blocks
per segment, namely if frame mode is selected, all blocks
of the image belong to the same segment; if strip mode is
selected, a segment contains as many blocks as available in
a row. Then, each segment is independently fed into a bit-
plane encoding engine. In practice, each 16 consecutive blocks
within a segment are accommodated in a gaggle, and all
these 16 blocks are entropy encoded together, although not
completely independently from other gaggles.

Within a segment, the entropy encoding proceeds from
lower resolution levels (LL3) in the wavelet domain to higher
resolution levels (up to H Hy); also, DC' and AC coefficients
are encoded in a different way, as DC coefficients represent
a lower resolution version of the original image, while AC
coefficients account for the details in the high resolution sub
bands. When all the blocks in a segment have been processed,
their bitstreams are interleaved and an encoded segment code
stream is produced. Fig. 7 provides the pseudo-code for the
bit plane encoding process. The interested reader is referred
to the standard itself [11] for full details.

Inside a segment, the bit plane encoding follows this pro-
cessing order:

1) To provide a finer degree of scalability in terms of
rate-distortion, DC coefficients are in fact sent in
three separated stages. First of all, DC' coefficients are
quantized. This quantization consists of a division by
a power of two that depends on the dynamic range
(magnitude) of all wavelet coefficients in that segment

Segment header
Initial coding of DC coefficients

Quantized DC coefficients
DC refinement (if required)

Bit depth of AC coefficients

From BitDepthAC to the last bitplane
DC refinement (if required)
Parents significance
Children significance

Grandchildren significance
AC refinement

Fig. 7: CCSDS-IDC: Bit plane encoding processing order.

(including AC' coefficients). Then the difference be-
tween consecutive quantized DC' coefficients (in raster
scan order) is computed. This difference is mapped to a
non-negative integer. Every such 16 consecutive integers
are marked as belonging to the same gaggle, and are
then jointly entropy-coded. These mapping and entropy-
coding are based on the CCSDS Lossless Compression
standard [12]. For entropy-coding, there are two choices,
either a fixed-length code or a variable-length code; the
former is faster, while the latter yields improved coding
performance.

2) After sending the first bits of the quantized DC' coef-
ficients, the non-quantized DC' coefficients might still
have some bit planes above the number of bit planes
needed by the largest AC coefficient in that block. Some
of these remaining bit planes are then sent on a bit plane
by bit plane fashion.

3) Next, the bit depth of the AC' coefficients in each
block is sent. In fact, similar to what happens for the
DC quantized coefficients, the difference between the
highest bit plane depth —of all AC coefficients— in
two consecutive blocks within a segment is computed,
then mapped to a non-negative integer, and then jointly
entropy-coded for all gaggles.

4) Last, if there are any, the remaining DC coefficients bit
planes along with the bit planes of AC coefficients are
sent also on a bit plane by bit plane basis using several
refinement passes.

Within a segment, the bitstreams of the different blocks are
interleaved, so that the overall quality of the recovered image
is improved (it is expected that sending some information of
all spatial areas of the image is better than specializing in a
reduced spatial area). Notice also that the bitstreams for each
8% 8 block are associated with the other blocks in the same
gaggle, and that it it not possible to decode a single block.
In addition, because of the mapping to non-negative integer
values and entropy-coding employed for both DC' coefficients
and AC coefficients highest bit depth, a gaggle can not be
independently decoded either, and information from the whole
segment must be retrieved.

B. Monoband Experiments

We now here report the progressive lossy-to-lossless coding
performance of CCSDS-IDC for the images in the considered
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data set. Figs. 8 and 9 provide a rate-distortion comparison
between two coding standards, classical JPEG2000 [29] and
CCSDS-IDC, for one component of AVIRIS Yellowstone
(band 99) and Hyperion Lake Monona (band 48).

None of these two coding techniques apply any multi-
component transform along the spectral dimension. As for the
spatial wavelet transform, JPEG2000 applies 5 levels while
CCSDS-IDC is restricted to 3 levels. Both use a float 9/7
discrete wavelet transform. The figures plot the bitrate (in bits
per pixel per band) versus the Signal to Noise Ratio (SNR),
measured in dB, considering the original energy of the image.

Kakadu software [21] has been used for JPEG2000 encod-
ings. Delta software [30] has been used for CCSDS-IDC.

—— JPEG2000
—— CCSDS 122.0
15 1

I I I I I I I

0 0.5 1 1.5 2 2.5 3 3.5 4
Rate (bpppb)

Fig. 8: AVIRIS Yellowstone Uncalibrated ScO Band 99. Rate-
Distortion comparison.
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Fig. 9: Hyperion Lake Monona Uncalibrated Band 48. Rate-
Distortion comparison.

SNR Energy (dB)
(98]
i
|

The reported results indicate that at very low bitrates (large
compression ratio), JPEG2000 benefits from the use of a 5-
level DWT. However, from 0.25 bpppb onwards, the perfor-
mance is rather close. The results for the other components of
these two images as well as for the other images in the data
set are consistent with these findings.

