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Summary. Precise classification of tumours is critical for the diagnosis and treatment of can-
cer. Diagnostic pathology has traditionally relied on macroscopic and microscopic histology and
tumour morphology as the basis for the classification of tumours. Current classification frame-
works, however, cannot discriminate between tumours with similar histopathologic features,
which vary in clinical course and in response to treatment. In recent years, there has been
a move towards the use of complementary deoxyribonucleic acid microarrays for the classi-
fication of tumours. These high throughput assays provide relative messenger ribonucleic acid
expression measurements simultaneously for thousands of genes. A key statistical task is
to perform classification via different expression patterns. Gene expression profiles may offer
more information than classical morphology and may provide an alternative to classical tumour
diagnosis schemes. The paper considers several Bayesian classification methods based on
reproducing kernel Hilbert spaces for the analysis of microarray data. We consider the logistic
likelihood as well as likelihoods related to support vector machine models. It is shown through
simulation and examples that support vector machine models with multiple shrinkage param-
eters produce fewer misclassification errors than several existing classical methods as well
as Bayesian methods based on the logistic likelihood or those involving only one shrinkage
parameter.

Keywords: Gibbs sampling; Markov chain Monte Carlo methods; Metropolis–Hastings
algorithm; Microarrays; Reproducing kernel Hilbert space; Shrinkage parameters; Support
vector machines

1. Introduction

Precise classification of tumours is of critical importance to the diagnosis and treatment of
cancer. Targeting specific therapies to pathogenetically distinct types of tumour is important
for the treatment of cancer because it maximizes efficacy and minimizes toxicity (Golub et al.,
1999). Diagnostic pathology has traditionally relied on macroscopic and microscopic histology
and tumour morphology as the basis for the classification of tumours. Current frameworks,
however, cannot discriminate between tumours with similar histopathologic features, which
vary in clinical course and in response to treatment. There is increasing interest in changing the
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basis of tumour classification from morphologic to molecular, using microarrays which provide
expression measurements for thousands of genes simultaneously (Schena et al., 1995; DeRisi
et al., 1997), a key goal being to perform classification via different expression patterns. Several
studies using microarrays to profile colon, breast and other tumours have demonstrated the
potential power of expression profiling for classification (Alon et al., 1999; Hedenfalk et al.,
2001). Gene expression profiles may offer more information than and provide an alternative to
morphology-based tumour classification systems. We focus on the classification of microarray
data.

In such analyses, there is a set of observations that contains vectors of gene expression data as
well as the labels of the corresponding tissues. Golub et al. (1999) used supervised learning meth-
ods and derived discriminant decision rules by using the magnitude and threshold of prediction
strength. However, they did not provide the procedure for selecting a cut-off value, which is
an essential ingredient for their approach. Heuristic rules for selection of the threshold can be
used, but this introduces an unavoidable subjectivity. Moler et al. (2000) proposed a naı̈ve Bayes
model and Xiong et al. (2000) conducted linear discriminant analysis for the classification of
tumours. Brown et al. (2000) used a support vector machine (SVM) to classify genes rather than
samples. Dudoit et al. (2002) compared several discriminant methods for the classification of
tumours.

The main difficulty with microarray data analysis is that the sample size n is small compared
with the number of genes p. This is known as the ‘large p, small n’ problem (West, 2003). In
this situation, dimension reduction is needed to reduce the high dimensional gene space. Most
existing approaches perform a preliminary selection of genes based on some criterion and use
only 5–10% of the genes for classification. In our approach, we can utilize all the genes rather
than eliminating most of them on the basis of a crude criterion.

In this paper we construct Bayesian binary classification models for prediction based on a
reproducing kernel Hilbert space (RKHS) (Aronszajn, 1950; Parzen, 1970) approach. The meth-
ods are quite general and, in particular, can be used for the classification of tumours. One nice
property of RKHS methods is that they allow us to project the prediction problem into a space
which is of dimension n�p. Usually RKHSs have been used in a decision theory framework
with no explicit underlying probabilistic model. Consequently, it is not possible to assess the
uncertainty either of the classifier itself or of predictions that are based on it.

Our goal is to present a full probabilistic model-based approach to RKHS-based classifica-
tion. First we shall consider the logistic classifier in this framework and then extend it to SVM
classifiers (Cristianini and Shawe-Taylor, 2000; Schölkopf and Smola, 2002). As with other reg-
ularization methods, there are smoothing or regularization parameters which need to be tuned
for efficient classification. One popular approach is to use generalized approximate cross-vali-
dation (Wahba et al., 2002) to tune the smoothing parameters. In this paper we take a different
approach, by developing a hierarchical model where the unknown smoothing parameter will be
interpreted as a shrinkage parameter (Denison et al., 2002). We shall assign a prior distribution
to it and obtain its posterior distribution via the Bayesian paradigm. In this way, we obtain
not only the point predictors but also the associated measures of uncertainty. Furthermore, we
shall extend the model to incorporate multiple smoothing parameters, leading to significant
improvements in prediction for the examples that are considered.

