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Abstract 

A novel application of cellobiose dehydrogenase enzyme (CDH) as sensing element for an 

Electronic Tongue (ET) system has been tested. In this work CDH from various fungi, which 

exhibit different substrate specificities were used to discriminate between lactose and glucose in 

presence of the interfering matrix compound Ca2+ in various mixtures. This work exploits the 

advantage of an ET system with practically zero pre-treatment of samples and operation at low 

voltages in a direct electron transfer mode. The Artificial Neural Network (ANN) used in the 

ET system to interpret the voltammetric data was able to give a good prediction of the 

concentrations of the analytes considered. The correlation coefficients were high, especially for 

lactose (R2 = 0.975) and Ca2+ (R2 = 0.945). This ET application has a high potential especially 

for the food and dairy industry and also, in a future miniaturized system, for in situ food 

analysis.  
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1. Introduction 

 

Electronic tongues (ETs) constitute a relatively new approach to solve problems in analytical 

chemistry. Even today it is difficult to find recognition elements for cheap and highly selective 

sensors or biosensors. Here ETs can come to our help. ETs are multi-sensor systems with cross-

response that can process the signal using advanced mathematical methods based on pattern 

recognition and/or multivariate data analysis. These characteristics of the ET system are an 

advantage due to the possibility to make further interpretation of complex compositions of 

analytes, to solve mixtures, to differentiate primary species from interfering components or even 

to distinguish between false responses and true ones (del Valle 2010). ETs can be exploited to 

quantify a wide variety of compounds in different fields as food and beverage analysis (Cetó et 

al. 2013a), environment (Nunez et al. 2013; Raud and Kikas 2013) and medical fields (Lvova et 

al. 2009). They have also been applied in food industry to solve qualitative problems (Bagnasco 

et al. 2014; Cetó et al. 2013b). A wide variety of recognition elements, combinations thereof 

and sensor architectures are applied in ET systems and many examples are given in literature: 

for instance “in bulk” biosensors, where the enzymes or other biomolecules are inside the bulk 

of the electrode, “inorganic” sensors, as classic bare electrodes like glassy carbon, graphite or 

gold etc. and electrodes modified with metal nanoparticles, ion selective sensors (ISEs) covered 

with a PVC membrane or electrodes with catalysts (Cetó et al. 2012; Gutierrez et al. 2008; 

Wilson et al. 2015). In the range of surface modified electrodes the possibilities are almost 

infinite, from nanomaterials to biomolecules, e.g., carbon nanotubes, nanoparticles, enzymes, 

aptamers and a combination of these modifiers citing just a few (Cipri and del Valle 2014; 

Ocaña et al. 2014; Pacios et al. 2009). Most of such materials have been exploitable for ETs 

systems. Due to the nature of the ET there is no need for high selectivity. The key point is a 

good stability of the sensor response at least through a set of samples but also ideally through 

days. Also enzymes have been used as a detection element in ETs. Glucose oxidase was used 

for glucose determination in the presence of common interferents of the enzyme (A.Gutés 
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2006). Urease (and creatinine deiminase) was used for the determination of urea (or urea plus 

creatinine) in kidney related samples (Gutes et al. 2005; Gutierrez et al. 2007). Tyrosinase, 

peroxidases (Sapelnikova et al. 2003; Solna et al. 2005; Tønning et al. 2005) and also laccase 

were applied for resolution of phenol mixtures (Cetó et al. 2013a; Cetó et al. 2012). 

Acetylcholinesterases (Tønning et al. 2005) and cholinesterase (Sapelnikova et al. 2003; Solna 

et al. 2005) were applied to discriminate between different pesticides in their inhibition reaction 

(Valdes-Ramirez et al. 2009). Such ET systems using biomolecules as enzymes for the 

detection have received the name Bioelectronic Tongues (BioETs) (Tønning et al. 2005) and 

were most recently reviewed by Peris and Escuder-Gilabert (Peris and Escuder-Gilabert 2013) 

and Ha and coworkers (Ha et al. 2015). It is known that enzymes are advantageous due to their 

inherent, higher specificity and the reduction of the activation energy necessary to drive a 

desired chemical reaction compared with non-enzymatically catalysed reactions (Berg et al. 

