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Abstract

In this study, a 1200 L outdoor pilot scale microalgal photobioreactor (PBR) was used

for  toilet  wastewater  (WW)  treatment  and  evaluate  its  ability  to  remove

pharmaceutically active compounds (PhACs). The PBR was operated at two different

hydraulic  retention  times  (HRTs),  which  were  8  and  12  days,  during  Period  I

(September-October)  and Period  II  (October-December),  respectively.  Algal  biomass

concentrations  varied  by  operating  period  because  of  seasonal  changes.  Nutrients
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(ammonia, nitrogen and total phosphorous) and chemical oxygen demand (COD) were

monitored  and efficiently  removed in  both  periods  (>80%),  attaining  the  legislation

limits. At the theoretical hydraulic steady state in both periods, pharmaceutical removal

reached  high  levels  (>48%).  Two  harvesting  techniques  were  applied  to  the  PBR

microalgae effluent. Gravity sedimentation was efficient for biomass removal (>99% in

7  minutes)  in  Period  I  when  large  particles,  flocs  and  aggregates  were  present.  In

contrast, a longer sedimentation time was required when biomass was mainly composed

of  single  cells  (88%  clarification  in  a  24  h  in  Period  II).  The  second  harvesting

technique investigated was the co-pelletization of algal biomass with the ligninolytic

fungus  Trametes versicolor,  attaining >98% clarification for Period II  biomass once

pellets  were formed.  The novel  technology of  co-pelletization enabled the  complete

harvesting of single algae cells from the liquid medium in a sustainable way, which

benefits the subsequent use of both biomass and the clarified effluent. 

1 Introduction 

Recently, the application of microalgae systems to wastewater (WW) treatment has been

investigated  because  of  their  capacity  for  nutrient  and  organic  matter  removal  in

symbiosis  with heterotrophic bacteria.  Microalgae grow using sunlight  as  an energy

source, as well as the CO2 released from bacterial respiration and the atmospheric, along

with inorganic nutrients (nitrogen, phosphorous, etc.); they release O2 that is used by

bacteria. This symbiosis reduces the nutrients, metals and micropollutant concentrations

in WW  (Ficara et  al.,  2014; Hoh et al.,  2016; Hultberg et  al.,  2016; Mallick,  2002;

Muñoz and Guieysse, 2006; Prajapati et al., 2014, 2013; Ramanan et al., 2016; Sturm

and Lamer, 2011).   
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The  presence  of  emerging  contaminants  (ECs)  in  WW has  attracted  great  interest

because of the possible undesirable effects many of these pollutants can have on the

environment and living organisms (Arnold et al., 2013). ECs include pharmaceuticals,

personal care products, and pesticides, among others (Kümmerer, 2008; Petrovic et al.,

2003).  Some  technologies  have  been  proposed  to  remove  ECs,  such  as  physico-

chemical and biological treatments (Ávila et al., 2014; Baccar et al., 2012; Cruz-Morató

et  al.,  2013a;  Dorival-García  et  al.,  2013;  Fagan et  al.,  2016;  Gimeno et  al.,  2016;

Nguyen et al., 2014; Secondes et al., 2014). EC removal by pure microalgae strains has

been proven effective  (Della Greca et al., 2008; Hom-Diaz et al., 2015; Xiong et al.,

2016).  However,  EC removal by microalgal-based technologies has not been widely

studied, and scarce literature is available (Cuellar-Bermudez et al., 2016). The first work

investigating EC removal in microalgal ponds was published by de Godos et al. (2012),

in which the antibiotic tetracycline was removed from a pilot scale high rate algal pond

(HRAP)  treating  synthetic  WW,  and  the  mechanisms  implied  were  mainly

photodegradation and biosorption. Recently, Matamoros et al. (2015) studied the effect

of  hydraulic  retention  time  (HRT)  and  ambient  temperature/sunlight  irradiation

(seasonality) on the removal efficiency of 26 ECs in two HRAP pilot plants fed with

real urban wastewater.  It  was reported that HRT had a great impact on EC removal

depending on the season in which HRAPs were operated. It has been demonstrated that

microalgal-bacterial systems are good candidates for EC removal.

Microalgal biomass has ample post-application potential; it could be a source of high-

value products for use as biofuels and bioproducts  (Mennaa et al., 2015; Molinuevo-

Salces et al., 2016; Passos et al., 2015; Zhang et al., 2016).

One  of  the  main  challenges  in  microalgae  biotechnology and  WW treatment  is  the

efficient and reliable separation of microalgae from the effluent after  treatment. The
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small size of microalgae, typically in the range of 2–20 μm, the low density difference

between algae and the growth medium, and the diluted concentrations of algal cultures

make the harvesting processes a key challenge, especially at the industrial scale (Li et

al.,  2008; Mennaa et  al.,  2015).  Depending on the species,  cell  density,  and culture

conditions, harvesting algal biomass has been estimated to contribute 20-30% of the

production  costs  (Christenson  and  Sims,  2011;  Molina  Grima  et  al.,  2003).

Consequently,  the  harvesting  strategy  must  be  based  on  a  low  energy  method  to

overcome these problems and make algae production economically feasible  and the

system commercially viable (e.g., to produce biodiesel with algae technology). 