Before proceeding further, we review briefly related work in Bayesian learning and compare
our proposal with some existing methods. Tipping (2000, 2001) and Bishop and Tipping (2000)
introduced relevance vector machines (RVMs) in place of SVMs. Their objective, like ours,
was to obtain predictive distributions for future observations rather than just point predictors.
In the classification context, they began with a likelihood based on binary data with a logit
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link, as in Section 4.1 of this paper. The logits were assumed to have a regression structure
with a fairly general basis function including the basis function that is considered here. Then
a normal distribution was assigned to the vector of regression coefficients (which they called
‘weights’). Finally the Bayesian procedure was implemented by finding the posterior modes of
these regression coefficients, or some approximations thereof. Figueiredo (2002) took a similar
approach but used the probit instead of the logit link. He also used Jeffreys’s prior instead of the
usual Gaussian prior for regression coefficients. Zhu and Hastie (2002) proposed a frequentist
approach using only a subset of the regression vectors. They referred to the resulting proce-
dure as an import vector machine. They used iterative reweighted least squares as the fitting
method.

The present approach, though similar in spirit, is operationally quite different from these
approaches. First, the logits or the probits are not deterministic functions of the basis vectors
but include in addition a random error to account for any unexplained sources of variation.
For classification models with binary data it is well known that conjugate priors do not exist for
the regression coefficients and hence the computation becomes more difficult. By adopting a
Gaussian residual effect, many of the conditional distributions for the model parameters are of
standard form, which greatly aids the computations. Also, rather than estimating the hyper-
parameters, we assign distributions to them, thus accounting for uncertainty due to the estim-
ation of hyperparameters. Finally, a key feature of our method is the treatment of model
uncertainty through a prior distribution over the kernel parameter.

RVMs introduce sparseness in the model by considering heavy-tailed priors such as double-
exponential priors for the regression coefficients (Bishop and Tipping, 2000; Figueiredo, 2002).
This opportunity exists also for the SVM that is considered in this paper, even though the binary
probabilities are then modelled differently. In fact, in our examples, with a Bayesian hierarchi-
cal set-up the SVM shows more sparseness than does the logistic model. Several researchers
exploited this sparseness property to select significant genes (Roth, 2002; Lee et al., 2003). Our
main emphasis, however, is to obtain predictive distributions for future observations to be used
for classification rather than direct estimation of the parameters.

The idea of multiple smoothing parameters that is used in this paper has also been addressed
elsewhere. In the machine learning literature; this is known as automatic relevance determina-
tion (Mackay, 1996; Neal, 1996). An advantage of using multiple parameters is that it enables us
to detect the varying influence of different regression coefficients for prediction or classification.

Section 2 of this paper introduces the RKHS-based classification method. The hierarchical
classification model is introduced in Section 3. Section 4 provides the various likelihoods for
the logistic and the SVM classification models. Implementation of the Bayesian method is dis-
cussed in Section 5. Section 6 discusses prediction and choice of model. Section 7 contains the
examples. Section 8 contains some simulation results. Finally, some concluding remarks are
made in Section 9.

2. Classification method based on reproducing kernel Hilbert spaces

For a binary classification problem, we have a training set {yi, xi}, i= 1, . . . , n, where yi is the
response variable indicating the class to which the ith observation belongs and xi is the vector
of covariates of size p. The objective is to predict the posterior probability of belonging to one
of the classes given a set of new covariates, based on the training data. Usually the response is
coded as yi =1 for class 1 and yi =0 (or yi =−1) for the other class. We utilize the training data
y= .y1, . . . , yn/T and XT = .x1, . . . , xn/ to fit a model p.y|x/ and use it to obtain P.yÅ =1|y, xÅ/

for a future observation yÅ with covariate xÅ.
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For our problem, we have binary responses as yi =1 indicates that the tumour sample i is from
class 1 and yi =0 (or yi =−1) indicates that it belongs to class 2, for i=1, . . . , n. Gene expression
data on p genes for n tumour samples are summarized by an n×p matrix, so xij is the measure-
ment of the expression level of the jth gene for the ith sample .i = 1, . . . , n; j = 1, . . . , p/. It is
assumed that the expression levels xij represent rigorously processed data that have undergone
image processing as well as within- and between-slide normalization.

To develop a general model for classification, we need to specify a probability model for
p.y|x/ where x is high dimensional. To simplify the structure, we introduce the latent variables
z = .z1, . . . , zn/ and assume that p.y|z/=Πn

i=1p.yi|zi/, i.e. the yi are conditionally independent
given the zi. In the next stage, the latent variables zi are modelled as zi =f.xi/+ "i, i=1, . . . , n,
where f is not necessarily a linear function, and "i, the random residual effects, are independent
and identically distributed N.0, σ2/. The use of a residual component is consistent with the
belief that there may be unexplained sources of variation in the data. By adopting this Gaussian
residual effect, many of the conditional distributions for the model parameters are of standard
forms, which greatly aids the computations. To develop the complete model, we need to specify
p.y|z/ and f.

