Presented at ICLR 2019 Debugging Machine Learning Models Workshop

NEURALVERIFICATION.JL: ALGORITHMS FOR VERI-
FYING DEEP NEURAL NETWORKS

Changliu Liu

Robotics Institute

Carnegie Mellon University
cliu6@andrew.cmu.edu

Tomer Arnon, Christopher Lazarus & Mykel J. Kochenderfer
Stanford Intelligent Systems Laboratory

Stanford University

{tarnon, clazarus, mykel}@ stanford.edu

ABSTRACT

Deep neural networks (DNNs) are widely used for nonlinear function approxima-
tion with applications ranging from computer vision to control. Although DNNs
involve the composition of simple arithmetic operations, it can be very challeng-
ing to verify whether a particular network satisfies certain input-output properties.
This work introduces Neural Verification.jl, a software package that implements
methods that have emerged recently for soundly verifying such properties. These
methods borrow insights from reachability analysis, optimization, and search. We
present the formal problem definition and briefly discuss the fundamental differ-
ences between the implemented algorithms. In addition, we provide a pedagogical
example of how to use the library.

1 INTRODUCTION

Neural networks (Goodfellow et al.l 2016) have been widely used in many applications, such as im-
age classification and understanding (He et al.| 2016)), language processing (Manning et al., |2014),
and control of autonomous systems (Mnih et al) [2015). These networks map inputs to outputs
through a sequence of layers. At each layer, the input to that layer undergoes an affine transforma-
tion followed by a nonlinear transformation. These nonlinear transformations are called activation
functions, and a common example is the rectified linear unit (ReLU), which sets any negative values
to zero. Although the computation involved in a neural network is quite simple, these networks can
represent complex nonlinear functions by appropriately choosing the matrices that define the affine
transformations.

Neural networks are being used for increasingly important tasks, and in some cases, incorrect outputs
can lead to costly consequences. Traditionally, validation of neural networks has largely focused on
evaluating the network on a large collection of points in the input space and determining whether
the outputs are as desired. However, since the input space is effectively infinite in cardinality, it
is not feasible to check all possible inputs. Even networks that perform well on a large sample of
inputs may not correctly generalize to new situations and may be vulnerable to adversarial attacks
(Papernot et al., |[2016)).

Neural Verification.jl implements methods that are capable of formally verifying properties of DNNs.
A property can be formulated as a statement that if the input belongs to some set X, then the output
will belong to some set). To illustrate, in classification problems, it can be useful to verify that
points near a training example belong to the same class as that example. As another example, in the
control of physical systems, it can be useful to verify that the outputs from a network satisfy a safety
constraint.

The verification algorithms implemented in the library are all sound, meaning that they will only
report that a property holds if the property actually holds. Some of the algorithms are also complete,

Presented at ICLR 2019 Debugging Machine Learning Models Workshop

meaning that whenever the property holds, the algorithm will always correctly state that it holds.
However, some algorithms compromise completeness since they use approximations to improve
computational efficiency. A full discussion of all of the algorithms, their properties, and mathemat-
ical derivations can be found in (Liu et al.,[2019).

1.1 PROPERTY DEFINITION

Consider an n-layer feedforward neural network that represents a function f with input x € Dy C
R and outputy € Dy C R*",i.e. y = f(x), where ky is the input dimension and k, is the output
dimension.

Verification entails checking whether input-output relationships of the network hold. The input
constraint is imposed by a set X C Dy. The corresponding output constraint is imposed by a set
Y C Dy. In this context, we call the sets X and) constraints. Solving the verification problem
requires showing that the following assertion holds:

xeX=>y=f(x)ec). (1)

Following this definition, encoding problems for Neural Verification.jl requires that the user specify
the input set X’ and the output set).

2 ALGORITHMS

Neural Verification.jl currently implements 17 algorithms which draw insight from three different
categories of analysis:

2.1 CLASSIFICATION BY TECHNIQUE

1. Reachability. These methods use layer-by-layer reachability analysis of the network. Rep-
resentative methods are ExactReach (Xiang et al.| |2017), MaxSens (Xiang et al., 2018)),
and Ai2 (Gehr et al., [2018]). Some other approaches also use reachability methods (such as
interval arithmetic) to compute the bounds on the values of the nodes.

2. Optimization. These methods use optimization to falsify the assertion. The function repre-
sented by the neural network is a constraint to be considered in the optimization problem.
As a result, the optimization problem is not convex. In the primal formulation, different
methods are developed to encode the nonlinear activation functions as linear constraints.
Examples include NS Verify (Lomuscio & Maganti, 2017), MIPVerify (Tjeng et al., 2017),
and ILP (Bastani et al.,2016)). The constraints can also be simplified using the dual formu-
lation. Representative methods are Duality (Dvijotham et al.l [2018), ConvDual (Wong &
Kolter, [2018)), and Certify (Raghunathan et al.| 2018)).

