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ABSTRACT

Emotional expression plays a key role in interactions as it communicates the nec-

essary context needed for understanding the behaviors and intentions of individuals.

Therefore, a speech-based Artificial Intelligence (AI) system that can recognize and

interpret emotional expression has many potential applications with measurable im-

pact to a variety of areas, including human-computer interaction (HCI) and health-

care. However, there are several factors that make speech emotion recognition (SER)

a difficult task; these factors include: variability in speech data, variability in emotion

annotations, and data sparsity.

This dissertation explores methodologies for improving the robustness of the au-

tomatic recognition of emotional expression from speech by addressing the impacts

of these factors on various aspects of the SER system pipeline. For addressing speech

data variability in SER, we propose modeling techniques that improve SER perfor-

mance by leveraging short-term dynamical properties of speech. Furthermore, we

demonstrate how data augmentation improves SER robustness to speaker variations.

Lastly, we discover that we can make more accurate predictions of emotion by con-

sidering the fine-grained interactions between the acoustic and lexical components of

speech. For addressing the variability in emotion annotations, we propose SER model-

ing techniques that account for the behaviors of annotators (i.e., annotators’ reaction

delay) to improve time-continuous SER robustness. For addressing data sparsity, we

investigate two methods that enable us to learn robust embeddings, which highlight

the differences that exist between neutral speech and emotionally expressive speech,

xi



without requiring emotion annotations. In the first method, we demonstrate how

emotionally charged vocal expressions change speaker characteristics as captured by

embeddings extracted from a speaker identification model, and we propose the use of

these embeddings in SER applications. In the second method, we propose a frame-

work for learning emotion embeddings using audio-textual data that is not annotated

for emotion.

The unification of the methods and results presented in this thesis helps enable

the development of more robust SER systems, making key advancements toward an

interactive speech-based AI system that is capable of recognizing and interpreting

human behaviors.
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CHAPTER I

Introduction

1.1 Motivation

Emotional expression plays a key role in interactions as it communicates the nec-

essary context needed for understanding the behavior of individuals. Providing ma-

chines with the ability to recognize and interpret human emotions can impact various

fields, ranging from healthcare to Human-Computer Interaction (HCI) [1, 2, 3, 4, 5].

For instance, in healthcare, an emotion-aware system can aid in the diagnoses and

management of mental health disorders [6, 3]. In automotive safety, a system can

detect levels of driver alertness to determine driver engagement [7, 8]. In advertising,

emotion-aware systems can measure consumers’ emotional engagement to advertise-

ments and movie trailers [9, 10]. In education, an emotion-aware intelligent tutoring

spoken dialogue system can increase student persistence by predicting and adapting

to student emotions [11].

Emotional expression is inherently a multimodal phenomenon that is communi-

cated through various channels, including, head and body movements, facial expres-

sions, language, and speech [12, 13, 14, 15]. In addition to being expressed through

interactive behavioral cues, emotion manifests itself in physiological signals, and can,

for instance, affect the temperature and heart rate of an individual [16, 17, 18]. The

automatic detection of emotion from speech, however, has garnered special attention
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from the research community due to the prevalence of speech-based devices (e.g.,

recording devices, virtual personal assistants, smart watches, etc.), which can be

used for collecting data in a remote and non-intrusive fashion.

Speech emotion recognition (SER) is a difficult task due to various factors, which

include the highly variable nature of speech, the variabilities associated with emotion

expression and perception, and the limited access to high-quality labeled data needed

for building robust SER systems. As a result of these factors, SER systems that

are built in controlled conditions often fail to generalize when deployed in real world

settings where the conditions are different. This dissertation presents novel solu-

tions and modeling techniques that improve SER robustness by addressing important

challenges in the area.

1.2 Describing Emotion

Speech data need to be labeled with descriptors of emotion before they can be

used for building and evaluating SER systems. These descriptors aim to capture

the underlying emotional state of a speaker. There are two common views that are

used for describing emotion: the categorical view [19, 20, 21, 22] and the dimensional

view [23, 24, 25, 26]. In the categorical view, emotion is described using discrete

attributes (e.g., excited, happy, angry, sad). The categorical view is inspired by

the theory of discrete characterization of emotion, which posits that there exists

a set of “basic” emotions that have evolved to aid in the survival and adaptation

of organisms [27, 28]. In this view, more complex emotions emerge as a result of

combining two or more basic emotions. For example, the emotion of jealousy emerges

by combining the basic emotions of anger and sadness [29, 30]. Although several sets

of basic emotions have been proposed in previous work, the set proposed by Ekman

(anger, disgust, fear, happiness, sadness, and surprise) is the most commonly used in

SER research.

2



One limitation with using the categorical descriptors of emotion in SER systems,

however, is that these descriptors often fail to capture the various subtleties and in-

tensities that exist in emotional expression with only a small number of descriptors.

For instance, “resentfulness”, “anger” and “rage” would require three separate cate-

gories in an SER system even though they may represent different intensities of the

same emotion. The dimensional view of emotion addresses this limitations by defining

emotion based on its primary properties in a continuous space [24, 31, 32]. The most

common dimensions used in SER research are defined by Russel, and they include

arousal (calm to energetic) and valence (negative to positive) [25].

Both the categorical and dimensional descriptors of emotion have been used in

the research community for building and evaluating automatic recognition systems.

We use both descriptions of emotion in this dissertation.

1.3 Methods for SER

We provide a general overview of the methods used for SER in this section but de-

fer the descriptions of more specific related works to the corresponding chapters. Early

works focused on using generative and discriminative machine learning approaches for

building emotion recognition models (e.g., Gaussian mixture models, support vector

machines) [33, 34, 35]. Most of the contributions in these early works came from en-

gineering features to reflect emotion variations in speech. Many of these features were

borrowed from acoustic analysis studies done on speech utterances collected from in-

dividuals displaying different emotions [36, 37, 38]. Some of the popular feature sets

include the IS09, ComParE, and the eGeMAPS feature sets [39, 40, 41]. These feature

sets typically consist of energy, spectral, and voicing related acoustic features, and are

extracted in a two-step process. First, a number of low-level-descriptors (LLDs) are

extracted from the content of a short sliding window (e.g., 25 milliseconds Hamming

window with a shift rate of 10 milliseconds) that is applied to the acoustic signal.
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Then, a set of statistics (e.g., mean, standard deviation) are applied to the extracted

LLDs to get a fixed-size feature representation of an utterance.

More recent approaches to SER have focused on using neural networks to build

recognition models that rely on Mel-filterbanks (MFBs), spectrograms, or raw wave-

forms [42, 43, 44, 45, 46, 47]. These approaches exploit neural networks’ ability to ex-

tract powerful representations (i.e., embeddings) that are tailored for the recognition

objective from minimally processed input features. For instance, Ghosh et al. inves-

tigated the use of denoising autoencoders for learning paralinguistic attributes from

MFBs and spectrograms, and demonstrated how autoencoders yielded features that

are discriminative to emotions [42]. Latif et al. proposed a multi-resolution neural

model for detecting emotions from raw-waveforms, and showed that their proposed

model performed on par with SER models that relied on hand-engineered features [48].

Finally, Trigeorgis et al. introduced a convolutional recurrent model that operated on

raw-waveforms, and demonstrated improvements in recognition performance com-

pared to a model that used traditional features [49].

Other contributions to SER in the recent years came from the introduction of

novel neural network architectures, the development of more generalizable models

that address data and emotion variability challenges discussed below, and the col-

lection of emotion corpora needed for building SER models [50, 51, 52, 47, 53, 54].

For example, Parthasarathy and Busso proposed ladder networks, which employ an

unsupervised auxiliary task of reconstructing intermediate features, to allow for the

utilization of unlabeled data from a target domain [50]. We investigated the use of

progressive neural networks for SER, and found that augmenting the emotion recog-

nition task with speaker, gender, and additional datasets improved performance over

baselines that solely used emotion [55]. Albanie et al. showed how one could exploit

the correlation between a person’s speech and facial expression to learn speech emo-

tion embeddings from unlabeled audio-visual data through cross-modal transfer using

4



a pre-trained facial expression detector [54].

1.4 Challenges in SER

The detection of emotional expression from speech is a difficult task, as there are

many sources of variability that need to be accounted for when building SER systems.

In this section, we describe three major challenges that face SER systems: (1) speech

data variability, (2) emotion label variability, and (3) data sparsity.

Speech Data Variability. Many factors modulate speech; these factors include

the recording environment (e.g., recording device, distance from microphone, noise

level), speaker demographics (e.g., gender, accent, dialect), and linguistic content.

As a result of these factors, SER systems developed using data collected from one

domain typically fail to generalize when deployed to new domains. Several techniques

have been developed in the speech processing and SER communities to compensate

for these factors. Some of these techniques include feature normalization [56, 57, 58],

domain adaptation [59], and adversarial training [60, 61, 62]. For example, Zhang et

al. demonstrated the benefits of handling data variability, specifically environmental

properties and gender, via the multi-task learning paradigm [63]. Abdelwahab and

Busso showed how the adversarial training paradigm can be used to train neural

models that extract features which are invariant to domain shifts [59]. Li et al. applied

adversarial training to disentangle speaker characteristics and demographics from

emotion features [64].

Emotion Label Variability. The subjective nature of emotion expression and

perception can lead to a set of challenges that are unique to the SER task. Individuals

typically express emotions in ways that are unique to themselves. As a result, an SER

system that is built using data collected from certain individuals can unintentionally

overfit to those individuals and, consequently, fail to generalize when used for recog-

nizing the emotions of unseen individuals. Although most previous works in SER do
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not address subjectivity in expression, few works have focused on personalization in

SER to conform to, and exploit, this property (e.g., [57, 65, 66]). Like subjectivity in

emotion expression, subjectivity in emotion perception also makes SER a challenging

task. Individuals can have varying opinions regarding the emotion expressed in a

given speech sample. Thus, the content of speech corpora used for building SER sys-

tems is typically evaluated by a number of annotators for emotion content. Previous

works addressed this challenge by taking the average (or the mode) of the evaluations

obtained from multiple raters (e.g., [53, 67, 68]). Other works have demonstrated that

the disagreement between annotators provides useful information about the subtlety

of the expressed emotions, and showed how this information can be used for building

more robust SER models (e.g., [69, 70, 71, 72]).

Data Sparsity. Finding media sources that provide content with diverse emo-

tional expression needed for building SER models is challenging. In addition, the

necessity for having multiple annotators when collecting data makes the process both

costly and time consuming [54]. As a result, datasets that are typically used for

building and testing SER models remain significantly smaller than those used for

building other speech models (e.g., speaker recognition and automatic speech recogni-

tion), even though the SER application faces the same data variability challenges that

other speech applications face. For instance, the size (in recorded hours of speech) of a

modern dataset used for developing speaker recognition systems (e.g., VoxCeleb [73])

is around 2,000 hours. In contrast, the size of the MSP-Podcast dataset, a recently

released emotion dataset, is around 100 hours.1 The challenge of having a small emo-

tion dataset is often compounded by challenges from having labels with low annotator

agreement as well as from the lack of balanced presentation of emotional expressions

(i.e., emotion label imbalance). In addition, the data collection strategies used in re-

cent works, including MSP-Podcast, relied on pre-trained emotion recognizers, which

1The collection of the MSP-Podast dataset is an ongoing project; the authors’ goal for the dataset
is to reach 400 hours of speech.
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themselves are trained with small and subjective data, for retrieving candidate speech

samples. The availability of large and diverse datasets for building SER systems can

help attenuate many of the speech data variability challenges mentioned above.

1.5 Proposed Methods

This section presents the methods that we introduce in this dissertation document

as well as the key challenges that the methods address. Sections 1.5.1, 1.5.2, and 1.5.3

introduce and investigate modeling techniques that address speech data variability

and emotion annotation variability challenges. Sections 1.5.4 and 1.5.5 mainly address

the data sparsity challenge by introducing methods for extracting embeddings which

highlight expressive and emotional content in speech without using emotion labels.

1.5.1 Using Regional Saliency in Speech for SER

A key step in the SER feature extraction process is the application of statistics

(e.g., mean, standard deviation) to the sequential frame-level acoustic features (i.e.,

frames) extracted from the waveform. The benefit of this step is that it allows for a

fixed-size description of how properties of the low-level acoustic frames change over

the course of an utterance. However, one limitation with using statistics is that all

acoustic frames are treated equally regardless of their content. In other words, the

content of the frames that carry emotion relevant information can be obfuscated by the

contents of frames that do not carry emotion relevant information. In Chapter III, we

demonstrate how convolutional neural networks can be directly applied to sequential

frame-level acoustic features to identify emotionally salient regions without the need

for defining or applying utterance-level statistics. We also show how utterance-level

statistics can obfuscate emotional information. This study demonstrates that the

current approach of feature extraction might not be the most effective approach when

building SER systems as it fails to consider dynamic variations across an utterance.
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1.5.2 Pooling Acoustic and Lexical Features for SER

The inherently multimodal nature of emotion perception and expression suggests

that SER models can benefit from the use of these various modalities. Individuals

rely on both linguistic and paralinguistic attributes to express and perceive emotion

during spoken interactions. Thus, supplying SER models with both the acoustic and

lexical modalities can provide a more complete signal about behavior. The use of mul-

tiple modalities by an SER model entails fusing the different streams of information.