As happened with CCSDS-123 standard reviewed in previ-
ous Section II, the CCSDS-IDC recommended standard is able
to provide a highly competitive rate-distortion performance for
remote sensing data when applied on-board as compared to
more complex coding techniques.

Fig. 10 shows component 99 of the original AVIRIS Yellow-
stone uncalibrated image (Scene 0), as well as the recovered
image when it has been encoded at 0.1 and 1.0 bpppb. Fig. 11
shows a zoomed-in area of the same image at the same bitrates.
A bitrate of only 0.1 bpppb seems scarce for most remote
sensing applications, but the quality of the recovered image
at 1.0 bpppb, while still presenting visible artifacts, is notably
higher.

C. Multi-component Compression

In the case of lossy compression of multi-component im-
ages, there is no available CCSDS recommendation at the time
of this writing, although the CCSDS is working towards the
definition of a lossless and lossy compression algorithm that
extends CCSDS-IDC to multi-component images, supporting
several transforms in the spectral dimension. A first attempt to
assess what the performance could be for such an extension
was provided in [31]. However, the JPEG2000 standard does
provide a multi-component extension in its Part 2 [32], which
has been exploited by several authors to design compression
algorithms for multispectral and hyperspectral images. Such
algorithms are not amiable to on-board compression due to the
complexity and memory requirements of a JPEG2000 encoder,
but they can be used for on-the-ground image compression and
delivery. In the following we will describe a typical setting for
multi-component image compression based on JPEG2000; it
is expected that many of the principles on which this algorithm
is based will carry over to the multi-component extension of
CCSDS-IDC, when this will become available.

The key ingredient of lossy multi-component image com-
pression is the choice of transform to be applied along the
spectral dimension, as it is known that this dimension exhibits
a very high degree of correlation. There is not a single best
choice, but several options that one can choose from de-
pending on specific complexity and performance requirements,
e.g., a spectral discrete cosine transform, wavelet transform,
Karhunen-Loeve transform (KLT), or some approximation of
the KLT. Common to all these choices is the notion that
the spectral transform should be applied separately from the
spatial transform; since the nature of the correlation in the
spectral and spatial dimensions is different, there is no benefit
in employing a transform that is isotropic in all dimensions.
E.g., if one chooses a spectral wavelet transform, the best
results are obtained applying first all levels of the spectral
transform, and only later applying the spatial transform to the
spectral wavelet coefficients. Having said that, the transform
that typically provides the best results is the spectral KLT.
This transform has been employed as a spectral decorrelator by
many authors [33], [34], [35], [36], [37], [38], [39], [40], [41],
[42], and is known to be optimal for decorrelation of Gaussian
processes [43]. KLT has a non-negligible computational cost
and several approaches have been proposed to alleviate this
complexity [44], [45].

Defining the covariance matrix C'x of a random column
vector X with mean value px as Cx = E[(X — pux)(X —
px)T], the KLT transform matrix V is obtained by aligning
columnwise the eigenvectors of C'x. It can be shown that
the transformed random vector Y = V(X — ux) has
uncorrelated components, i.e., Cy = VTCxV is a diagonal
matrix. It should be noted that the KLT transform coincides
with principal component analysis, which is a well known tool
for dimensionality reduction. While many papers employing
the KLT for compression, they use it to reduce the number of
components by zeroing out a given number of least significant
transformed bands, in general it is more appropriate to keep
all components and represent them with different accuracy
via rate-distortion optimization techniques. As far as multi-
component image compression is concerned, for calculating
the KLT one considers each spectral vector (i.e.,, each one-
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(a) Original

(b) 0.1 bpppb

(c) 1.0 bpppb

Fig. 10: AVIRIS Yellowstone Uncalibrated ScO Band 99. Full Size.

(a) Original

(b) 0.1 bpppb

(c) 1.0 bpppb

Fig. 11: AVIRIS Yellowstone Uncalibrated ScO Band 99. Images have been magnified and sharpened so that artifacts are more

visible.

dimensional vector obtained fixing the spatial coordinates
i,7 and letting the spectral coordinate k vary) as a sample
realization of a random process. From the set of sample
realizations the mean vector px and covariance matrix C'x can
be calculated; diagonalizing C'x yields the transform matrix
V. This transform can be used as spectral decorrelator in
conjunction with any monoband compression algorithm to be
applied to each transformed spectral channel (eigenimage).
Since eigenimages have different energy, though, the problem
arises to allocate the available bit-rate budget to the monoband
coding of each eigenimage. Indeed, much like bit allocation
is necessary in 2D compression of a single image, it is all
the more necessary in the multiband case, in which not only
different units in one transformed band may have different
energy, but different transformed spectral channels may also
have different energy. In the following we describe the spe-
cific approach taken by JPEG2000, which is based on post-
compression rate-distortion optimization. Other approaches
are also possible, based on JPEG2000 [39] or other coding
techniques employing, for example, zerotrees [46], [47].

