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ABSTRACT

Deep neural networks (DNNs) are widely used for nonlinear function approxima-
tion with applications ranging from computer vision to control. Although DNNs
involve the composition of simple arithmetic operations, it can be very challeng-
ing to verify whether a particular network satisfies certain input-output properties.
This work introduces Neural Verification.jl, a software package that implements
methods that have emerged recently for soundly verifying such properties. These
methods borrow insights from reachability analysis, optimization, and search. We
present the formal problem definition and briefly discuss the fundamental differ-
ences between the implemented algorithms. In addition, we provide a pedagogical
example of how to use the library.

1 INTRODUCTION

Neural networks (Goodfellow et al.l 2016) have been widely used in many applications, such as im-
age classification and understanding (He et al.| 2016)), language processing (Manning et al., |2014),
and control of autonomous systems (Mnih et al) [2015). These networks map inputs to outputs
through a sequence of layers. At each layer, the input to that layer undergoes an affine transforma-
tion followed by a nonlinear transformation. These nonlinear transformations are called activation
functions, and a common example is the rectified linear unit (ReLU), which sets any negative values
to zero. Although the computation involved in a neural network is quite simple, these networks can
represent complex nonlinear functions by appropriately choosing the matrices that define the affine
transformations.

Neural networks are being used for increasingly important tasks, and in some cases, incorrect outputs
can lead to costly consequences. Traditionally, validation of neural networks has largely focused on
evaluating the network on a large collection of points in the input space and determining whether
the outputs are as desired. However, since the input space is effectively infinite in cardinality, it
is not feasible to check all possible inputs. Even networks that perform well on a large sample of
inputs may not correctly generalize to new situations and may be vulnerable to adversarial attacks
(Papernot et al., |[2016)).

Neural Verification.jl implements methods that are capable of formally verifying properties of DNNs.
A property can be formulated as a statement that if the input belongs to some set X, then the output
will belong to some set ). To illustrate, in classification problems, it can be useful to verify that
points near a training example belong to the same class as that example. As another example, in the
control of physical systems, it can be useful to verify that the outputs from a network satisfy a safety
constraint.

The verification algorithms implemented in the library are all sound, meaning that they will only
report that a property holds if the property actually holds. Some of the algorithms are also complete,
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meaning that whenever the property holds, the algorithm will always correctly state that it holds.
However, some algorithms compromise completeness since they use approximations to improve
computational efficiency. A full discussion of all of the algorithms, their properties, and mathemat-
ical derivations can be found in (Liu et al.,[2019).

1.1 PROPERTY DEFINITION

Consider an n-layer feedforward neural network that represents a function f with input x € Dy C
R and outputy € Dy C R*",i.e. y = f(x), where ky is the input dimension and k, is the output
dimension.

Verification entails checking whether input-output relationships of the network hold. The input
constraint is imposed by a set X C Dy. The corresponding output constraint is imposed by a set
Y C Dy. In this context, we call the sets X and ) constraints. Solving the verification problem
requires showing that the following assertion holds:

xeX=>y=f(x)ec). (1)

Following this definition, encoding problems for Neural Verification.jl requires that the user specify
the input set X’ and the output set ).

2  ALGORITHMS

Neural Verification.jl currently implements 17 algorithms which draw insight from three different
categories of analysis:

2.1 CLASSIFICATION BY TECHNIQUE

1. Reachability. These methods use layer-by-layer reachability analysis of the network. Rep-
resentative methods are ExactReach (Xiang et al.| |2017), MaxSens (Xiang et al., 2018)),
and Ai2 (Gehr et al., [2018]). Some other approaches also use reachability methods (such as
interval arithmetic) to compute the bounds on the values of the nodes.

