Killing-Form

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Killingform)
Zur Navigation springen Zur Suche springen

Die Killing-Form (auch Cartan-Killing-Form) spielt eine wichtige Rolle in der Differentialgeometrie und in der Klassifikation der halbeinfachen Lie-Algebren. Sie ist nach Wilhelm Killing benannt.

Sei eine Lie-Algebra über dem Körper und ihre adjungierte Darstellung.

Die Killing-Form ist die durch

für definierte symmetrische Bilinearform

,

wobei die Spur bezeichnet.

  • ist eine symmetrische Bilinearform.
  • ist assoziativ, das heißt, es gilt für alle .
  • Für alle ist schiefsymmetrisch bzgl. , das heißt für alle gilt
.
  • Die Killing-Form ist nicht-ausgeartet genau dann, wenn die Lie-Algebra halb-einfach ist.
  • Falls die Lie-Algebra einer Lie-Gruppe ist, dann ist -invariant, d. h. für alle gilt
.
  • Falls die Lie-Algebra einer halbeinfachen Lie-Gruppe ist, dann ist die Killing-Form negativ definit genau dann, wenn kompakt ist. Insbesondere definiert eine bi-invariante Riemannsche Metrik auf einer kompakten, halbeinfachen Lie-Gruppe . Allgemeiner ist auf der Lie-Algebra einer kompakten (nicht notwendig halbeinfachen) Lie-Gruppe die Killingform stets negativ semidefinit.

Die Killing-Form nilpotenter Lie-Algebren ist identisch Null.

Für viele klassische Lie-Algebren lässt sich die Killing-Form explizit angeben:

g
gl(n, R)
sl(n, R)
su(n)
so(n, R)
so(n)
sp(n, R)
sp(n, C)

Riemannsche Metrik auf symmetrischen Räumen von nichtkompaktem Typ

[Bearbeiten | Quelltext bearbeiten]

Ein symmetrischer Raum von nichtkompaktem Typ ist eine Mannigfaltigkeit der Form

mit einer halbeinfachen Lie-Gruppe und einer maximal kompakten Untergruppe .

Zu einem symmetrischen Raum hat man eine Cartan-Zerlegung

und man kann den Tangentialraum im neutralen Element mit identifizieren.

Die Killing-Form ist negativ definit auf und positiv definit auf . Insbesondere definiert sie ein -invariantes Skalarprodukt auf und damit eine links-invariante Riemannsche Metrik auf . Bis auf Multiplikation mit Skalaren ist dies die einzige -invariante Metrik auf .

Die Differentialgeometrie symmetrischer Räume beschäftigt sich mit den Eigenschaften dieser Riemannschen Mannigfaltigkeiten.

Klassifikation halbeinfacher Lie-Algebren

[Bearbeiten | Quelltext bearbeiten]

Die Killing-Form spielt eine Schlüsselrolle in der Klassifikation der halbeinfachen Lie-Algebren über algebraisch abgeschlossenen Körpern der Charakteristik .

  • Humphreys, James E.: Introduction to Lie algebras and representation theory. Graduate Texts in Mathematics, Vol. 9. Springer-Verlag, New York-Berlin, 1972.