In particular, JPEG2000 employs the concept of codeblocks,
which are similar to the 8x8 blocks in CCSDS-IDC. A
codeblock, whose size is defined by the user but cannot be
larger than 2'2 wavelet coefficients (and always within the
same wavelet subband), is the basic unit that is encoded
independently. Encoding in JPEG2000 is based on an ap-

proximated binary arithmetic coder called MQ coder [7] that
is applied independently to all bit-planes of each codeblock.
First, encoding of the whole image is performed at a relatively
high bit-rate. During this process, rate-distortion information
is collected regarding each independent coding unit in the
3D transform domain, based on how many bits have been
employed by the MQ coder to encode each unit, and what
is the contribution of that unit in reducing the distortion of
the decoded image. Then, this information is used in order
to sort all units in decreasing order of their rate-distortion
importance. Finally, coded units are picked from the sorted
list and are written in the codestream until the target rate
has been achieved. This allows to obtain a rate very close
to the desired target. The computational complexity of this
process is however rather high, since the algorithm employs
an entropy coder whose complexity is not negligible, and uses
it to encode data at a rate even higher than the final rate of
the codestream. It should be noticed, however, that the rate-
distortion optimization procedure is not a mandatory part of
the JPEG2000 standard, and simpler techniques could be used,
although they would entail a performance loss with respect to
the technique described above.

D. Multi-component Experiments

We now here report the progressive lossy-to-lossless coding
performance of several multi-component coding techniques for
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the images in the considered data set. Fig. 12 and 13 provide
a rate-distortion comparison between two coding standards,
classical JPEG2000 [29] and CCSDS-IDC, when coupled with
a KLT applied on the spectral dimension.

The parameter setting and the software used for this exper-
iment have been already discussed in previous sections.
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Fig. 12: AVIRIS Yellowstone Uncalibrated Sc0O. Rate-
Distortion comparison
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Fig. 13: Hyperion Lake Monona Calibrated. Rate-Distortion
comparison

Fig. 12 illustrates the benefits of using a multi-component
transform (KLT) on an uncalibrated image. As soon as bitrate
increases over 0.5 bpppb, applying a KLT along the spectral
dimension boosts the coding performance by about 20 dB.
This boost is dependent on the image being coded, with some
image yielding higher gains than others.

Fig. 13 shows that multi-component transform does also
bring an improved rate-distortion performance for already cal-
ibrated images. In this case, the increase is about 5 dB. Notice
also that here JPEG2000 provides some gain as compared to
CCSDS-IDC, although the impact of the restricted number
of spatial wavelet levels of CCSDS-IDC is not significant
when the spectral dimension has gone through a decorrelating
transform.

IV. EXTENSIONS: PREDICTIVE NEAR-LOSSLESS AND
LOSSY COMPRESSION

In the previous sections we have introduced the lossless
and lossy types of image compression algorithms. While
these algorithms are good for many compression applications,
another type is also very popular, namely near-lossless com-
pression. This is a “hybrid” compression mode that borrows
features from lossless and lossy compression, attempting to
strike a compromise that can turn out to be useful in many
cases. Indeed, while lossless compression is highly desirable,
it typically yields limited compression ratios. On the other
hand, lossy compression can achieve large compression ratios,
but this comes at the expense of some quality loss and,

more importantly, it is not easy to accurately control this
loss. Specifically, in transform-based lossy compression it is
generally possible to achieve the desired mean-squared error
(MSE) between the decoded and original image, but a more
accurate and per-pixel quality policy is difficult to obtain. This
is due to the fact that the quality loss is introduced in the
transform domain, where it can be perfectly controlled, but it
is then mapped to the pixel domain via the inverse transform,
which mixes the errors in a way that is hard to control. In
many cases this is not an issue; if it is, then near-lossless
compression can provide a useful alternative. The term “near-
lossless” refers to a specific type of lossy compression in
which, rather than attempting to minimize the MSE for a given
target bit-rate, the compression process will minimize the
bit-rate while providing a bounded maximum reconstruction
error. That is, the compression process takes as input a user-
defined maximum absolute error A between any pixel of the
decoded image and the corresponding pixel of the original
image, and will reduce the data size as much as possible while
guaranteeing that, for each pixel of the reconstructed image,
the following condition is verified:
max ||z jk — ikl <A
i,5,k

This represents the basic kind of near-lossless compression.
The term “near-lossless” hints to the notion that, if A is chosen
appropriately, it is almost “as if” the compression process
were lossless. Indeed, any image is affected by some inherent
noise [48], which bounds the performance of any lossless
compression algorithm. If the maximum error introduced by
the compression process is smaller than the inherent noise,
then the quality of the reconstructed image would be the same
as if lossless compression had been applied. Before discussing
near-lossless compression techniques, it is worth pointing out
the differences between near-lossless and lossy compression in
terms of the functionality they can achieve. As has been seen
in Section III, transform-based lossy compression allows one
to achieve a very accurate rate control, while quality control is
typically limited to the MSE. On the other hand, near-lossless
compression makes it possible to achieve very fine per-pixel
quality control, but does not lend itself naturally to obtain rate
control. This does not mean, however, that transform-based
schemes may not achieve accurate quality control or near-
lossless schemes may not achieve rate control, as we will show
later on.