2002). Both factors decrease (but do not abolish) the risk of interfering analytes being detected. 

Recently, there has been a lot of interest in redox enzymes and their applications for 

electrochemical biosensors, biofuel cells and bioelectrosynthesis (Katz and Willner 2004; 

Meredith and Minteer 2012; Osman et al. 2011; Rabaey and Rozendal 2010). One focus lies on 

the establishment of a direct electronic communication between electrodes and enzymes called 

direct electron transfer (DET) enabling biosensors or biofuel cell electrodes to operate at low or 

no overpotential with respect to the redox potential of the enzyme leading to increased cell 

voltages when applied to biofuel cells and when applied to biosensors, to mediator-less, third 

generation biosensors with decreased problems of interfering species being non-enzymatically 

detected. Furthermore often toxic and diffusive redox mediators shuttling electrons between 

enzymes and electrodes can be avoided when working with DET (Leech et al. 2012; Wang 

2008). One of the enzymes for which a lot of interest has been shown in the field of biosensors 

and biofuel cells is cellobiose dehydrogenase (CDH) as it has been shown DET for a variety of 

substrates including analytically relevant sugars as glucose and lactose (Ludwig et al. 2013a). 

CDH is an extracellular oxidoreductase secreted by wood degrading fungi. It is involved 

in the degradation process of cellulose from wood. The natural substrate is cellobiose, which is 
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a decomposition product from cellulose. (Henriksson et al. 2000; Ludwig et al. 2010; Zamocky 

et al. 2006) CDH oxidises cellobiose and reduces lytic polysaccharide monooxygenases 

(LPMOs), which in its reduced form supports the decomposition of cellulose as was recently 

found out (Beeson et al. 2011; Eibinger et al. 2014; Langston et al. 2011; Phillips et al. 2011). 

CDH consists of two separate domains connected by a flexible polypeptide linker. 

These two domains consist of a larger, flavin adenine dinucleotide (FAD) containing 

flavodehydrogenase domain (DHCDH) (Hallberg et al. 2002) and a smaller heme b containing 

cytochrome domain (CYTCDH) (Hallberg et al. 2000). DHCDH is catalytically active and 

responsible for the oxidation of the substrate leading to a fully reduced FAD cofactor located in 

the DHCDH (Jones and Wilson 1988). The electrons can be transferred by an internal electron 

transfer pathway (IET) to the CYTCDH reducing the heme b cofactor (Igarashi et al. 2002). The 

CYTCDH acts as an electron transfer protein between DHCDH and the natural electron acceptor 

(LPMOs, see above) or an electrode surface (Ludwig et al. 2013a). CDHs are expressed by 

fungi from the dikaryotic phyla of Basidiomycota and Ascomycota and were phylogenetically 

classified into class I and class II respectively (Zamocky et al. 2006). Depending on the origin 

the biochemical properties, as size (usually between 80-100 kDA), isoelectric point (usually 

below pH 5) substrate spectrum and pH optimum, of CDHs can vary (Ludwig et al. 2010). All 

CDHs prefer cellodextrines and cellobiose as substrates, but also convert lactose (Zamocky et 

al. 2006). Some class II CDHs also show activity for glucose (Harreither et al. 2011; Henriksson 

et al. 1998; Zamocky et al. 2006). Next to differences in substrate specificities recently we 

found out that the activity of especially class II CDHs also depends on the presence of cations. 

