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 31 

Abstract 32 

Assessing mismatches between ecosystem service (ES) supply and demand in urban areas can provide 33 

relevant insights for enhancing human well-being in cities. This paper provides a novel 34 

methodological approach to assess regulating ES mismatches on the basis of environmental quality 35 

standards and policy goals. Environmental quality standards indicate the relationship between 36 

environmental quality and human well-being. Thus, they can be used as a common minimum 37 

threshold value to determine whether the difference between ES supply and demand is problematic for 38 

human well-being. The methodological approach includes three main steps: (1) selection of 39 

environmental quality standards, (2) definition and quantification of ES supply and demand indicators, 40 

and (3) identification and assessment of ES mismatches on the basis of environmental quality 41 

standards considering certain additional criteria. While ES supply indicators estimate the flow of an 42 

ES actually used or delivered, ES demand indicators express the amount of regulation needed in 43 

relation to the standard. The approach is applied to a case study consisting of five European cities: 44 

Barcelona, Berlin, Stockholm, Rotterdam and Salzburg, considering three regulating ES which are 45 

relevant in urban areas: air purification, global climate regulation and urban temperature regulation. 46 

The results show that levels of ES supply and demand are highly heterogeneous across the five studied 47 

cities and across the environmental quality standards considered. The assessment shows that ES 48 

supply contributes very moderately in relation to the compliance with the EQS in most part of the 49 

identified mismatches. Therefore, this research suggests that regulating ES supplied by urban green 50 

infrastructure are expected to play only a minor or complementary role to other urban policies 51 

intended to abate air pollution and greenhouse gas emissions at the city scale. The approach has 52 

revealed to be appropriate for the regulating ES air purification and global climate regulation, for 53 

which well-established standards or targets are available at the city level. Yet, its applicability to the 54 

ES urban temperature regulation has proved more problematic due to scale and user dependent 55 

constraints. 56 

 57 

Keywords: Air purification; Assessment; Global climate regulation; Green infrastructure; Human 58 

well-being; Urban temperature regulation. 59 
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1. Introduction 61 

Green infrastructure (GI) has been defined as a “network of natural and semi-natural areas with other 62 

environmental features designed and managed to deliver a wide range of ecosystem services (ES). It 63 

incorporates green spaces (or blue if aquatic ecosystems are concerned) and other physical features in 64 

terrestrial (including coastal) and marine areas” (EC, 2013:3). In urban areas, GI elements may include 65 

parks, urban forests, allotments, street trees, green roofs, etc. (Landscape Institute, 2009). Relevant ES 66 

delivered by GI in cities include, for instance, air purification, urban temperature regulation, runoff 67 

mitigation, noise reduction and recreation (Bolund and Hunhammar, 1999; Gómez-Baggethun and 68 

Barton, 2013; Gómez-Baggethun et al., 2013). 69 

 70 

An increasing body of literature highlights the contribution of GI and ES in enhancing environmental 71 

quality (e.g., air quality) in cities, hence fostering a better quality of life and well-being for the urban 72 

population (e.g., Nowak, 2006; Tzoulas et al., 2007; Escobedo et al., 2011; Pataki et al., 2011). Some 73 

studies even argue that urban policies based on the planning and management of GI can be comparable 74 

in terms of effectiveness or efficacy to other policies based on technological measures (e.g., Escobedo 75 

et al., 2008; 2010). Yet, the assessment of the current (and potential) contribution of urban GI through 76 

ES supply as a means to meeting desired or required environmental quality conditions and goals at the 77 

city scale remains largely unexplored. 78 

 79 

The main objective of the paper is hence the exploration of the possible contribution of ES supply to 80 

meet environmental quality standards and policy goals (hereafter referred as EQS) in urban areas. The 81 

underlying assumption derived from this objective is that EQS are to be met exclusively through ES 82 

supply. Conceptually, this hypothesis can be framed as the assessment of mismatches between ES 83 

supply and demand. This research argues that ES demand, defined here as the amount of service 84 

required or desired by society (Villamagna et al., 2013), can be expressed in relation to EQS because 85 

these provide a threshold value to determine whether the difference between ES supply and demand is 86 

problematic for human well-being. The assessment examines ES mismatches of three regulating ES 87 

which are relevant in urban areas (Gómez-Baggethun and Barton, 2013): air purification, urban 88 

temperature regulation and global climate regulation (through carbon sequestration). The 89 

methodological approach includes three main steps: (1) selection of EQS, (2) definition and 90 

quantification of ES supply and demand indicators, and (3) identification and assessment of ES 91 

mismatches on the basis of EQS considering certain additional criteria. While ES supply indicators 92 

estimate the flow or amount of an ES actually delivered (e.g., air pollutants removed by urban 93 

vegetation), ES demand indicators estimate the amount of inputs needing regulation (e.g., air pollutant 94 
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concentrations) in relation to the corresponding EQS (e.g., air quality standards). The approach is 95 

applied to a case study consisting of five European cities: Barcelona, Berlin, Stockholm, Rotterdam 96 

and Salzburg. Based on the obtained results, the actual and potential contribution of urban GI to 97 

address mismatches between ES supply and demand at the city scale is discussed, as well as the 98 

advantages and limitations of using EQS to assess these mismatches. 99 

 100 

  101 
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2. Materials and methods 102 

2.1. Conceptual framework  103 

Recently developed conceptual frameworks in the ES literature call for a distinction between ES 104 

capacity, flow and demand as the main components of the ES delivery process (Villamagna et al., 105 

2013; Burkhard et al., 2014; Schröter et al., 2012; 2014; Guerra et al., 2014). Capacity is defined as 106 

the ES potential (i.e., hypothetical maximum yield) and flow as the actual supply or use of ES 107 

experienced by people. ES demand, however, has been approached differently depending on the 108 

authors. Burkhard et al. (2014:5) define demand for ES as the “services currently consumed or used in 109 

a particular area over a given time period, not considering where ES actually are provided”. 110 

Alternatively, ES demand has been described as “the amount of a service required or desired by 111 

society” (Villamagna et al., 2013:115) or “the expression of the individual agents’ preferences for 112 

specific attributes of the service” (Schröter et al., 2014:541). In this paper, ES supply is conceptualized 113 

as ES flows (Hein et al., 2006) and ES demand as the required level of ES delivery by society 114 

(Villamagna et al., 2013). ES mismatches occur when the demand for ES is not totally met by the 115 

supply within a defined spatial and time scale. Thus, ES mismatches express the existence of an 116 

unsatisfied or remaining demand (Geijzendorffer et al., 2015). 117 

 118 

According to the framework developed by Villamagna et al. (2013), the supply of regulating ES 119 

contribute to the maintenance of environmental quality within socially acceptable ranges only until a 120 

certain level of ecological pressure (e.g., air pollution). Beyond this level, ES supply cannot sustain a 121 

good environmental quality and ES demand should be considered as not totally met. Under this 122 

approach, estimating regulating ES demand requires hence information about two main elements: (1) 123 

desired conditions (i.e., good environmental quality); and (2) inputs needing regulation (i.e., ecological 124 

pressures). In line with Paetzold et al. (2010), this paper considers that EQS can be used as a threshold 125 

of desired conditions in relation to the demand for regulating ES. In general terms, EQS rely on 126 

scientific evidence and/or expert knowledge concerning the relationship between environmental 127 

quality and human well-being with the underlying aim to secure or enhance the latter (e.g., EEA, 128 