A. Techniques for near-lossless compression

The easiest and most effective way to design a near-
lossless compression algorithm is to resort to prediction in a
differential predictive coded modulation (DPCM) scheme [49].
In Section II it has been shown that prediction is the basic
technology underlying many lossless compression algorithms.
The basic principle is to employ a mathematical model of the
correlation among adjacent pixels of the image, in the form
of a linear or nonlinear predictor. The task of the predictor
is to calculate an estimate Z; ;j of the current pixel z; ;
being encoded. The predictor is a function of “past” pixels
that have already been processed, i.e. previous pixels in the
same line or pixels on previous lines or spectral channels of the
image. Then, only the prediction error e; j = i jr — Ti jk
is encoded in the compressed file, i.e. the information on
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the pixel value that was not modeled by the predictor. For
near-lossless compression, though, a modification to this basic
mechanism is needed, as shown in Fig. 14. The reason lies in
the fact that, in the lossless compression case, past samples
of the original signal are indeed available at the decoder,
which can recalculate the predictor for the pixel currently
being decoded. However, this is clearly not possible in lossy
compression. The way this problem is addressed involves
implementing a local decoder at the encoder, as is shown in
the shadowed box in Fig. 14. The easiest way to interpret
this figure is as follows: instead of calculating the predictor
Z; 4 from previous samples of the original image x; ; i,
the modified scheme employs instead previous samples of
the decoded image T, ;. This requires that, every time a
predictor is computed and the corresponding prediction error
€;,5,k 1s calculated, the prediction error is quantized to eQJ &
and entropy-coded, then reconstructed to €; ; i, and finally the
decoded sample Z; ; ; is obtained, and used to predict future
pixels. On the other hand, only the inclusion of an inverse
quantizer is required at the decoder, which otherwise works as
described in Section II. Note that, so far, we have assumed that
the maximum error A is the same for all pixels in the image.
This is an important case, but generalizations are also possible,
as will be seen later in this section, where a rate-distortion
optimization block as in Fig. 14 is used to appropriately select
quantization step sizes so as to attain a given objective.

Rate-distortion

optimization
Input Compressed
image Q file
E——
Prediction
residual

Spatial/spectral
predictor

Locally
reconstructed
image

Local decoder

Fig. 14: DPCM scheme for near-lossless compression.

A few remarks are in order regarding this near-lossless
scheme based on the DPCM feedback loop. First, this is
a very general scheme which can employ any causal pre-
dictor; as a consequence, near-lossless versions of popular
lossless compression schemes are readily obtained, see e.g.,
the near lossless version of CALIC [50] and its multiband
extension [18], and the near-lossless algorithms based on crisp
and fuzzy selection among a set of predictors [51], [52],
[53]. Second, it is easy to see why this scheme achieves a
bounded maximum error between any decoded and original
pixel. Indeed, for each pixel Ti .k Zijk + €ijk, ONe
reconstructs an appr0x1mat10n T; gk = z; g L€ ks hence the
error is equal to x; j k — Zijk = €ijk — €ijk = i j,k> Which
is exactly the quantization noise introduced in representing

e; ;.- If the quantizer employed is a scalar uniform quantlzer
then the maximum error is bounded by ||z; j.x — T ;,
where § is the quantization step size. A typical choice 1s
to employ a quantization step size equal to an odd integer
number, ie., 6 = 2A + 1, where A is the maximum error
achieved. This choice minimizes the reconstruction MSE for
a given maximum error A.

At this point, one might wonder if this near-lossless com-
pression scheme works well irrespective of the value of A, i.e.,
if it performs equally well at all bit-rates and how it compares
to transform-based techniques. The key to understand this lies
in the fact that the performance of this scheme depends on
how “accurate” the prediction of the current pixel is, since
the lower is the energy left in the prediction error samples,
the fewer bits will be required to encode these samples for a
given degree of accuracy. However, quantization plays against
the predictor in the following sense. In this DPCM scheme,
the input to the predictor are the past decoded pixels of the
image. At high quality levels, when A and § are very small,
this near-lossless scheme works indeed really well. As one
moves to higher degrees of compression, increasing A and 4,
the performance tends to degrade. This is due to the fact that,
as the decoded pixel values are more and more different from
the original values, the correlation between the decoded past
values and the current pixel value tends to decrease, and as a
consequence the predictor will do a poorer job of estimating
the current sample. Thus, the rate-distortion performance of
near-lossless compression tends to degrade more and more
as the quality decreases, making this a poor choice for low
quality levels. This is generally not a serious issue, since
for multispectral and hyperspectral images the quality levels
of interest are rather high. It should also be noted that the
mechanism that renders the prediction quality poor has been
subject of an interesting theoretical analysis in [54], where it is
shown that an appropriate filtering and downsampling strategy
can improve the performance of DPCM, preventing high-
frequency quantization noise from disrupting the predictor’s
performance. On a related note, in [55] it has been shown
that the low bit-rate performance of near-lossless compression
can be highly improved by regularizing the reconstructed
quantization error €; ; ;. Indeed, as § becomes large the con-
ventional midpoint reconstruction fails to account for available
prior information regarding the image, whereas reconstruction
values satisfying e.g. a smooth or wavelet-sparse image model
should be chosen instead.