Especially divalent cations as Ca2+ at millimolar concentrations were found to enhance the 

activity of CDH possibly by enhancing the rate limiting IET by screening negative charges 

being present at the interfaces of both domains decreasing the distance between the two 

domains. The activity of MtCDH (class II) was found to be tunable most by Ca2+ with increases 

of around 5 times of its original activity at its optimal pH 5.5 when adding 50 mM Ca2+ (Kielb 

et al. 2015; Kracher et al. 2015; Larsson et al. 2000; Schulz et al. 2012). 
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The origin dependent different preferences for the substrate (lactose vs. glucose) and the 

varying dependence of the activity of CDH on cations make CDH a good candidate to build a 

sensor array to be exploited for a BioET system. CDH has already been applied in a BioET like 

setup, however in a rather selective manner using other enzymes as cholinesterase, tyrosinase 

and peroxidase to detect pesticides and phenols with low extend of cross-responses between the 

electrodes (Solna et al. 2005). However, the use of additional, unmodified electrodes and the 

rather high selectivity make both terms, Bio and ET questionable in this context. This work 

aims to show the feasibility of BioET using CDHs from different fungi as recognition elements. 

To make this possible we took advantage of the power of data analysis in ETs systems and the 

sensing and DET properties of CDH. To show how the system works two sugars (lactose and 

glucose) and one activity modulating cation (Ca2+) were chosen as targets. A system like this 

can be potentially interesting for applications in the food and dairy industry, detecting levels of 

lactose in e. g. milk or lactose free milk. The Ca2+ and glucose content of milk might be of 

interest to detect possible adulteration of milk (Walstra et al. 2014). In previous studies third-

generation biosensors based on CDH to detect lactose in milk and in a dairy processing plant 

were shown to reliably measure levels of lactose with only dilution necessary as a sample 

preparation step (Glithero et al. 2013; Safina et al. 2010; Stoica et al. 2006; Yakovleva et al. 

2012). Another advantage of this ET system is the non pre-treatment of the samples, giving an 

advantage for the producers to have a real time or in production line analysis. 

 

2. Experimental 

 

2.1 Reagents and Instruments 

 

Sodium chloride (NaCl), 3-(N-morpholino)propanesulfonic acid (MOPS), lactose, D-glucose, 

ethanol (EtOH), sulphuric acid (H2SO4), hydrogen peroxide (H2O2) and 6-mercapto-1-hexanol 

97% were purchased from Sigma Aldrich (St. Louis, MO, USA), calcium chloride (CaCl2) was 
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purchased from Merck KgaA (Darmstadt, Germany), dialysis membranes (Spectrapor, MWCO 

12-14 kDA) were purchased from Spectrum Medical Industries (CA, USA). CDH from 

Myriococcum thermophilum (MtCDH) (Zamocky et al. 2008) and a CDH variant from 

Corynascus thermophilus with enhanced activity for glucose (CtCDH C291Y) (Harreither et al. 

2012; Ludwig et al. 2013b) were recombinantly expressed in Pichia pastoris. CDH from 

Neurospora crassa (NcCDH) was harvested and purified from the fungal  culture (Harreither et 

al. 2011). The CDH preparations were used directly without further dilution and had 

concentrations of 7 mg/ml for MtCDH, 18.8 mg/ml for CtCDHC291Y and 8.4 mg/ml for 

NcCDH. The concentrations of the enzymes were determined photometrically converting the 

absorption measured at 280 nm to a protein concentration by using the calculated absorption 

coefficients based on the amino acid sequences. The buffer used to perform the experiments was 

a 50 mM MOPS pH 6.7 adjusted to an ionic strength of 63 mM with NaCl. A pH of 6.7 and an 

ionic strength of 63 mM were chosen to potentially mimic the conditions present in cow’s milk 

(Walstra et al. 2014). 

The voltammetric analyses were performed with an EmStat2 PalmSens potentiostat using three 

modified gold electrodes as working electrodes (WE), a saturated calomel electrode (SCE) as a 

reference electrode and a platinum flag as an auxiliary electrode. 

 

2.2 Preparation of the different CDH-biosensors 

 

Polycrystalline gold electrodes (diameter=1.6 mm, BASi, West Lafayette, IN, USA) were 

cleaned by incubation in Piranha solution for 2 min (1:3 mixture of conc. H2O2 with H2SO4. 