In the machine learning literature, most of the binary classification procedures emerged from a
loss-function-based approach. In the same spirit, we model p.y|z/ on the basis of a loss function
l.y, z/, which measures the loss for reporting z when the truth is y. Mathematically, minimizing
this loss function is equivalent to maximizing −l.y, z/, where exp{−l.y, z/} is proportional to
the likelihood function. This duality between ‘likelihood’ and ‘loss’, particularly viewing the loss
as the negative of the log-likelihood, is referred to in the Bayesian literature as a ‘logarithmic
scoring rule’ (see, for example, Bernardo (1979), page 688). Specific choices of the loss functions
and the corresponding likelihood functions are discussed in Section 4.

To model the high dimensional function f.x/, we adopt the RKHS approach. A Hilbert space
H is a collection of functions on a set T with an associated inner product 〈g1, g2〉 and norm
‖g1‖= 〈g1, g1〉1=2 for g1, g2 ∈ H . An RKHS H with reproducing kernel K (usually denoted as
HK) is a Hilbert space having an associated function K on T ×T with the properties

(a) K.·, x/∈H and
(b) 〈K.·, x/, g.·/〉 = g.x/ for all x ∈T and for every g in H .

Here K.·, x/ and g.·/ are functions that are defined on T with values at xÅ ∈T equal to K.xÅ, x/

and g.xÅ/ respectively. The reproducing kernel function provides the fundamental building-
blocks of H as a result of the following lemma from Parzen (1970).

Lemma 1. If K is a reproducing kernel for the Hilbert space H , then {K.·, x/} span H.

To prove the lemma it suffices to prove that the only function g in H orthogonal to K.·, x/ is
the zero function, but this is obvious, since by the reproducing property 〈g.·/, K.·, x/〉 = 0 for
every x ∈T implies that g.x/=0 for all x.

Lemma 1 has the consequence that functions of the form gN.·/=ΣN
j=1βjK.·, xj/, where xj ∈T

for each j =1, . . . , N, are dense in H. More precisely, for any g ∈HK, there are choices of N and
β1, . . . , βN such that a gN can be constructed to approximate g to any desired level of accuracy.
Thus, the reproducing kernel functions are the natural choice for basis expansion modelling in
an RKHS setting.

In the present problem, x1, . . . , xn are the observed covariate values and z the latent responses,
and we take the unknown function f ∈HK where the choice of K is discussed below. To find the
optimal f based on z and x, we minimize Σn

i=1{zi −f.xi/}2 +‖f‖2 with respect to f. Arguing
as in chapter 1 of Wahba (1990), this minimizer must admit the representation
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f.·/=β0 +
n∑

j=1
βj K.·, xj/: .1/

This reduces the optimization problem to a finite dimension n which is not large for gene expres-
sion data. Also, inference about f boils down to inference about β= .β0, β1, . . . , βn/T.

With the present Bayesian formulation we need to assign a prior to β. We shall provide a
flexible and computationally convenient hierarchical prior for β in the next section. In addition
we shall allow the kernel functions to depend on some unknown parameters to enrich the class
of kernels and express them as K.·, · |θ/. Hence, K becomes a function of an unknown param-
eter θ, but this dependence will be implicit through the remainder of the paper for notational
simplicity.

Different choices of the reproducing kernel K generate different function spaces. Two classical
choices are

(a) the Gaussian kernel K.xi, xj/= exp{−‖xi−xj‖2=θ} and
(b) the polynomial kernel K.xi, xj/= .xi ·xj +1/θ.

Here a ·b denotes the inner product of two vectors a and b. Both these kernels contain a single
parameter θ.

3. Hierarchical classification model

We can construct a hierarchical model for classification as

p.yi|zi/∝ exp{−l.yi, zi/}, i=1, . . . , n, .2/

where the y1, y2, . . . , yn are conditionally independent given z1, z2, . . . , zn and l is any specific
choice of the loss function as explained in the previous section. We relate zi to f.xi/ by zi =
f.xi/+ "i, where the "i are residual random effects.

As explained in the previous section, we express f as

f.xi/=β0 +
n∑

j=1
βj K.xi, xj|θ/ .3/

where K is a positive definite function of the covariates (inputs) x and we allow some unknown
parameters θ to enrich the class of kernels.