The selection of separation techniques depends on the value of the target products, the

species,  the  biomass  concentration,  the  size  of  microalgae  cells  of  interest,  and the

desired final  product  (Brennan and Owende,  2010;  Li  et  al.,  2008; Olaizola,  2003).

Gravity or natural sedimentation is the process of solid-liquid separation that separates a

feed suspension into a slurry of higher solids concentration and a substantially clear

liquid effluent. This process depends on the characteristics of the solid and liquid, which

determine if the sedimentation rate is fast or slow (Olaizola, 2003; Sukenik and Shelef,

1984). Because of the large volumes of WW treated and the low value of the biomass

generated, sedimentation is the most common technique for harvesting algal biomass in

WW treatment (Nurdogan and Oswald, 1996). However, the method is only suitable for

large microalgae (ca. >70 μm) (Brennan and Owende, 2010). Co-pelletization is a novel

harvesting  technique;  the  use  of  filamentous  fungi  is  an  attractive  bioflocculating

technique because of the self-pelletization of the fungi, which can efficiently trap the

microalgal  biomass.  Fungal  self-pelletization  has  been  observed  for  numerous

filamentous  strains,  leading  to  the  development  of  aggregates/pellets,  and  several
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authors have proposed this technique for biodiesel production  (Gultom and Hu, 2013;

Liu et al., 2008; Xia et al., 2014; Zhang and Hu, 2012). 

The objective of this study was to evaluate the performance of a tubular microalgal

reactor for wastewater treatment. The system was tested for its applicability in different

seasonal  periods  and  regimes  for  pharmaceutically  active  compounds  (PhACs)

degradation. Moreover, a preliminary study of two different harvesting techniques was

also evaluated for biomass recovery and supernatant clarification.

2 Materials and methods

2.1 Wastewater characteristics

Toilet  wastewater  (WW)  was  collected  from  the  toilet  drainage  of  the  Chemical,

Biological  and  Environmental  Engineering  Department  (Universitat  Autònoma  de

Barcelona) and placed into a first settler. The supernatant was conducted to a second

settler from which the WW was pumped into the microalgal photobioreactor (PBR) via

peristaltic  pump.  The  HRT of  the  setters  was  48  hours,  so  they  can  be  used  as  a

homogenization tanks. The average characteristics of the toilet WW are presented in

Table 1.

Table 1. Influent average composition for Period I  and II  photobioreactor operation.

(Total suspended solids (TSS), chemical oxygen demand (COD), ammonia nitrogen (N-

NH4
+), total phosphorous (TP), hydraulic retention time (HRT)).

Parameter Period I (HRT 8 d) Period II (HRT 12 d)

TSS (mg/L) 36±11 36±9

COD (mg/L) 462±53 398±115

N-NH4
+ (mg/L) 79±42 121±22
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TP (mg/L) 15±4 7±2

2.2 Microalgal photobioreactor

The experimental setup was located on the roof of the Department, consisting of an

enclosed 1200 L multitubular PBR (Fig. 1). Two distribution chambers were placed at

each end of the tubes to transfer and distribute the culture evenly between the tubes. The

tubes are made of low density polyethylene (PE); they are soft and moldable, whereas

the distribution chambers are made of propylene (PP), giving them a robustness. The

tubes are placed on a PP cuvette filled with tap water to avoid abrupt daily temperature

changes.  A PP paddle wheel  was placed in one of the distribution chambers,  which

provides movement and aeration to the microalgal PBR by drawing the culture in from

the 4 incoming tubes and raising the culture into the distribution chamber and the 4

gravity-fed outgoing tubes. The WW inlet was placed in the same distribution chamber

as the paddle wheel together with a ball float level sensor to avoid a liquid overflow.

The distribution chambers have a total working volume of 0.14 m3, with a liquid level of

15 cm. The tubes have a working volume of 0.24 m3 (230 mm internal diameter x 1 mm

thickness x 7.0 m long). The paddle wheel provides a constant velocity of 0.13 m/s.
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Figure 1. Microalgal photobioreactor (PBR). Left: Schematic PBR located on the roof

of  the  Chemical,  Biological  and  Environmental  Engineering  Department  from

Universitat  Autònoma de  Barcelona,  Spain:  (1)  toilet  sewage;  (2)  1st settler:  (3)  2nd

settler; (4) WW pump; (5) PBR. Right: PBR in operation.

The inoculation of the system is described in the Supplementary Material, SM1. Briefly,

WW  was  pumped,  via  peristaltic  pump,  from  the  second  settler  and  entered  the

distribution box immediately following the paddle wheel. The PBR treated 150 L/day,

corresponding to an HRT of 8 days, in Period I and 100 L/day, corresponding to an HRT

of 12 days, in Period II. The PBR performance was monitored by taking samples from

September 14, 2015 to October 16, 2015 during Period I and from October 20, 2015 to

December 22, 2015 during Period II. Three samples were taken on alternate days at the

theoretical hydraulic steady state for the detection of pharmaceutical compounds at the

end  of  Periods  I  and  II.  Samples  were  collected  from the  inlet  WW and  the  PBR
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effluent;  detailed  information  of  sampling  has  been  included  in  the  Supplementary

Material, SM2.