2013a). Thus, the methodological approach considered here assumes that EQS can provide a common 129 

minimum threshold value to assess regulating ES mismatches across different contexts (in this case 130 

study, different European cities). For example, World Health Organization (WHO) air quality 131 

guidelines (WHO, 2005) can be used to provide a minimum threshold to assess the mismatch between 132 

supply and demand of the ES air purification. A city where air pollution levels exceed WHO reference 133 

values reflects a mismatch in which air purification demand exceeds the current local supply. Yet, this 134 

situation does not necessarily imply that the EQS is to be achieved solely by ES supply. 135 
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 136 

2.2. Selection of environmental quality standards 137 

Based on a non-exhaustive examination of European-context regulatory frameworks, relevant EQS 138 

were identified for the three ES assessed in this study (Table 1). EQS for ES air purification were 139 

derived from the European Union (EU) air quality Directive (EU, 2008) and WHO air quality 140 

guidelines (WHO, 2005). Reference values for ground-level concentrations of air pollutants are 141 

generally more stringent in the WHO standards, but only the EU standards are legally binding for the 142 

case study cities, hence the inclusion of both standards in the assessment was considered pertinent. 143 

The focus was limited to the following air pollutants: (1) particulate matter with a diameter of 10 µm 144 

or less (PM10); (2) nitrogen dioxide (NO2); and (3) tropospheric ozone (O3), considered three of the 145 

most problematic air pollutants in terms of exposure to concentrations above the EU and WHO 146 

reference levels in Europe for its urban population (EEA, 2013a).  147 

 148 

The ES global climate regulation is generally assumed to be demanded at global scale (Burkhard et al., 149 

2012), yet city specific GHG emission reduction and offset targets can be considered as a desired 150 

condition at lower scales. Following the EU 20-20-20 targets (EC, 2008), many municipal authorities 151 

have signed up to the ‘Covenant of Mayors’ initiative1, voluntarily committing themselves to reduce 152 

their GHG emissions by at least 20% until 2020 (see Table 1 for specific reduction targets of the case 153 

study cities).  154 

 155 

No explicit EQS were found in relation to urban temperature regulation at the European regulatory 156 

level, probably because human health vulnerability to temperature extremes depends on a complex 157 

interaction between different factors such as age, health status, socio-economic circumstances (e.g., 158 

housing) and regional adaptation (Kovats and Hajat, 2008; Fischer and Schär, 2010). However, 159 

general critical temperature thresholds for health impacts in Europe have been estimated based on the 160 

spatial and temporal variance in excess mortality during recent heatwaves2 episodes (Fischer and 161 

Schär, 2010). According to this research, the consecutive occurrence of days with maximum 162 

temperature above 35ºC (‘hot days’) and nights with minimum temperature above 20ºC (‘tropical 163 

nights’) has been found to explain the correlation with excess mortality. These values match well with 164 

specific temperature thresholds officially allocated to cities like Barcelona (Tobias et al., 2012), but 165 

are likely overestimated for Northern cities like Stockholm (Roklöv and Forsberg, 2008) due to 166 

                                                           
1 See www.covenantofmayors.eu 
2 Fischer and Schär (2010) define a heatwave “to be a spell of at least six consecutive days with maximum temperatures 

exceeding the local 90th percentile of the control period (1961-1990)”. 
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regional adaptation factors. In any case, the impacts of heatwaves on human health are particularly 167 

strong in cities, both in Northern and Southern latitudes, due to the exacerbating effect of the urban 168 

heat island (UHI) (EEA, 2012). 169 

 170 

Table 1 171 

EQS selected to assess mismatches between ES supply and demand  172 

ES EQS 

Air 

purification 

 EU Air Quality Directive (EU, 2008) and WHO air quality guidelines (WHO, 2005)  

reference values: 

 

Pollutant EU WHO 

PM10 40 µg m-3 (Year) 20 µg m-3 (Year) 

NO2 40 µg m-3 (Year) 40 µg m-3 (Year) 

O3 120 µg m-3 (8-hour) 100 µg m-3 (8-hour) 

 

 

Global 

climate 

regulation 

 Covenant of Mayors’ GHG emission reduction targets for each case study city are: 

o Barcelona: 23% by 2020 (baseline year 2008) 

o Berlin: 40% by 2020 (baseline year 1990) 

o Stockholm: 45% by 2020 (baseline year 1990) 

o Rotterdam: 50% by 2025 (baseline year 1990) 

o Salzburg: No explicit target found (assuming 20% by 2020, baseline year 1990) 

Urban 

temperature 

regulation 

 Heatwave thresholds: consecutive occurrence of hot days (T-max > 35ºC) and tropical nights 

(T-min > 20 ºC) (Fischer and Schär, 2010).  

Notes: Air quality policy targets correspond to the EU and WHO values set for the protection of human health (in brackets 173 
the averaging period applicable for each limit). EU’s reference value for O3 is subject to 25 days of allowed exceedances per 174 
year averaged over three years. See EEA (2013a) for more details. GHG emission reduction targets for each case study city 175 
are based on local Sustainable Energy Action Plans (see www.covenantofmayors.eu and Table 3). 176 
 177 

2.3. Defining indicators of ES supply 178 

ES supply was measured directly as the amount of a service delivered or experienced by people (van 179 

Oudenhoven et al., 2012; Villamagna et al., 2013). The indicators for ES supply were selected based 180 

on methods and data availability (see Table 2). For this analysis only terrestrial ecosystems were 181 

considered, omitting blue infrastructure elements (sea, lakes, ponds, rivers, etc.) which can also be 182 

important sources of ES supply in the urban context (Bolund and Hunhammar, 1999), especially in 183 

case study cities such as Stockholm, Rotterdam and Barcelona. The use of tools specifically designed 184 
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for quantifying ES delivered by terrestrial vegetation (e.g., i-Tree Eco model) prevented a more 185 

complete assessment of urban ecosystems (i.e., including blue infrastructure). 186 

 187 

The supply of the ES air purification was quantified using estimated air pollution removal of PM10, 188 

NO2, and O3 by urban green space. Uptake rates were quantified using the dry deposition model of i-189 

Tree Eco tool (Nowak et al., 2006; 2008; Hirabayashi et al., 2012). Data required for each city 190 

included hourly air pollution concentration, percentage of tree canopy cover (both deciduous and 191 

evergreen) and meteorological data. For Barcelona and Berlin air pollution removal rates were taken 192 

from Baró et al. (2014) corresponding to year 2008, and Aevermann (pers. comm., 2013) for year 193 

2011, respectively. Air pollution concentration data from Salzburg, Stockholm and Rotterdam 194 

monitoring stations were obtained from the AirBase database v.7 (EEA, 2013b) for the year 2011. 195 

Meteorological data were retrieved from the US National Climatic Data Centre for the same year. 196 

Percentages of evergreen and deciduous tree canopy cover for these three cities were estimated using 197 

i-Tree Canopy tool3 which allows photo-interpretation of urban land covers from Google Maps aerial 198 

imagery using a random sampling location process. A sample of 500 survey points were photo-199 

interpreted for each city based on a categorization of three cover classes: 1) deciduous tree; 2) 200 

evergreen tree and 3) non-tree cover. This method likely underestimates the amount of air purification 201 

supplied since it accounts for tree canopy but not for shrubs or herbaceous vegetation which can also 202 

supply this ES (Nowak et al., 2006).  203 

 204 

Carbon storage and annual CO2 sequestration rates performed by urban GI were used as indicators to 205 

measure the supply of the ES global climate regulation (Nowak and Crane, 2002; Strohbach and 206 