Several methods for multimodal fusion exist in the literature [74, 75, 76]. However,

it is unclear which pooling technique is most effective for combining acoustic and

lexical features for the SER task. In addition, it is not clear how much each modality

contributes to the performance of SER models. In Chapter IV, we present an analysis

of different multimodal fusion approaches in the context of deep learning, focusing on

pooling intermediate representations learned from the acoustic and lexical modalities

for SER. We also study the influence of each (i.e., the acoustic and lexical) modality

on the overall performance of an SER system. This study demonstrates that a mul-

timodal fusion strategy that considers fine-grained interaction between the acoustic

and lexical features is most effective.

1.5.3 Capturing Long-term Dependencies for SER

Emotion can be quantified using categorical classes (e.g., happy, neutral, sad, etc.)

or using dimensional values (e.g., valence-arousal). In addition, emotional labels can

be quantified statically, over units of speech (e.g., utterances), or continuously in

time. Emotion labels that are quantified continuously in time provide fine-grained

information about the behavior of an individual as a function of time. However, time-

continuous emotion annotations create two challenges that need to be addressed in

an SER system for effective modeling. The first challenge is that the reaction delay

of the annotators creates a mismatch between the acoustic signal and the emotion
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annotations. In other words, the annotations for a given acoustic signal will be shifted

in time. The second challenge is that the acoustic signal exhibits more variations in

time compared to the annotation signal (i.e., the annotation signal is smooth and has

considerable time dependencies). In Chapter V, we introduce neural network architec-

tures that address these two challenges and improve SER performance. Specifically,

we address the first challenge by proposing the use of convolutional architectures that

have a large receptive fields to allow the networks to implicitly compensate for the

reaction delay of annotators. We address the second challenge by proposing the use

of a convolutional architecture that models a downsampled (i.e., compressed) version

of the input acoustic signal and then generates the output signal through an upsam-

pling operation. We demonstrate how addressing these two challenges improves SER

performance compared to baseline methods that do not take these effects into account

when modeling. This study demonstrates how the behavior of annotators can guide

the design of more effective SER systems.

1.5.4 Speaker Embeddings as Robust Features for SER

The performance of an SER system depends on the features used to represent the

acoustic signal. Several features have been introduced in the SER literature (e.g.,

ComParE, eGeMAPS, etc.) [41, 77, 39]. However, these features can be susceptible

to distortions due to changes in the recording conditions or due to the presence of

noise. Previous research in other domains (e.g., computer vision) has demonstrated

that neural networks trained discriminatively on large and diverse datasets learn to

extract generalizable embeddings (e.g., [78, 79]). These embeddings are obtained from

intermediate layers that the trained networks extract from the input features. How-

ever, the main requirement for learning powerful embeddings using neural networks

is the access to large labeled datasets; a requirement that is still missing in the SER

community as discussed in Section 1.4. This necessitates an alternative approach
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for learning speech embeddings that capture emotion information and suppress any

extraneous variabilities that exist in the speech data. In Chapter VI, we propose the

use of speaker embeddings, features extracted from networks trained on the closely

related task of speaker recognition, as robust SER features. We show that expressive

speech disturbs speaker embeddings (i.e., speakers sound less like themselves when

they are vocally expressive), and demonstrate how these disturbances can be used for

recognizing emotions. This study shows that speaker embeddings can be used as a

replacement to traditional emotion features.

1.5.5 Learning Emotion Embeddings using Speech and Text

The data sparsity challenge discussed in Section 1.4 makes it difficult to learn a

general emotion embedding that captures expressiveness in speech via the supervised

learning paradigm. Chapter VI of this dissertation shows that the speaker recognition

task can facilitate an alternative approach for learning such embedding. However,

one limitation with that approach is that it still relies on a large number of labeled

data (i.e., speaker labels). In Chapter VII, we propose a framework for learning

emotion embeddings from large-scale (i.e., 200 hours) audio-textual data without

using emotion or speaker labels. The key assumption behind the proposed framework

is that expressive speech can be considered as a modulation to neutral speech. Thus,

a neural network can be trained to learn what it means for speech to be expressive if

we provide pairs of expressive and unexpressive (neutral) utterances. To this end, we

demonstrate how an off-the-shelf speech synthesizer can be used to generate a neutral

version of expressive speech data, and then propose a neural model that leverages this

resulting neutral-expressive data pairs to learn emotion embeddings. We show that

the learned emotion embeddings highlight emotion characteristics in an utterance

by demonstrating how they improve emotion classification performance compared to

surface MFB features. This study shows that it is possible to leverage naturally
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occurring multimodal data (i.e., speech and text) to learn emotion embeddings while

circumventing the data collection and annotation challenges.

1.6 Contributions

This dissertation presents novel solutions for detecting and quantifying emotional

expression from speech. Chapters III, IV, and V introduce and investigate novel

modeling techniques that improve SER performance by addressing speech data and

emotion label variability. Chapters VI and VII introduce methods that extract robust

embeddings for SER by addressing data sparsity. The contributions of the works

presented in this dissertation are summarized as follows:

• Chapter III:

– We demonstrate the effectiveness of speed perturbation as a data augmen-

tation technique to increase the amount of data available for training SER

models.

– We show how the traditional two-step feature extraction framework used in

paralinguistics is not the most effective for SER tasks because it obfuscates

the emotion relevant information in an utterance.

• Chapter V:

– We propose the use of neural network architectures that incorporate long-

term context in time-continuous SER applications. These architectures

improve performance over baselines by allowing recognition models to com-

pensate for annotator reaction delay.

– We propose the use of neural network architectures that account for the

non-instantaneous nature of human annotations in time-continuous SER
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applications. These architectures improve performance over baselines by

generating predictions that mimic human annotations.

• Chapter IV:

– We investigate approaches for fusing intermediate representations from the

acoustic and lexical modalities in SER models. We demonstrate how fusion

strategies that consider fine-grained interactions between the modalities

are most effective for SER.

• Chapter VI:

– We investigate the utility of speaker embeddings that are extracted from

speaker recognition networks in SER tasks, and show that speaker embed-

dings can be used as a robust replacement to traditional emotion features

in SER tasks.

• Chapter VII:

– We propose a framework for learning emotion embeddings by leveraging

naturally occurring audio-textual data without requiring explicit emotion

labels. We demonstrate how the learned emotion embeddings improve

performance over baseline acoustic features.

1.7 Outline of Dissertation

This dissertation document is organized as follows. Chapter II introduces the

datasets that we use in our studies. Chapter III describes our work using convolu-

tional neural networks to model emotionally salient regions in an utterance. Chap-

ter IV describes our work on pooling acoustic and lexical information to improve SER
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performance. Chapter V details our work on capturing long-term contextual infor-

mation in continuous emotion recognition for handling annotator variability. Chap-

ter VI investigates the utility of speaker embeddings for SER. Chapter VII details

our work on learning emotion embeddings from large-scale audio-textual data that

are not annotated for emotion. Finally, Chapter VIII summarizes the main findings

and highlights possible future directions.
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CHAPTER II

Datasets

Several emotion datasets exist in the public domain. Some of the attributes that

differentiate one dataset from another include: the media source (e.g., online media,

movies, TV shows, laboratory recordings), the emotion elicitation method used (e.g.,

natural, improvised, acted), the emotion descriptors used (e.g., categorical, dimen-

sional), language, and the number of modalities measured by the dataset collectors.

In this dissertation, we use four datasets in total, including the IEMOCAP, MSP-

IMPROV, RECOLA, and VESUS. We introduce these datasets in this chapter but

defer descriptions about processing and feature extraction to the corresponding chap-

ters.

2.1 IEMOCAP

The interactive emotional dyadic motion capture (IEMOCAP) dataset was col-

lected to study audio-visual emotional expression in dyadic interactions [15]. Interac-

tions in the dataset were recorded from five dyadic sessions, each between a male and

a female actor. In each session, the actors perform a series of scripted and improvised

scenarios designed to elicit emotion expression. The dataset contains approximately

12 hours of data across four modalities (audio, text, video, and motion-capture) 10

speakers (five males and five females). The recordings from each interaction were
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manually segmented into utterances such that each utterance contains a complete

sentence or a speaker turn (whichever is shorter). The resulting utterances were an-

notated for categorical emotions by at least three annotators; and for dimensional

emotion by at least two annotators. The annotators assigned categorical emotions

for each utterance from the following set: {angry, happy, neutral, sad, frustrated,

excited, disgusted, fearful, surprised, other}. The annotators assigned valence, acti-

vation, and dominance (dominant vs. submissive) levels using five-point Likert scale.

More details about the IEMOCAP corpus can be found in [15]

2.2 MSP-IMPROV

The MSP-IMRPOV dataset was collected to study audio-visual emotional expres-

sion in dyadic interactions while maintaining partial control over lexical content [80].

Interactions in the dataset were recorded from six dyadic sessions, each between a

male and a female actor. The actors in each dyadic interaction improvise scenarios

that lead one of them to utter a target sentence in a specific emotion. This approach

of eliciting emotion was designed to maintain the spontaneous nature of the interac-

tion while controlling for lexical content. Overall the dataset contains approximately

nine hours of speech from 12 speakers (six males and six females). Similar to the

recordings in IEMOCAP, the ones in MSP-IMPROV were manually segmented into

utterances such that each utterance contains a complete sentence or a speaker turn

(whichever is shorter). The resulting utterances were annotated for categorical and

dimensional emotions by at least five annotators. The annotators assigned categori-

cal emotions for each utterance from the following set: {angry, happy, sad, neutral,

other}. The annotators assigned valence, activation, dominance (dominant vs. sub-

missive), and naturalness (acted vs. natural) levels using five-point Likert scale. More

details about the MSP-Improv corpus can be found in [80].
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2.3 RECOLA

The Remote Collaborative and Affective Interactions (RECOLA) database [81]

was collected to study affective behaviors in remote dyadic interactions. Multimodal

data (i.e., audio, video, electro-cardiogram, and electro-dermal activity) was collected

from French speaking participants while they complete collaborative task. A por-

tion of each interaction was annotated in a temporal fashion by six annotators for

activation and valence using a slider with values ranging from −1 to +1. The an-

notations from each annotators were normalized before being averaged to produce

the ground-truth activation and valence signal for each interaction. The RECOLA

corpus, as introduced in the 2016 audio/visual emotion challenge (AVEC), contains

27 five minute-recordings from 27 speakers (16 female and 11 male speakers). More

details about the RECOLA corpus can be found in [81] and [82].

2.4 VESUS

The Varied Emotion in Syntactically Uniform Speech (VESUS) dataset was col-

lected to provide the research community with a lexically controlled emotional dataset [83].

Over 250 distinct phrases were uttered by 10 actors (five males and five females) while

portraying five emotional states (Neutral, Angry, Happy, Sad, and Fear). The phrases

were chosen such that they are semantically neutral, i.e., they don’t carry any emo-

tional connotation. Overall the dataset contains approximately six hours of speech.

The utterances in the dataset contain labels assigned based on the intended emotion

by the actors and labels assigned based on the perceived emotion collected from 10

crowd-sourced annotators.

16



CHAPTER III

Using Regional Saliency in Speech for SER

3.1 Introduction

Traditional SER systems follow one of three major approaches. In the first ap-

proach, utterance-level statistics are applied to sequential low-level descriptors (LLDs)

extracted from utterances of variable lengths to obtain fixed-length features that de-

scribes the global characteristics of the given utterances. These fixed-length features

can then be used to train machine learning classifiers (e.g., [84, 85]). While pop-

ular, we hypothesize that this approach dilutes important regional information by

combining it with potentially irrelevant information from neighboring frames.

Two recent papers [86, 87] showed that one can train classifiers using only a portion

of the information contained within utterances and still achieve competitive results.