2.3 Analytical methods

Water temperature, pH and dissolved oxygen (DO) were measured in situ with a PCE-

PHD 1 multimeter (PCE Instruments, Albacete, Spain). The following parameters were

determined from the influent and effluent of the PBR. Total suspended solids (TSS) and

soluble chemical oxygen demand (COD) were measured according to Standard Methods

(APHA et  al.,  1999).  Nitrogen  ammonia  (N-NH4
+)  and  total  phosphorus  (TP)  were

measured using an Analyzer Y15 (Biosystems, Barcelona, Spain). Total,  organic and

inorganic carbon was measured using an OI Analytical TOC Analyzer (Model 1020A).

Nitrite (NO2
−), sulfate (SO4

2−) and nitrate (NO3
−) concentrations were determined by ion

chromatography with conductivity detection using a Dionex ICS-2000. Analyses were

performed in triplicate, and the results are given as the mean values.

Eighty-one  pharmaceutical  residues  were  measured  following  the  analytical

methodology previously described by Gros et al. (2012) (complete results are presented

in the Supplementary Material, SM3). Briefly, samples were filtered through a 1 µm

glass fiber filter followed by a 0.45 µm PVDF membrane filter (Millipore; Billerica,

MA, USA). After filtration, Na2EDTA was added to a final concentration of 0.1% (g

solute/g solution), and an appropriate volume of each sample (25 and 50 mL for WW

and  treated  WW,  respectively)  was  loaded  into  the  Solid  Phase  Extraction  (SPE)

cartridges Oasis HLB cartridges (60 mg, 3 mL) (Waters Corp. Mildford, MA, USA)

were conditioned with 5 mL of methanol followed by 5 mL of high performance liquid

chromatography (HPLC) grade water. After sample loading, cartridges were rinsed with

6 mL of HPLC grade water and further dried with air  for 5 minutes to remove the

remaining water. Finally, analytes were eluted from the cartridges using 6 mL of pure
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methanol. The extracts reconstituted in methanol/water (10:90, v/v) were analyzed using

an ultra-performance liquid chromatography (UPLC) system (Waters Corp. Mildford,

MA, USA) equipped with a turbo Ion Spray source. Chromatographic separations were

performed in an Acquity HSS T3 column (50 mm × 2.1 mm inner diameter, 1.8 µm

particle size; Waters Corp. Mildford, MA, USA) under positive ionization (PI) mode

and in an Acquity BEH C18 column (50 mm × 2.1 mm inner diameter, 1.7 µm particle

size;  Waters  Corp.  Mildford,  MA,  USA) under  negative  ionization  (NI)  mode.  The

UPLC system was coupled to a quadrupole-linear hybrid ion trap mass spectrometer

5500 QTRAP (Applied Biosystems, Foster City, CA, USA). All data were recorded by

using  Scheduled  MRMTM algorithm  monitoring  two  SRM  transitions  for  each

compound; the first transition was for quantification, and the second transition was for

confirmation of the compounds. Concentrations were calculated by internal calibration

with the corresponding isotopically labelled standards using Analyst 1.5.1 software.

2.4 Harvesting techniques

Natural  sedimentation  was  conducted  following  the  guidelines  proposed  by  Nollet

(2000). A 1 L transparent glass measuring cylinder ([height/diameter] ratio≈5.7) was

filled with 1 L of microalgal suspension. It was kept vibration free, and disturbance of

the settled matter was avoided. Height decreases from the solid-liquid interphase and

time  values  were  recorded to  obtain  the  sedimentation  curve  and the  sedimentation

velocity. After sedimentation, the cell concentration of the supernatant was determined

by absorbance at 683 nm in a spectrophotometer, and TSS were measured.

The co-pelletization  harvesting technique  was conducted  using  the fungus  Trametes

versicolor (American  Type  Culture  Collection  #42530).  Mycelia  were  obtained  as

previously described in Font et al. (2003). A total co-cultivation volume of 120 mL was

introduced into 500 mL Erlenmeyer flasks, containing 0.5 mL of T. versicolor mycelia,
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algal  biomass  and  fungal  defined  media.  Three  different  volumetric  ratios  of  algal

biomass-to-fungal defined media were used (1:5, 1:2, and 1:1 (v/v)). The mixtures were

then cultivated for 3 days under constant agitation (130 rpm) and maintained at 25±1ºC.

The absorbance and the TSS concentration were measured using the supernatant after

agitation was stopped and pellets had settled to the bottom of the Erlenmeyer flask.

The T. versicolor growth culture medium was 8 g/L glucose, 3.3 g/L ammonium tartrate

dibasic, 3.3 g/L 2,2-dimethylsuccinic acid, 10 mL/L macronutrient solution and 1 mL/L

micronutrient solution (Blánquez et al., 2004). 

2.5 Statistical analysis

The standard deviation and means were analysed for significance. One-way ANOVA

test was used for the statistical analysis between Period I and II N-NH4
+, total P and

COD removal percentages, as well as for each PhACs removal percentages.