Haase, 2012; Nowak et al., 2013; Schröter et al., 2014). Barcelona’s estimates were based on the i-207 

Tree Eco assessment performed in 2008 using field measurements of urban forest structure, allometric 208 

equations to predict above-ground biomass and adjusted urban tree growth and decomposition rates 209 

(Baró et al., 2014). Due to limited resources for fieldwork data collection in the other case study cities, 210 

carbon storage and sequestration indicators were estimated based on the assessment carried out by 211 

Nowak et al. (2013) using urban field data from 28 cities and 6 states in United States (US), where 212 

carbon storage per square meter of tree cover averaged 7.69 kg C m-2 (SE = 1.36), gross carbon 213 

sequestration rate averaged 0.277 kg C m-2 year-1 (SE = 0.045), and net carbon sequestration rate 214 

averaged 0.205 kg C m-2 year-1 (SE = 0.041). Percentage of tree canopy cover was estimated using the 215 

i-Tree Canopy tool as described above (for Berlin, 1,000 points were photo-interpreted due to its 216 

larger area). Although these rates can vary depending on variables such as tree diameter distribution or 217 

                                                           
3 see www.itreetools.org/canopy/index.php 
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species composition in each city, the indicator estimates should be accurate as they are based on local 218 

tree cover values (Nowak et al., 2013). Further, empirical studies carried out in European cities 219 

obtained similar values (e.g., Strohbach and Haase, 2012 estimated an average carbon storage rate of 220 

6.82 ± 1.42 kg C m-2 of canopy cover in Leipzig, Germany). Because tree growth (and hence CO2 221 

sequestration) vary depending on the local environmental conditions, sequestration rates were refined 222 

using the length of the growing season as a proxy, following the formula (Nowak, pers. comm., 2013): 223 

 224 

𝐶 ′ =  
𝐶−𝐺𝑆

174
    (1) 225 

 226 

Where 227 

C’ = average (gross or net) carbon sequestration rate (kg C/m2 tree cover year) 228 

C = US average (gross or net) carbon sequestration rate (kg C/m2 tree cover year) (Nowak et al. 2013) 229 

GS = length of the growing season (days) 230 

 231 

Average length of the growing season in each case study city was based on phenological data for the 232 

period 1969-1998 (Chmielewski and Rötzer, 2001). Reported trends in plant phenology in Europe and 233 

USA indicate a similar lengthening of the growing season in the last decades associated to global 234 

warming (Linderholm, 2006), thus used lengths should be considered a first-order estimate. Carbon 235 

sequestration rates were converted to CO2 after applying the conversion factor 1 g C = 3.67 g CO2. 236 

 237 

The supply of the ES urban temperature regulation by green space can provide important benefits to 238 

city inhabitants by mitigating heat stress (Stone et al., 2010) and reducing UHI effects and increased 239 

temperatures resulting from climate change (Gill et al., 2007). Vegetation delivers this service mainly 240 

through the evapotranspiration process and the shading effect (basically from trees). Bowler et al. 241 

(2010) systematically reviewed the empirical evidence of this ES showing that, on average, the 242 

temperature within an urban park would be around 1 ºC cooler than a non-green site in the day. Other 243 

urban GI elements such as urban forests and green roofs also show evidence of lower air temperatures 244 

compared to treeless areas and roofs without vegetation respectively (Oberndorfer et al., 2007; Breuste 245 

et al., 2013). Tree shade area was used as a proxy indicator to quantify the supply of this service. It 246 

was estimated as tree canopy cover area using i-Tree canopy tool as described above, assuming that 247 

the cooling effect is provided mainly below tree canopy (Bowler et al., 2010). 248 

 249 

 250 

 251 
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Table 2 252 

ES supply indicators and associated quantification methods and references. 253 

ES Indicators Quantification method Sources / References 

Air 

purification 

PM10 removal  

(kg ha-1 year-1) 
i-Tree Eco dry deposition 

model based on tree canopy 

cover, air pollution and 

meteorological data 

i-Tree Canopy (www.itreetools.org) 

AirBase v.7 (EEA, 2013b). Year 

2011 

Nowak et al. (2006); Baró et al. 

(2014); Aevermann et al. (2015, 

submitted) 

NO2 removal  

(kg ha-1 year-1) 

O3 removal  

(kg ha-1 year-1) 

Global 

climate 

regulation 

CO2 sequestration  

(t ha-1 year-1) 
Estimates from i-Tree 

assessments based on tree 

canopy cover and length of 

growing season 

i-Tree Canopy (www.itreetools.org) 

Nowak et al. (2013); Baró et al. 

(2014) Carbon storage  

(t ha-1) 

Urban 

temperature 

regulation 

Tree shade area (%) 

Cooling effect of trees based on 

empirical data and tree canopy 

cover area estimates 

i-Tree Canopy (www.itreetools.org) 

Bowler et al. (2010); Breuste et al. 

(2013) 

 254 

2.4. Defining indicators of ES demand 255 

Due to the different approaches to ES demand, a variety of indicators can be defined to measure it. 256 

One way is to consider population density in combination with average or desired consumption rates 257 

(Burkhard et al., 2012; Kroll et al., 2012). ES demand can also be measured by the socio-cultural 258 

preferences directly expressed by people in interviews and questionnaire surveys (Martín-López et al., 259 

2014) or through monetary valuation (de Groot et al., 2012). Following the conceptual framework 260 

described above, in this paper ES demand indicators express the amount or concentration of inputs 261 

(i.e., ecological pressures) needing regulation with regard to the corresponding EQS (i.e., the desired 262 

environmental conditions which secure human well-being) (Villamagna et al., 2013; Burkhard et al., 263 

2014). Table 3 shows the selected indicators for ES demand. 264 

 265 

Indicators for the ES air purification were estimated on the basis of air pollution levels in each city in 266 

relation to the desired level expressed by air quality standards (Burkhard et al. 2014). These indicators 267 

express the remaining air pollution as they already include the impact of ES supply (Guerra et al., 268 

2014 call it as “ES mitigated impact”). Annual mean concentrations for PM10 and NO2 from the 269 

available traffic monitoring stations (which express the highest demand) in each case study city were 270 
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extracted from the AirBase database v.7 (EEA, 2013b) using values corresponding to year 2011. O3 271 

levels were expressed as the twenty-sixth highest value in each city based on daily maximum 8-hour 272 

averages since the current European air quality threshold includes 25 days of allowed exceedances 273 

(EEA, 2013a). 274 

 275 

Demand indicators for the ES global climate regulation were estimated on the basis of annual GHG 276 

emissions as expressed in carbon dioxide equivalent (CO2-eq) per hectare and per capita (Burkhard et 277 

al., 2014). Total emissions for each case study city were obtained from local Sustainable Energy 278 

Action Plans (SEAPs) and other municipal policy reports (see Table 3 for references) corresponding 279 

to the GHG reduction target baseline year (1990 for Berlin, Stockholm and Rotterdam, 2008 for 280 

Barcelona and 2010 for Salzburg because 1990 data was not available).  281 

 282 

Finally, demand for the ES urban temperature regulation was estimated using heatwave risk as 283 

indicator. Following Fischer and Schär (2010), heatwave risk was quantified as the number of 284 

combined tropical nights (> 20ºC) and hot days (>35ºC) projected for the period 2071-2100 in Europe. 285 

This scenario was developed at a European scale and it does not take into account the UHI effect that 286 

exacerbates heatwave risk in cities (EEA, 2012). Thus, the consideration of this future scenario can 287 

roughly express a more realistic current situation of heatwave risk in the case study cities, where the 288 

UHI can reach a maximum intensity of 8°C (e.g., Moreno-Garcia, 1994 for Barcelona). 289 

 290 

 291 

 292 

 293 

 294 

 295 

 296 

 297 

 298 

 299 

 300 
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Table 3 301 

Demand ES indicators and associated quantification methods and references. 302 

ES Indicators Quantification method Sources / References 

Air 

purification 

PM10 annual mean 

concentration (µg m-3) 

Statistical data review AirBase v.7 (EEA, 2013b) - Year 2011 

NO2 annual mean 

concentration (µg m-3) 

26th highest O3 value 

based on daily max 8-

hour averages (µg m-3) 

Global 

climate 

regulation 

Annual CO2-eq 

emissions per ha. 