The random latent variable zi is thus modelled as

zi =β0 +
n∑

j=1
βj K.xi, xj|θ/+ "i =K′

iβ+ "i, .4/

where the "i are independent and identically distributed N.0, σ2/ variables, and

K′
i = .1, K.xi, x1|θ/, . . . , K.xi, xn|θ//, i=1, . . . , n:

To complete the hierarchical model, we need to assign priors to the unknown parameters
β, θ and σ2. We assign to β the Gaussian prior with mean 0 and variance σ2D−1

Å , where
DÅ ≡ diag.λ1, λ, . . . , λ/ is an .n+ 1/× .n+ 1/ diagonal matrix, λ1 being fixed at a small value,
but λ is unknown. This amounts to a large variance for the intercept term. We shall assign a
proper uniform prior to θ, an inverse gamma prior to σ2 and a gamma prior to λ. A gamma(α, ξ/

distribution for a random variable, say U , has probability density function proportional to
exp.−ξu/uα−1, and the reciprocal of U will then be said to have an IG(α, ξ) distribution. Our
model is thus given by

p.yi|zi/∝ exp{−l.yi, zi/},
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zi|β, θ, σ2 ind∼ N1.zi|K′
iβ, σ2/, .5/

β, σ2 ∼Nn+1.β|0, σ2D−1
Å / IG.σ2|γ1, γ2/, .6/

θ∼
p∏

q=1
U.aq1, aq2/,

λ∼gamma.m, c/, .7/

where U.aq1, aq2/ is the uniform probability density function over .aq1, aq2/.
We can extend this model by using multiple smoothing parameters so that the prior for

.β, σ2/ is

β, σ2 ∼Nn+1.β|0, σ2D−1/ IG.σ2|γ1, γ2/, .8/

where D is a diagonal matrix with diagonal elements λ1, . . . , λn+1. Once again λ1 is fixed at a
small value, but all other λs are unknown. We assign independent gamma(m, c) priors to them.
Let λ= .λ1, . . . , λn+1/T.

To avoid the problem of specifying the hyperparameters m and c of λ, we can use Jeffreys’s
independence prior p.λ/ ∝Πn+1

i=1 λ−1
i . This is a limiting form of the gamma prior when both

m and c go to 0. Figueiredo (2002) observed that this type of prior promoted sparseness, thus
reducing the effective number of parameters in the posterior. Sparse models are preferable as
they predict accurately using fewer parameters.

4. Likelihoods of reproducing kernel Hilbert space models

We now consider several possible expressions for l.yi, zi/ in expression (2).

4.1. Logistic classification model
If we code the responses yi as 0 or 1 according to the classes, then the probability function is
p.yi|zi/=p

yi

i .zi/{1−pi.zi/}1−yi , where pi.zi/= exp.zi/={1+ exp.zi/}. Then the log-likelihood
is Σn

i=1yizi − Σn
i=1log{1 + exp.zi/}. We can use this log-likelihood function and the Bayesian

model given in expressions (5)–(7) or expressions (5), (7) and (8) for prediction purposes. In the
probit classification model, the set-up is similar, except that pi.zi/=Φ.zi/, where Φ denotes the
standard normal distribution function.

4.2. Support vector machine model
We now describe the SVM classification method; for more details, the reader is referred to Cris-
tianini and Shawe-Taylor (2000), Schölkopf and Smola (2002) and Herbrich (2002). We code
the class labels as yi =1 or yi =−1. The idea behind SVMs is to find a linear hyperplane that sep-
arates the observations with y =1 from those with y =−1 that has the largest minimal distance
from any of the training examples. This largest minimal distance is known as the margin. As
shown by Wahba (1999) or Pontil et al. (2000), this optimization problem amounts to finding β
which minimizes 1

2‖β‖2 +C Σn
i=1 [1−yi f.xi/]+, where [a]+ =a if a > 0 and [a]+ =0 otherwise,

C � 0 is a penalty term and f is defined in equation (3). The problem can be solved by using
non-linear programming methods. Fast algorithms for computing SVM classifiers can be found
in chapter 7 of Cristianini and Shawe-Taylor (2000).

In a Bayesian formulation, this optimization problem is equivalent to finding the poster-
ior mode of β, where the likelihood is given by exp[−Σn

i=1{1 − yi f.xi/}+], and β has the
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N.0, CIn+1/ prior. However, in our formulation with latent variables z, we begin instead with
the density

p.y|z/∝ exp
(− n∑

i=1
[1−yizi]+

)
.9/

and assume independent N{f.xi/, σ2} priors for the zi. The rest of the prior is the same as that
given in expressions (6) and (7) or expressions (7) and (8).

If we use the density in expression (9), the normalizing constant may involve z. Following
Sollich (2001), we may bypass this problem by assuming a distribution for z such that the
normalizing constant cancels out. If the normalized likelihood is

p.y|z/= exp
(− n∑

i=1
[1−yizi]+

)/
c.z/,

where c.·/ is the normalizing constant, then, choosing p.z/ ∝ Q.z/ c.z/, the joint distribution
turns out to be

p.y, z/∝ exp
(− n∑

i=1
[1−yizi]+

)
Q.z/, .10/

as the c.·/ cancels from the expression. We shall take Q.z/ as the product of independent normal
probability density functions with means f.xi/ and common variance σ2. This method will be
referred to as the Bayesian support vector machine (BSVM) classification.