3. Search. These methods search for a case to falsify the assertion. Search is usually combined
with either reachability or optimization, as the latter two methods provide possible search
directions. Representative methods for search and reachability are ReluVal (Wang et al.,
2018), DLV (Huang et al., [2017), Fast-Lin (Weng et al., [2018])), and Fast-Lip (Weng et al.,
2018)). Representative methods for search and optimization are Reluplex (Katz et al.,[2017),
Planet (Ehlers, 2017)), BaB (Bunel et al., |2017), and Sherlock (Dutta et al., 2017). Some
of these methods call Boolean satisfiability (SAT) or satisfiability modulo theories (SMT)
solvers (Barrett & Tinellil [2018) to verify ReL.U networks.

2.2 CLASSIFICATION BY INPUT AND OUTPUT SUPPORT

In general, the input set X and the output set) can have any geometry. However, as a simplification,
our implementation assumes that X’ is a polytope, and) is either a polytope or the complement of
a polytope. A polytope is a generalization of a polygon to higher dimensions and is defined as the
intersection of a set of half-spaces. Since any compact domain can be approximated by a finite set of
polytopes for any required accuracy, this formulation can be easily extended to arbitrary geometries.
Moreover, the complement of a polytope allows the encoding of unbounded sets.

Presented at ICLR 2019 Debugging Machine Learning Models Workshop

Neural Verification.jl supports the following subclasses of polytopesﬂ

e Halfspace-polytope (or H-Polytope), which represents polytopes using a set of linear in-
equality constraints
Cx <d, 2)
where C' € R"** d € R, and k is the number of inequality constraints that are defining
the polytope. A point x is in the polytope if and only if Cx < d is satisfied.
e Hyperrectangle, which corresponds to a high-dimensional rectangle, defined by
[x—c[<T, 3)
where ¢ € R*0 is the center of the hyperrectangle and r € R¥° is the radius of the hyper-
rectangle.

e Halfspace, which is represented by a single linear inequality constraint
c’'x < d, “4)
where ¢ € R* and d € R.

2.3 DESCRIPTION OF ALGORITHMS

The following table summarizes the characteristics of the algorithms implemented in Neural Verifi-
cation.jl.

Table 1: List of existing methods. The entries under “approach” summarize the key idea of each
method. Note that for DLV, the original implementation is complete but may not be sound, while
our implementation is sound but not complete. HR, HP, HS, and PC stand for Hyperrectangle,
H-Polytope, Halfspace, and Polytope-Complement, respectively. Since H-Polytopes are more gen-
eral than Halfspaces and Hyperrectangles, any algorithm that supports the former should implicitly
support the latter two as well.

Method Name Approach Input/Output Completeness
ExactReach (Xiang et al.,[2017) Exact Reachability HP/HP v
AI2 (Gehr et al.| 2018) Split and Join HP/HP X
MaxSens (Xiang et al.| 2018) Interval Arithmatic HP/HP X
NSVerify (Lomuscio & Maganti, 2017) Naive MILP HR/PC v
MIPVerify (Tjeng et al.,[2017) MILP with bounds HR/PC v
ILP (Bastani et al.,[2016) Iterative LP HR/PC X
Duality (Dvijotham et al., 2018) Lagrangian Relaxation HR/HS X
ConvDual (Wong & Kolter; 2018) Convex Relaxation HR(uniform)/HS X
Certify (Raghunathan et al.} 2018) Semidefinite Relaxation HR/HS X
Fast-Lin (Weng et al.,|2018) Network Relaxation HR/HS X
Fast-Lip (Weng et al.| 2018) Lipschitz Estimation HR/HS X
ReluVal (Wang et al.[|2018)) Symbolic Interval HR/HR v
DLV (Huang et al.l|2017) Search in Hidden Layers HR/HR(1-D) vE
Sherlock (Dutta et al., 2017) Local and Global Search HR/HR(1-D) X
BaB (Bunel et al.||2017) Branch and Bound HR/HR(1-D) X
Planet (Ehlers, 2017) Satisfiability (SAT) HR/PC v
Reluplex (Katz et al., 2017) Simplex HR/PC v

3 NEURALVERIFICATION.JL

Neural Verification.jl is a software library implemented in Julia for verifying deep neural networks.
At the moment, all of the algorithms are written under the assumption of feedforward, fully-
connected networks. While a few of the methods can handle arbitrary activation functions, most

!'Our implementation relies on geometric definitions provided by LazySets.jl, a Julia package for calculus
with convex sets. That library can be found at https://github.com/JuliaReach/LazySets. jl.

https://github.com/JuliaReach/LazySets.jl.