In particular, Le et al. [86] showed that state-of-the-art results can be obtained on

the FAU Aibo 2-class problem using less than 50% of the data contained within

an utterance. Kim et al. [87] showed that emotional information in an utterance

is regionalized and follows specific patterns. Echoing the findings of Le et al. they

showed that, in some cases, systems that use only 59% of the data within an utterance

can achieve performance that is similar to that achieved by systems that use 100%

of the data. This suggests that traditional SER approaches inadvertently include

irrelevant information when creating fixed-length features.
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In the second approach, statistical functions are applied to windowed segments of

utterances to create statistical descriptions of the segments. These statistics are then

classified to create sequences of emotion confidences. Given this sequence of emotion

confidences, the problem becomes a time series classification problem (e.g., [88]). This

approach assumes that all segments take the same emotional label as their parent

utterance and thus assumes that all regions of utterances contain relevant emotional

information.

Finally in the third approach, frameworks that are capable of directly model-

ing temporal LLDs are used to build SER systems. Many of these approaches were

inspired by approaches proposed in the automatic speech recognition (ASR) com-

munity. Notable approaches include HMM-DNN hybrids [65] and deep end-to-end

systems [49]. Such approaches require modeling the dynamics of emotion.

We hypothesize that focusing on emotionally salient regions of utterances can

allow us to build robust SER systems that do not require defining statistical functions

or making any assumptions about frame-level emotional labels. In this work, we use

convolutional neural networks (CNNs) to learn emotion classifiers from speech. CNNs

have shown tremendous success in the fields of ASR [89], computer vision [90], and

sentence classification [91]. CNNs allow multiple regions of the input to share the same

weights; overcoming the scalability problem of regular neural networks. In addition,

CNNs can be applied to inputs of variable sizes, thus easing one of the challenges of

dealing with variable length speech data.

The contributions of this chapter are as follows: (1) we show how a simple CNN

that uses minimally hand-engineered features can yield competitive results when com-

pared to results obtained from systems trained on popular emotion feature sets; (2)

we show how applying statistical functions to temporal LLDs can washout informa-

tion causing loss of performance; (3) we show how using speed augmentation can

improve the performance of SER systems.
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3.2 Related Work

CNNs have been used for SER. Most notably, Mao et al. [92] used CNNs to

learn salient features to be used by an SVM for classification. The authors followed

three steps to build their SER system. First, they used sparse auto-encoders to learn

filters from spectrogram segments. The authors convolved the learned filters with

spectrogram fragments to produce feature vectors. Second, the authors mapped the

feature vectors into two smaller feature vectors using a semi-supervised objective

function. The objective function disentangled affect-salient features from other non-

salient features. Third, the authors used the affect-salient features to train SVMs.

The authors finally compared the discriminative performance of features obtained

from different stages of the CNN.

Other works used neural networks and recurrent neural networks for SER. Le et

al. [65] followed an approach that is similar to the ones followed in ASR literature

and used a HMM-DNN hybrid approach [93] to train an SER system. The authors

investigated different ways to model emotion as an HMM and finally drew a contrast

between the fields of emotion and speech recognition.

Han et al. [94] and Lee et al. [95] both took a multi-step approach to the problem

of SER. In the first step, Han et al. [94] trained a neural network using frame-level

features (along with contextual information) while Lee et al. [95] trained a 2-layer

bidirectional long short-term memory (BLSTM) network. The trained models were

used to produce frame-level emotional predictions (four channel time-series). Both

authors applied statistical functions to the time-series data before feeding the results

into another simple neural network for utterance-level classification.

Xia et al. [96] used denoising autoencoders to to build SER models that take

gender into account. The authors train gender-specific models using neutral speech

obtained from a large ASR dataset. The results suggested that modeling gender

variability can be useful for emotion recognition. In other work, Xia et al. [85] used
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a multi-task learning approach to leverage additional data with continuous labels (as

opposed to categorical labels) to train a network. The authors showed that using

regression as a secondary task can improve the overall performance of the system

when compared to a single-task system that only relies on examples with categorical

labels.

Finally, motivated by a recent trend in deep learning where raw data is used with

minimal feature pre-processing, Trigeorgis et al. [49] devised an end-to-end deep net-

work that worked on raw time-domain signals. The authors first applied convolutions

to extract features before they fed the extracted features into a LSTM structure for

prediction in the valence-activation space.

All of the cited related work does at least one of the following: (1) makes assump-

tions about the length of utterances and labels [49]; (2) relies on manual feature engi-

neering [96, 85, 94, 95]; (3) applies statistical functions on top of temporal LLDs [96,

85]; (4) follows a multi-step process for building the emotion recognition system [94,

95, 92]; (5) makes assumptions about frame-level emotional labels and/or dynamics

of emotion [94, 95, 65, 92]. In contrast, the approach that we describe in this chapter

does not do any of the aforementioned points.

3.3 Model

Motivated by architectures used in the the field of sentence classification (e.g., [91]),

where the goal is to predict the class of a given variable length sentence (e.g., posi-

tive/negative review), we build a simple four-layer CNN for SER (Figure 3.1). Our

model has four major components: (1) convolutional layer; (2) max-pooling over time

layer; (3) dense layer; and (4) softmax layer. The convolutional layer identifies emo-

tionally salient regions within variable length utterances and creates a sequence of

feature maps. The max-pooling over time layer propagates features with the highest

value to the dense layer. The max-pooling over time layer induces time invariance and
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creates a fixed-size feature vector from a variable length input. Finally, the dense and

softmax layers provide further modeling and prediction. We describe each component

in more detail in this section.

Let xu
i ∈ Rd be a d dimensional feature vector available at frame i of an utterance

u. Then, we represent an utterance u with T frames as:

Xu = [xu
1 ,x

u
2 , . . . ,x

u
T ]

note that d is fixed while T varies across utterances. A temporal convolution operation

applies a filter w ∈ Rd×s, where s is the width of the filter, to produce a new feature

set of length T − s+ 1. So convolving filter w with Xu yields:

cu =
[
cu1 , c

u
2 , . . . , c

u
T−s+1

]
where each cui ∈ R is obtained using the following operation:

cui =
s∑

m=1

d∑
n=1

([
xu
i , . . . ,x

u
i+s−1

]
�w

)
m,n

where � denotes the element-wise multiplication operation. We leave out the bias

term in the above equation for simplicity.

The convolution operation allows the network to extract local features from an

utterance. The width of the convolutional filters dictates the size of the region from

which we create the feature maps. Wider filters capture long-term interactions while

narrower filters capture short-term interactions. We can apply multiple filters, each

with different weights, to extract different information from the same region. It is cus-

tomary to apply a non-linearity activation function to the outputs of the convolution

operation. We use the rectified linear unit (ReLU) in this work [97].

We follow the convolutional layer by a max-pooling over time operation. Given
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a sequence of features, the max-pooling over time operation returns the maximum

feature within that sequence. This ensures that only emotionally salient information

is propagated. We follow the max-pooling layer by a dense layer and then by a

softmax layer for prediction. The softmax layer takes a C-dimensional feature vector

and outputs a C-dimensional probability distribution.

Convolution 
layers

Max-pooling 
over time Dense layers Softmax

Happy
Angry
Neutral
Sad

T
im

e

Features

Figure 3.1: Network architecture used (four filters shown). The model takes in filter-
bank representations of a variable-length utterance and predicts the emotion of that
utterance.

3.4 Datasets and Recipe

3.4.1 Datasets

We evaluate our system on two emotion datasets: IEMOCAP [15] and MSP-

IMPROV [80]. A description of the two datasets can be found in Chapter II. We

use categorical evaluations with majority agreement for both datasets; and focus on

four emotional categories: Happy, Sad, Angry, and Neutral. We include excitement

utterances with happiness utterance for the IEMOCAP dataset to be consistent with

previous work [85]. The final IEMOCAP dataset that we use in this chapter contains

a total of 5531 utterances (1103 Angry, 1708 Neutral, 1084 Sad, 1636 Happy). The

final MSP-IMPROV dataset that we use in this chapter contains a total of 7798
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utterances (792 Angry, 3477 Neutral, 885 Sad, 2644 Happy).

3.4.2 Feature Extraction and Data Augmentation

We use the openSmile toolkit [98] to extract 40-dimensional log Mel-filterbank

features (MFBs) from each utterance. We create our initial segments by sliding a

Hamming window of width 25 milliseconds with an overlap of 10 milliseconds. We

perform speaker-specific z-normalization on all features. Note that this normalization

method assumes that we have access to enough samples, which represent all the

emotion classes, from each speaker to compute the normalization parameters.

We increase the size of our training data by creating two different copies of each

utterance following the approach described in [99]. In particular, for a given training

utterance, We apply the speed effect found in the Sox 1 audio manipulation tool at

factors of 0.9 and 1.1 to create two versions of the original utterance. We report the

performance with and without augmentation in the results section.

3.4.3 Experimental Recipe

We follow a leave-one-speaker-out evaluation scheme for both datasets. In each

session, we use utterances from one speaker for testing and utterances from the other

speaker for validation and early stopping. We use utterances from all other speakers

for training. This scheme allows using a validation speaker who has similar acoustic

and recording conditions to those of the test speaker. We report the mean and

standard deviation of the unweighted average recall (UAR) from all speakers. UAR

is a popular metric used in SER because of imbalanced datasets.

We implement the network using the Keras deep learning library. In our exper-

iments, we fix the dense network to have three layers with shape 1024:1024:4; and

regularize the network using early stopping. The weights of the network are randomly

1http://sox.sourceforge.net
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initialize following recommendation by He et al. [100]. We minimize the cross-entropy

loss function using RMSprop [101] with an initial learning rate of 1e-4 and batches

of samples with up to 50 samples. To create batches, we first edge-pad utterances so

that they have lengths that are integer multiples of 32, and then group the resulting

same-length utterances for batch training. To deal with class-imbalance, we scale the

loss function using weights that are inversely proportional to class frequencies. For a

given sample i, assume that yi is the true label vector (all zeros but with a one at the

correct class) and ŷi is the predicted probability distribution from the softmax layer,

then the loss function takes the following form:

Li = −wi

C−1∑
j=0

yi,j log(ŷi,j)

where C is the total number of classes and wi is the scaling factor associated with

sample i.

We compute the UAR on the validation set at the end of each epoch. If the UAR

does not improve, then we restore the learned weights to their initial values at the

beginning of the epoch and reduce the learning rate by 1.4. The process stops if the

UAR does not improve for 10 consecutive epochs. For each setup, We train 10 models

and average their predictions to account for randomness in initialization and training.

3.5 Experiments

We attempt to answer the following questions in our experiments: (1) does captur-

ing regional information using CNNs provide an advantage over computing utterance-

level statistics? (2) how does the performance of a system that focuses on emotionally

salient regions compare to those of systems trained with popular large feature sets?

To answer the first question, we capture utterance-level features by applying the

12 IS09 statistical functions [39] to 40 MFBs to get fixed-length feature vector of size
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480. We remove the convolutional component of the CNN and train the dense layers

directly using the captured statistical features. The first row of Table 3.1 shows

the results we obtain from training a dense network on utterance-level statistical

functions.

Next, we train a CNN directly on temporal MFBs without applying any statistical

functions. We vary the width of the filters from 8 to 128. To ensure a fair comparison,

we adjust the number of filters in each setup such that the total number of learnable

parameters are equal to those used in the dense network trained on utterance-level

statistical features. Table 3.1 shows the results we obtain for different filter widths.

To answer the second question, we train a set of SVMs using popular feature sets.

We extract IS09 [39], IS13 [40], GeMAPS and eGeMAPS [41] features. We apply

the same 12 statistical functions to IS09, and IS13 LLDs. We use an RBF kernel

and do a grid search using validation data to pick the optimal hyper-parameters in

C ∈ {20, 22, . . . , 212}, and γ ∈ {2−15, 2−13, . . . , 2−3}. We scale the SVM cost parameter

to take class-imbalance into account. We use augmented data for all SVM experiments

to ensure a fair comparison. Table 3.2 shows the results we obtain using different sets

of features.

Next, we train a CNN that uses multi-width filters (8, 16, 32, 64) directly on

temporal MFBs. Combining multiple widths allows the network to consider multi-

ple contextual dependencies simultaneously. This approach showed promise in some

sentence classification applications [102]. We use 384 filters for each width to set the

total number of inputs to the dense layers to be equal to the total number of features

we obtain from IS13 features. The first two rows of Table 3.2 shows the results we

obtain from this setup.
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Table 3.1: Regions vs. utterance-level statistics (40 MFBs) (“*” indicates p < 0.05
under paired t-test with first row)

Filter Width
UAR (%)

IEMOCAP MSP-IMPROV

statistics 58.7± 3.0 49.8± 4.7

8 60.3± 3.8 50.2± 3.7

16 60.9± 3.4* 50.5± 3.5

32 60.5± 3.1* 50.4± 2.9

64 61.0± 3.4* 50.2± 3.9

128 59.2± 2.8 48.0± 3.7

Table 3.2: System performance comparison (“*” indicates p < 0.05 under paired
t-test with first row)

Method
UAR (%)

IEMOCAP MSP-IMPROV

CNN + 40 MFBs 61.9± 2.7 52.6± 3.8

CNN + 40 MFBs (no aug) 60.7± 3.0 49.8± 2.9*

SVM + IS09 61.2± 3.6 53.3± 5.0

SVM + IS13 62.0± 3.7 53.8± 6.0

SVM + GeMAPS 59.2± 4.0* 52.1± 4.7

SVM + eGeMAPS 60.0± 3.7 52.4± 5.0

3.6 Results

Table 3.1 shows that focusing on regional information when training a network

is better than training a network using features obtained from statistical functions.