(Careful, the compounds react violently and highly exothermic with each other), polished 

on polishing cloths with deagglomerated alumina slurry of a diameter of 1 µm (Struers, 

Ballerup, Danmark), sonicated in ultrapure water for 5 min and electrochemically cleaned in 0.5 

M H2SO4 by cycling 30 times between 0.1 V and 1.7 V vs. SCE at a scan rate of 300 mV/s. The 

sensors were modified with a self-assembled monolayer (SAM) by immediately after rinsing 

with water, immersing the electrodes in a 10 mM ethanolic solution of 6-mercapto-1-hexanol 
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overnight at room temperature. The electrodes were gently rinsed with ultrapure water and 

excess liquid was shaken off. On each of the three electrodes forming the ET 5 µL of a CDH 

solution, either MtCDH, NcCDH or CtCDHC291Y was dropped on the SAM modified gold 

electrode surface and entrapped by covering it with a pre-soaked dialysis membrane, which was 

fixed with a rubber O-ring and Parafilm (Bemis, Neenah, WI, USA) as described by Haladjian 

and coworkers (Haladjian et al. 1994) and as shown in Fig. S1 (Supplementary material). 

 

2.3 Measurement procedure 

 

The voltammetric cell contained the three working electrodes (WEs) forming the sensor array, a 

reference and an auxiliary electrode. Each WE of the sensor array was measured independently 

and successively after each other connecting them to the single channel potentiostat. Stock 

solutions of lactose (5 mM), glucose (5 mM) and CaCl2 (10 mM) were diluted with 50 mM 

MOPS/NaCl buffer, pH 6.7, to obtain solutions with varying concentrations of lactose, glucose 

and CaCl2. For the characterisation and identification of the linear ranges of each of the 

biosensors used in the array calibration curves with concentrations between 0 and 7 mM for 

lactose, 0 and 7 mM for glucose and 0 and 50 mM for CaCl2 were used. The concentrations for 

training and testing the ANN ranged from 0 to 250 µM for lactose and glucose and from 0 to 10 

mM for Ca2+. 27 samples were distributed in a simple 3-level factorial design1 for training and 

10 samples were randomly distributed along the experimental domain2 for external test (Fig. 1). 

The cyclic voltammetric measurements were performed under nitrogen atmosphere at 

room temperature with samples being degased for 10 min with nitrogen prior to the 

measurement. The working potential was swept between -0.3 V and 0.15 V vs. SCE at a scan 

rate of 20 mV/s and a step potential of 2 mV. 

 

 
                                                        
1 A 3-level factorial design is a design with points of interest organized in a cube 3x3x3. 
2 The experimental domain is the range of concentrations used to train the ANN and the test has to stay inside the 
domain otherwise they would be insignificant. 
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2.4 Building the ANN model 

 

The data analysis of the measurements was carried out using a multivariate calibration process. 

This process was based on an Artificial Neural Network (ANN) as response model. As 

explained in Section 2.2 a batch of 37 samples was prepared and divided in two groups (27+10), 

this division was made to train the model using the group of 27 and to test it with the group of 

10. The test samples are useful to determine the prediction ability of the ANN. The samples 

were distributed randomly during the measurements to avoid any history effect. 

The architecture definition of the ANN was configured and optimised based on our 

group’s previous experience with ETs formed by amperometric sensors (Fig. 2). The 

optimisation included the number of neurons in the hidden layer in a range between 4 and 12, 

the number of output neurons was fixed to 3 (the number of target molecules) and 4 transfer 

functions (logsig: log-sigmoidal, tansig: hyperbolic tangent sigmoid, purelin: linear and satlins: 

saturated-linear) were assayed for each layer (input and output). Another optimisation step was 

provided from the pre-processing of the voltammetric data. The voltammograms were used in 

their full size unfolding them and joining the signals from every sensor to a “single-sensor-like” 

signal per every sample. Since this has generated tens of thousands of data points a pre-

processing step consisting of wavelet compression was used. The pre-processing/compression 

step allowed the decrease of data to be managed from the software from 48 600 to 186 values, 

with a Daubechies wavelet function (db4) and a compression level of 3. 