Presented at ICLR 2019 Debugging Machine Learning Models Workshop

are restricted to ReLU. The library is open source under the MIT license and can be found at
https://github.com/sisl/NeuralVerification. jll

We now provide a minimal tutorial to illustrate how to get started using Neural Verification.jl
3.1 INSTALLATION
To download this library, clone it from the julia package manager:

(v1.0) pkg> add https://github.com/sisl/NeuralVerification.jl.git

3.2 USAGE

A Problem consists of a network to be tested, which can be loaded using the NNet format (Julian,
2016) or created using the Net work object of Neural Verification.jl, a set representing the input A,
and another set representing the output).

Note that the input and output sets may be of different types for different solvers as noted in Sec-
tion [T] In this case, we use hyperrectangles to represent out sets, and therefore implicitly restrict
ourselves to only those solvers that support them.

using NeuralVerification, LazySets

nnet = read_nnet ("examples/networks/small_nnet.nnet");
input = Hyperrectangle(low = [-1.0], high = [1.0]);
output = Hyperrectangle(low = [-1.0], high = [100.0]);

problem = Problem(nnet, input, output);

For this example, we initialize an instance of MaxSens with a custom resolution, which determines
how small the input set is partitioned for the search. For more information about MaxSens (and
other solvers,) please refer to the library’s documentation at: https://sisl.github.io/
NeuralVerification.jl/latest/, as well as to (Liu et al., 2019). Note that often, since
the characteristics of the Problem dictate the input and output constraint types, this will also dictate
which solvers are most appropriate.

solver = MaxSens (resolution = 0.3);
To solve the Problem, we simply call the solve function:

result = solve(solver, problem);
>> ReachabilityResult (:holds)

In this case, the solver returns a ReachabilityResult and indicates that the property holds. A
result status of : holds means that the specified input-output relationship is satisfied. In terms of
the problem formulation presented in Section [I.T} we can say that no input in the input region can
produce a point that is outside of the specified output region.

Conversely, a result status of :violated would mean that the input-output relationship is not
satisfied, i.e. that the property being tested for in the network does not hold. In the following
example, the output set is altered so that the property is violated. When a property is violated,
the solver returns the cause of the violation for reference. Since MaxSens is a reachability based
method, it returns the calculated reachable output set:

output = Hyperrectangle(low = [-10.0], high = [0.0]);
problem = Problem(nnet, input, output);
result = solve(solver, problem);

result.status

>> :violated

result.reachable

>> l-element Array{Hyperrectangle{Float64},1}:
Hyperrectangle{Float64} ([54.5], [24.0])

A status of :unknown is also possible for some algorithms.

https://github.com/sisl/NeuralVerification.jl
https://sisl.github.io/NeuralVerification.jl/latest/
https://sisl.github.io/NeuralVerification.jl/latest/

Presented at ICLR 2019 Debugging Machine Learning Models Workshop

4 CONCLUSION

We have introduced Neural Verification.jl along with the minimal mathematical definitions required
to specify a Neural Network Verification problem. This work introduces a mathematical framework
for verifying neural networks, classifies existing methods under this framework, and provides a
library for their implementation.

REFERENCES

Clark Barrett and Cesare Tinelli. Satisfiability modulo theories. In Handbook of Model Checking,
pp. 305-343. Springer, 2018.

Osbert Bastani, Yani Ioannou, Leonidas Lampropoulos, Dimitrios Vytiniotis, Aditya Nori, and An-
tonio Criminisi. Measuring neural net robustness with constraints. In Advances in Neural Infor-
mation Processing Systems (NIPS), pp. 2613-2621, 2016.

Rudy Bunel, Ilker Turkaslan, Philip HS Torr, Pushmeet Kohli, and M Pawan Kumar. A unified view
of piecewise linear neural network verification. ArXiv, (1711.00455), 2017.

Souradeep Dutta, Susmit Jha, Sriram Sanakaranarayanan, and Ashish Tiwari. Output range analysis
for deep neural networks. ArXiv, (1709.09130), 2017.

Krishnamurthy Dvijotham, Robert Stanforth, Sven Gowal, Timothy Mann, and Pushmeet Kohli. A
dual approach to scalable verification of deep networks. In Conference on Uncertainty in Artificial
Intelligence (UAI), pp. 162—171, Corvallis, Oregon, 2018. AUAI Press.