When focusing on regional content, We see a significant improvement (p < 0.05) of

2.3% on IEMOCAP and a minor improvement of 0.7% on MSP-IMPROV over results

of networks that relies on utterance-level statistics.

Table 3.2 shows that a network that combines multi-width filters that is trained

using temporal MFBs yields UARs that are statistically comparable (p > 0.05) to
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those obtained from SVMs trained using current widely used feature sets (with the

exception of SVM + GeMAPS for IEMOCAP). Our results suggest that CNNs with

MFBs can be used as replacement for traditional SVMs with hand-engineered features

for SER. Table 3.2 also shows that augmenting the dataset using speed perturbation

gives an improvement of 1.2% on IEMOCAP and a significant improvement (p < 0.05)

of 2.8% on MSP-IMPROV over UARs obtained from non-augmented data.

The SVM + IS13 setup yields the highest UARs for both datasets (though not

significantly higher than our results). IS13 contains a total of 1560 (130×12) features.

These features include spectral, energy, and voicing features. In contrast, our system

only uses 40 MFBs as features.

Xia et al. [85] obtained a UAR of 62.4% on IEMOCAP after training a deep

neural network using 1582 hand-engineered features and utilizing a multi-task learning

approach to incorporate more data. In contrast, our system is simpler, requires

minimal feature engineering, and is trained in an end-to-end fashion.

3.7 Conclusion

This chapter demonstrated how taking utterance-level statistics (i.e., the tempo-

ral pooling operation during the feature extraction process) can obfuscate the emo-

tion content of an utterance by washing out information from emotion-discriminative

frames with information from frames that do not carry emotion information. In ad-

dition, this chapter demonstrated that speed perturbation can be an effective data

augmentation technique for alleviating the data sparsity challenge in SER tasks.
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CHAPTER IV

Pooling Acoustic and Lexical Features for SER

4.1 Introduction

In this chapter, we explore deep learning architectures for multimodal speech emo-

tion recognition (SER) that use both linguistic and paralinguistic features. Conven-

tionally, multimodal fusion in deep learning uses pooling techniques to combine rep-

resentations from different modalities to form a joint multimodal representation [103].

However, it is unclear which pooling technique is most effective for combining acous-

tic and lexical feature for the task of valence prediction. To this end, we investigate

different pooling strategies that can be used to combine information from these two

modalities.

Previous work showed that systems that incorporate both acoustic and lexical

features are more accurate than those that only incorporate features from one modal-

ity [74, 75]. Traditionally, these multimodal approaches rely upon either early-fusion

or late-fusion [76]. In late-fusion, a model is independently built for each modality,

and decisions are generated from these independent models. These decisions are then

combined to make a final decision. In early-fusion, multimodal feature vectors are

created by combining the feature vectors from each modality. These augmented fea-

ture vectors are then used to learn a model. Early-fusion allows a model to consider

low-level interactions between features from multiple modalities when making a pre-
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diction. However, these approaches assume a level of temporal synchrony between the

individual modalities, which may not be valid. This is in contrast to late-fusion, where

individual models consider features from only one modality, obscuring time-varying

properties but alleviating the assumption of time-synchrony.

In this chapter, we investigate approaches for pooling representations from the

acoustic and lexical modalities in neural networks for the end goal of making valence

predictions. The pooling strategies that we investigate include element-wise summa-

tion, element-wise multiplication, concatenation, and outer-product. In addition, we

also experiment with the multimodal compact bilinear pooling (CBP) approach [103],

which provides a method for reducing the number of parameters obtained from a regu-

lar outer-product. Outer-product-based methods for pooling features allow the model

to consider more expressive interactions between the features from the two modali-

ties [103]. This is due to the fact that taking the outer-product allows all pairs of

features from the two vectors to interact. Such methods showed success in computer

vision applications [104, 103], but their use has not been investigated in linguistic and

paralinguistic tasks.

4.2 Related Work

Li et al. [105] and Poria et al. [76] used models that were trained independently on

different modalities as feature extractors. Li et al. applied a maximum entropy clas-

sifier to predict the speakers’ stance in idealogical debates given lexical and acoustic

features extracted from separately trained models. Poria et al. used lexical features

extracted from a convolutional neural network along with manually extracted acous-

tic and visual features to perform multimodal sentiment predictions using a multiple

kernel learning (MKL) classifier. Poria et al. experimented with both early-fusion

and late-fusion methods and showed that early-fusion was more effective. Both works

showed that models that used multimodal features performed better than those that
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only used unimodal features. In contrast, the model presented in this chapter is

trained in an end-to-end fashion, avoiding the need for training different parts sep-

arately. The model is trained to jointly extract representations from the different

modalities under one loss function.

Perez-Rosas et al. [106], Jin et al. [74], and Brilman et al. [75] all extracted high-

level knowledge-based features to be used in a support vector machine (SVM) clas-

sifier. Perez-Rosas et al. looked at the problem of multimodal sentiment analysis

in YouTube video reviews using acoustic, visual, and bag-of-words textual features

to find that multimodal systems outperform unimodal ones. Jin et al. used OpenS-

mile [107] and bag-of-words features to recognize emotions and compare the early- and

late-fusion methods to find that late-fusion performs best. Finally, Brilman et al. ex-

tracted a comprehensive set of multimodal features, and then performed an analysis

to identify features that are most indicative of successful debate performance. Bril-

man et al. showed that the audio modality was most predictive and a multimodal

system, via late-fusion, outperforms unimodal systems.

In contrast, in the work we present in this chapter, we do not rely on high-level

features, the development of which requires expert-knowledge in speech and language

processing. In addition, we consider neural approaches to multimodal modelings

instead of SVM-based ones. The inputs to our model consist of frequency-domain

representation of speech signals and word2vec feature representations. We also in-

vestigate different pooling strategies and their impact on overall performance.

4.3 Dataset and Features

Dataset. we use the IEMOCAP dataset in this study [15]. A description of the

IEMOCAP dataset is provided in Chapter II of this dissertation document. Each

utterance in IEMOCAP was labeled for both valence and arousal on a 5-point Likert

scale by at least two distinct annotators. We use the 10,032 utterances that have
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both the acoustic and lexical content. The IEMOCAP corpus is used in this study

because: (1) at the time this study was conducted, IEMPCAP was one of the largest

emotion datasets; (2) it provides both the .wav files and their associated transcripts;

and (3) all utterances were recorded in English.

Labels. We convert the 5-point scale used for describing valence values to a 3-

point scale following the approach described by Chang et al. [108]. This is done by

pooling valence levels 1 and 2 into a single “low” value and pooling valence levels

4 and 5 into a single “high” value. We generate fuzzy labels for each utterance

by representing the labels from each annotator as one-hot vectors and computing

the mean over the vectors. For instance, if three annotators labeled an utterance

[0, 0, 1], [0, 0, 1], and [0, 1, 0] each, then the final label vector representation would

be [0, 0.3, 0.7] and the correct class label would be 2 (where the possible options are

{0, 1, 2}). We treat the problem as a three-way classification problem, where the goal

is to assign a label from {0, 1, 2} to a given utterance.

Acoustic Features. We extract 40 Mel-filterbank (MFB) features by sliding a

25 millisecond Hamming window with a step-size of 10 milliseconds. As a result, each

utterance is represented as a sequence of 40-dimensional feature vectors. MFBs have

shown success in many speech processing applications, including automatic speech

recognition and SER [109, 110].

Lexical Features. We represent each word in the dataset as a 300-dimensional

vector using a pre-trained word2vec model.1 word2vec representations have shown

success in sentiment analysis tasks [91], which is closely related to the task of pre-

dicting valence in emotional speech. Thus, we expect word2vec representations to be

useful for our task.

1https://code.google.com/archive/p/word2vec/
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4.4 Methods

4.4.1 Architecture

The multimodal architecture that we use is shown in Figure 4.1. The hyper-

parameters that we consider are shown in Table 4.1. The network architecture accepts

two input streams, one for each modality. The acoustic input stream takes a sequence

of 40-dimensional vectors, while the lexical input stream takes a sequence of 300-

dimensional vectors.

Acoustic Input. We pass the sequence of acoustic features through five layers of

1D convolution and 1D max-pooling to reduce the temporal resolution of the acoustic

input sequence by 25, in order to make training faster (since the acoustic features

have a temporal resolution of 10 milliseconds). We then pass the resulting sequence to

bidirectional gated recurrent unit (GRU) layers [111] for temporal modeling. Previous

work showed that GRUs can have comparable performance to that of long short-

term memory (LSTM) units while using fewer parameters [111]. One of the main

differences between a GRU and an LSTM unit is that a GRU has only two gates (as

opposed to three) and it does not contain internal memory cells. Given the output

sequence representation from the GRU layers, we induce a fixed-length feature vector

by averaging the sequential outputs as described in [42], since it was shown that

this can result in better discrimination between emotions when compared to only

considering the output of the last layer.

Lexical Input. we pass the sequence of lexical feature vectors through bidirec-

tional GRU layers and then induce a fixed-length representation by taking the average

as we did for the acoustic features. We do not pass the lexical features through initial

convolution or pooling because sequences of lexical features are much shorter than

those of acoustic features.

Multimodal Pooling. For the unimodal systems, we feed the output from the
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Figure 4.1: Overall network architecture. The network takes two input streams,
one for each modality, and consists of three main components. One component for
extracting features from acoustic features, another for extracting features from lex-
ical features, and finally one for pooling the representations obtained from the two
modalities.

average pooling layer to fully-connected layers before feeding them into a softmax

layer (i.e., we skip the multimodal feature pooling step in Figure 4.1). For the mul-

timodal systems, we pool the features obtained from the two modalities using the

strategies described below and then feed the resulting features into fully-connected

layers followed by a softmax layer.

4.4.2 Pooling Strategies

Given the representations for each modality, the next step is to pool these two

representations to form a shared multimodal representation to be used for further

modeling and prediction. We consider the following pooling strategies to combine the

lexical and acoustic intermediate representations: (1) concatenation; (2) element-wise

addition; (3) element-wise multiplication (Hadamard product); (4) outer-product; (5)

compact bilinear pooling (CBP). Unlike traditional pooling methods, outer-product
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Table 4.1: Hyper-parameters used in the validation process.

Hyper-parameter Values

number of conv. kernels {64, 128}
conv. kernel width {2}

number of conv. layers {5}
1D max-pooling kernel width {2}

number of GRU layers {1, 2}
GRU layers width {32, 64}

number of dense layers {0, 1}
dense layers width {0, 128}
CBP output width {256, 1024, 2048}

and CBP provide a more expressive way to consider the interactions between features

from the two modalities. Taking the outer-product of two feature vectors considers

the interactions between each pair of features from the two vectors. The problem

with taking the outer-product, however, is the quadratic increase in the number of

parameters. CBP [112] can be used to compress the results obtained from an outer-

product. In particular, we utilize the multimodal variant of CBP [103], which makes

taking the outer-product between multimodal vectors more feasible.

4.4.3 Compact Bilinear Pooling (CBP)

Given two input vectors, x and y, bilinear pooling is simply a linear transformation

that considers all pairs of features from the two input vectors. Bilinear pooling can

be obtained by first taking the outer-product of the two input vectors, (x ⊗ y), and

then following it by a dense layer. CBP can be thought of as a sampling based

approximation to bilinear pooling. The approximation is done using Tensor Sketch

Projection [113, 114], and utilizes the property that Ψ(x ⊗ y, h, s) = Ψ(x, h, s) ∗

Ψ(y, h, s), where Ψ is the projection function, h and s are vectors of randomly sampled

parameters, and ∗ is the convolution operation. This property obviates the need for
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computing outer-products of the two input vectors directly. The projection function

is computed as follows: Ψ(x, h, s)i =
∑

j:hj=i(sj ·xj), where x, h, s ∈ Rn, hj is sampled

from {1, . . . , d}, sj is sampled from {−1, 1}, and d is the desired output dimension.