The above procedure, which is analogous to that in Sollich (2001), makes the Bayesian analy-
sis quite similar to the usual SVM analysis, but the prior on z is rather artificial and is intended
mainly to cancel out a normalizing constant. The other option is to use a Bayesian approach
to this problem by evaluating the normalizing constant properly and using it in the likelihood.
Then the probability model (cf. Sollich (2001)) is

p.yi|zi/=
{

{1+ exp.−2yizi/}−1 for |zi|�1,
.1+ exp[−yi{zi + sgn.zi/}]/−1 otherwise,

.11/

where sgn.u/=1, 0, −1 according to whether u is greater than, equal to or less than 0.
The probability density function that is given in expression (11) will also be used to per-

form a Bayesian analysis. The resulting approach will be referred to as complete SVM (CSVM)
classification and will be compared with the BSVM.

5. Bayesian analysis

For classification problems with binary data and a logistic likelihood, conjugate priors do not
exist for the regression coefficients. Hence, without the tailored proposal densities that are
needed for the implementation of the Metropolis–Hastings accept–reject algorithm, mixing in
the Markov chain Monte Carlo sampler can be poor as updates are rarely accepted. The con-
struction of good proposals depends on both the model and the data. The introduction of the
latent variables zi simplifies the computation (Holmes and Held, 2003), as we now show.

From the Bayes theorem,

p.β, θ, z, σ2, λ|y/∝p.y|z, β, θ, σ2, λ/ p.β, z, θ, λ, σ2/: .12/

This distribution is complex, and implementation of the Bayesian procedure requires Mar-
kov chain Monte Carlo sampling techniques, and, in particular, Gibbs sampling (Gelfand
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and Smith, 1990) and Metropolis–Hastings algorithms (Metropolis et al., 1953). The Gibbs
sampler generates posterior samples by using conditional densities of the model parameters
which we describe below.

First, we note again that, conditional on z, all the other parameters are independent of y
and furthermore the distributions follow from standard results for the Bayes linear model. This
allows us to adopt conjugate priors for .β, σ2/ and hence to perform simulations as well as to
marginalize over some of the parameter space.

5.1. Conditional distributions
The prior distributions given in expressions (6) and (7) of Section 2 are conjugate for β and σ2,
whose posterior density conditional on z, θ andλ is normal–inverse gamma,

p.β, σ2|z, θ, λ/=Nn+1.β|m̃, σ2Ṽ/ IG.σ2|γ̃1, γ̃2/, .13/

where m̃ = .K′
0K0 + D/−1.K′

0z/, Ṽ = .K′
0K0 + D/−1, γ̃1 =γ1 +n=2 and γ̃2 =γ2 + 1

2 .z′z − m̃′Ṽm̃/.
Here K′

0 = .K1, . . . , Kn/, and we recall that Ki = .K.xi, x1/, . . . , K.xi, xn//T.
The conditional distribution for the precision parameter λi given the coefficient βi is gamma

and is given by

p.λi|βi/=gamma
(

m+ 1
2

, c+ 1
2σ2 βi

2
)

, i=2, . . . , n+1: .14/

Finally, the full conditional density for zi is

p.zi|z−i, β, σ2, θ, λ/∝ exp
[
−l.yi, zi/− 1

2σ2

{
zi −

n∑
j=1

βj K.xi, xj/
}2]

:

Similarly, the full conditionals are found when λ2 = . . .=λn+1 =λ from expressions (7) and (8).

5.2. Posterior sampling of the parameters
We make use of the distributions that are given in Sections 4 and 5 through a Gibbs sampler
that iterates through the following steps:

(a) update z;
(b) update K, β and σ2;
(c) update λ.

For the update to z, we propose to update each zi in turn conditionally on the rest, i.e. we
update zi|z−i, y, K, σ2, β .i = 1, . . . , n/, where z−i indicates the z-vector with the ith element
removed.

The conditional distribution of zi does not have an explicit form; we thus resort to the Metrop-
olis–Hastings procedure with a proposal density T.zÅ

i |zi/ that generates moves from the current
state zi to a new state zÅ

i . The proposed updates are then accepted with probabilities

α=min
{

1,
p.yi|zÅ

i / p.zÅ
i |z−i, K/ T.zi|zÅ

i /

p.yi|zi/ p.zi|z−i, K/ T.zÅ
i |zi/

}
; .15/

otherwise the current state is retained.
We obtain p.yi|zi/ from expression (9) and

p.zi|z−i, K/∝ exp{−.zi −Kiβ/2=2σ2}:
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It is convenient to take the proposal distribution T.zÅ
i |zi/ to be a symmetric distribution (say