Ruediger Ehlers. Formal verification of piece-wise linear feed-forward neural networks. In Interna-
tional Symposium on Automated Technology for Verification and Analysis, pp. 269—286. Springer,
2017.

Timon Gehr, Matthew Mirman, Dana Drashsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and Mar-
tin Vechev. Ai2: Safety and robustness certification of neural networks with abstract interpreta-
tion. In IEEE Symposium on Security and Privacy (SP), 2018.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1.
MIT Press, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In IEEE Computer Society Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pp. 770-778, 2016.

Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. Safety verification of deep neural
networks. In International Conference on Computer Aided Verification, pp. 3-29. Springer, 2017.

Kyle Julian. NNet: nnet file format for fully connected relu networks, 2016. URL https://
github.com/sisl/NNet|

Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. Reluplex: An
efficient smt solver for verifying deep neural networks. In International Conference on Computer
Aided Verification, pp. 97-117. Springer, 2017.

Changliu Liu, Tomer Arnon, Christopher Lazarus, Clark Barrett, and Mykel J. Kochenderfer. Al-
gorithms for verifying deep neural networks. CoRR, abs/1903.06758, 2019. URL http:
//arxiv.org/abs/1903.06758.

Alessio Lomuscio and Lalit Maganti. An approach to reachability analysis for feed-forward relu
neural networks. ArXiv, (1706.07351), 2017.

Christopher Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven Bethard, and David Mc-
Closky. The stanford corenlp natural language processing toolkit. In Annual Meeting of the
Association for Computational Linguistics: System Demonstrations, pp. 55-60, 2014.

https://github.com/sisl/NNet
https://github.com/sisl/NNet
http://arxiv.org/abs/1903.06758
http://arxiv.org/abs/1903.06758

Presented at ICLR 2019 Debugging Machine Learning Models Workshop

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529, 2015.

Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik, and Ananthram
Swami. The limitations of deep learning in adversarial settings. In IEEE European Symposium
on Security and Privacy (EuroS&P), pp. 372-387. IEEE, 2016.

Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Certified defenses against adversarial
examples. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=Bys4ob—-Rb.

Vincent Tjeng, Kai Xiao, and Russ Tedrake. Evaluating robustness of neural networks with mixed
integer programming. ArXiv, (1711.07356), 2017.

Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. Formal security analysis
of neural networks using symbolic intervals. In 27th USENIX Security Symposium (USENIX
Security 18), Baltimore, MD, 2018. USENIX Association. URL https://www.usenix.
org/conference/usenixsecurityl8/presentation/wang—-shiqgi.

Lily Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Luca Daniel, Duane Boning,
and Inderjit Dhillon. Towards fast computation of certified robustness for ReLU networks. In
Jennifer Dy and Andreas Krause (eds.), International Conference on Machine Learning (ICML),
volume 80 of Proceedings of Machine Learning Research, pp. 5276-5285, Stockholmsmassan,
Stockholm Sweden, 10-15 Jul 2018. PMLR. URL http://proceedings.mlr.press/
v80/wengl8a.html.

Eric Wong and Zico Kolter. Provable defenses against adversarial examples via the convex outer
adversarial polytope. In Jennifer Dy and Andreas Krause (eds.), International Conference on
Machine Learning (ICML), Proceedings of Machine Learning Research, pp. 5286-5295, Stock-
holmsmassan, Stockholm Sweden, 10-15 Jul 2018. PMLR. URL http://proceedings.
mlr.press/v80/wongl8a.htmll

W. Xiang, H. Tran, and T. T. Johnson. Output reachable set estimation and verification for multilayer
neural networks. IEEE Transactions on Neural Networks and Learning Systems, 29(11):5777—
5783, Nov 2018. ISSN 2162-237X. doi: 10.1109/TNNLS.2018.2808470.

Weiming Xiang, Hoang-Dung Tran, and Taylor T Johnson. Reachable set computation and safety
verification for neural networks with relu activations. ArXiv, (1712.08163), 2017.

https://openreview.net/forum?id=Bys4ob-Rb
https://openreview.net/forum?id=Bys4ob-Rb
https://www.usenix.org/conference/usenixsecurity18/presentation/wang-shiqi
https://www.usenix.org/conference/usenixsecurity18/presentation/wang-shiqi
http://proceedings.mlr.press/v80/weng18a.html
http://proceedings.mlr.press/v80/weng18a.html
http://proceedings.mlr.press/v80/wong18a.html
http://proceedings.mlr.press/v80/wong18a.html

	Introduction
	Property definition

	Algorithms
	Classification by technique
	Classification by Input and Output support
	Description of Algorithms

	NeuralVerification.jl
	Installation
	Usage

	Conclusion