2. Optimization. These methods use optimization to falsify the assertion. The function repre-
sented by the neural network is a constraint to be considered in the optimization problem.
As a result, the optimization problem is not convex. In the primal formulation, different
methods are developed to encode the nonlinear activation functions as linear constraints.
Examples include NS Verify (Lomuscio & Maganti, 2017), MIPVerify (Tjeng et al., 2017),
and ILP (Bastani et al.,2016)). The constraints can also be simplified using the dual formu-
lation. Representative methods are Duality (Dvijotham et al.l [2018), ConvDual (Wong &
Kolter, [2018)), and Certify (Raghunathan et al.| 2018)).

3. Search. These methods search for a case to falsify the assertion. Search is usually combined
with either reachability or optimization, as the latter two methods provide possible search
directions. Representative methods for search and reachability are ReluVal (Wang et al.,
2018), DLV (Huang et al., [2017), Fast-Lin (Weng et al., [2018])), and Fast-Lip (Weng et al.,
2018)). Representative methods for search and optimization are Reluplex (Katz et al.,[2017),
Planet (Ehlers, 2017)), BaB (Bunel et al., |2017), and Sherlock (Dutta et al., 2017). Some
of these methods call Boolean satisfiability (SAT) or satisfiability modulo theories (SMT)
solvers (Barrett & Tinellil [2018) to verify ReL.U networks.

2.2  CLASSIFICATION BY INPUT AND OUTPUT SUPPORT

In general, the input set X and the output set ) can have any geometry. However, as a simplification,
our implementation assumes that X’ is a polytope, and ) is either a polytope or the complement of
a polytope. A polytope is a generalization of a polygon to higher dimensions and is defined as the
intersection of a set of half-spaces. Since any compact domain can be approximated by a finite set of
polytopes for any required accuracy, this formulation can be easily extended to arbitrary geometries.
Moreover, the complement of a polytope allows the encoding of unbounded sets.
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Neural Verification.jl supports the following subclasses of polytopesﬂ

e Halfspace-polytope (or H-Polytope), which represents polytopes using a set of linear in-
equality constraints
Cx <d, 2)
where C' € R"** d € R, and k is the number of inequality constraints that are defining
the polytope. A point x is in the polytope if and only if Cx < d is satisfied.
e Hyperrectangle, which corresponds to a high-dimensional rectangle, defined by
[x—c[<T, 3)
where ¢ € R*0 is the center of the hyperrectangle and r € R¥° is the radius of the hyper-
rectangle.

e Halfspace, which is represented by a single linear inequality constraint
c’'x < d, “4)
where ¢ € R* and d € R.

2.3 DESCRIPTION OF ALGORITHMS

The following table summarizes the characteristics of the algorithms implemented in Neural Verifi-
cation.jl.

Table 1: List of existing methods. The entries under “approach” summarize the key idea of each
method. Note that for DLV, the original implementation is complete but may not be sound, while
our implementation is sound but not complete. HR, HP, HS, and PC stand for Hyperrectangle,
H-Polytope, Halfspace, and Polytope-Complement, respectively. Since H-Polytopes are more gen-
eral than Halfspaces and Hyperrectangles, any algorithm that supports the former should implicitly
support the latter two as well.

Method Name Approach Input/Output Completeness
ExactReach (Xiang et al.,[2017) Exact Reachability HP/HP v
AI2 (Gehr et al.| 2018) Split and Join HP/HP X
MaxSens (Xiang et al.| 2018) Interval Arithmatic HP/HP X
NSVerify (Lomuscio & Maganti, 2017) Naive MILP HR/PC v
MIPVerify (Tjeng et al.,[2017) MILP with bounds HR/PC v
ILP (Bastani et al.,[2016) Iterative LP HR/PC X
Duality (Dvijotham et al., 2018) Lagrangian Relaxation HR/HS X
ConvDual (Wong & Kolter; 2018) Convex Relaxation HR(uniform)/HS X
Certify (Raghunathan et al.} 2018) Semidefinite Relaxation HR/HS X
Fast-Lin (Weng et al.,|2018) Network Relaxation HR/HS X
Fast-Lip (Weng et al.| 2018) Lipschitz Estimation HR/HS X
ReluVal (Wang et al.[|2018)) Symbolic Interval HR/HR v
DLV (Huang et al.l|2017) Search in Hidden Layers HR/HR(1-D) vE
Sherlock (Dutta et al., 2017) Local and Global Search HR/HR(1-D) X
BaB (Bunel et al.||2017) Branch and Bound HR/HR(1-D) X
Planet (Ehlers, 2017) Satisfiability (SAT) HR/PC v
Reluplex (Katz et al., 2017) Simplex HR/PC v