(t ha-1 year-1) 

Literature review on 

municipal GHG emissions 

and census data 

Barcelona: PECQ. 2011. The energy, 

climate change and air quality plan of 

Barcelona 2011-2020. Base year 2008. 

Berlin: Environmental Agency of the 

Senate of Berlin. Base year 1990. 

Stockholm: Stockholm action plan for 

climate and energy 2010–2020. Base 

year 1990. 

Rotterdam: CDP Cities 2012 Global 

Report. Base year 1990. 

Salzburg: Energiebericht 2010 Smart 

City Salzburg. Base year 2010. 

Annual CO2-eq 

emissions per capita  

(t capita-1 year-1) 

Urban 

temperature 

regulation 

Heat wave risk (# days) 

Combined tropical nights 

(>20ºC) and hot days 

(>35ºC) expected 2071-

2100 

Fischer and Schär (2010) 

EEA (2012) 

 303 

2.5. Criteria for identifying and assessing ES mismatches 304 

The assessment of matches and mismatches between ES supply and demand usually requires demand 305 

to be assessed in the same units as supply in order to obtain a budget or ratio indicating ES 306 

undersupply, neutral balance or oversupply (Paetzold et al., 2010; Burkhard et al., 2012; Kroll et al., 307 

2012). However, because of the EQS-based approach considered in this paper, the assessment of 308 

mismatches was determined by the following criteria: (1) in the case of non-compliance with the limit 309 

or target values stipulated by the EQS, the demand for the corresponding ES was considered to be not 310 

totally met by the current supply at the city scale, thus an ES mismatch was identified. On the 311 

contrary, in the case of standard compliance, the demand was considered to be currently met by the 312 

supply and no ES mismatch was expected at the city level; (2) due to the ES-based assumption 313 

considered here, it was also important to assess the contribution or impact of ES supply in relation to 314 

the compliance with the EQS, especially in the case of exceedance of limit or target values. In this 315 
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way, informed decisions can be taken on the feasibility of increasing ES supply (e.g., increase tree 316 

canopy cover in the city) as an effective measure to address a given mismatch. 317 

 318 

In the case of air purification, an ES mismatch between supply and demand was identified if, despite 319 

air purification delivered by urban trees, air pollution levels exceeded EU and/or WHO air quality 320 

reference values. The ES contribution to the compliance with the standards was estimated as the 321 

average air quality improvement due to air purification by urban trees from i-Tree Eco dry deposition 322 

model results (Nowak et al., 2006; Hirabayashi et al., 2012). The estimation of this variable involved 323 

considering the mixing layer height4 in each case city area, which was derived from radiosonde data of 324 

the closest station available in the NOAA/ESRL Radiosonde Database5. A “substantial mismatch” was 325 

identified if the ES contribution (air quality improvement) was lower than 10% in relation to the EQS 326 

exceedance. A “moderate mismatch” was identified if this contribution was higher than 10%. This 327 

mismatch analysis could not be done for EQS exceedances of O3 because the standards are based on 328 

daily max 8-hour averages whereas air quality improvements are based on annual averages. The 329 

criterion to assess an ES mismatch for the ES global climate regulation was defined as the deficit of 330 

urban ecological carbon sinks to contribute substantially to CO2-eq reduction targets in each city. An 331 

ES contribution lower than 10% in relation to the reduction target was considered as a “substantial 332 

mismatch”. A “moderate mismatch” was identified when the contribution was higher than 10%, but 333 

lower than 100%. Finally, the uncertainty and complexity related to the impact of the ES urban 334 

temperature regulation supply at the wider city scale (Bowler et al., 2010) implies that the heatwave 335 

risk cannot be consistently compared to the cooling effect provided by GI on the basis of the heatwave 336 

thresholds at the city scale. Therefore, the mismatch assessment of this ES was excluded from the 337 

analysis. 338 

 339 

2.6. Case study cities 340 

The paper builds on five case study cities distributed along a north-south and east-west gradient across 341 

Europe: Barcelona, Berlin, Stockholm, Rotterdam, and Salzburg (Fig. 1). The cities vary in their 342 

population size, urban form, climate patterns and socio-economic characteristics (Fig. 1, Table 4), 343 

making them representative for a broad range of medium-to-large size European cities. Most of these 344 

cities have ambitious strategic plans to enhance GI and ES in the coming years (e.g., Barcelona Green 345 

                                                           
4 The mixing height can be defined as “the height of the layer adjacent to the ground over which pollutants or any 

constituents emitted within this layer or entrained into it become vertically dispersed by convection or mechanical turbulence 

within a time scale of about an hour” (Seibert et al., 2000). 
5 See http://esrl.noaa.gov/raobs/ 
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Infrastructure and Biodiversity Plan 2020, Barcelona City Council, 2013). Furthermore, these are all 346 

case study cities of the URBES project (Urban Biodiversity and Ecosystem Services6). 347 

 348 

The spatial scope of this analysis is the municipal or core city area (Urban Audit, 2009). An intrinsic 349 

limitation must be acknowledged when using administrative boundaries in urban ES assessments 350 

because cities are, to a large extent, influenced by ES provided beyond these boundaries, namely from 351 

the larger suburbanized and rural hinterland (Larondelle and Haase, 2013). However, the focus on the 352 

administrative areas responded to the following motivations: (1) the analysis includes indicators for 353 

which required datasets were only available at the administrative level; (2) urban policies related to 354 

green space are usually limited to city’s municipal boundaries (e.g., Barcelona’s green infrastructure 355 

and biodiversity plan 2020, Barcelona City Council, 2013), hence recommendations for future policies 356 

are more likely to be applicable when addressed at this spatial scale; (3) the administrative area of the 357 

case study cities corresponds well with the dense urban core of their metropolitan areas (Larondelle 358 

and Haase, 2013; Larondelle et al., 2014). 359 

 360 

Barcelona is the capital city of the region of Catalonia and Spain’s second-largest city in terms of 361 

population. The city is characterized by a compact urban form together with a very high population 362 

density (see Table 4). Approximately a quarter of the municipal area consists of green space (parks, 363 

gardens, urban forests, etc.), most of which corresponds to the urban park of Montjuïc and the peri-364 

urban forest area of Collserola. Barcelona has also a relatively high proportion of street trees compared 365 

to other European cities (Pauleit et al., 2002). Berlin is the capital city and the most populous city of 366 