To evaluate the goodness of fit of the ANN model, the smallest MSE (mean squared 

error) from the test sample set was taken. The prediction abilities, instead, were evaluated from 

the linear regression of the comparison graphs of obtained (y) vs. expected (x) concentrations 

with desired slope of 1 and correlation coefficient close to 1 for the three target molecules. 
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2.5 Software 

 

The voltammetric data were acquired by using PSTrace 4.4 (PalmSens, Utrecht, The 

Netherlands) software. Neural Network processing was developed by the authors by MATLAB 

7.0 (Mathworks, Natick, MA, USA), using its Neural Network Toolbox (v. 3.0). The graphs 

were made with Sigma Plot 12 (Systat Software Inc., California, USA). 

 

3. Results and discussion 

 

3.1 Characterisation of each CDH biosensor  

 

The sensor array used for the ET consisted of three different CDH modified gold/SAM 

electrodes – one was modified with MtCDH, one with NcCDH, and one with CtCDHC291Y, 

expecting different substrate specificities depending on the enzyme origin. Before developing 

the ET application, the integrity and linear ranges for each of the biosensors versus each of the 

three analytes of interest, lactose, glucose and Ca2+ were determined. In Fig. 3 the cyclic 

voltammograms of the gold/SAM electrodes modified with either MtCDH, NcCDH or 

CtCDHC291Y are shown. In the absence of substrate, clear redox waves originating from the 

oxidation and reduction of the heme b cofactor located in the CYTCDH is visible. The midpoint 

potentials range between -153 mV vs. SCE for MtCDH, -144 mV vs. SCE for NcCDH and -148 

mV vs. SCE for CtCDHC291Y, which are close to literature values (Coman et al. 2007; 

Harreither et al. 2012; Sygmund et al. 2012). The additional oxidative redox wave present for 

NcCDH at -210 mV vs. SCE might originate from the oxidation of the FAD cofactor located in 

the DHCDH as found out to be possible recently (Schulz et al., in manuscript). The peak 

separations between the anodic and cathodic peak potentials vary between 42 mV and 52 mV 

and thus lay between a solution and a surface confined redox process typical for thin layer 

protein electrochemistry (Haladjian et al. 1994; Laviron 1979). When lactose as the standard 
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substrate is added clear catalytic waves can be seen for all CDH modified electrodes proving 

they are catalytically active. For MtCDH and CtCDHC291Y, the catalytic waves start at 

potentials around the oxidation peak potential the CYTCDH peak indicating DET from the 

CYTCDH domain. For NcCDH it seems that there are traces of catalysis at potentials already 

below the oxidation potential of the CYTCDH peak indicating a potential DET from the DHCDH 

as found out to be possible recently (Schulz et al., in manuscript). To determine the linear 

measuring ranges, the response of each CDH biosensor to varying analyte concentrations of 

lactose, glucose and Ca2+ was determined, as shown in Fig. 4. The investigation with Ca2+ as 

analyte was performed in the presence of 7 mM lactose, since Ca2+ is not a substrate for CDH 

but only potentially increases the existing catalytic currents by affecting the interdomain 

electron transfer. As shown in Fig. 4 all CDH biosensors tested respond to lactose. The best 

responding biosensors are the ones modified with NcCDH and CtCDHC291Y, possibly because 

their pH optima for DET of 5.5 (Kovacs et al. 2012) and 7.5 (Harreither et al. 2012) respectively 

are close to the investigated pH of 6.7. The pH optimum for DET of MtCDH is also at pH 5.5 

(Harreither et al. 2007) but its decline of activity with increasing pH is steeper compared to that 

of NcCDH (Harreither et al. 2007; Kovacs et al. 2012) possibly explaining the comparable low 

response of the MtCDH biosensor to lactose. The upper linear measuring range for lactose can 

be estimated to reach 500 µM. 

When looking into glucose as substrate (Fig. 4, middle row) clearly the CtCDHC291Y 

variant designed for high activity with glucose responds best to glucose with a linear measuring 

range to up to 260 µM. When looking into Ca2+ as analyte the CtCDHC291Y and MtCDH 

modified biosensors are sensitive to additional Ca2+. The absolute currents are higher for 

CtCDHC291Y, since its activity in the absence of Ca2+ is already higher than that for MtCDH. 