3 Results and discussion

3.1 Performance of the microalgal photobioreactor

PBR inoculation was conducted by introducing 100 L of  water  from a nearby lake

located in Sant Cugat del Vallès (Barcelona, Spain) (detailed information is described in

Supplementary Material, SM1), and the remaining volume was filled with wastewater

coming from the settler previously described. Inlet WW characteristics are presented in

Table  1.  Influent  TSS  variations  were  negligible  and  could  be  considered  constant

across both operating periods and were lower than typical raw wastewater because of

previous settling. Microalgal concentrations were measured as total suspended solids

(TSS) from the PBR effluent (Figure 2). Higher biomass concentrations were detected

during  Period  I  (HRT=8 d)  compared to  during  Period II  (HRT=12 d),  303±83 vs.

10

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

10



265±77 mg/L, respectively at  the theoretical hydraulic  steady state.  The decrease in

ambient temperature between periods affected microalgal biomass activity because low

temperatures reduce the ability to use light, which may have caused photoinhibition,

reducing microalgal growth (Davison, 1991).

Date
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Period I Period II

Figure 2. Performance of PBR treating toilet wastewater. TSS from the influent () and

effluent () during Period I  (HRT 8 d) and Period II (HRT 12 d) and daily average

outdoor temperature (○).

Several studies have explored how consortia of microalgae and bacteria can be effective

for  nutrient  removal  in  WW.  Microalgae-bacteria  consortia  demonstrated  high

efficiency in COD and N-NH4
+ removal and lower efficiencies in TP removal. Removal

efficiency for COD was higher during Period I than during Period II, 84% vs. 60%,

respectively (Figure 3). The decrease is attributed to a lower photosynthetic activity by

microalgae as well as a decrease in microalgal biomass concentration as a consequence

of light irradiance (detailed information in Supplementary Material SM4). The N-NH4
+

removal  percentages  were similar  for  both periods,  86 vs.  98%, respectively,  at  the

theoretical hydraulic steady state.  Good removal percentages were obtained for total

phosphorus during Period II, 89%, whereas during Period I, removal percentages were

low, 50%. The N and P removal efficiencies depend on the microalgae species; the N/P
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ratio can vary from 8 to 45 g N/g P (Christenson and Sims, 2011; Cuellar-Bermudez et

al., 2016). The presence of microalgal species able to uptake ‘luxury’ phosphorous has

been previously reported in ponds treating WW (Powell et al., 2011). The system has a

great  capacity for  nutrient  removal  from toilet  wastewater  as  described by previous

authors treating wastewater with microalgal-based systems (Cromar et al., 1996; García

et al., 2006).
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Figure 3. Nutrient removal percentages for Period I (HRT 8 d) and Period II (HRT 12

d). (●) COD; (▲) N-NH4
+; () TP.

3.2 Diurnal variations

The  results  of  the  present  study  indicate  that  the  variables  influenced  by  algal

photosynthesis (DO and pH) have significant variations during the day in the mixed

liquor of the photobioreactor (PBR) in relation to the diurnal solar radiation rhythm. The

temperature inside the PBR is affected by the outside temperature. This trend has also

been previously reported by some authors (El Ouarghi et al., 2000; García et al., 2006;

Picot et al., 1993). Figure 4 illustrates the daily variations of pH and DO over the two

periods,  the data  shown correspond to the dark cycle  (morning)  and the light  cycle
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(afternoon), and the temperature inside the PBR as well as the ambient temperature after

each cycle is also represented.
pH
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Figure 4. Daily variations in the photobioreactor for Period I (HRT 8 d) and Period II

(HRT  12  d).  Top:  pH  daily  monitoring;  Middle:  DO  daily  monitoring;  Bottom:

Temperature daily monitoring; (●) pH or DO after the light cycle; (○) pH or DO after

the dark cycle; (▲) PBR temperature after the light cycle; () PBR temperature after

the dark cycle; (—) maximum ambient temperature; (···) minimum ambient temperature.
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During  the  night,  the  lack  of  algal  photosynthetic  activity  in  conjunction  with  the

continuous respiration of algae and other microorganisms resulted in low pH and DO

values  after  the  dark  cycle.  Algal  photosynthetic  activity  increased  after  sunrise,

producing higher pH and DO values. The average differences in pH after the dark and

light  cycles  were approximately 0.5 pH units  during Period I  and 1 pH unit  during

Period II.  Differences were also observed between the two HRT periods. Higher pH

values  were  measured  during  Period  I  than  during  Period  II  because  of  the  higher

microalgae photosynthetic activity. 

3.3 Pharmaceutical compound removal

In this study, PhACs were analyzed from inlet wastewater and effluent from the PBR.

Three different samples were taken from the bioreactor influent and effluent during the

theoretical hydraulic steady state. The steady state occurrence of PhACs in the PBR

during Periods I and II is summarized in Figure 5. No large differences in PhAC levels

in the influent water were observed between October and December (water collection

dates). Seasonal fluctuations in PhAC levels have been reported by other authors and

attributed  to  different  climatic  conditions  and consumption patterns  among different

periods of the year (Kolpin et al., 2004). 