Since the near-lossless compression paradigm above can
be applied to any predictor, it can also be used to design a
near-lossless version of the CCSDS-123 lossless compression
algorithm leveraging the predictor described in Section II.
The elements that need to be added to CCSDS-123 are the
following.

e A scalar uniform quantizer with odd quantization step
size that maps e; j to eZQj x» and the corresponding
reconstruction function that maps eQ & 10 €k

o All calculations of local sums and predlctor values are
based on the past decoded samples Z; j , and not the
original samples x; ; .

o The weight update rule employs e ;. instead of e; ;.

o Importantly, the entropy coder deﬁned by CCSDS-123
has to be changed if one want to achieve bit-rates below
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1 bpppb. This is because the Golomb code encodes one
symbol at a time. Since the minimum length of a Golomb
codeword is one bit, the average length can not be less
than 1 bpppb. It is indeed possible to achieve bit-rates
below 1 bpp, but this requires some kind of block coding,
which can be as simple as a run-length encoder to take
advantages of long sequences of zeros, or a fully-fledged
block coder such as an arithmetic or range encoder. In
the experiments provided in Section IV-C the quantized
residuals have been coded using a range encoder, which
has a better coding efficiency than a Golomb code.

B. Generalization to varying quality levels and rate control

Since near-lossless compression can indeed achieve a spe-
cific maximum absolute error on every individual pixel, the
question arises whether it has any interest at all to make the
maximum error a variable quantity A; ;j, which can be set
to a different value for each pixel by selecting an appropriate
quantization step size J; ; 5. There are several reasons why one
may want to do so.

« In some applications, rather than setting a constant max-
imum error for each pixel, it is of interest to bound the
maximum relative error. For example, in astronomy it is
often the case that the level of noise is proportional to
the signal level, so that a larger error may be tolerated
on the pixels with higher values, and vice versa.

o In some applications there could be areas of the image
which are more important to the scientists (“regions of
interest”’), and pixels belonging to these regions could be
represented with a higher quality.

« By varying the quality in different areas of the image, one
could obtain the rate control functionality, or a hybrid rate
and quality control.

Achieving the first two functionalities is rather simple, and
is readily done via a proper selection of quantization step
sizes for each pixel to obtain the desired quality. This is
not difficult since in near-lossless compression quality can be
modulated in a natural way. On the other hand, modulating
the quality to obtain rate control is a more involved issue,
significantly more so than in the case of transform coding.
The main reason behind this is the following. In transform
coding, one typically assumes that the transform coefficients
are statistically independent. Therefore, the problem of choos-
ing quantization step sizes can be solved disregarding the
interactions among the different quantization choices applied
to data units in the transform domain. Unfortunately, the same
cannot be done for predictive coding. Because of the way the
prediction mechanism works, a quantization choice on a given
pixel will affect the rate and quality of that pixel, but also
the rate of the subsequent pixels that are predicted from it.
In general, if we represent a pixel with very good quality
using an appropriately high bit-rate, then this pixel will retain
most of its correlation with the subsequent ones, so that the
predictor employing that pixel will yield a small prediction
error. Conversely, a pixel that is represented coarsely will
typically generate higher prediction error values in the next
pixels. The interaction between the rate-distortion choices for
a pixel and their effects on the next pixels are difficult to
model. In [56] it is shown that the problem can be solved by
representing all sets of possible coding options as states on a

trellis, and then running the Viterbi algorithm. This approach,
however, is unfeasible in practice due to its complexity.

Practical solutions must find an allocation of quantizers that
is greedy, since not all the image data can be stored in memory
at the same time, and that has low complexity. One possible
solution would be to consider near-lossless compression with a
single maximum error A throughout the image, and choose A
S0 as to obtain the desired bit-rate, as sweeping A from very
low to very high values will yield rate-distortion points from
high quality to low quality. Incidentally, this solution is rather
good in terms of quality, as it can be shown to be optimal in
minimax distortion sense under a Gaussian assumption on the
image pixels [57]. Although not necessarily optimal in MSE
sense, this solution has the desirable property that the quality
is balanced throughout the image. In practice, however, this
approach is not viable. Indeed, there is only one parameter
to be chosen for the whole image, and it has to be selected
in a greedy way without the possibility to perform adaptation
to the image content. This makes the process prone to large
errors in the rate control.