However, looking into the relative increases of the catalytic currents in the presence of 50 mM 

Ca2+ increases of around 6.3 times for CtCDHC291Y and 4.5 times for MtCDH show similar 

dependencies for both enzymes on additional concentrations of Ca2+. The dependency of the 

activity of MtCDH on additional [Ca2+] is comparable to what has been found in other studies 

done at pH 5.5 and 7.5 (Kracher et al. 2015; Schulz et al. 2012). The activity of the glucose 
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variant, CtCDHC291Y, has not been studied before in the presence of Ca2+ but when comparing 

its activity with that of the wild-type CtCDH in solution with cytochrome c as electron acceptor, 

the Ca2+ induced activity increase found here is around twice as high (Kracher et al. 2015). The 

nearly independence of the activity of NcCDH on additional [Ca2+] compares well with the 

literature, where no increase for NcCDH was found when investigated in solution with 

cytochrome c as electron acceptor (Kracher et al. 2015). The linear ranges found here for the 

detection of Ca2+ range up to around 10 mM.  

In summary, each investigated biosensor responds differently to the investigated 

analytes, which is a desired departure point for any ET design. This cross-response pattern was 

used to create a BioET with the help of an artificial neural network to resolve mixtures of all 

three analytes containing varying concentrations of lactose and glucose between 0 and 250 µM 

and between 0 and 10 mM for Ca2+. The BioET contained the three biosensors modified with 

MtCDH, NcCDH, or CtCDHC291Y and an auxiliary and a reference electrode. The response of 

the ET to a set of 27 training samples and 10 test samples containing all three analytes was 

determined an analysed as input data for building the response model. 

 

3.2 ANN response model 

 

The training method used in the Artificial Neural Network was described in Section 2.4. To 

define the best architecture 144 different configurations were evaluated (product of the number 

of neurons in the hidden layer, the tested transfer functions in the hidden layer and the transfer 

functions in the output layer). The best result was as follows: 9 neurons in the hidden layer with 

the transform function “logsig” and 3 neurons in the output layer with a “purelin” as transform 

function. With this configuration the responses of the 10 test samples with known 

concentrations of lactose, glucose, and Ca2+ were then used to compare their calculated 

concentrations according to the ANN with their real concentrations. The correlations between 

predicted (by the ANN) and expected concentrations for all analytes are shown in Fig. 5, in this 

case for the external test set, the samples not intervening for the training process. Considering 
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that the samples are mixtures of similar and/or interfering compounds and the typology of the 

sensors used satisfactory R2 values were calculated especially for lactose (0.975) and Ca2+ 

(0.945). For glucose a rather low R2 of 0.726 was obtained. Despite the R2 value for glucose 

being rather low, the presence of the data related to glucose in the model supports the prediction 

of the other two targets, lactose and Ca2+. This behaviour could be explained considering that in 

the array there is only one biosensor to detect glucose, which can lead to a little less accurate 

detection; moreover for the CtCDH291Y modified electrodes, the enzyme is involved also in 

the conversion of lactose resulting in that the active site of the enzyme is partly occupied by the 

preferred substrate, giving a little lower sensitivity for glucose. To demonstrate how keeping the 

data related to glucose supported the prediction of lactose and Ca2+, a few tests were run using 2 

neurons for the output layer (data not shown), to predict only lactose and Ca2+ while keeping the 

rest of the configuration as it was for the original ANN. This resulted in significantly lower 

regression values showing that the ANN was less able to make a good prediction for lactose and 

Ca2+ when excluding the glucose related data. Also the prediction was completely random, 

being different every time the software was run. This behaviour of the ANN led us to the 

conclusion that even if the glucose concentration predictions were poor, those data were 

essential for the complete prediction of the three analytes. As an example of the goodness of the 

prediction model the samples, used as external test to verify the ANN, are grouped in Table 1 

showing the expected and predicted concentrations. The deviations between predicted and 

expected concentrations are on average +6.9% for lactose, +4.8% for Ca2+ and +12.3% for 

glucose, a highly reliable result, derived in this case from the different specificities shown by 

the different CDH enzymes used.  