In this work I use the CBP implementation by Ronghang Hu2.

4.5 Experiments

4.5.1 Recipe

We follow a leave-one-speaker-out evaluation scheme. The dataset contains a total

of five sessions, where each session has data from a male and a female speaker. This

results in 10 unique speakers in total. For each fold, we use one speaker for testing

and the other speaker within the same session for validation and early stopping. We

use the remaining eight speakers for training.

We use unweighted average recall (UAR) and Pearson correlation (ρ) as our

evaluation metrics. UAR is a popular metric used when dealing with imbalanced

classes [115]. In cases where ground-truth labels have a tie, we accept predictions for

either position as a correct answer. So if [0, 0.5, 0.5] is the ground-truth label, then

class labels 1 and 2 are considered correct predictions in the evaluation process. To

compute Pearson correlation, we convert the network’s output to numerical values by

taking the expected value, similar to [108].

We implement the models using Keras [116] with a TensorFlow back-end [117]. We

use RMSprop [101] to train the models and use a weighted cross-entropy loss function

to account for class imbalance. We use fuzzy labels in the training process similar

to [108], and run each experiment three times to account for random initialization

of the parameters and report the ensemble performance. We sweep through hyper-

parameters values shown in Table 4.1 and pick the combination that maximizes the

2https://github.com/ronghanghu/tensorflow_compact_bilinear_pooling
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Table 4.2: Performance obtained using different pooling strategies. We assert signif-
icance when p < 0.05 under a paired t-test.

Method UAR ρ

unimodal—acoustic .590 .320

unimodal—lexical .648‡ .540‡

concatenation .680† .581†

summation .683† .578†

multiplication .687† .588†

outer-product .694† .601†∗

CBP .693† .605†∗

‡: significantly better than unimodal—acoustic
†: significantly better than unimodal—lexical and —acoustic

∗: significantly better than concatenation

validation performance for each fold. We use an initial learning rate of 0.001. Starting

from epoch five, we reduce the learning rate by half whenever the validation UAR

does not improve at the end of each epoch.

4.5.2 Results

Table 4.2 shows the results for the different pooling strategies that we considered.

The results show that the lexical modality yields significantly (p < 0.05) better perfor-

mance than the acoustic modality does in terms of both UAR and ρ. This suggests

that lexical cues are better for predicting valence than acoustic cues. The results

show that multimodal systems significantly (p < 0.05) outperform the unimodal lex-

ical systems, suggesting that adding the acoustic modality can still be beneficial.

Pooling through element-wise multiplication provided a non-significant improvement

in performance over element-wise summation and concatenation approaches. Outer-

product methods provided significant improvement (p < 0.05) in ρ when compared to

results from concatenation method. Finally, our results suggest that a CBP strategy

does not provide an advantage over simple outer-product strategy. This is probably
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Table 4.3: Confusion matrices comparison. Columns represent predictions while rows
represent ground-truth.

(a) Lexical modality

neg neu pos

neg .607 .140 .253
neu .233 .572 .194
pos .128 .115 .757

(b) Acoustic modality

neg neu pos

neg .509 .181 .311
neu .239 .621 .140
pos .198 .164 .638

(c) Multimodal

neg neu pos

neg .705 .144 .151
neu .247 .648 .104
pos .148 .128 .724

due to the relatively low dimensionality of our multimodal representations required

for each modality (32− 64 for each modality).

Table 4.3 shows the confusion matrices obtained from the two unimodal systems

and the CBP model. The results in Table 4.3 suggest that the acoustic modality is

better for predicting neutral valence than the lexical modality. On the other hand,

our results suggest that the lexical modality is better for predicting positive/negative

valence than the acoustic modality. Finally, Table 4.3 shows that the significantly

improved performance of CBP over that of the unimodal systems is due to more

accurate negative and neutral valence predictions.

4.5.3 Analysis

The model that we use in this work abstracts the influence of individual modal-

ities on the final decision. To further analyze the influence of each modality on the

overall performance of our multimodal system, we study the effect of perturbing the

individual input streams by adding white Gaussian noise (with zero mean and varying

standard deviation) to the input features with different signal-to-noise-ratio (SNR)

levels. We run this analysis on our best performing system, the CBP multimodal
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system, and vary the SNR levels from −18 dB to 6 dB. We also include SNR values

of -Inf dB and +Inf dB in our analysis. The idea is that if an input modality is

less important, then perturbing its values with noise will have minimal effect on the

overall performance.

Figure 4.2 shows the results that we obtain for this analysis. The figure shows

that adding more noise to the lexical modality (dashed line) results in a rapid drop in

performance compared to the performance drop due to adding noise to the acoustic

modality (solid line). This suggests that the lexical modality has larger influence on

the overall performance of the system. The figure shows that a multimodal system

would still result in > 60% UAR even when SNR is zero for the acoustic modality.

4.6 Conclusion

There are several strategies that can be used to pool representations learned for

acoustic and lexical modalities in neural networks. In this chapter, we presented

a comparison between different multimodal feature pooling strategies for the task of

predicting valence in emotional speech. Our results on the IEMOCAP dataset suggest

the following: (1) multimodal methods that combine acoustic and lexical features

are better than unimodal for predicting valence; (2) lexical modality is better for

predicting valence than the acoustic modality; and (3) outer-product-based pooling

strategies outperform other pooling techniques.
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Figure 4.2: Effect of adding noise to each modality (while keeping the other modality
clean) on the performance of CBP multimodal system.
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CHAPTER V

Capturing Long-term Dependencies for SER

5.1 Introduction

In this chapter, we focus on problems where the goal is to recognize emotions

in the valence-arousal space, continuously in time. The valence-arousal space is a

psychologically grounded method for describing emotions [118]. Valence ranges from

negative to positive, while activation ranges from calm to excited. Previous research

has demonstrated that it is critical to incorporate long-term temporal information

for making accurate emotion predictions. For instance, Valstar et al. [82] showed

that it was necessary to consider larger windows when making frame-level emotion

predictions (four seconds for arousal and six seconds for valence). Le et al. [65] and

Cardinal et al. [119] found that increasing the number of contextual frames when

training a deep neural network (DNN) for making frame-level emotion predictions is

helpful but only to a certain point. Bidirectional long short-term memory networks

(BLSTMs) can naturally incorporate long-term temporal dependencies between fea-

tures; explaining their success in continuous emotion recognition tasks (e.g., [120]).

In this chapter, we investigate two convolutional network architectures, dilated

convolutional networks and downsampling/upsampling networks, that capture long-

term temporal dependencies. We interpret the two architectures in the context of

continuous emotion recognition and show that these architectures can be used to
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build accurate continuous emotion recognition systems.

5.2 Related Work

Even though the problem of emotion recognition has been extensively studied in

the literature, we only focus on works that predicted dimensional values, continuously

in time. Successful attempts to solving the continuous emotion recognition problem

relied on DNNs [119], BLSTMs [120], and more commonly, support vector regression

(SVR) classifiers [121]. With the exception of BLSTMs, such approaches do not

incorporate long-term dependencies unless coupled with feature engineering. In this

chapter, we show that purely convolutional neural networks can be used to incorporate

long-term dependencies and achieve good emotion recognition performance, and are

more efficient to train than their recurrent counterparts.

In their winning submission to the AVEC 2016 challenge, Brady et al. [121] ex-

tracted a set of audio features (Mel-frequency cepstral coefficients, shifted delta cep-

stral, prosody) and then learned high-level representations of the features using sparse

coding. The high-level audio features were used to train linear SVRs. Povolny et

al. [122] used eGeMAPS [41] features along with a set of high-level bottleneck fea-

tures extracted from a DNN trained for automatic speech recognition (ASR) to train

linear regressors. The high-level features were produced from an initial set of 24 Mel-

filterbank (MFB) features and four different estimates of the fundamental frequency

(F0). Povolny et al. used all features to train linear regressors to predict a value for

each frame, and considered two methods for incorporating contextual information:

simple frame stacking and temporal content summarization by applying statistics to

local windows. In contrast, in this chapter we show that considering temporal de-

pendencies that are longer than those presented in [121, 122] is critical to improve

continuous emotion recognition performance.

He et al. [120] extracted a comprehensive set of 4, 684 features, which included
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energy, spectral, and voicing-related features, and used them to train BLSTMs. The

authors introduced delay to the input to compensate for human evaluation lag and

then applied feature selection. The authors ran the predicted time series through a

Gaussian smoothing filter to produce the final output. In this chapter, we show that

it is sufficient to use 40 MFBs to achieve state-of-the-art performance, without the

need for special handling of human evaluation lag.

Trigeorgis et al. [49] trained a convolutional recurrent network for continuous

emotion recognition using the time domain signal directly. The authors split the

utterances into five-second segments for batch training. Given an output from a the

trained model, the authors applied a chain of post-processing steps (median filtering,

centering, scaling, time shifting) to get the final output. In contrast, we show that

convolutional networks make it possible to efficiently process full utterances without

the need for segmenting. Further, since the proposed models work on full-length

utterances, we show that it is not necessary to apply any post-processing steps as

described in [49].

On the ASR end, Sercu et al. [123] proposed viewing ASR problems as dense pre-

diction tasks, where the goal is to assign a label to every frame in a given sequence,

and showed that this view provides a set of tools (e.g., dilated convolutions, batch

normalization, efficient processing) that can improve ASR performance. The authors

argued that ASR approaches required practitioners to splice their input sequences

into independent windows, making the training and evaluation procedures cumber-

some and computationally inefficient. In contrast, the authors’ proposed approach

allows practitioners to efficiently process full sequences without requiring splicing or

processing frames independently. The authors showed that their approach obtained

the best published single model results on the switchboard-2000 benchmark dataset.

In this chapter, we treat the problem of continuous emotion recognition as a dense

prediction task and show that, given this view of the problem, we can utilize convolu-
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tional architectures that can efficiently incorporate long-term temporal dependencies

and provide accurate emotion predictions.

5.3 Problem Setup

We focus on the RECOLA database [81] following the AVEC 2016 guidelines [82].

A description of the RECOLA database is provided in Chapter II of this dissertation.

The RECOLA database consists of spontaneous interactions in French and provides

continuous, dimensional (valence and arousal) ground-truth descriptions of emotions.

Even though the AVEC 2016 challenge is multimodal in nature, we only focus on

the speech modality in this chapter. The RECOLA database contains a total of 27

five-minute utterances, each from a distinct speaker (9 train; 9 validation; 9 test).

Ground-truth continuous annotations were computed, using audio-visual cues, on a

temporal granularity of 40 milliseconds from six annotators (three females).

Features. We use the Kaldi toolkit [124] to extract 40-dimensional log MFB

features, using a window length of 25 milliseconds with a hop size of 10 milliseconds.

Previous work showed that MFB features are better than conventional Mel-frequency

cepstral coefficients (MFCCs) for predicting emotions [110]. We perform speaker-

specific z-normalization on all extracted features. RECOLA provides continuous

labels at a granularity of 40 milliseconds. Thus, we stack four subsequent MFB frames

to ensure correspondence between hop sizes in the input and output sequences.

Problem Setup. Given a sequence of stacked acoustic features X = [x1,x2, . . . ,xT ],

where xt ∈ Rd, the goal is to produce a sequence of continuous emotion labels

y = [y1, y2, . . . , yT ], where yt ∈ R.

Evaluation Metrics. Given a sequence of ground-truth labels y = [y1, y2, . . . , yT ]

and a sequence of predicted labels ŷ = [ŷ1, ŷ2, . . . , ŷT ], we evaluate the performance

using the root mean squared error (RMSE) and the Concordance Correlation Coeffi-

cient (CCC) to be consistent with previous work. The CCC is computed as follows:
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CCC =
2σ2

yŷ

(σ2
y + σ2

ŷ + (µy − µŷ)2)

where µy = E(y), µŷ = E(ŷ), σ2
y = var(y), σ2

ŷ = var(ŷ), and σ2
yŷ = cov(y, ŷ).

5.4 Preliminary Experiment

We first study the effect of incorporating temporal dependencies of different lengths.

The network that we use in the preliminary experiments consists of a convolutional

layer with one filter of variable length from 2 to 2048 frames, followed by a Tanh non-

linearity, followed by a linear regression layer. We vary the length of the filter and

validate the performance using CCC. We train the model on the training partition

and evaluate on the development partition. We report the results of this preliminary

experiment in Figure 5.1. The results show that incorporating long-term temporal

dependencies improves the performance on the validation set up to a point.