Gaussian) with mean equal to the old value zi and a prespecified standard deviation.
An update of K is equivalent to that of θ and we need a Metropolis–Hastings algorithm to

perform it. Now we need the marginal distribution of θ conditional on z. We can write

p.θ|z/∝p.z|θ/ p.θ/:

Let θÅ denote the proposed change to the parameter. Then we accept this change with accep-
tance probability

α=min
{

1,
p.z|θÅ/

p.z|θ/

}
: .16/

The ratio of the marginal likelihoods is given by

p.z|θÅ/

p.z|θ/
= |ṼÅ|1=2

|Ṽ|1=2

(
γ̃2

γ̃Å
2

)γ̃1

, .17/

where ṼÅ and γ̃Å
2 are similar to Ṽ and γ̃2 with θÅ replacing θ. Updating β, σ2 and λ is straight-

forward as they are generated from standard distributions.

6. Prediction and choice of model

For a new sample with gene expression xnew, the posterior predictive probability that its tissue
type, denoted by ynew, is cancerous is

p.ynew|xnew, y/=
∫

p.ynew =1|xnew, φ, y/ p.φ|y/ dφ, .18/

where φ is the vector of all the model parameters. Assuming conditional independence of the
responses, this integral reduces to∫

p.ynew =1|xnew, φ/ p.φ|y/ dφ: .19/

The associated measure of uncertainty is p.ynew =1|xnew, y/{1−p.ynew =1|xnew, y/}. The inte-
gral in expression (19) can be approximated by the Monte Carlo estimate

M∑
i=1

p.ynew =1|xnew, φ.i//=M, .20/

where φ.i/.i=1, . . . , M/ are the Markov chain Monte Carlo posterior samples of the parameter
φ.

To select from the various models, we shall generally use the misclassification error. When a
test set is provided, we first obtain the posterior distributions of the parameters (training the
model) based on the training data and use them to classify the test samples. For a new obser-
vation from the test set, say yi,tst, we shall obtain the probability p.yi,tst =1|ytrn, xtst/ by using
an equation that is similar to expression (19) and approximate it by its Monte Carlo estimate as
in equation (20). When this estimated probability exceeds 0.5, the new observation is classified
as 1. Otherwise, it is classified as 0 or −1, depending on whether we use the logistic or the
SVM likelihood.

If no test set is available, we use a leave-one-out cross-validation approach. We shall
exploit the technique that is described in Gelfand (1996) to simplify our computation. For the
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cross-validation predictive density, in general, writing y−i as the vector of yjs minus yi,

p.yi|y−i/= p.y/

p.y−i/
=

{∫
p.yi|y−i, φ/−1 p.φ|y/ dφ

}−1

: .21/

Monte Carlo integration yields

p̂.yi|y−i/=M

/
M∑

j=1
p.yi|y−i, φ.j//−1,

where φ.j/, j =1, . . . , M, are the Markov chain Monte Carlo posterior samples of the parameter
vector φ. This simple expression is due to the fact that yis are conditionally independent given
φis. If we wish to make draws from p.yi|y−i,trn/, then we need to use importance sampling
(Gelfand, 1996).

7. Examples

We illustrate the methodology with several examples. For all examples, six models were fitted:

(a) logistic regression with a single penalty parameter;
(b) logistic regression with multiple penalty parameters;
(c) BSVM classification with a single penalty parameter;
(d) BSVM classification with multiple penalty parameters;
(e) CSVM classification with a single penalty parameter;
(f) CSVM classification with multiple penalty parameters.

We have used the SVM MATLAB toolbox to obtain the classical SVM results (see http://
eewww.eng.ohio-state.edu/∼maj/osusvm/). The tuning parameters are chosen by
using an iterative solving method for the quadratic programming formulation of the SVMs
which is known as sequential minimization optimization. We obtained the RVM (Tipping, 2000)
MATLAB code from http://research.microsoft.com/mlp/RVM/relevance.htm.

Throughout the examples, we selected γ1 and γ2 to give a tight inverse gamma prior for σ2

with mean 0:1. For λ we chose m and c so that the mean of the gamma distribution was small,
say 10−3, but with a large variance; aq1 and aq2, the prior parameters of θ, are chosen by using
the x in such a way that computation of the kernel function does not overflow or underflow. We
performed the data analysis with both the Gaussian and the polynomial kernels K as introduced
in Section 3, and the results showed very little difference. The results that are reported here are
based on Gaussian kernels.

In all the examples we used a burn-in of 5000 samples, after which every 100th sample was
retained in the next 50000 samples. The convergence and mixing of the chain were checked by
using two independent chains and the methods that were described in Gelman (1996).

7.1. Bench-mark comparisons
We utilize artificially generated data in two dimensions to compare our models with other pop-
ular models. In these artificial data both class 1 and class 2 were generated from mixtures of
two Gaussian distributions by Ripley (1996), with the classes overlapping to the extent that the
Bayes error is around 8%.