14

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

14



A
ce

ta
m

in
o

ph
e

n

Ib
u

pr
of

e
n

K
et

op
ro

fe
n

N
a

pr
ox

e
n

S
al

ic
yl

ic
 a

ci
d

C
o

de
in

e

A
zi

th
ro

m
yc

in

E
ry

th
ro

m
yc

in

C
ip

ro
flo

xa
ci

n

O
flo

xa
ci

n

A
te

n
ol

ol

Lo
ra

ze
p

am

A
lp

ra
zo

la
m

P
ar

ox
e

tin
e

H
yd

ro
ch

lo
ro

th
ia

zi
de

F
ur

o
se

m
id

e

D
ilt

ia
ze

m

C
o

nc
en

tr
at

io
n

 (
n

g/
L)

0

2000

4000

6000

8000

10000

12000

24000

30000

36000

42000

48000

54000

60000

Outlet 
Inlet 

15

295

15



A
ce

ta
m

in
o

ph
e

n

Ib
u

pr
of

e
n

K
et

op
ro

fe
n

N
a

pr
ox

e
n

S
al

ic
yl

ic
 a

ci
d

C
o

de
in

e

A
zi

th
ro

m
yc

in

E
ry

th
ro

m
yc

in

C
ip

ro
flo

xa
ci

n

O
flo

xa
ci

n

A
te

n
ol

ol

Lo
ra

ze
p

am

A
lp

ra
zo

la
m

P
ar

ox
e

tin
e

H
yd

ro
ch

lo
ro

th
ia

zi
de

F
ur

o
se

m
id

e

D
ilt

ia
ze

m

C
o

nc
en

tr
at

io
n

 (
n

g/
L)

0

2000

4000

6000

8000

10000

12000

24000

30000

36000

42000

48000

54000

60000

Outlet 
Inlet 

Figure 5. Box-plot of the occurrence of PhACs in the inlet wastewater (grey boxes) and

PBR effluent (white boxes) from Period I (top) and Period II (bottom). The box-plots

indicate the median, and the 25th and 75th percentile for each compound. (Note: For

period I, ketoprofen, naproxen, and azithromycin grey boxes overlap white boxes)

The reported concentrations of PhACs in the influent revealed differences among the

pharmaceutical  therapeutic  groups,  which  were  linked  to  population  characteristics,

local  common  diseases,  drug  metabolism  (excretion  rate),  and  environmental

persistence  among  others.  Compounds  detected  (with  a  high  number  of  anti-

inflammatory and antibiotic drugs) as well as their concentration in the toilet WW are in

accordance  with  the  concentrations  reported  by  other  authors  (Cruz-Morató  et  al.,

2013a;  Jelic  et  al.,  2011;  Kasprzyk-Hordern  et  al.,  2009;  Matamoros  et  al.,  2015;

Radjenovic et al., 2009; Verlicchi et al., 2012).

Five anti-inflammatory compounds (acetaminophen, ibuprofen, naproxen, salicylic acid

and  ketoprofen)  were  detected,  and  acetaminophen  (paracetamol)  was  found  at  the
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highest concentrations in both sampling periods, with values ranging from 50.2 to 58.7

µg/L (Fig. 5). Removal  percentages obtained for acetaminophen in the microalgal PBR

were  higher  than  99% (Table  SM1)  during  both  periods,  in  accordance  with  other

authors who also reported very good removal percentages using other microorganisms,

such as fungi or microalgal systems  (Cruz-Morató et al., 2013b; Escapa et al., 2016;

Matamoros  et  al.,  2015).  Direct  photolysis  has  been  described  as  an  important

mechanism for acetaminophen removal in freshwater systems (Laurentiis et al., 2014).

Other authors have described acetaminophen as a readily biodegradable compound and

have shown its significant biodegradability and removal via bio-sorption during WW

treatment (Joss et al., 2006; Kasprzyk-Hordern et al., 2009; Radjenovic et al., 2009). 

Ibuprofen, the second most abundant compound detected in the influent WW during

both operating periods (39.0-52.8 µg/L, Fig. 5), also exhibited high removal percentages

in the PBR (>98%, Table SM1).  Santos et al. (2009) detected ibuprofen as the most

abundant compound in four Spanish WWTPs, where concentration levels ranged from

3.73  to  603  μg/L.  Several  studies  reported  that  the  dominant  ibuprofen  removal

mechanism in biological systems (membrane bioreactors  (Abegglen et al., 2009) and

immobilized  cell  processes  (Yu  et  al.,  2011))  is  biodegradation.  Other  authors  also

attribute the high removal of ibuprofen to aerobic biodegradation processes during WW

treatment rather than to sorption processes. Ibuprofen has a low octanol-water partition

coefficient (high polarity), so it is not expected to be sorbed onto organic matter (Ávila

et al., 2010; Kasprzyk-Hordern et al., 2009). Another possible pathway for ibuprofen

removal is the presence of photosensitizers, such as dissolved organic matter (Yu-Chen

Lin and Reinhard, 2005).

Ketoprofen inlet concentrations increased by one order of magnitude between Period I

(472±52 ng/L) and Period II (6729±413 ng/L) (Fig. 5). Its removal percentage during
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Period  I  (36%,  Table  SM1)  is  similar  to  the  ones  reported  after  activated  sludge

processes in conventional  WWTPs  (Jiang et  al.,  2013).  However,  it  was lower than

removals reported in a pilot scale HRAP by Matamoros et al. (2015) (50-95%), although

both  algal  systems  were  treating  influents  with  similar  initial  concentrations  of

ketoprofen.  The  removal  percentage  of  this  compound  was  statistically  different

between periods (p=4.35·10-6).

