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Suppose that one could stretch a geographical map so that areas containing
many people would appear large, and areas containing few people would appear
small. On a rubber map, for example, every person might be represented by an
inked dot. We now imagine the rubber sheet to be stretched so that all the dots are
at an equal distance from each other (see Ruston!). If such a map could be con-
structed, then all perfect political districts should be the same size, for they should
contain equal numbers of people. Alternately, one might wish to construct district
boundaries by drawing them as hexagons on such a map. These general notions are
made more precise and given mathematical definition in the paragraphs that follow.
The political problem of districting is related to a classical theoretical problem in the
field of geography. The location-theoretic problem of positioning service facilities
(schools, hospitals, stores, cities, and so forth) in a geographic area of varying
population density has a structure similar to the districting problem (see Bunge?).
This theoretical problem in geography provided the main impetus for my research,
and it 1s reflected in the results to be demonstrated.

Assume first that the relevant population density is described as a continuous
nonnegative function of position, h(x, y). A small rectangle bounded by x, x + Ax,
y, ¥ + Ay then contains h(x, y)AxAy people. This number is to be the same as the
area of a small rectangle bounded by the lines u, u + Au, v, v + Av on the final
diagram. The condition equation thus becomes

h(x, y)AxAy = Au Ay,
Passing to differentials, we have
h(x, y) dxdy = dudy,

and, inserting the Jacobian determinant for a change of variables

ou ad ou g
h(x, y) dx dy = (a_za—;_;;é{) dx dy.

The basic differential equation of the system is thus J = h(x, y). This is immedi-
ately seen to be a generalization of the notion of an equal area mapping and easily
extended to a sphere or ellipsoid (see Tobler?). We do not wish to place any re-
strictions, other than boundedness, on the density function h, thus ruling out some
simpler solutions to this equation, as for example might be suggested if h were
separable, or centrally symmetric when given in polar coordinates. The basic differ-
ential equation defines an infinite number of possible distorted maps or cartograms.
The necessary next step is to add further conditions, and the one which comes to
mind immediately is rather obvious. The distorted map should look as much like
the usual map as possible or—in keeping with the present context—should maintain
compactness as nearly as possible. These two statements turn out to be mathe-
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matically equivalent and require that the transformation be as nearly conformal
as possible. The entire problem is thus given as

minimize f[ wur + ur oVt L OV 4k d
r LoX 9 X ay 4

. ou v au v
subject to — -- — -— — — h(x,y) =0
X3y 9y ax

which requires only minor modification to be adapted to the terrestrial sphere or
ellipsoid.

An analytical solution to this pair of equations is not known, but an iterative
finite difference method has been programmed. The basic algorithm is as foliows.
Consider a rectangle on the map with bounding vertices u;, vi, 1 = 1, 2, 3, 4. The
area of this rectangle is easily computed as a function of the values of vertex co-
ordinates and can be compared with the desired area as defined by h, suitably
normalized. By adding small increments Au;, Av;, 1 = 1, 2, 3, 4, to each of the vertex
coordinates we can change the area of the rectangle. It is only necessary to compute
the appropriate values for Au;, Av;, t = 1, 2, 3, 4. These values are obtained by
writing the equation for the difference in area as a function of the modifications to
the vertices. But there are eight values to be found, and only one equation. We now
invoke the near conformality requirement which says that the change is to be a
similitude. The single increment to the vertex coordinates is now found to be given
by a quadratic function involving the difference between the desired and actual area
of the rectangle.

This completes the adjustment for one rectangle. An interior vertex point, how-
ever, will be connected to four rectangles, and the latter may conflict in their desired
adjustments. The vector mean of the displacements is used in this case, and the
program cycles back for another iteration. The method is easily extended to cells of
arbitrary shape. The program converges but it is slow, because before any vertex is
adjusted a topological test must be performed to keep vertices from crossing the
boundary of any cell, and boundaries are not allowed to cross over vertices. A mean
square error criterion has been adopted to measure the efficacy of the iterations.

The United States has been used as a first example, beginning with an estimate
of the number of people contained within each one degree quadrilateral of latitude
and longitude. The computations start from an initial configuration in which the cell
vertices are defined by integral values of latitude (¢) and longitude (\), with a small
adjustment for the mean latitude. The iterations produce a table of u, v coordinates
for the bounding vertices of each cell; i.e., we have a one-to-one mapping

(e, M) = (u, v).

Using double bivariate interpolation, a map projection plotting program, and a
magnetic tape containing an outline of the United States, a complete cartogram can
be plotted (see FIGURE 1). On this map we define a set of compact cells, hexagons,
in u, v coordinates. Another program computes the inversion

U, v) = (&N

and this allows us to map the hexagons back onto the regular United States map.
Each cell now contains an equal number of people, and this result is exact to the
extent that the iterations have converged. It is obviously not valid in the oceanic
areas, where some population has been allocated for aesthetic reasons.
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FIGURE 2. Southern Michigan: normal county map (left) and 1970 population carto-
gram after eight iterations.

_Ficure 3. Districting on a cartogram. From left to right: approximation by a regular
grid, accommodation to the required boundaries, and transfer to the original map.

set of districts. Since we cannot, by the assumptions of the problem, get rid of the
county boundaries, let us consider the grid as suggestive of what the final appear-
ance of the districts should be. More precisely, let us attempt to find a set of districts
the boundaries of which depart as litile as possible from the grid. “As little as
possible”” can be taken in the least squares sense, meaning that some measure of
mismatch, e.g. the area between the boundaries of the districts and the edges of the
cells, must be minimized. A formal solution of the problem stated in this manner
does not seem easier than the initial problem. Visually and heuristically we begin by
attempting to match the edge of the grid with the edge of the map. (The map can be
made to fit exactly into a rectangle of the proper proportions, but this has not been
done in the example.) Now pick those county lines that fall near grid lines, and do a
lot of fudging to obtain the requisite number of districts (15 in the present instance—
recalling that one of the counties is already bigger than three optimal districts and
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that we do not allow splitting of counties, by our assumptions). Finally transfer the
lines back to the original map. The mean percentage error of the districting on this
first attempt is 44.69%. This result is attrocious, even though most of the error must,
at least in this instance, be attributed to the initial conditions of the problem.

As a third example, assume that the population density of a city can be described
to an arbitrary degree of accuracy by a mathematical equation, and that the first
term in such an expansion (see Tobler?) is

D = () = S = R):

where
D = number of persons per square kilometer
P = total population
r = distance in kilometers from the center of town
R = 0.035P%, the radius of the town
x = 3.14159 . ..

In this “parabolic” town, densities do not vary with direction, so that a natural,
not necessarily optimal, solution to the defining differential equation in polar

coordinates is given by
Y E
ViR T RTR

0 =0

FIGURE 4 shows this transformation applied to a simple street map of the city of Ann
Arbor, whose population is 100,000. This population cartogram may be used as
the previous maps were if one keeps in mind the several approximations that were
invoked during its construction. The polar coordinate form of solution is especially
advantageous when pie-shaped districts are specified by the legal system.

The foregoing three examples demonstrate application of a continuous trans-
formation to a districting problem with data given for a cellular lattice, for irregu-
lar polygons, and by an approximating equation, at national, regional, and local

FiGURE 4. Left: conventional map of Ann Arbor. Right: population cartogram of Ann
Arbor.
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scales. A definite improvement in accuracy and especially in computational speed
would be achieved if an analytical solution were available for the system of differen-
tial equations.
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