The observed diminishing gains in performance past 512 (20.48 seconds) frames

may occur either due to the increased number of parameters or because contextual

information becomes irrelevant after 512 frames. Covering contexts as large as 512

frames still provided improvements in performance compared to results obtained from

covering smaller contexts. The utility of contexts spanning 512 frames (20.48 seconds)

is contrary to previous work that considered much smaller time scales. For instance,

Valstar et al. [82] only covered six seconds worth of features and Povolny et al. [122]

considered a maximum of eight seconds worth of features. Results from the prelim-

inary experiment suggest that continuous emotion prediction systems could benefit

from incorporating long-term temporal dependencies. This acts as a motivation for

using architectures that are specifically designed for considering long-term dependen-

cies.
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Figure 5.1: Increasing the size of the receptive field improves performance for both
arousal and valence. Solid lines represent mean CCC from 10 runs and shaded area
represents standard deviation from the runs.

5.5 Methods

In this section, we describe the two architectures that we propose to use to capture

long-term temporal dependencies in continuous emotion prediction tasks.

5.5.1 Dilated Convolutions

Dilated convolutions provide an efficient way to increase the receptive field with-

out causing the number of learnable parameters to vastly increase. Networks that

use dilated convolutions have shown success in a number of tasks, including image

segmentation [125], speech synthesis [126], and ASR [123].

van den Oord et al. [126] recently showed that it is possible to use convolutions

with various dilation factors to allow the receptive field of a generative model to grow

exponentially in order to cover thousands of time steps and synthesize high-quality

speech. Sercu et al. [123] showed that ASR could benefit from dilated convolutions

since they allow larger regions to be covered without disrupting the length of the

45



input signals. Continuous emotion recognition could benefit from such properties.

When compared to filters of regular convolutions, those of dilated convolutions

touch the input signal every k time steps, where k is the dilation factor. If [w1, w2, w3]

is a filter with a dilation factor of zero, then [w1, 0, w2, 0, w3] is the filter with a dilation

factor of one and [w1, 0, 0, w2, 0, 0, w3] is the filter with a dilation factor of two, and

so on. We build a network that consists of stacked convolution layers, where the

convolution functions in each layer use a dilation factor of 2n, where n is the layer

number. This causes the dilation factors to grow exponentially with depth while the

number of parameters grows linearly with depth. Figure 5.2 shows a diagram of the

dilated convolution network.

5.5.2 Downsampling/Upsampling

The emotion targets in the RECOLA database are sampled at a frequency of

25 Hz. Using Fourier analysis, we find that more than 95 percent of the power

of these trajectories lies in frequency bands that are lower than 1 Hz. In other

words, the output signals are smooth and they have considerable time dependencies.

This finding is not surprising because we do not expect rapid reactions from human

annotators. Networks that use dilated convolutions do not take this fact into account

while making predictions, causing them to generate output signals whose variance is

not consistent with the continuous ground truth contours (Section 5.6.2). To deal

with this problem, we propose the use of a network architecture that compresses the

input signal into a low-resolution signal through downsampling and then reconstructs

the output signal through upsampling. Not only does the downsampling/upsampling

architecture capture long-term temporal dependencies, it also generates a smooth

output trajectory.

We conduct an experiment to investigate the effect of downsampling/upsampling

on continuous emotion labels. First, we convert the ground truth signals to low-

46



C
on

v.
 +

 M
ax

 p
oo

l

C
on

v.
 +

 M
ax

 p
oo

l

D
ec

on
v

D
ec

on
v

Downsampling UpsamplingDilated Convolution
(b)(a)

Input PredictionsStack of dilated convolutions

Figure 5.2: A visualization of the dilated convolution network. We use convolutions
with a different dilation factor for different layers. We use a 1× 1 convolution for the
last layer to produce the final output.

resolution signals using standard uniform downsampling. Given the downsampled

signals, we then generate the original signals using spline interpolation. We vary the

downsampling factor exponentially from 2 to 128 and compute the CCC between the

original signals and the reconstructed ones. The results that we show in Figure 5.4

demonstrate that distortions caused by downsampling with factors up to 64 are minor

(< 5% loss in CCC relative to original).

The network that we use contains two subnetworks: (1) a downsampling net-

work; (2) an upsampling network. The downsampling network consists of a series of

convolutions and max-pooling operations. The max-pooling layers reduce the resolu-

tion of the signal and increase the effective receptive field of the convolution layers.

Initial experiments showed that max-pooling was more effective than other pooling

techniques.

The upsampling function can be implemented in a number of ways [127]. In

this chapter we use the transposed convolution1 [128, 129] operation to perform up-

sampling. Transposed convolutions provide a learnable map that can upsample a

low-resolution signal to a high-resolution one. In contrast to standard convolution

1Other names in literature include deconvolution, upconvolution, backward strided convolution
and fractionally strided convolution.
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Figure 5.3: A visualization of the downsampling/upsampling network. Downsampling
compresses the input signal into shorter signal which is then used to reconstruct a
signal of the same length by the upsampling sub-network. We use the transpose
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Figure 5.4: Effect of downsampling/upsampling on CCC.

filters that connect multiple input samples to a single output sample, transposed

convolution filters generate multiple outputs samples from just one input sample.

Since it generates multiple outputs simultaneously, the transposed convolution can

be thought of as a learnable interpolation function.

Downsampling/upsampling architectures have been used in many computer vision

tasks (e.g., [127, 130, 131]). For instance, Noh et al. [127] showed that transposed

convolution operations can be effectively applied to image segmentation tasks. In

addition to vision applications, downsampling/upsampling architectures have been

successfully applied to speech enhancement problems [132], where the goal is to

learn a mapping between noisy speech spectra and their clean counterparts. Park
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et al. [132] demonstrated that downsampling/upsampling convolutional networks can

be 12× smaller (in terms of the number of learnable parameters) than their recurrent

counterparts and yet yield better performance on speech enhancement tasks.

The main goal of a transposed convolution is to take an nx-dimensional low-

resolution vector x and generate an ny-dimensional high-resolution vector y using an

nw-dimensional filter w (where ny > nx). Similar to other linear transforms, y can

be expressed as:

y = Tx

where T is the linear ny-by-nx transform matrix that is given by

T = [T1,T2, ...,Tnx ]

Ti is the i-th column of T and can be written as:

Ti = [0, ..., 0︸ ︷︷ ︸
s(i−1)

, wT︸︷︷︸
nw

, 0, ..., 0︸ ︷︷ ︸
s(nx−i)

]T

where s is the upsampling factor. This linear interpolator is able to expand the in-

put vector x to the output vector y with the length of ny = s(nx − 1) + nw. Note

that the matrix T is nothing but the transposed version of the standard strided

convolution transform matrix. our experiments confirm that the proposed downsam-

pling/upsampling network generates smooth trajectories.

5.6 Results and Discussion

5.6.1 Experimental Setup

We build the proposed models using the Keras library [116] with a Theano back-

end [133]. We train our models on the training partition of the dataset and use the
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Figure 5.5: A visualization of the predictions produced by the two models plotted
against ground-truth for a 40-second segment.

development partition for early stopping and hyper-parameter selection (e.g., learn-

ing rate, number of layers layer size, filter width, L2 regularization, dilation factors,

downsampling factors). We optimize the CCC objective directly in all setups. We

repeat each experiment five times to account for the effect of initialization. The final

test evaluation is done by the AVEC 2016 organizers (i.e., the test set is withheld by

the competition organizers). Test submissions were created by averaging the predic-

tions produced from the five runs to account for randomness from initialization and

training.

We report published results from the literature as baselines. Almost all previous

works only report their final test results based on multimodal features. We only show

results that are reported on the audio modality in the results tables. We also compare

our performance to that of an optimized BLSTM regression model, described in [134].

our final dilated convolution structure has a depth of 10 layers, each having a width of

32. Our final downsampling/upsampling network contains four downsampling layers,

one intermediate layer, and four transposed convolution layers, each having width of

32 for arousal and 128 for valence. We use a downsampling factor of three. We do not

splice the input utterances into segments; instead, we train on full length utterances

and use a batch size of one.
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5.6.2 Results

Tables 5.1 and 5.2 show the development and test results for arousal and valence,

respectively. Each row shows the results for one setup. We only include results from

the literature that are based on the speech modality and use “–” to show unreported

results.

Both proposed systems show improvements over baseline results by Valstar et

al. [82]. The proposed dilated convolution based system provides improvements of

5.6% and 19.5% over baseline systems for arousal and valence, respectively. The pro-

posed downsampling/upsampling system provides improvements of 5.1% and 33.9%

over baseline systems for arousal and valence, respectively. We report the results we

obtain from the proposed BLSTM system to provide a reference point. The proposed

BLSTM system performs well when compared to the baseline results.

The proposed methods outperform BLSTMs and are more efficient to train on

long utterances. For instance, given a convolutional network and a BLSTM network

with approximately equal number of learnable parameters, one epoch of training on

the AVEC dataset takes about 13 seconds on the convolutional network while one

epoch of training takes about 10 minutes on the BLSTM network. This suggests that

convolutional architectures can act as replacement for recurrent ones for continuous

emotion recognition problems.

We show an example 40-second segment of the predictions made by our two net-

works along with the ground-truth predictions in Figure 5.5. The figure shows that the

predictions produced by the downsampling/upsampling network are much smoother

than those produced by the dilated convolution networks. We believe that the struc-

ture of the downsampling/upsampling network forces the output to be smooth by

generating the output from a compressed signal. The compressed signal only stores

essential information that is necessary for generating trajectories, removing any noise

components.
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Table 5.1: Arousal results.

Method
Dev. Test

RMSE CCC RMSE CCC

Valstar et al. [82] – .796 – .648

Brady et al. [121] .107 .846 – –

Povolny et al. [122]∗ .114 .832 .141 .682

BLSTM [134] .103 .853 .143 .664

Dilated .102 .857 .137 .684

Down/Up .100 .867 .137 .681

Table 5.2: Valence results.

Method
Dev. Test

RMSE CCC RMSE CCC

Valstar et al. [82] – .455 – .375

Brady et al. [121] .132 .450 – –

Povolny et al. [122]∗ .142 .489 .355 .349

BLSTM [134] .113 .518 .116 .499

Dilated .117 .538 .121 .486

Down/Up .107 .592 .117 .502

5.7 Conclusion

We investigated two architectures that provide different means for capturing long-

term temporal dependencies in a given sequence of acoustic features. Dilated convo-

lutions provides a method for incorporating long-term temporal information without

disrupting the length of the input signal by using filters with varying dilation factors.

Downsampling/upsampling networks incorporate long-term dependencies by apply-

ing a series of convolution and max-pooling operations to downsample the signal and

∗Unpublished test results, courtesy of the authors.
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get a global view of the features. The downsampled signal is then used to reconstruct

an output with a length that is equal to the uncompressed input. When the exper-

iment were conducted, the proposed methods achieved the best known audio-only

performance on the AVEC 2016 challenge.
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CHAPTER VI

Speaker Embeddings as Robust Features for SER

6.1 Introduction

In this chapter, we study the utility of speaker embeddings, representations ex-

tracted from a trained speaker recognition network, as robust features for detecting

emotions. The features used to describe the acoustic signal are a crucial aspect of any

emotion recognition model. Consequently, various features have been proposed in the

literature for the task of SER (e.g., [39, 40, 41]). However, the extraction of many

of these proposed features are susceptible to distortions due to variations in lexical

content, the presence of environmental noise, or domain shifts. As a result, there

remains a need for robust paralinguistic features that abstract extraneous low-level

variations present in the acoustic signal and only capture speaker characteristics that

are necessary for predicting emotions.

Previous research has shown that neural networks trained discriminatively on

large and diverse datasets learn to extract robust features that are invariant to noise

and domain-shifts (e.g., [78, 79]). These features are obtained from intermediate

representations that the trained networks extract from the input signal. However,

the main requirement for learning powerful features using neural networks is the

access to large labeled datasets; a requirement that is still challenging to fulfill in the

affective computing community in general, and in the emotion recognition community
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in particular. The challenges associated with finding media sources that provide

varied emotional data as well as the challenges associated with annotating the data

with accurate emotion labels are the driving reasons behind the data sparsity problem

in emotion recognition.

Many paralinguistic tasks are closely related, and thus, the representations ex-

tracted while solving one paralinguistic task can be used for solving other tasks [135,

55]. Specifically, previous research showed that representations learned while solving

the emotion recognition task are useful for solving other paralinguistic tasks, such as

gender detection and speaker identification [55]. However, unlike emotion recognition,

speaker recognition does not suffer from the problem of data sparsity; there are multi-

ple large-scale datasets with speaker labels (e.g., [136, 137, 138]). In this chapter, we

ask if speaker recognition can help emotion recognition by attenuating the challenges

that come with having limited amounts of labeled emotion data. We hypothesize that

we can improve emotion recognition performance by leveraging speaker embeddings,

feature representations trained for the speaker recognition task. Our work comple-

ments previous research by demonstrating that speaker embeddings can be used as a

replacement to common paralinguistic features in emotion recognition applications.