Naproxen exhibited the lowest removal percentage among all the anti-inflammatories

detected during Period I (10%) but increased during Period II (69%) (Table SM1), being

this  percentage  statistically  significant  (p=8.14·10-10).  Values  from  Period  II  are  in

accordance  with  those  reported  by  Matamoros  et  al.  (2015) in  a  pilot  scale  HRAP

treating urban WW (48-89%). Naproxen removal in a WWTP is mainly attributed to its

biodegradability,  whereas  sorption  processes  are  not  considered  because  of  the  low

octanol-water partition coefficient of naproxen (Kasprzyk-Hordern et al., 2009). Several

authors  also  studied  the  occurrence  and  the  removal  percentage  of  this  compound,

obtaining variable removal efficiency depending on the system (Verlicchi et al., 2012).

Salicylic acid is an active metabolite of the highly consumed acetylsalicylic acid, but it

is also a common derivate of phenol. Therefore, it is a typical pollutant in both urban

and industrial wastewaters, and its removal from aqueous solutions has received a great

deal of attention in recent years because of its high toxicity and accumulation in the

environment  (Combarros  et  al.,  2014;  Evgenidou  et  al.,  2015).  Salicylic  acid  inlet

concentrations during Periods I and II were 1349±738 and 368±12 ng/L, respectively

(Fig. 5). Total removal was achieved with the PBR in the Period I, whereas only 33% of

the  salicylic  acid  was  removed during  Period  II  (Table  SM1).  Escapa  et  al.  (2015)

observed  high  removal  percentages  (93%)  of  salicylic  acid  using  the  algae  C.

sorokiniana in a semi-continuous system. 
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The analgesic  codeine  was only detected during  Period I  (33±1 ng/L,  Fig.  5).  This

concentration was similar to the urban wastewater treated by Cruz-Morató et al. (2013a)

and lower than the WWTP influent reported by  Kasprzyk-Hordern et al. (2009). The

effluent concentration was below the limit of detection (LOD 4.17 ng/L, LOQ 13.91

ng/L). 

As in the case of anti-inflammatories and analgesics, antibiotic levels varied between

the  two  studied  periods  (Fig.  5).  Ciprofloxacin  and  ofloxacin  were  detected  at

concentrations of 2629 ng/L and 65 ng/L, respectively, during Period I and 294 ng/L and

5662 ng/L, respectively, during Period II. Azithromycin was only detected in Period I

(385 ng/L), and erythromycin was only detected in Period II (661 ng/L). The removal

percentages  obtained  ranged  from  48%  to  complete  removal,  depending  on  the

antibiotic considered (Table SM1). Ofloxacin removal percentage between periods was

not  significantly different  (p=0.313).  Antibiotic  removals  between 35% and 76% in

conventional  activated  sludge  processes  and  between  25%  to  95%  in  membrane

bioreactors have been previously described (Radjenovic et al., 2009). 

The β-blocker atenolol was detected at high concentrations in Period I, 7.8 μg/L, and

Period  II,  6.9  µg/L (Fig.  5);  removal  percentages  were  above  80%  (Table  SM1),

although the differences between Period I and II were significantly different (p=1.90

·10-5). The inlet concentration is in accordance with values reported by previous authors

in WWTP influents  (Verlicchi et al., 2012).  Escolà Casas et al. (2015b) obtained 40%

removal  in  a  continuously  moving  bed  biofilm  reactor,  whereas  almost  complete

removal was found in a hybrid biofilm and activated sludge system (Escolà Casas et al.,

2015a). Biodegradation of atenolol has been linked to the activity of ammonia-oxidizing

bacteria and heterotrophs (Sathyamoorthy et al., 2013). 
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The psychiatric drug lorazepam, present in both periods (Period I: 3.7 µg/L and Period

II: 2.4 µg/L),  achieved removals between 30 and 57% using the PBR (Table SM1),

values significantly different in both periods (p=6.58·10-7). Jelic et al. (2011) found that

lorazepam was biologically degraded only 30% during WW treatment,  and sorption

onto sludge was less than 5%. The psychiatric drugs alprazolam and paroxetine were

only  detected  in  Period  II  (389  and  1652  ng/L,  respectively)  and  were  efficiently

removed during algal treatment, with 87% and 93% removal, respectively (Table SM1).

Similar removal for paroxetine has been observed by other authors in activated sludge

systems  and  membrane  bioreactors  (Sipma  et  al.,  2010),  whereas  the  conventional

WWTP removal of paroxetine was worse (c.a. 77%). Biodegradation and/or chemical

transformation  are  postulated  to  be  the  dominant  removal  mechanisms  for  these

compounds  in  biological  treatment  systems  (Radjenovic  et  al.,  2009;  Subedi  and

Kannan, 2015). 