In addition, we also analysed three well-known bench-mark data sets, compared results
with several state of the art techniques and present the results in Table 1. The first two data
sets are Pima Indians diabetes and Leptograpsus crabs (Ripley, 1996). The third data set is the
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Table 1. Modal classification error rates and 95% credible inter-
vals (in parentheses) for the bench-mark data sets

Method Error rates for the following data sets:

Ripley’s Pima Crabs

Logistic (single) 13.0 (11,17) 21.4 (20.1,24.3) 5 (4,6)
Logistic (multiple) 9.2 (9,12) 19.4 (18.9,21.4) 2 (1,3)
BSVM (single) 12.4 (11.1,16.8) 21 (20,23.9) 4 (2,5)
BSVM (multiple) 8.8 (8.4,11.6) 18.9 (18.3,20.6) 1 (0,4)
CSVM (single) 12.7 (10.8,16.7) 21.3 (19.9,24.1) 4 (2,5)
CSVM (multiple) 9.1 (8.9,12) 19.2 (18.9,21.6) 2 (1,4)
RVM 9.3 19.6 2
Variational RVM 9.2 19.6 —†
Jeffreys prior 9.6 18.5 0
Neural networks —† 22.5 3.0
Classical SVM 13.2 21.2 4

†Not applicable.

Wisconsin breast cancer data which contain 10 basic features to classify two types of cancer:
malignant and benign. We split the data randomly into training and testing partitions of sizes
300 and 269, and we report average results over 10 partitions.

In addition to the methods that are listed at the beginning of Section 7, we have performed
analyses with variational RVMs (Bishop and Tipping, 2000), Bayesian neural networks (Wil-
liams and Barber, 1998) and the analysis using the Jeffreys prior as described in Figueiredo
(2002). The results are given in Table 1. All our multiple shrinkage parameter models perform
nearly as well as the best available alternatives.

7.2. Leukaemia data
The leukaemia data set was described in Golub et al. (1999). Bone marrow or peripheral blood
samples were taken from 72 patients with either acute myeloid leukaemia or acute lymphoblas-
tic leukaemia. Following the experimental set-up of Golub et al. (1999), the data are split into
training and test sets. The former consists of 38 samples, of which 27 are acute lymphoblastic
and 11 are acute myeloid leukaemia cases; the latter consists of 34 samples, 20 acute lympho-
blastic and 14 acute myeloid leukaemia cases. The data set contains expression levels for 7129
human genes produced by Affymetrix high density oligonucleotide microarrays.

Golub et al. (1999) constructed a predictor by using their weighted voting scheme on the
training samples and classified correctly on all samples for which a prediction is made, 29 of
the 34, declining to predict for the other five. We have provided our results in Table 2 with the
modal or most frequent number of misclassification errors (the modal values) as well as the
error bounds (the maximum and minimum number of misclassifications).

Table 2 shows that the results that are produced by the multiple shrinkage parameter models
are superior to the single-precision models as well as the classical SVM models. Though all the
multiple shrinkage parameter models performed well, the best performer among these appears
to be the BSVM model.

The use of RKHSs leads to a reduction in the dimension of the model, but the dimension
can still be as high as the sample size. In the Bayesian hierarchical modelling framework, owing
to shrinkage priors, we obtain sparsity automatically (Tipping, 2000). The effective number of
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Table 2. Modal classification error rates and 95% credible
intervals for the leukaemia data

Model Modal misclassification Error
error bound

Logistic (single) 4 (2,6)
Logistic (multiple) 2 (1,4)
BSVM (single) 4 (3,7)
BSVM (multiple) 1 (0,3)
CSVM (single) 5 (3,8)
CSVM (multiple) 2 (1,6)
Classical SVM 4
RVM 2

parameters is the degrees of freedom DF of the model, which can be calculated as the trace
of K.K′K + D−1/−1K′ (Hastie and Tibshirani (1990), page 52). Owing to the presence of the
unknown parameter θ in the expression of K, this θ induces a posterior distribution for DF
(rather than a fixed value). The posterior distributions of DF for all the three multiple shrink-
age parameter models were very similar.

7.3. Hereditary breast cancer data
Hedenfalk et al. (2001) studied gene expression in hereditary and sporadic breast cancers. Study-
ing such cancers will allow physicians to understand the difference between the cancers from
mutations in the BRCA1 and the BRCA2 breast cancer genes. In their study, Hedenfalk et al.
(2001) examined 22 breast tumour samples from 21 breast cancer patients; all the patients except
one were women and 15 of the women had hereditary breast cancer, seven had tumours with
BRCA1 and eight had tumours with BRCA2. In the analysis of a complementary deoxyribo-
nucleic acid microarray, 3226 genes were used for each breast tumour sample. We use our meth-
ods to classify BRCA1 versus the other (BRCA2 and sporadic). As a test data set is not available,
we have used a full leave-one-out cross-validation test and use the number of misclassifications
to compare the various approaches. We present our results in Table 3.