3 NEURALVERIFICATION.JL

Neural Verification.jl is a software library implemented in Julia for verifying deep neural networks.
At the moment, all of the algorithms are written under the assumption of feedforward, fully-
connected networks. While a few of the methods can handle arbitrary activation functions, most

!'Our implementation relies on geometric definitions provided by LazySets.jl, a Julia package for calculus
with convex sets. That library can be found at https://github.com/JuliaReach/LazySets. jl.
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are restricted to ReLU. The library is open source under the MIT license and can be found at
https://github.com/sisl/NeuralVerification. jll

We now provide a minimal tutorial to illustrate how to get started using Neural Verification.jl
3.1 INSTALLATION
To download this library, clone it from the julia package manager:

(v1.0) pkg> add https://github.com/sisl/NeuralVerification.jl.git

3.2 USAGE

A Problem consists of a network to be tested, which can be loaded using the NNet format (Julian,
2016) or created using the Net work object of Neural Verification.jl, a set representing the input A,
and another set representing the output ).

Note that the input and output sets may be of different types for different solvers as noted in Sec-
tion [T] In this case, we use hyperrectangles to represent out sets, and therefore implicitly restrict
ourselves to only those solvers that support them.

using NeuralVerification, LazySets

nnet = read_nnet ("examples/networks/small_nnet.nnet");
input = Hyperrectangle(low = [-1.0], high = [1.0]);
output = Hyperrectangle(low = [-1.0], high = [100.0]);

problem = Problem(nnet, input, output);

For this example, we initialize an instance of MaxSens with a custom resolution, which determines
how small the input set is partitioned for the search. For more information about MaxSens (and
other solvers,) please refer to the library’s documentation at: https://sisl.github.io/
NeuralVerification.jl/latest/, as well as to (Liu et al., 2019). Note that often, since
the characteristics of the Problem dictate the input and output constraint types, this will also dictate
which solvers are most appropriate.

solver = MaxSens (resolution = 0.3);
To solve the Problem, we simply call the solve function:

result = solve(solver, problem);
>> ReachabilityResult (:holds)

In this case, the solver returns a ReachabilityResult and indicates that the property holds. A
result status of : holds means that the specified input-output relationship is satisfied. In terms of
the problem formulation presented in Section [I.T} we can say that no input in the input region can
produce a point that is outside of the specified output region.

Conversely, a result status of :violated would mean that the input-output relationship is not
satisfied, i.e. that the property being tested for in the network does not hold. In the following
example, the output set is altered so that the property is violated. When a property is violated,
the solver returns the cause of the violation for reference. Since MaxSens is a reachability based
method, it returns the calculated reachable output set:

output = Hyperrectangle(low = [-10.0], high = [0.0]);
problem = Problem(nnet, input, output);
result = solve(solver, problem);

result.status

>> :violated

result.reachable

>> l-element Array{Hyperrectangle{Float64},1}:
Hyperrectangle{Float64} ([54.5], [24.0])

A status of :unknown is also possible for some algorithms.
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4 CONCLUSION

We have introduced Neural Verification.jl along with the minimal mathematical definitions required
to specify a Neural Network Verification problem. This work introduces a mathematical framework
for verifying neural networks, classifies existing methods under this framework, and provides a
library for their implementation.
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