The diuretic hydrochlorothiazide (Period I: 228 ng/L and Period II: 686 ng/L, Fig. 5)

was partially removed in the PBR (44% during Period I and 84% during Period II,

(p=1.39·10-10)) (Table SM1). Its persistent behavior has been acknowledged by some

authors  (Bertelkamp et al., 2014; Radjenovic et al., 2009), where low or insignificant

degradation  was  reported  for  hybrid  biofilm-activated  sludge  processes,  membrane

bioreactors, etc (Falas et al., 2013; Kovalova et al., 2012). In contrast, for furosemide,

another  diuretic detected in the inlet  WW during Period II  (669 ng/L, Fig.  5),  high

removal  efficiencies  were  reported  for  different  WWTPs  (Collado  et  al.,  2014;

Papageorgiou et al., 2016), as well as in the present study. 

The calcium channel blocker diltiazem was detected in the inlet  WW, ranging from

1600 to 1900 ng/L, and its removal ranged between 73 and 77% (Table SM1), values

significantly different (p=1.08·10-3). Very diverse diltiazem removal percentages have
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been described in the literature. High removal percentages (88%-99%) were reported by

Du et al. (2014) for different WWTPs (i.e., municipal treatment plant, aerobic treatment

plant  and  septic  treatment  system  coupled  with  a  subsurface  constructed  wetland),

whereas removals between 30 and 88% were observed in several Swedish free water

surface  wetlands  (Breitholtz  et  al.,  2012).  Only  13%  removal  was  achieved  in  a

conventional activated sludge wastewater treatment process (Blair et al., 2015).

Clear differences appear in the removal efficiencies of the two study periods (Table

SM1).  For  some  compounds,  such  as  naproxen,  salicylic  acid,  ketoprofen,

hydrochlorothiazide  and  lorazepam,  a  lower  influent  concentration  corresponded  to

lower  removal  efficiency.  There  is  a  lack  of  information  about  EC  removal  by

microalgae.  Biodegradation  may  require  a  threshold  concentration  before  microbial

degradation can be triggered, suggesting an adaptation of the biomass is necessary for

the degradation of these compounds  (Spain and Van Veld,  1983). This adaptation is

enhanced  at  high  concentrations  rather  than  at  low  concentrations.  The  removal

efficiency of other pollutants (i.e.,  codeine, ofloxacin, ibuprofen and acetaminophen)

was independent of the initial concentration.

 In  general,  higher  removal  efficiencies  were obtained during Period II,  despite  the

lower  temperature  and  light  irradiation.  This  could  be  a  consequence  of  the  HRT

increase from 8 to 12 days. Some authors reported that biological wastewater treatment

technologies  for  removing  ECs  are  highly  dependent  on  HRT because  it  enhances

biodegradation,  photodegradation and sorption removal  processes  (Matamoros  et  al.,

2015).  HRT  is  indeed  a  key  design  parameter  for  the  removal  efficiency  of

microcontaminants  in  microalgal-based  treatment  systems;  the  higher  the  HRT,  the

greater the EC removal efficiency (Garcia-Rodríguez et al., 2014; Víctor and Rodríguez,

2016). 
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The biodegradation of organic compounds in microalgal-based treatment systems is the

result  of facultative chemoautotrophy;  therefore,  the organic compounds are directly

biodegraded  (Hom-Diaz et al., 2015; Priya et al., 2014; Semple et al., 1999).  Little is

known about PhAC removal mechanisms because of the complexity of the microbial

variations  in  these  systems.  Microbial  communities  continuously  change  in  open

systems  because  they  need  to  adapt  to  the  conditions  (environmental  and/or

operational). This fact poses an inconvenience in PhAC removal because not all species

are  able  to  remove  the  same  compounds.  Cell  walls  of  microalgae  contain

polysaccharides, proteins and lipids, which in turn contain functional groups, including

amino,  hydroxyl,  carboxyl,  and  sulfate,  that  act  as  binding  sites  and  are  used  to

sequester  many  different  pollutants  through  adsorption  or  an  ion-exchange  process

(Priya et al., 2014; Yu et al., 1999). Moreover, microalgae produce peptides, which can

also bind to micropollutants.   

The EC removal efficiencies significantly vary and can range from negligible removal

to 99% removal depending on the physico-chemical characteristics of the compound

and  the  cultivation  and  operation  parameters,  such  as  HRT  and  environmental

temperature (Cuellar-Bermudez et al., 2016).

3.4 Microalgae harvesting

The gravity sedimentation profile from the PBR effluent at  the theoretical hydraulic

steady state of Period I is shown in Fig. 6; it follows a linear tendency. The initial and

final  parameters  and the  percentage of  solid  removal  are  presented in  Table 2.  The

calculated  sedimentation  velocity  was  0.049±0.005  m/min,  and  99%  of  TSS  were

removed within  7  minutes.  Biomass  from Period  I  had  a  good settling  capacity,  in

contrast  to  the  microalgal  biomass  effluent  from  Period  II  operation,  where  no

interphase was observed, and as a consequence, the sedimentation curve could not be
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plotted. The settling velocity of Period II effluent decreased to 2.29·10 -4  m/min within

24  h,  achieving  a  final  TSS  removal  from the  supernatant  of  88% (Table  2).  The

differences  between  the  two  periods  are  attributed  to  biomass  composition.  During

Period  I,  several  filamentous species  (Phormidium,  a  self-aggregating  cyanobacteria

used by previous  authors  in  WW treatment  (Olguín,  2003),  has  the  ability to  auto-

flocculate  and  self-aggregate,  immobilizing  the  smaller  microalgae  cells)  were

microscopically observed, while during Period II, a decrease of filamentous species and

an increase of unicellular microalgae decreased the sedimentation rate of the effluent. 