Germany, located at the core centre of the Berlin-Brandenburg metropolitan region. Green space 367 

amounts to one third of the city’s area, including large urban parks such as Tiergarten located at the 368 

city centre and larger areas of forest and water ecosystems located at the outskirts of the municipal 369 

area. The former Tempelhof airport has recently been converted into an urban park, providing new 370 

opportunities to benefit from green space to a large number of city inhabitants (Kabisch and Haase, 371 

2014). Stockholm, awarded the first European Green Capital in 2010 by the European Commission7, is 372 

the capital of Sweden and the country’s most populated municipality. The amount of green and blue 373 

space is very relevant in Stockholm (on third of the city’s areas is covered by parks, forest and other 374 

green assets and 12% by water bodies). Rotterdam is the second largest city of the Netherlands and has 375 

the largest seaport of Europe in terms of cargo volume and traffic (CRRSC, 2009). Blue space covers 376 

almost a quarter of the total city’s area, mainly corresponding to the lowest course of the river Nieuwe 377 

Maas. The city is considered one of the greenest large cities of the Netherlands, having a total of 117 378 

                                                           
6 www.urbesproject.org 
7 http://ec.europa.eu/environment/europeangreencapital/ 
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public parks and 747,000 trees (Frantzeskaki and Tilie, 2014). Salzburg is the fourth largest city of 379 

Austria and the capital city of the federal state of Salzburg. Almost a half of the municipal area is 380 

covered by green space, including a relevant share of forest and agricultural land which is legally 381 

protected by the City Council (Voigt et al., 2014).  382 

  383 
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 384 

Fig. 1. Location of case study cities and distribution of green space covers. Source: own elaboration based on 385 
Natural Earth data (www.naturalearthdata.com) and Urban Atlas (EEA, 2010). Administrative boundaries: 386 
Catalan Cartographic Institute (www.icc.cat); Senate Department for Urban Development and the Environment 387 
(www.stadtentwicklung.berlin.de/ geoinformation/); Stockholm City Council (www.stockholm.se); Centraal 388 
Bureau voor de Statistiek – Statistics Netherlands (www.cbs.nl); Salzburg Geoinformation System (SAGIS) 389 
(www.salzburg.gv.at/sagis/). 390 
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Table 4 391 

Main characteristics of the case study cities.  392 

 Barcelona Berlin Stockholm Rotterdam Salzburg Sources / References 

Location in Europe South-West Central North North-West Central - 

Physical geography 
Coastal / River 

delta 

Inland 

plains/River 

Coastal/Lake 

outlet 

Coastal/River 

delta 

Inland/Foothill 

of the Alps 
- 

Population (#) 1,615,908 3,431,675 810,120 582,951 147,169 Urban audit 2009 (reference year 2008) 

Population projection 

in 20501 (#) 
1,672,112 3,460,046 1,648,000 621,780 161,589 

Own trend calculations based on National 

Census, except for Barcelona (Catalan 

Statistical Institute – IDESCAT). 

Total area (km2) 101.6 891.1 215.8 277.4 65.7 Municipal boundaries (various sources) 

Population density 

(inhab. km-2) 
15,905 3,851 3,754 2,101 2,240 Urban audit 2009 (reference year 2008) 

Gross Domestic 

Product  

(PPS inhab.-1) 

30,800 24,400 41,000 36,500 38,100 
Urban audit 2009 (for NUTS3 region, 

reference years 2007-2010) 

Green urban area  

(m2 inhab.-1) 
3.00 16.91 43.88 23.12 25.86 

Urban Atlas (EEA, 2010); Urban audit 

2009 

Development of 

green space 1990 – 

2006 (ha)  

-0.02 1,083 106 16 3 Kabisch and Haase (2013) 

Number of private 

cars registered  

(# 100 inhab.-1) 

38.13 28.56 36.98 34.13 N/A Urban audit 2009 (reference year 2008) 

Average temperature 

of warmest month 

(ºC) 

25.5 19.5 18.5 N/A 18.6 Urban audit 2009 (reference year 2008) 

1Except for Barcelona (highest population projection for 2021) 393 
 394 
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 395 
3. Results 396 

3.1. ES supply and demand across the case study cities 397 

The quantification results of ES supply and demand indicators are partly shown in Fig. 2. The 398 

complete set of indicator results is presented in Table A1 (supply) and Table A2 (demand) of the 399 

Appendix. 400 

 401 

Supply of the ES air purification showed the highest values in Berlin, almost doubling the average 402 

removal rate for the five case study cities when the three air pollutants are considered. The results for 403 

Barcelona and Stockholm displayed comparatively intermediate values, with a total supply of nearly 404 

30 kg removed air pollutants per hectare annually in both cases. Rotterdam and Salzburg were 405 

characterized by the lowest values of air purification supply whatever the air pollutant considered. For 406 

example, Salzburg’s O3 removal rate was negligible compared to Berlin’s (0.12 to almost 22 kg ha-1 407 

year-1) even though both cities have a relevant share of green space. PM10 was the air pollutant 408 

comparatively most removed in all the cities, except in Berlin where O3 removal was slightly higher. 409 

Inversely, NO2 was the pollutant with lowest removal rates in all case study cities, except in Salzburg 410 

where the lowest value was found for O3. Demand indicators for the ES air purification showed 411 

different patterns compared to supply across the different case study cities. For example, NO2 annual 412 

mean concentration levels were higher than PM10 values in all cities whereas supply indicators showed 413 

the opposite condition. It must be noted that PM10 and NO2 have the same EU limit value (40 µg m-3 414 

for annual mean concentration), thus demand indicators are comparable for this standard. The highest 415 

values for both pollutants were found in Barcelona (32.76 µg m-3 for PM10 and 53.78 µg m-3 for NO2), 416 

while PM10 was lowest in Salzburg (23.86 µg m-3) and NO2 in Stockholm (38.50 µg m-3). Results for 417 

O3 were not comparable with NO2 and PM10 values because concentrations (and standards) are based 418 

on daily max 8-hour averages. Berlin (with 116.14 µg m-3) and Salzburg (with 111.63 µg m-3) showed 419 

the highest values for O3. In contrast, the lowest values of O3 were displayed by Rotterdam (84.74 µg 420 

m-3) and Barcelona (89.60 µg m-3). 421 

 422 

Regarding global climate regulation supply, CO2 sequestration indicators ranged from 1.05 t annually 423 

sequestered per hectare in Rotterdam to 3.66 t ha-1 year-1 in Berlin. In the same way, carbon storage 424 

values ranged from 9.38 t ha-1 in Rotterdam to 32.84 t ha-1 in Berlin. Although Stockholm’s average 425 

growing season is the shortest compared to the other cities, net CO2 sequestration and carbon storage 426 

values were second-ranked after Berlin’s. The demand side of global climate regulation showed a 427 

different picture: CO2-eq emissions per hectare were remarkably highest in Rotterdam (865.2 t ha-1 428 
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year-1), most likely because of the impact of seaport activities on city’s GHG emissions. On the other 429 

hand, the lowest value was found for Salzburg (86.6 t ha-1 year-1). However, CO2-eq emissions per 430 

capita were lowest in Barcelona (2.51 t capita-1 year-1), reflecting the comparatively elevated 431 

population density of the Mediterranean city. Supply and demand indicators for this ES could be 432 

straightforwardly compared using annual net CO2 sequestration and CO2-eq emission rates per hectare 433 

as a common unit. Results showed that demand values are approximately two orders of magnitude 434 

larger than supply. 435 

 436 

Supply indicators for urban temperature regulation revealed also a considerable heterogeneity among 437 

case study cities. The highest tree cooling area values were found in Berlin (42.70%) and Stockholm 438 