Table 3. Modal classification error rates and 95% credible intervals
for the breast cancer data

Model Modal cross- Error
validation error† bound

Logistic (single) 5 (4,8)
Logistic (multiple) 2 (2,4)
BSVM (single) 4 (3,7)
BSVM (multiple) 0 (0,3)
CSVM (single) 5 (3,8)
CSVM (multiple) 2 (1,4)
Feed-forward neural networks 2
Probabilistic neural networks (r =0:01) 3
k nearest neighbour (k =1) 4
SVM 4
Perceptron 5

†Number of misclassified samples.
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We have compared our cross-validation results with other popular classification algorithms
including feed-forward neural networks (Williams and Barber, 1998), k nearest neighbours
(Fix and Hodges, 1951), classical SVMs (Vapnik, 2000), perceptrons (Rosenblatt, 1962) and
probabilistic neural networks (Specht, 1990) in Table 2. All these methods have used expres-
sion values of only 51 genes as used in Hedenfalk et al. (2001). All the multiple shrinkage
parameter models have performed better than any other methods, with SVM performing the
best.

7.4. Simulation study
To simulate a realistic data set for comparing the successful multiple shrinkage BSVM, SVM and
CSVM models, we used the leukaemia data as a prototype. As realistic values of the param-
eters θ and β we used the posterior means from the original analysis of the data. Then we
followed the structure of our models and performed two sets of simulations to generate the
responses Y , one using the logistic model and the other using the CSVM model. We repli-
cate each of the simulations 25 times, generating 25 different data sets. Then we analyse these
training data sets by using the logistic, BSVM and CSVM models and obtain the average mis-
classifications in the test data for the three models. The average misclassifications should be
lowest if we use the true model, but we want to see how the other models perform in this
situation.

When the data are actually generated from a logistic model, the average number of misclas-
sifications in the test data by using the logistic, BSVM and CSVM models are respectively 2.5,
2.7 and 3.2. Similarly, when the data are actually generated from a logistic CSVM model, the
average number of misclassifications in the test data by using the logistic, BSVM and CSVM
models are respectively 3.8, 2.2 and 2.1. Though none of the data were originally generated from
the BSVM model (as it has no normalized distribution), in both cases it is very near the correct
(best) model in terms of the average misclassification error.

7.5. Analysis with Jeffreys’s prior
As discussed in Section 3, sparseness can be promoted by using the Jeffreys prior (Figueiredo,
2002). We reanalysed the two data sets by using the multiple shrinkage parameter models and
Jeffreys’s prior. The modal number of misclassification and average DF (within parentheses)
results are presented in Table 4. In terms of misclassification, Jeffreys’s prior, in general, is doing
worse than the Gaussian prior models but it has smaller DF.

Table 4. Analysis with Jeffreys’s prior:
average number of misclassifications and
DF (within parentheses)

Model Number of misclassifications
for the following data sets:

Leukaemia Breast cancer

Logistic 2 (6.1) 3 (7.2)
BSVM 2 (5.2) 2 (5.9)
CSVM 3 (5.6) 3 (6.4)
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8. Discussion

We have proposed an RKHS-based classification method for microarray data. It is shown that
these models in a Bayesian hierarchical set-up with priors over the shrinkage (smoothing) param-
eters performed better than other popular classification methods. Also, multiple shrinkage
parameter models always appear to be superior to single-parameter shrinkage models. With
multiple shrinkage parameters, the regular BSVM model emerges as the winner in all the exam-
ples with the CSVM finishing a close second all the time. However, the CSVM provides a more
formal probabilistic motivation for the use of SVMs and is more satisfactory from a Bayesian
angle.

We point out also that, although SVMs have been very popular in the machine learning com-
munity, one problem with their use in practice in a non-Bayesian framework is the inability to
quantify prediction error. By using the Bayesian framework, we can calculate the uncertainty
that is associated with the predictions. Although Sollich (2001) also viewed SVMs from a Bayes-
ian perspective, his approach did not include priors for the hyperparameters and also did not
accommodate any potential error in the model specification.

One of the advantages of SVMs is that their performance does not deteriorate with high input
dimension. When the number of parameters exceeds the number of observations, in contrast
with other machine learning methods, SVMs do not require an additional projection to the
sample space, and then the application of a classification algorithm; the dimension reduction is
built automatically into SVM methodology. Preliminary selection of highly informative genes
can reduce the noise in the data and thus improve the predictive misclassification rate, with
tighter bounds.

Use of the probit model with the introduction of latent variables (Albert and Chib, 1993)
rather than a logistic model accelerates the computation significantly. We tried all the examples
with the probit model and the results are almost identical to the logistic model results.
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