Outdoor systems are in a constant state of change because of environmental conditions

affecting biomass composition and harvesting efficiency. Algal harvesting depends on

cell size, microalgae composition and other parameters (Brennan and Owende, 2010; Li

et al., 2008; Olaizola, 2003). Park et al. (2013) stated that the harvesting efficiency was

highly dependent on the dominant algae for a high rate algal pond (HRAP). Removals

between 75 and 85% were achieved when Pediastrum sp. was dominant. Although there

is scarce literature available on this subject, the values are similar to the ones reported in

this study (Table 2). 
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Figure 6. PBR Period I effluent sedimentation curve.
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Table 2.  TSS removal  percentages  after  the application of  the harvesting technique,

sedimentation and/or co-pelletization for PBR biomass in Period I and II. In brackets: *

biomass-to-fungal defined media ratio, **sedimentation time.

Harvesting
technique Period (ratio)*

TSS Initial
(mg/L)

TSS Final
supernatant

(mg/L) (time)**
% removal

Sedimentation
Period I 454 4 (7 min) 99

Period II 162 20 (24 h) 88

Co-
pelletization

Period II (1:5) 27 0 100

Period II (1:2) 54 1 98

Period II (1:1) 81 2 98

To improve the biomass harvesting from the Period II effluent, the novel technique of

co-pelletization was applied using the fungus  Trametes versicolor.  The co-cultivated

algal biomass and fungus can form pellets. The size of the pellets will allow their simple

harvest by mesh sieve filtration or sedimentation. The co-pelletization was achieved at

different algal biomass-to-fungal defined media co-cultivation ratios. Three ratios (1:1,

1:2 and 1:5) were used to study co-pelletization. The results highlight the largely similar

effects  of  the  different  algal  biomass-to-fungal  defined  media  ratios  used  in  co-

cultivation (Table 2). Co-cultivation can attain nearly complete removal of microalgal

cells from the liquid medium, obtaining a clear, transparent supernatant (Figure 7). At

the  three  ratios  of  algal  biomass-to-fungal  defined  media,  microalgal  biomass  was

completely removed  from the  liquid  medium after  three  days  of  co-cultivation  and

entrapped into the fungal pellets. Fungal pellets became more green (Figure 7) as the

algal concentration increased and as more algal biomass was entrapped by the fungus.
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Figure 7. Co-pelletization assay using Period II PBR biomass at different algal biomass-

to-fungal defined media ratios. Top: initial; bottom: final, 3 days.

The  co-pelletization  harvesting  technique  has  scarcely  been  reported  for  a  real

microalgal  effluent  (Bhattacharya  et  al.,  2017;  Muradov  et  al.,  2015;  Wrede  et  al.,

2014).  Previous  works  have  focused  on  pure  microalgae  cultures  (i.e.,  Chlorella)

(Wrede et al., 2014; Xie et al., 2013; Zhang and Hu, 2012; Zhou et al., 2013), and the

promising  results  obtained  encourage  further  study  and  the  implementation  of  this

technique in different real microalgae effluents. Harvesting microalgae from effluents

using co-pelletization could be an efficient method to obtain a clarified supernatant and

recover biomass for further valorization. 

4 Conclusions

N-NH4
+,  total  phosphorous and COD removal percentages of higher than 80% were

obtained by treating WW for four months in a microalgal photobioreactor operating at

two different  hydraulic  retention  times (8 days  during Period I  and 12 days  during
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Period II). PBR performance is highly impacted by temperature and solar irradiation.

Low temperatures  and  few light  hours  decrease  the  TSS  concentration  (Period  II),

which is directly related to productivity as well as nutrient removal. 

PhAC removal was also evaluated. Overall high removals (98%) were achieved for anti-

inflammatory drugs (ibuprofen, acetaminophen, salicylic acid, and codeine) and some

compounds,  such  as  the  diuretics  hydrochlorothiazide  (84%)  and  furosemide  (total

removal).  Lower  removals  (>48%)  were  obtained  for  antibiotics  (azithromycin,

ciprofloxacin,  ofloxacin  and erythromycin)  and  the  psychiatric  drug lorazepam (30-

57%). These results demonstrate that algal systems are a good option for the biological

treatment of toilet WW.

Microalgal photobioreactor effluent harvesting depends on the biomass characteristics.

In Period I, flocs were easily formed, allowing good clarification at high sedimentation

velocities  (0.049  m/min  and  7  min)  using  the  natural  sedimentation  technique.

Sedimentation  velocity  decreased  during  Period  II  (2.29·10-4 m/min),  and  the

clarification  percentage  also  decreased  (88%).  The novel  harvesting  technology,  co-

pelletization using T. versicolor, provided a solution to problems associated with current

energy-intensive and costly algae harvesting processes. Despite the good results attained

in this study (>98% microalgae entrapment), further research is still needed to study the

detailed pelletization conditions for large scale industrial applications.
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