(37.50%). Rotterdam was distinctly the case study city with the lowest share of tree cooling area 439 

(12.20%). The demand for urban temperature regulation using heatwave risk as a proxy reflected 440 

clearly the different climate zones where the case study cities are located. The results for Barcelona 441 

showed a very high number of expected hot days and tropical nights (> 50), while heatwave risk in 442 

Stockholm is expected to be minimum (0-2 days). The values for Berlin, Rotterdam and Salzburg were 443 

higher than Stockholm’s, but substantially far from Barcelona’s (2-6 days). 444 

 445 

In summary, both supply and demand indicators differed notably among the five case study cities. In 446 

most cases, Rotterdam showed the lowest supply values, followed by Barcelona or Salzburg. In 447 

contrast, the results for Berlin and, to a lesser extent, Stockholm indicated a relatively high supply of 448 

the three regulating ES analyzed. More heterogeneous results were found for demand indicators across 449 

the different cities. Barcelona and Rotterdam were clearly characterized by a high demand for urban 450 

temperature and global climate regulation respectively. Demand for air purification showed 451 

comparatively minor differences across cities. See also exemplary Fig. 3 showing results for 452 

Barcelona compared to case study cities averages. 453 

 454 
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 455 

 456 

 457 

Fig. 2. Quantification results of ES supply and demand indicators for the five case study cities. Notes: Air purification demand 458 
values are in annual mean concentration for PM10 and NO2 and in daily max 8-hour averages for O3 (26th highest value). Urban 459 
temperature regulation demand values are the maximum number of days of heatwave risk, except for the case of Barcelona 460 
which is the minimum (Fischer and Schär, 2010). Supply and demand values are not directly comparable except for global 461 
climate regulation. 462 
 463 
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 464 
 465 
 466 
Fig.3. Spidergrams comparing the standardized values of ES supply and demand indicators for Barcelona with the average 467 
values of the five case study cities. Supply and demand values are not directly comparable. Standardization is based on a linear 468 
rescaling of values in the 0-1 range on the basis of their minimum and maximum value. 469 
 470 
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 472 

3.2. Mismatches in ES supply and demand 473 

Following the criteria described above, matches and mismatches between ES supply and demand were 474 

identified, showing a number of cases (12) where demand was clearly not totally met by supply 475 

considering the different case study cities (marked as red cells in Table 5). In only two cases ES 476 

demand was not totally met by supply, but the mismatch was considered minor, suggesting that the 477 

corresponding EQS could be met after the implementation of measures intended to increase ES supply 478 

(marked as yellow cells). Finally, ES supply matched with demand based on the corresponding EQS in 479 

almost half of the cases (14, marked as green cells). 480 

 481 

The mismatch assessment of the ES air purification service indicated heterogeneous results across air 482 

pollutants and EQS. All cities met the EU limit value for PM10 annual average concentration (40 µg m-483 

3), but none of them complied with the WHO standard (20 µg m-3). Only Stockholm met the limit 484 

value for NO2 levels (set at 40 µg m-3 for both standards). Tropospheric O3 levels were below EU 485 

regulation in all case cities, but above WHO’s air quality limit in Berlin and Salzburg (assuming 25 486 

allowed exceedances per year as well), although the determination of the magnitude of the mismatch 487 

was not possible due to data limitations. The relative contribution of the ES service supply to meet air 488 

quality standards across the different case study cities is shown in Table 6. Air quality improvements 489 

due to ES supply showed the lowest values in Rotterdam and the highest values in Stockholm for all 490 

the analyzed pollutants, varying between 0.20% and 2.42% for PM10 levels, between 0.07% and 491 

0.81% for NO2 levels and between 0.10% and 1.16% for O3 levels. According to i-Tree model results, 492 

expected air quality improvements are considerably more relevant in areas with 100% tree cover (e.g., 493 

urban forests or tree-covered urban parks). However, city-scale average annual air pollution levels in a 494 

hypothetic scenario without green space would not differ substantially from the current levels. 495 

Therefore, the ES mismatch should be minor if realistic increases in ES supply are intended to meet 496 

the standards. The results suggest that this situation only occurs for Salzburg’s PM10 levels in relation 497 

to WHO limit value. 498 

 499 

CO2 offsets by urban GI (ES supply) compared to city-based CO2 eq. emissions (corresponding to the 500 

baseline year for the reduction target) were modest in all case studies, ranging from 0.12% for 501 

Rotterdam to 2.75% for Salzburg. Similarly, the contribution of the ES supply in relation to CO2eq 502 

reduction targets for 2020 was low in all case study cities. Salzburg was the only case where the 503 

annual sequestration rate was higher than the 10% threshold contribution (13.8%), although it must be 504 

noted that the city has the lowest reduction target among the case studies. 505 
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 506 

Table 5 507 

Identification and assessment of mismatches in ES supply and demand across the case study cities. Red cells 508 
indicate a substantial mismatch between ES supply and demand (ES contribution is lower than 10% in relation to 509 
the EQS exceedance or reduction target), suggesting that the corresponding EQS can be unlikely met by increase 510 
in ES. Yellow cells indicate a moderate mismatch between ES supply and demand (ES contribution is higher 511 
than 10% in relation to the EQS exceedance or reduction target) suggesting that the corresponding EQS could be 512 
met after the implementation of measures intended to increase ES supply. Green cells indicate that ES supply 513 
matches with demand based on the corresponding EQS. Blank cells indicate that the mismatch assessment could 514 
not be consistently done due to data limitations. See also subsection 2.5. 515 

ES Assessment  EQS Barcel. Berlin Stockh. Rotter. Salzb. 

Air purification 

PM10 levels EU      

PM10 levels WHO      

NO2 levels EU/WHO      

O3 levels EU      

O3 levels  WHO      

Global climate 

regulation 

Contribution to city 

CO2eq reduction target 

City CO2eq 

reduction target 
     

Urban temp. 

regulation 
N/A 

Heatwave 

thresholds 
     

 516 

Table 6 517 

Estimated air quality improvement due to air pollution removal by urban trees in case study cities (year 2011)  518 

 

Average percent air quality 

improvement at the city 

scale 

Average percent air quality 

improvement only in areas 

with 100% tree cover 

Expected average annual air 

pollution levels without 

urban trees at the city scale 

(µg m-3) 

 PM10 NO2 O3 PM10 NO2 O3 PM10 NO2 O3 

Barcelona 0.50 0.19 0.29 1.64 0.63 0.96 32.92 53.88 39.81 

Berlin 0.73 0.21 0.30 1.67 0.49 0.70 30.33 53.49 47.41 

Stockholm 2.42 0.81 1.16 6.14 2.12 2.96 29.16 38.81 55.62 

Rotterdam 0.20 0.07 0.10 1.57 0.57 0.81 28.51 48.69 35.93 

Salzburg 1.89 0.60 0.85 6.24 2.04 2.83 24.32 45.48 41.75 

  519 
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4. Discussion 520 

4.1. The contribution of ES supply to human well-being in cities 521 

The impact of urban green space on air quality in cities is a subject of scientific debate. Several 522 

empirical and modelling studies support that urban vegetation provides substantial air quality 523 

improvements followed by associated health benefits (Nowak et al., 2006; Yin et al., 2011; Islam et 524 

al., 2012; Nowak et al., 2013). However, factors such as vegetation configuration or climate conditions 525 

can strongly limit the ability of vegetation to remove air pollutants, especially at the patch scale 526 