In [58] a solution to this problem has been proposed, which
adapts well to the multispectral and hyperspectral imaging
case, since it performs greedy allocation of quantizers so as to
achieve the desired bit-rate. The purpose of the algorithm is to
control the output rate of a predictive encoder of hyperspectral
and multispectral images under low complexity and memory
constraints. This rate control algorithm can work with any
predictor, and it selects the quantizers to be applied to the
prediction errors. It works on a slice-by-slice basis, where a
“slice” is defined as a predefined number of lines (e.g., 16)
with all their spectral channels. Each slice is divided into non-
overlapping 16 x 16 blocks. An individual quantization step
size is computed for each block in each spectral channel, so
that lossy predictive coding employing the computed step sizes
shall achieve a rate as close as possible to the target. The rate
control algorithm is a multistage process that computes such
step sizes, as depicted in Fig. 15. In particular the following
steps are performed:

o Training stage: a rate-distortion model predicting the rate-
distortion curve of each block in each spectral channel
of the slice is built as function of the variance of the un-
quantized prediction residuals and of the quantization step
size to be used for the block. The former is estimated by
running the lossless predictor on a small number of lines
in the slice. This process defines a rate-distortion function
R(02,4;) which, given a quantization step size §; chosen
for block 4, and the variance o7 of the prediction residuals
for the block, provides an estimate of the rate needed
to code the block. This model is the key ingredient to
tackle the rate control problem. In [58] the rate-distortion
function of a Laplacian source is employed, since the
Laplacian distribution is a good model for prediction
residuals, and the corresponding rate-distortion function
is known in closed form. Then, the final quantization step
sizes are obtained as follows.

e Optimization stage - step I: First, an initial set of quan-
tization step sizes are calculated, which approximately
achieve the target rate but are suboptimal in terms of
distortion. There are many ways to perform this. For
example, in [58] this is done considering first the lossless
compression case, ie., 9; = 1 for i = 1,..., N, being
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Fig. 15: Serial implementation.

N the number of blocks belonging to a slice, and the
corresponding rates R(c;,1) for each block that sum
up to the estimated lossless compression bit-rate. This
feasible rate-distortion point is then “projected” onto the
set of points that define the desired rate constraint, namely
Zij\il R(0i,0;) = Ruger, Where Ripee is the actual
desired bit-rate and each term R(o;,d;) employs the rate-
distortion model calculated in the previous step. Since this
set is an [ ball, the unknown terms ¢; can be calculated
using standard optimization techniques.

e Optimization stage - step 2: A greedy algorithm makes
local adjustments aimed at promoting low-distortion al-
locations of the quantization step sizes, employing the
rate-distortion models of all blocks in the slice. The main
idea is as follows. All quantization step sizes of each
block are decreased by 2 (because only odd step sizes
are allowed); this reduces the distortion, but increases
the bit-rate. In order to obtain the target bit-rate, a certain
number of blocks are selected and their quantization step
size is increased; in particular, these blocks are selected
as those that are optimal in rate-distortion sense, based
on the rate-distortion model. This procedure is iterated a
few times until the allocation stabilizes.

Furthermore, the algorithm employs feedback from one slice
to the next, using information on the actual rate produced
encoding a slice, in order to update the target rate for future
slices, thereby compensating for inaccuracies of the allocation
process. The idea is to track the deviation of the actual rate
from the predicted one, and to compensate this deviation over a
few next slices. The algorithm described in [58] is designed as
a tracking algorithm, and has provable guarantees to converge
to the desired target rate under some mild conditions on the
regularity of the rate deviation.

The application of this rate control algorithm to CCSDS-
123 is rather simple. The only caveat lies in the fact that the
predictor in CCSDS-123 performs adaptation of the weights.
This implies that the training stage starts using the weights
calculated at the end of the previous slice, and the weights
employed for lossless prediction in the training of the next
slice will have to be updated after the current slice has been
predicted and encoded. This may introduce a delay since the
rate control algorithm cannot be run in parallel to the predic-
tion and encoding stage. A modified version of this algorithm
allowing to pipeline rate control and prediction/encoding has
been proposed in [59].

90

; ;
—6— CCSDS-123 with rate control
—8— CCSDS-123 near lossless
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Fig. 16: Rate-distortion performance comparison between
two different modifications of CCSDS-123, near-lossless (red
curve) and lossy version with rate control (blue curve). The
curves refer to the Yellowstone Uncalibrated ScO image.