We propose two experiments designed to study the relationship between emotion

and speaker embeddings, and assess their utility as general paralinguistic features. In

this experiment, we quantify the effect emotion has on speaker embeddings to exam-

ine whether or not the embeddings capture speech characteristics that are changed by

emotion. We hypothesize that emotionally charged vocal expressions change speech

characteristics that are captured by speaker embeddings (i.e., speakers sound less like

themselves when their vocal expressions are emotionally charged). This hypothesis is

supported by existing work, which studied the effect of emotion on speaker represen-

tations (e.g., i-vector), focusing on changes in the equal error rate (EER) in speaker

verification tasks[139, 140, 141, 142]. However, the focus on the EER metric obfus-
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cated the utility of speaker embeddings as paralinguistic features because the EER

metric, as used in speaker verification tasks, measures the performance as a function

of a general population of test speakers. In other words, although emotionally charged

vocal expressions might change how identity is encoded for a certain speaker, indi-

vidual speakers might still sound more like themselves when compared to a general

population of other test speakers. In this chapter, we instead quantify the effect of

emotion on speaker representations by hypothesizing that representations extracted

from neutral speech, as a group, has more intra-group similarity, compared to the

similarity between neutral and emotional speech. We test this hypothesis using a

novelty detection framework, implemented using autoencoders, with reconstruction

error as a proxy for similarity. The benefit to this paradigm is that it allows us to

ask not whether the emotional speech belongs to a different speaker, but instead, if

the differences in emotional speech are captured by speaker identification features.

Our results suggest that emotional speech significantly changes speaker embeddings

from their neutral representation, and that these changes can be utilized in a novelty

detection framework for detecting non-neutral speech.

In the second experiment, we assess the effectiveness of speaker embeddings for

detecting emotions by comparing them to state-of-the-art paralinguistic features. We

expect speaker embeddings to be more robust to the variations introduced by domain

shifts compared to common paralinguistic features used in the emotion recognition lit-

erature. This is because neural networks used for extracting the speaker embeddings

are trained on large and in-the-wild datasets, which make the extracted embeddings

invariant to changes in recording conditions and background noises. As a result, we

expect speaker embeddings to capture high-level speaker characteristics that can be

beneficial for recognizing emotions while abstracting any low-level variations present

in the acoustic signal. We test this hypothesis by running both within-corpus and

cross-corpus emotion recognition experiments. Cross-corpus setups make the emotion
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recognition task more challenging as trained models cannot rely on spurious correla-

tions that exist within a dataset to make predictions. Our results demonstrate that

emotion recognition models that use speaker embeddings as features outperform those

that use state-of-the-art paralinguistic features, especially in cross-corpus settings.

To summarize, the novelty of the work presented in this chapter is three-fold: (1)

we demonstrate how speaker embeddings highlight the differences that exist between

neutral speech and emotionally expressive speech; (2) we show how speaker embed-

dings can be used in a novelty detection framework for establishing a baseline of how

a speaker sounds in the neutral state, and for detecting deviations from this base-

line neutral state; and (3) we demonstrate how speaker embeddings provide a robust

replacement to general paralinguistic features for recognizing emotional expression.

The remainder of this chapter is organized as follows. Section 6.2 covers related work.

Section 6.3 covers the proposed approach. Section 6.4 covers the datasets used in our

work. Sections 6.5 and 6.6 cover the experiments and results. Finally, Section 6.7

includes concluding remarks and proposed future directions.

6.2 Related Works

6.2.1 Speaker Representations and Emotional Speech

There are several works that studied the relationship between speaker represen-

tations and emotional speech. In this section we cover works that looked at this rela-

tionship as it relates to traditional (e.g., i-vectors) and neural speaker representations.

i-vectors are common representations used in speaker identification and verification

applications [143]. They capture several sources of variation (e.g., identity, age, gen-

der) present in the acoustic signal as represented by the Gaussian mixture model

(GMM) mean supervector. More recently, neural representations have outperformed

their i-vector counterparts (e.g., [144, 145, 146]). These representations are extracted
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from the intermediate layers of a neural network that was discriminatively trained to

classify speakers. Some common neural representations introduced in the literature

include the d-vector and x-vector representations [145, 137, 146, 147, 145].

One question with these representations is how other modulations (e.g., emotion)

change their ability to recognize speakers. Previous research used degradation in

the EER metric in a speaker verification task as a proxy for quantifying the effect of

emotion on speaker representations [141, 140, 142, 148]. However, one limitation with

the use of the EER metric for this purpose is that it measures both the inter- and

intra-speaker variations in the representations. In other words, the negative samples

used when evaluating the EER for a speaker always came from a different speaker (i.e.,

a speaker is always compared to other speakers). So the metric will only be affected

if the variations due to emotions are bigger than those due to changes in speaker

identity. In contrast, we study how emotion modulates speaker representations by

treating neutral speech from a given speaker as a group, and determining if this

group has more intra-group similarity, compared to the similarity between neutral

and emotional speech. The similarity measure is used as a proxy for the amount

of modulation that emotion incurs on the speaker representations. The benefit of

this approach is that it allows us to determine if differences in emotional speech are

captured by speaker recognition features.

6.2.2 Speech Representations for Emotion Recognition

One of the most common paradigms for extracting acoustic features for emotion

recognition involves two steps. First, low-level-descriptors (LLDs) are extracted using

a short sliding window (e.g., extracted every 25 milliseconds) applied to the acoustic

signal. Then, a set of statistical functions are applied to these LLDs to get a feature

representation of an utterance. Some popular feature sets that were developed include

the INTERSPEECH 2009 (IS09) Emotion Challenge features, the INTERSPEECH
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2013 Computational Paralinguistics ChallengeE (ComParE), the Geneva Minimalistic

Acoustic Parameter Set (GeMAPS), and the extended Geneva Minimalistic Acoustic

Parameter Set (eGeMAPS) [39, 149, 40, 41]. The benefit of this paradigm is that it

allows for a description of how properties of the low-level acoustic features change over

the course of an utterance, obviating the need for a detailed focus on the short-time

dynamical properties of the features.

Yet, the short-time dynamical properties of acoustic features convey critical cues

into an individual’s emotions. The work in Chapter III showed how the application

of statistical functionals in the feature extraction process can obfuscate these cues,

and has shown that modeling the acoustic features directly in neural networks can

alleviate this problem. However, one challenge with using low-level acoustic features

(e.g., MFCCs, pitch, etc.) to directly predict emotion is that their extraction can

be significantly affected by variations in the recording conditions or variations in the

lexical content of the utterance [150]. In other words, the features extracted from an

utterance can look different depending on what the speaker said or depending on the

environment of the speaker during the recording.

Representation learning, through the use of neural networks, has been shown to

be an effective way to learn powerful features that are invariant to lexical content and

recording conditions (e.g., [151, 152]). As a result, more recent approaches to emotion

recognition from speech have focused on using neural networks to train recognition

models that rely on minimally engineered features. These works have used spectro-

grams, filterbanks, or raw-waveforms for building emotion recognition models [42, 43,

44]. However, datasets used for building SER models remain significantly smaller

than those used for building other speech models (e.g., speaker recognition). This

hinders the ability of neural networks trained for the task of emotion detection to

extract robust representations from the acoustic signal to be used in other domains

or applications.
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In this chapter, we show that features extracted from a neural network that was

trained for speaker recognition can be used as general features for detecting emo-

tions. We demonstrate how emotional expression modulates speaker embeddings

from their neutral representation, and demonstrate how these modulations can be

used for detecting emotional expression. Finally, we show that speaker embeddings

can outperform traditional state-of-the-art features in challenging cross-corpus emo-

tion recognition tasks.

6.3 Method

We propose the use of speaker embeddings as a replacement to traditional par-

alinguistic acoustic features for the recognition of emotions. We introduce speaker

embeddings and the model used to extract them in this section.

6.3.1 Speaker Embeddings

Speaker embeddings are fixed-size vector representations of variable-length utter-

ances. They are typically used in speaker recognition and diarization tasks [137, 145,

146], and can also be used for adapting acoustic models in automatic speech recogni-

tion systems [153]. The current standard for extracting robust speaker embeddings

is by taking the outputs from an intermediate layer of a neural network that was

discriminatively trained to identify speakers from a large set of individuals. Common

speaker embeddings from the literature include d-vectors, x-vectors, and embeddings

extracted from the VGG-M speaker identification network [137, 146, 145].

Speaker recognition neural networks map low-level acoustic features (e.g., Mel-

filterbanks, MFCCs, spectrograms) extracted from utterances to speaker identities

present in the training set. The representations (i.e., transformation) that such net-

works learn in the process can be used for extracting general embeddings to represent

utterances from new speakers not seen in the training phase. These representations

60



encode speech characteristics needed for recognizing speakers but abstract low-level

variations that are not needed for recognizing speakers.

6.3.2 x-vector Model

We focus our work on speaker embeddings extracted from the x-vector model

as described in [151, 146]. We choose to work with the x-vector system because

it has been demonstrated that it provides state-of-the-art embeddings for speaker

recognition and diarization applications [146, 154, 155, 156], and because it is built

on top of the open-source Kaldi toolkit [124]. The network used for extracting x-

vectors is summarized in Table 6.1, and it consists of three parts: (1) frame-level

feature extraction sub-network; (2) statistics pooling layer; and (3) and utterance-

level classification sub-network.

The frame-level feature extraction sub-network takes in a sequence of 30-dimensional

MFCC frames, where each frame represents 25 millisecond, and outputs a sequence

of 512-dimensional features. It consists of five layers with a time-delay architecture.

The first layer stacks the current frame at t with context frames from the previous

two and the next two time steps. The second and third layers stack the current frame

at t with context frames t ± 2 and t ± 3, respectively. The fourth and fifth layers

do not add any context frames and only transform the representations at the current

frame. The statistics pooling layer summarizes the frame-level features by taking the

mean and standard deviation across the time dimension. Finally, the utterance-level

classification sub-network consists of two fully-connected layers, and a softmax layer

for classifying speakers.

Given a variable-length utterance by a speaker that was not seen in the training

phase, a fixed-size representation for this utterance can be obtained by taking the

output of the “segment6” layer (before the non-linearity) from the neural network

summarized in Table 6.1. We use the outputs of “segment6” layer as our embeddings
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for two reasons. First, previous research has suggested that they encode information

relating to emotion, speaking style, and speaking rate [157, 154]. Second, previous

research found that they are better equipped than other outputs for capturing speaker

characteristics in speaker verification tasks [151].

6.4 Datasets

We use three emotion datasets in this study: IEMOCAP [15], MSP-IMPROV [80],

and VESUS [83]. A description of the three datasets can be found in Chapter II. One

limitation with both the IEMOCAP and MSP-IMPROV datasets is that they have

very few utterances where the lexical content is the same but the emotion varies;

making it difficult to study the influence of emotion and lexical variations on the

embeddings independently. Studying these two variables independently is necessary

since emotions modulate not only speech acoustics, but also language [52]. These

modulations can influence the sequence of phonemes that are uttered, which can

then affect the extracted speaker embeddings. Thus, we use the VESUS dataset to

study the relationship between emotion and speaker embeddings (Section 6.5.1), and

use the IEMOCAP and MSP-IMPROV datasets when running within-corpus and

cross-corpus emotion recognition tasks (Section 6.5.2).

6.5 Experiments

This section describes the experiments used to assess the utility of speaker em-

beddings in emotion recognition tasks. The first experiment quantifies the effect of

emotion variation on speaker embeddings; teasing out the effects on the embeddings

due to emotion variations from those due to lexical variations. The second experi-

ment compares the performance of an emotion recognition model trained and evalu-

ated with speaker embeddings as features to the performance of recognition models
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Table 6.1: The network architecture used in the speaker identification task taken
from [151]. Speaker embeddings are extracted from the segment6 layer. N is the
total number of speakers used in the training phase. T is the total number of frames
in an utterances. The input size of 150 for the frame1 layer is the result of stacking
five context frames, each with a size of 30. The input sizes of 1536 for the frame2 and
frame3 layers are a result of stacking three context frames, each with a size of 512.

Layer Layer context Total context Input × Output

frame1 [t− 2, t+ 2] 5 150× 512
frame2 {t− 2, t, t+ 2} 9 1536× 512
frame3 {t− 3, t, t+ 3} 15 1536× 512
frame4 {t} 15 512× 512
frame5 {t} 15 512× 1500

stats. pooling [0, T ) T 1500T × 3000
segment6 {0} T 3000× 512
segment7 {0} T 512× 512
softmax {0} T 512×N

trained and evaluated with state-of-the-art features used in the emotion literature.