(Setälä et al., 2013; Vos et al., 2013). The modelling results presented here indicate that average air 527 

quality improvements due to air purification supply is relatively low at the city scale for the three 528 

analyzed air pollutants in all case study cities (e.g., from 0.07% in Rotterdam to 0.81% in Stockholm 529 

for NO2), although positive effects are likely to be more relevant in highly tree-covered areas such as 530 

urban forests (e.g., expected air improvements are higher than 6% for PM10 in Stockholm’s and 531 

Salzburg’s areas with an hypothetical 100% tree cover, see Table 6). Therefore, the average 532 

contribution of ES supply in regard to the compliance with air quality standards is considered modest 533 

at the local level in all case studies, suggesting a limited effectiveness to address ES mismatches by 534 

increasing ES supply (e.g., implementing tree-planting programs) unless air pollution concentration 535 

exceedance is minor (e.g., PM10 levels compared to WHO standard in the case of Salzburg).  536 

 537 

A number of studies have assessed the role of urban green space as a climate change mitigation 538 

strategy by offsetting city CO2 emissions (Pataki et al., 2009; Escobedo et al., 2010; Zhao et al., 2010; 539 

Liu and Li, 2012). Impacts of net CO2 sequestration rates on offsetting annual city CO2 emissions vary 540 

from 3.4% in Gainesville, US (Escobedo et al., 2010) to 0.26% in Shenyang, China (Liu and Li, 541 

2012). As expected, similar results have been obtained for the case study cities (ranging from 0.12% in 542 

Rotterdam to 2.75% in Salzburg). This paper has gone one step further by considering city-specific 543 

GHG reduction targets as a desired condition at the city level. Again, results show a modest 544 

contribution of ES supply (less than 15%) in all case study cities, suggesting that increases in direct 545 

carbon sequestration delivered by GI (e.g., by doubling tree density) is not likely to be an effective 546 

means for reaching local CO2-eq. reduction targets (in line with Pataki et al., 2011). 547 

 548 

Previous empirical evidence on the supply of urban temperature regulation (Bowler et al., 2010) 549 

revealed that the cooling effect of urban GI can be relatively relevant at the patch scale. For example, a 550 

maximum of 2ºC difference relative to built-up area was observed in an urban park in Stockholm 551 

(Jansson et al., 2007). However, the extension of the cooling effect of green space beyond its 552 

boundaries is uncertain, especially at the wider city scale (Bowler et al., 2010). Therefore, heatwave 553 
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thresholds cannot be consistently balanced against the cooling effect provided by GI elements at the 554 

city scale. Additional empirical research is required to assess these mismatches, especially by 555 

establishing specific temperature thresholds according to each climate zone and measuring the cooling 556 

impact of GI interventions at the city scale. 557 

 558 

The findings of this research suggest that GI can only play a minor or complementary role, at least at 559 

the core city level, to urban mitigation measures intended to abate air pollutant and GHG emissions at 560 

the source (e.g., road traffic management or energy efficiency measures) or to adaptation policies 561 

intended to cope with heat extremes (e.g., heat warning plans). Yet, there are important reasons for 562 

which the current and potential supply of these ES should not be neglected in local policy decision-563 

making. First, GI can provide other important benefits to urban population due to its multifunctional 564 

capacity (e.g., stormwater runoff mitigation or recreational opportunities), while technological 565 

substitutes are normally designed as single-purpose. Second, although GI expansion in compact cities 566 

such as those analyzed in this paper might be challenging due to lack of available land and 567 

densification processes, measures for preserving existing green spaces and innovative ways to allocate 568 

new ones could considerably enhance ES supply at the city level (Jim, 2004). For instance, the 569 

potential of green roofs and walls to deliver a wide range of ES has been assessed in various empirical 570 

studies (Oberndorfer et al., 2007; Rowe 2011).  571 

 572 

4.2. Strengths and weaknesses of using EQS to assess ES mismatches 573 

The demand side is frequently omitted or underrepresented in ES assessments which usually focus on 574 

ES supply (Burkhard et al., 2014). Yet, an increasing number of studies have developed assessment 575 

methods considering both the ES supply and demand in order to provide a complete picture of the ES 576 

delivery process where mismatches between both sides can be identified (e.g., Van Jaarsveld et al., 577 

2005; Burkhard et al., 2012; Kroll et al., 2012; García-Nieto et al., 2013; Boithias et al., 2014; Schulp 578 

et al., 2014; Geijzendorffer et al., 2015). This paper contributes to the ES research agenda (de Groot et 579 

al., 2010) suggesting a novel methodological approach based on the use of EQS to assess mismatches 580 

between ES supply and demand with a focus on regulating ES in core city areas. Based on the 581 

assessment of ES mismatches in five European cities, strengths and weaknesses of this approach could 582 

be recognized. 583 

 584 

This approach can be especially advantageous for regulating ES assessments because of several 585 

reasons: (1) demand for regulating ES usually cannot be indicated by direct market prices, unlike 586 

many provisioning ES for example (De Groot et al., 2012); (2) the interactions between regulating ES 587 
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and human benefits are often very complex, thus ES demand is challenging to indicate (Burkhard et 588 

al., 2014). EQS are generally meaningful to society and can reasonably express a common threshold to 589 

assess regulating ES mismatches across different societal contexts as they provide a benchmark 590 

representing the minimum desirable environmental quality conditions under which some components 591 

of human well-being such as health can be secured, hence allowing comparative analyses; (3) this 592 

approach allows relatively quick assessments of ES demand if data on environmental quality is 593 

available at the city level. In contrast, other demand-side assessments like socio-cultural elicitation are 594 

usually more time consuming and resource intensive (Martín-López et al., 2014).  595 

 596 

However, the use of EQS in ES assessments has also drawbacks. The existence of different EQS 597 

regulating the same environmental condition (or ecological pressure) can create uncertainty about 598 

which thresholds are more adequate in terms of expressing a societal demand related to human needs 599 

for well-being. In this paper, both WHO and EU standards for air quality have been used giving 600 

different ES mismatch results for some air pollutants. Although only EU standards are legally binding 601 

for case study cities, WHO standards are probably more reliable expressing a desirable or required end 602 

condition of air quality (Brunekreef and Holgate, 2002). The main shortcoming of local GHG 603 

emission reduction targets is that often they are not based on scientific evidence about possible climate 604 

change impacts, but on political reasons. Regarding urban temperature regulation, the multiple factors 605 

involved in the relationship between temperature extremes and human health vulnerability call for 606 

specific temperature thresholds to properly account for varying environmental conditions and societal 607 

demands at the local level. 608 

 609 

More generally, the use of specific or local-based thresholds is possibly the most appropriate option 610 

when assessing ES for which demand is strongly context/user/stakeholder dependent (Paetzold et al., 611 

2010), despite it would make cross-city comparisons less meaningful. This is clearly the case of 612 

cultural ES. For example, several standards have been suggested as thresholds for assessing the 613 

desirable amount of recreational opportunities delivered by green space in urban areas, normally based 614 

on criteria of accessibility to green space (i.e., distance) and space size (Van Herzele and Wiedemann, 615 