C. Performance comparison

In the following we provide a performance comparison
of the near-lossless version of CCSDS-123 described above
with another near-lossless compression algorithm, namely M-
CALIC [18]. The maximum errors are selected so as to span
a reasonable range of bit-rates, which are mostly concentrated
in the high-quality range. Note that M-CALIC employs an
arithmetic coder as an entropy coding stage, whereas the near-
lossless CCSDS-123 employs a range coder, which in this case
is a simplified and slightly suboptimal version of an equivalent
arithmetic coder. The suboptimality of the range coder with
respect to the arithmetic coder is typically within 0.1 bpppb.
Also note that, because of the use of the range encoder, the
CCSDS-123 lossless compression bit-rates obtained with this
experiment are lower than those provided in Table II, which
report the performance of the standardized version of CCSDS-
123 employing a Golomb coder. For M-CALIC, no specific
adaptation of the weight for the previous two bands has been
performed; the weights are the same as in [18]. Also note that,
in view of application to on-board compression, M-CALIC has
been run in BIL mode, i.e., the image is read and encoded by
spectral lines.

The results of this comparison are reported in Table III. As
can be seen, the near-lossless version of CCSDS-123 consis-
tently outperforms M-CALIC despite employing a range en-
coder instead of a fully-fledged arithmetic coder. The achieved
bit-rates obviously vary for different images, but in general it
is possible to obtain rather low bit-rates with a limited value
of §. As has been said, for both algorithms the use of a block
coder allows to achieve bit-rates below 1 bpppb.

We also show a comparison of the performance of the
near-lossless CCSDS-123 (as introduced in Section IV-A)
and the lossy version of CCSDS-123 with rate control (as
introduced in Section IV-B). In particular, Fig. 16 shows
the rate-distortion performance of these two extensions of
CCSDS-123 on the Yellowstone Uncalibrated ScO image. In
order to properly interpret these results, it has to be noted that
the near-lossless algorithm provides no rate control. That is,
Fig. 16 provides the set of achievable rate-distortion points, but
the user would not be able to select a specific point a priori,
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TABLE III: Comparison of different near-lossless coders for AVIRIS and Hyperion images for several values of §. Coding

performance is reported in bits per pixel per band.

’ Sensor ‘ Name Compression Technique

M-CALIC CCSDS-123 near-lossless
6=0 | 6=1 | 6=2 | 6=5 | 6=10 || 6=0 | é6=1 | 6=2 | 6=5 | 0=10
Hawaii Uncalibrated || 2.96 | 1.66 | 1.21 | 0.70 | 0.44 | 2.63 | 1.39 | 0.95 | 040 | 0.18
AVIRIS Maine Uncalibrated || 3.02 | 1.72 | 1.26 | 0.75 | 049 || 2.72 | 1.46 | 1.00 | 0.45 | 0.23
Yellowstone Uncalibrated ScO || 6.47 | 4.88 | 4.15 | 3.06 | 2.25 6.20 | 459 | 386 | 2.77 | 1.97
Agricultural Calibrated || 5.51 | 4.31 | 3.72 | 2.82 | 2.15 532 | 401 | 343 | 255 | 1.87
Coral Reef Calibrated || 4.86 | 3.73 | 3.17 | 2.29 | 1.63 || 494 | 3.63 | 3.09 | 2.20 | 1.55
Hyperion Urban Calibrated || 5.37 | 4.24 | 3.67 | 2.79 | 2.13 531 | 401 | 342 | 257 | 1.89
Erta Ale Uncalibrated || 4.97 | 3.40 | 2.71 | 1.74 | 1.09 || 4.61 | 3.09 | 242 | 1.51 | 0.89
Lake Monona Uncalibrated || 5.16 | 3.57 | 2.87 | 1.89 | 1.22 || 4.69 | 3.17 | 249 | 1.57 | 0.96

but should instead run the encoder with different values of §
until the desired rate has been achieved. Conversely, the lossy
version with rate control is run just once as the user selects
the desired bit-rate. As can be seen, the lossy algorithm incurs
a slight performance loss. This is the price to be paid for
employing a greedy rate control algorithm, which provides a
slightly suboptimal solution. However, the loss is very small,
around 1 dB at 1 and 2 bpppb, and around 0.85 dB at 3 and

4 bpppb.

D. Other techniques

While the techniques described above provide a toolset for
performing near-lossless and lossy compression using predic-
tive methods, it is important to notice that other approaches
are also possible. We discuss a few of them below.

Regarding near-lossless compression, it should be noted that
it is possible to achieve near-lossless compression also using
transform-based methods, although it is more complicated than
using predictors. For example, [60] designs a quantizer for
wavelet coefficients that provides near-lossless compression
in the image domain. The technique proposed in [61] first
applies a transform-based method such as KLT+JPEG2000,
then applies decoding, and finally requantizes and encodes the
difference between the original and decoded image to obtain
the desired maximum absolute error. This approach is very
general and can be applied to any transform coder, which in
this framework is indeed employed as a predictor. However,
it requires an on-board decoder in addition to the encoder,
thereby increasing the complexity.