 

4. Conclusions 

 

In this work we show the feasibility of a novel BioET system integrating bioinformatics for data 

treatment and bioelectrochemistry for smart analyte detection. In the present system we utilize 
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the cross response of CDHs from different origins to the substrates lactose and glucose and the 

interfering compound Ca2+ to resolve mixtures of these analytes. The system operates in a DET 

mode allowing analyte detection at reduced potentials. After data treatment with an artificial 

neural network the BioET was able to successfully predict the concentrations especially for 

lactose and Ca2+ in artificial samples with an R2 value of 0.975 and 0.945 respectively and a low 

deviation from the expected concentration values of +6.9% for lactose and +4.8% for Ca2+. A 

BioET system like this, using the DET capabilities of CDH from different origins as sensor 

modifiers is a complete novelty. The great variety of CDHs may allow the system to be tailored 

to detect also other analytically relevant sugars as e.g. maltose or cellobiose. The findings are of 

potential interest for new biosensor applications for the food and dairy industry. 
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Table 1. Comparison of expected and predicted concentrations of the external test samples for 
the three analytes. 
 

Lactose (µM) Glucose (µM) Ca2+ (mM) 
Expected Predicted Expected Predicted Expected Predicted 
2.03E+02 2.25E+02 9.69E+01 6.57E+01 3.83E+03 4.85E+03 
5.81E+01 7.40E+01 1.12E+02 1.81E+02 1.89E+03 1.53E+03 
2.14E+02 2.25E+02 2.43E+02 2.53E+02 7.24E+03 8.11E+03 
1.13E+02 1.05E+02 5.97E+01 4.01E+01 7.93E+03 8.98E+03 
5.86E+01 6.49E+01 8.75E+01 1.43E+02 4.14E+03 5.73E+03 
4.14E+01 6.22E+01 9.82E+01 1.54E+02 2.67E+03 3.72E+03 
4.00E+01 7.00E+01 1.95E+02 2.90E+02 4.70E+02 1.18E+03 
1.87E+02 2.22E+02 6.47E+01 2.35E+01 9.42E+03 9.68E+03 
2.19E+02 2.33E+02 1.88E+02 1.76E+02 6.01E+03 5.41E+03 
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Captions for Figures 
 
 
Fig. 1. Distribution of the training (blue) and test (red) concentrations of lactose, glucose, and 

Ca2+ used to train and test the Artificial Neural Network (ANN). 

 

 

Fig. 2. Scheme of the ANN architecture used. The numbers surrounded by the red circles are 

the numbers of neurons used in each layer. 

 

 

Fig. 3. Cyclic voltammetric characterisation of the enzyme modified electrodes used for the 

construction of the electronic tongue. CDH was entrapped under a dialysis membrane on 

mercaptohexanol modified gold electrodes.  From top to bottom it is possible to see the 

behaviour of MtCDH (A), CtCDHC291Y (B) and NcCDH (C)  in a 50 mM MOPS buffer 

solution at pH 6.7 in the absence (solid line) and in the presence of 250 µM lactose (dashed 

line). All experiments were performed at a scan rate of 20 mV/s with a SCE reference electrode 

and a Pt flag as counter electrode. 

 

 

Fig. 4. Calibration graphs of the MtCDH, CtCDHC291Y and NcCDH based biosensors 

obtained for the three analytes lactose (top, A, B), glucose (middle, C, D) and Ca2+ (bottom, E, 

F). On the left, the fully investigated concentration ranges are shown; on the right, only the 

linear concentration ranges are shown. 

 

 

Fig. 5. Comparison graphics of the “expected vs. predicted” concentrations for the target 

analytes; lactose (A), glucose (B), and Ca2+ (C) calculated by the ANN using the external test 

set samples with known, expected concentrations. 
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