2003; Söderman et al., 2012; Kabisch and Haase, 2014). The former is commonly seen as the most 616 

important factor related to the recreational use of urban green space and a maximum 300-400 meter 617 

distance from home has been observed as a threshold after which the use decreases substantially 618 

(Schipperijn et al., 2010). Some regulatory agencies have consequently recommended standards based 619 

on these criteria. For example, the European Environment Agency (EEA) recommends that people 620 

should have access to green space within 15 min walking distance (Stanners and Bourdeau, 1995) and 621 
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the English standard ANGSt (Accessible Natural Greenspace Standard, Natural England, 2010) 622 

recommends that urban population should have an accessible green space no more than 300 m from 623 

home (Barbosa et al., 2007). However, these standards have been criticized because they fail to 624 

address issues such as green space quality or local context and needs (Pauleit et al., 2003). Still, some 625 

authors claim that green space recreational standards are needed but they should be locally developed 626 

according to specific social and quality criteria (Baycan-Levent and Nijkamp, 2009). Therefore, a 627 

possible extension of the approach presented in this paper beyond regulating ES should be carefully 628 

designed. 629 

 630 

4.3. Spatially explicit ES mismatches 631 

The spatial distribution of ES supply and demand at the city level has not been addressed in this paper. 632 

Yet, for some ES such as air purification or urban temperature regulation both their supply and 633 

demand can substantially vary across the urban fabric. The use of spatially explicitly indicators could 634 

show the specific location of ES mismatches at the inner-urban level (or higher scales), hence 635 

informing about ES deficit areas (demand is higher than supply) to urban planners and managers. 636 

Several attempts of mapping ES mismatches have already been developed at different spatial scales 637 

(e.g., Kroll et al., 2012; García-Nieto et al., 2013; Boithias et al., 2014; Schulp et al., 2014). However, 638 

assessments at the core city scale are scarce, probably due to the lack of fine-resolution data for the 639 

appropriate quantification of ES supply and demand indicators.  640 

  641 
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5. Conclusion 642 

This paper provides an innovative approach for assessing mismatches in regulating ES supply and 643 

demand using EQS as a common minimum threshold for determining whether the difference between 644 

supply and demand is problematic in terms of human well-being. The approach has revealed to be 645 

appropriate for the ES air purification, for which there is a large body of evidence on the health 646 

impacts of air pollution and EQS are well-established at the international level. Similarly, local GHG 647 

reduction targets can reasonably express a demand for mitigating the impacts of climate change in 648 

urban areas (global climate regulation), thus the assessment of ES mismatches was also possible. The 649 

application of the approach for the ES urban temperature regulation has proved more problematic. The 650 

demand for urban temperature regulation is strongly context and user dependent, thus common 651 

thresholds (such as heatwave thresholds) are less appropriate. Furthermore, the spatial scale to which 652 

the ES is delivered is still not totally clear in terms of scientific evidence, creating uncertainties in the 653 

ES mismatch assessment. In general, more empirical studies are needed to improve GI design and 654 

monitor its effectiveness in meeting local or international environmental standards and goals in 655 

different urban areas. 656 

 657 

The case study of five European cities reveals mismatches between ES supply and demand in half of 658 

the 28 ES/EQS/City combinations analyzed, suggesting that further protection and restoration of urban 659 

GI will be required if ES are to play a more relevant role in meeting EQS to enhance human well-660 

being in cities. However, the assessment indicates that ES supply contributes very moderately in 661 

relation to the compliance with the EQS in most part (12 out of 14) of the identified mismatches. 662 

Results suggest that EQS could be met after the implementation of feasible measures intended to 663 

increase ES supply only in two analyzed cases. Therefore, this research suggests that regulating ES 664 

supplied by urban GI are expected to play only a minor or complementary role (currently and 665 

potentially) to other urban policies intended to abate air pollution and GHG emissions at the city scale. 666 

Urban managers and policy-makers should take into account these considerations when designing and 667 

implementing GI programs, but recognizing at the same time the multiple benefits associated to GI in 668 

urban contexts not addressed in this assessment (e.g., runoff mitigation, noise reduction and 669 

recreational opportunities). 670 

 671 

  672 
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Appendix. Quantification of ES supply and demand indicators 875 

 876 

Table A1 877 

ES supply indicators for the five case study cities  878 

ES Indicator Barcel. Berlin Stockh. Rotter. Salzb. Mean 

A
ir

 p
u

ri
fi

ca
ti

o
n

 

PM10 removal  

kg ha-1 year-1 

(Mg year-1) 

16.42 

(166.01) 

18.97 

(1690) 

10.93 

(235.77) 

3.71 

(101.74) 

6.92 

(45.46) 

11.39 

(447.80) 

NO2 removal  

kg ha-1 year-1 

(Mg year-1) 

5.40 

(54.59) 

8.36 

(745) 

6.29 

(135.78) 

2.24 

(61.37) 

4.12 

(27.05) 

5.28 

(204.76) 

O3 removal  

kg ha-1 year-1 

(Mg year-1) 

7.18 

(72.62) 

21.96 

 (1,957) 

12.67 

(273.44) 

2.99 

(81.94) 

0.12 

(0.78) 

8.98 

(477.16) 

G
lo

b
a

l 
c
li

m
a

te
 

re
g

u
la

ti
o

n
 

Net CO2 

sequestration 

t ha-1 year-1    

(t year-1) 

1.97 

(19,986) 

3.66 

(325,726) 

3.06 

(66,131) 

1.05 

(29,218) 

2.39 

(15,673) 

2.43 

(91,347) 

Carbon 

storage  

t ha-1 (Mg) 

11.22 

(113,437)  

32.84 

(2,925,924) 

28.84 

(622,326) 

9.38 

(257,071) 

21.99 

(144,421) 

20.85 

(812,636) 

U
rb

a
n

 

te
m

p
er

a
tu

re
 

re
g

u
la

ti
o

n
 

Tree shade 

area 

 % (ha) 

29.40 

(2,973) 

42.70 

(38,048) 

37.50 

(8,093) 

12.20 

(3,343) 

28.60 

(1,878) 

30.08 

(10,867) 

Note: see references and corresponding time-ranges in Table 2. 879 
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 881 

Table A2 882 

ES demand indicators for the five case study cities  883 

ES Indicator Barcel. Berlin Stockh. Rotter. Salzb. Mean 

A
ir

 p
u

ri
fi

ca
ti

o
n

 

PM10 annual mean 

concentration  

µg m-3 

32.76 30.11 28.45 28.45 23.86 28.72 

NO2 annual mean 

concentration  

µg m-3 

53.78 53.38 38.50 48.66 45.21 47.90 

26th highest O3 value 

based on daily max 8-

hour averages  

µg m-3 

89.60 116.14 95.14 84.74 111.63 99.45 

G
lo

b
a

l 
c
li

m
a

te
 

re
g

u
la

ti
o

n
 

CO2-eq. emissions per 

ha. 

t ha-1 year-1 

398.99 214.70 128.59 1,067.35 86.59 379.25 

CO2-eq. emissions per 

capita 

t capita-1 year-1 

2.51 5.40 3.40 48.51 3.82 12.73 

U
rb

a
n

 

te
m

p
er

a
tu

re
 

re
g

u
la

ti
o

n
 

Heat wave risk 

days 
>50 2-6 0-2 2-6 2-6 N/A 

Note: see references and corresponding time-ranges in Table 3. 884 
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