An aspect that has been shown to improve the performance
of any kind of compression is band reordering [62], [63],
[64]. This technique is based on the observation that the
natural ordering of the spectral channels is not necessarily
the ordering that provides the best compression performance.
It has been shown [63] that good orderings can be found, for
example, by representing the spectral channels as nodes in a
weighted graph, where the weights between any pair of nodes
correspond to some (negative) measure of correlation between
the respective spectral channels. A minimum spanning tree
algorithm will yield a good ordering, i.e., the ordering that
maximizes correlation between adjacent spectral channels in
the reordered image. This has been shown to generally im-
prove the performance of compression algorithms [65], from
small to significant degrees depending on the dataset. Although
the complexity of band reordering is generally too large to

be performed on-board, in [65] it is noticed that the optimal
ordering for images acquired by the same sensor is generally
very similar, so that it is conceivable to determine the optimal
ordering during a training stage, and then use it for on-board
compression.

Finally, another approach that is somehow similar in spirit to
the prediction-based one is the class of compression algorithms
based on the distributed source coding principle. Distributed
source coding is an information theoretic technique [66] that
can be employed to design a compression algorithm with a
computationally light encoder and a more complex decoder.
This is clearly an appealing feature for on-board compres-
sion, where the computational capabilities at the encoder are
scarce, while the decoder is much less constrained. The idea
behind distributed source coding, as applied in the context
of hyperspectral image compression [67], [68] is that one can
still employ a predictor, but instead of encoding the prediction
error, only a certain number k of least significant bit-planes
of the image pixels are transmitted to the decoder, along with
a 16-bit error detection codeword generated applying a cyclic
redundancy code to the pixels. The task of the decoder is to
estimate the most significant bit-planes; this is done trying all
possible elements in the chosen family of predictors, which
must be in finite number. Every predictor is used to generate
an estimate of the most significant bits, leading to a candidate
set of decoded pixels which is checked for exactness using the
received error detection codeword. It can be shown [67], [68]
that a proper choice of k ensures that this problem has a unique
solution. As can be seen, this approach shifts complexity away
from the encoder, particularly in the coding stage, and moves
it into the decoder. Other approaches based on this framework
have been recently proposed [69], [70], including approaches
based on transforms [71].

V. CONCLUDING REMARKS

Remote sensing is an active field of research that puts at the
disposal of the scientific community an ever-growing volume
of data, enabling a whole new niche of applications. A plethora
of aircraft and spacecraft sensors is being today deployed,
which generate an unprecedented amount of high-resolution
data, though, at the same time, posing the challenging problem
of efficiently transmitting and disseminating these data. The
downlink transmission channel from the on-board sensor to
on-the-ground stations is rather limited, and smart transmission
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protocols have to be devised to fully seize the available
capacity.

Remote sensing data compression comes as an effective
means to increase the transmission rate. Three coding modali-
ties have been proposed in the literature, ranging from lossless
through near-lossless to lossy compression, and the operative
standards are now rather mature.

We have reviewed the most recent standard/proposal for
each type of compression. For both lossless and lossy com-
pression, a description of the recommended standards by the
Consultative Committee for Space Data Systems (CCSDS)
for on-board data compression has been provided, along
with a comparison against the best on-the-ground performing
approach. It has been shown that, in general, careful design
of the coding techniques, taking into account the restricted
on-board computing and memory capabilities, can provide
a tantalizing performance, close to that provided by more
computationally complex techniques, although, perhaps, at the
cost of restraining its features.

For mono band images, CCSDS-IDC, approved in 2005,
yields appropriate performance for progressive lossy-to-
lossless coding in a large range of bitrates as compared to
classical JPEG2000. The underlying functional scheme of both
CCSDS-IDC and JPEG2000 is a spatial wavelet transform
followed by a biplane encoding.

For multi-component images, and for lossless compression,
CCSDS-123, approved in 2012, has revealed itself as the most
convenient approach, even compared to more demanding tech-
niques, and not only for on-board operation, but also for on-
the-ground coding. CCSDS-123 is a prediction-based approach
that exploits both the spectral and the spatial correlation.

Also for multi-component images, but now for progressive
lossy-to-lossless coding, CCSDS-122 standard could be cou-
pled with a KLT applied along the spectral dimension to sup-
ply competitive results as compared also to KLT+JPEG2000.
However, as the KLT is a computationally demanding trans-
form, the CCSDS the Multispectral Hyperspectral Data Com-
pression Working Group is working towards the development
of an alternative to the KLT. This approach has not been
described in our review, as the standardization process is not
yet complete.

Finally, we have addressed near-lossless compression, where
the peak absolute error is bounded to a given threshold. This
type of compression might prove useful in several application
scenarios. Currently, no work item has been started in CCSDS
MHDC WG to standardize an approach with this feature, but
it is foreseen that it will be discussed in the near future. In
addition, when properly combined with a suitable rate-control
scheme, this approach could also enable progressive lossy-to-
lossless coding. A description of a recently introduced pro-
posal is also provided. This proposal could be built upon the
latest prediction-based CCSDS-123, easing its implementation
by space agencies.
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