The speaker embeddings that we use in all of our experiments were extracted using

a pre-trained1 x-vector model that was discriminatively trained to identify speakers in

the combined VoxCeleb1 and VoxCeleb2 datasets [137, 138]. The combined VoxCeleb

datasets contain more than 2,000 hours of speech (more than 1 million utterances)

from more than 7,000 speaker identities. The x-vector model, summarized in Ta-

ble 6.1, takes in the voiced frames of an utterance as an input and gives a speaker

identity as an output. The input features to the x-vector model are 30-dimensional

Mel-frequency cepstral coefficients (MFCCs) extracted from 16kHz utterances using

a 25 millisecond sliding window. All utterances are mean normalized using a three-

second window before being fed into the speaker identification network. A more

detailed training recipe for the speaker identification network can be found in [146].

1https://kaldi-asr.org/models/m7
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6.5.1 Experiment 1: Speaker Embeddings and Emotions

In this experiment, we quantify the effect emotion has on speaker embeddings

to examine whether or not the embeddings are well-equipped for the emotion recog-

nition task. We hypothesize that embeddings are modulated by emotional speech,

allowing us to either preserve or enhance the differences that exist between a neutral

expression and the expression of emotion. We formulate this problem by asserting

that neutral speech, as a group, has more intra-group similarity, compared to the

similarity between neutral and emotional speech. We test this hypothesis using a

novelty detection framework, implemented using autoencoders, with reconstruction

error as a proxy for similarity. The use of the reconstruction error of an autoencoder

for novelty detection tasks has been studied for other applications by several works

in the literature (e.g., [158, 159, 160, 161]). To the best of our knowledge, we are

the first to propose the use of autoencoders to analyze the effect of the variations in

emotion and in lexical content on speaker embeddings.

We address the following two questions about the relationship between speaker

embeddings and emotion in our experiments:

• Q1: Do variations in emotion significantly modulate speaker embeddings from

their neutral representation?

• Q2: Are the modulations on the neutral embeddings due to emotion variation

larger or smaller than those due to lexical variation?

Answering these two questions is necessary for understanding how emotions affect

speaker embeddings, and for assessing the embeddings’ utility as general paralinguis-

tic features in emotion recognition tasks.

We rely on two datasets to pre-train and evaluate our networks. All of the au-

toencoders that we use in this analysis were first trained on embeddings extracted

from the 100-hour clean version of the LibriSpeech dataset and validated on the clean
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development set of LibriSpeech [162]. The 100-hour clean version of LibriSpeech con-

tains a total of 28,539 utterances from 585 speakers (284 males and 301 females).

The pre-training was performed to ensure that the parameters of our autoencoders

are properly tuned for encoding and decoding speaker embeddings for general neutral

speaker population and to provide the same starting point for all speaker-specific

autoencoders. We use the VESUS dataset to test emotional similarity because it

provides us with the means to control for both emotion and lexical content without

compromising the total number of samples available for each speaker [83].

The autoencoders that we use consist of five hierarchical down-sampling stages

and five hierarchical up-sampling stages. The hierarchical architecture of our autoen-

coders is similar to models used in [42]. Each down-sampling layer in our autoencoders

reduces the dimensionality of its input by two while each up-sampling layer increases

the dimensionality of its inputs by two. This reduces the effective size of speaker

embeddings to 16 features from their original 512 features before being up-sampled.

Each block (but the last) in our autoencoders consist of a fully-connected layer fol-

lowed by a Tanh activation. The last block only includes a fully-connected layer with

no activation units. We use the mean squared error (MSE) loss function and train

our autoencoders using the ADAM optimizer with a learning rate of 0.001 and batch

sizes of 256. We run the training for a total of 100 epochs and apply early stopping

once the validation loss does not improve for five consecutive epochs. For fine-tuning,

we use a batch size of 32 and use the same learning rate and loss functions used for

training the autoencoders. We run the fine-tuning for a total of 50 epochs and apply

early stopping once the loss on a held-out validation set does not improve for five

consecutive epochs.
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6.5.1.1 Question 1 Experimental Setup

We first pre-train the autoencoders using neutral speech from the LibriSpeech cor-

pus. Then, for each speaker in our test corpus (VESUS), we partition their data into

three categories: (1) neutral training, (2) neutral testing, and (3) emotional testing.

We use the neutral training data (which consist of 70% of a speaker’s total neutral

data) to fine-tune the autoencoder for each speaker. This allows us to construct a

baseline model for each speaker. We then create a distribution using the reconstruc-

tion error associated with the neutral testing data and compare the reconstruction

errors obtained from the emotional testing data to this distribution. If, in general,

the reconstruction error on the neutral speech is lower than that of the emotional

speech, this will support the hypothesis that embeddings are modulated by emotion.

We analyze the effect emotion has on the reconstruction errors using linear mixed

effect models (LMEMs), implemented via the lme4 package [163] in R [164]. We

set the reconstruction error as a response variable in our linear models, and set the

emotion (neutral vs. non-neutral) and the gender as dependent binary variables.

We set random intercepts for speaker ids and utterance duration (discretized into

3-quantiles), as well as per-speaker random slopes. In case the linear model fails to

converge, we simplify the model by removing the per-speaker random slope and only

retain the random intercepts, as suggested in [165]. We use likelihood ratio tests to

test for statistical significance and test a full model (with the emotion fixed effect)

against a null model (without the emotion fixed effect).

6.5.1.2 Question 2 Experimental Setup

We first pre-train the autoencoders using neutral speech from the LibriSpeech

corpus. Then, for each speaker in our test corpus (VESUS), we partition their data

into four categories: (1) neutral training, (2) neutral testing-a, (3) neutral testing-b,

and (4) emotional testing. Further, we filter utterances in partition (4) such that we
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only retain those that can be matched based on lexical content with utterances in

partition (2). Note that due to the lexically controlled nature of VESUS, the lexical

content of each utterance is unique. As a result, each neutral partition contains

utterances with unique content. We use the data in the neutral training partition

to fine-tune the autoencoder for each speaker. This allows us to construct a baseline

model for each speaker. We then create a distribution using the reconstruction error

associated with the neutral testing-a data, and compare the reconstruction error of

the neutral testing-b and emotional testing data to this distribution. If the difference

in reconstruction errors between partition (2) and partition (4) is bigger than the error

between and partition (2) and partition (3), then this will support the hypothesis that

modulation on the speaker embeddings due to variations in emotion are larger than

those due to variations in lexical content.

We run a series of LMEMs to analyze the effect of emotion variation and lex-

ical content variation on reconstruction errors. We set the reconstruction error as

a response variable in our linear models, and set a binary value (i.e., neutral vs.

non-neutral with same content or neutral vs. neutral with different content) and

the gender as dependent binary variables. We set random intercepts for speaker ids

and utterance duration (discretized into 3-quantiles), as well as per-speaker random

slopes. We follow the same process described in Section 6.5.1.1 to fit the LMEMs and

test for significance.

6.5.2 Experiment 2: Speaker Embeddings as General Paralinguistic Fea-

tures

While the previous experiment investigates whether or not speaker embeddings

capture speech characteristics that are changed by variations in emotion, this ex-

periment investigates whether or not these disturbances can be used for recognizing

emotions. We compare the emotion recognition performance obtained with speaker
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embeddings to the performance obtained with state-of-the-art features used in the

literature. We hypothesize that emotion recognizers that use speaker embeddings

as features will outperform those that use common features from the paralinguistics

literature. Our hypothesis is based on the fact that speaker embeddings are extracted

from models that were trained on much bigger and diverse datasets compared to the

commonly used emotion features. Specifically, the large and in-the-wild nature of

the datasets used for training the speaker recognition models encourages the models

to extract robust representations that capture speaker characteristics from a given

audio signal, regardless of the acoustic conditions or environmental noise present.

This experiment allows us to understand the relationship between the speaker and

emotion recognition tasks, and helps us assess the prospects of replacing low-level

paralinguistic features with speaker embeddings in emotion recognition models.

We compare the performance obtained using the extracted speaker embeddings

to baselines obtained from common paralinguistics feature sets. The first category

are the same 30-dimensional MFCCs used by the speaker identification model to

extract the speaker embeddings. This allows us to ask how the transformation in-

troduced by the speaker embeddings improves our ability to recognize emotion. The

second category include feature sets broadly grouped based on their use of statistics

to characterize the patterns in low-level acoustic features. These feature sets in-

clude: the INTERSPEECH 2009 (IS09) Emotion Challenge features [39] (384 param-

eters), the INTERSPEECH 2013 Computational Paralinguistics ChallengE (Com-

ParE) [40] features (6,373 parameters), the Geneva Minimalistic Acoustic Parameter

Set (GeMAPS) [41] (62 parameters), and the extended Geneva Minimalistic Acoustic

Parameter Set (eGeMAPS) [41] (88 parameters). The features for all categories were

z-normalized using the training set statistics while the utterances for the speaker em-

beddings were mean-normalized using a three-second window applied to the MFCC

features of each utterance.
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We assess the utility of the features in emotion recognition by running both

within-corpus and cross-corpus recognition experiments with the IEMOCAP and

MSP-IMPROV datasets. For the within-corpus experiments, we follow a leave-one-

speaker-out evaluation scheme. For the cross-corpus experiments, we train our models

using the labeled samples from one dataset and evaluate on the other dataset (and

vice versa). The cross-corpus setup limits the effect of spurious correlations that a

trained model can use in the evaluation process. We use unweighted average recall

(UAR), which takes an average of the recall of each emotion class, as our evaluation

metric in this experiment. This metric allows us to account for the class imbalance

in the two datasets we use in this experiment.

The emotion recognition model that we use is based on deep neural networks

(DNNs) as previous research has demonstrated their effectiveness when used with

state-of-the-art feature sets [67, 166, 167]. For the within-corpus experiments, we

follow a leave-one-speaker-out evaluation scheme, where for each test speaker, we

use the opposite gender speaker from the test speaker’s session as our validation

speaker. For the cross-corpus experiments, we use the two speakers from the last

session (i.e., session five for IEMOCAP and session six for MSP-IMPROV) as our

validation speakers. The hyper-parameters for our DNNs include the number of

hidden layers {1, 2, 3} and the width of each hidden layer {128, 256, 512}. We use

ReLU activation units in all of our experiments. The networks were trained using the

ADAM2 optimizer with a learning rate 10−4 on batches with 32 samples. We assign

weights to our training samples according to the inverse of their respective frequencies

in the training sets and train the models using a weighted cross-entropy loss function

for a total of 100 epochs. We use the held-out validation set for hyper-parameter

selection and early stopping. We apply the model that yields the highest validation

performance to the unseen test data and report the test performance. Finally, we run

2Default parameters were used (α = 0.0001, β1 = 0.9, β2 = 0.999)
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each setup 30 times to account for variance from random initialization and training.

6.6 Results

6.6.1 Experiment 1: Speaker Embeddings and Emotions

In this experiment, we study how emotion modulates speaker embeddings, mea-

sured in terms of reconstruction error. Smaller reconstruction errors indicate that

the samples are more similar to the baseline distribution of neutral utterances while

bigger reconstruction errors indicate that the samples are different from the base-

line distribution. We will treat evidence of emotion-centric modulation, measured by

reconstruction error, as evidence of the utility of embeddings for emotion recognition.

6.6.1.1 Question 1 Results

Our first question asked whether or not variations in emotion significantly mod-

ulate speaker embeddings from their neutral representation. We find that variations

in emotion significantly modulate speaker embeddings from their neutral represen-

tation. In addition, we find that these modulations are consistent across male and

female speakers. Figure 6.1(a) shows the reconstruction errors associated with 3,032

utterances, grouped by intended emotions (758 neutral, 758 happy, 758 angry, 758

sad). Figure 6.1(b) shows the reconstruction errors associated with 752 utterances,

grouped by perceived emotions (188 neutral, 188 happy, 188 angry, 188 sad). The

perceived emotions group includes utterances whose labels achieved at least 50%

agreement between the intended and perceived emotions.

Figure 6.1(a). We find that the reconstruction error was significantly increased

by 0.667±0.103 when moving from neutral speech to angry speech (χ2(1)=16.475,

p=4.929e-05). Similarly, we find that the reconstruction error was significantly in-

creased by 0.458±0.070 when moving from neutral speech to happy speech (χ2(1)=16.760,
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Figure 6.1: Reconstruction errors obtained from autoencoders trained with embed-
dings extracted from neutral utterances. Sub-figures (a) and (b) show the reconstruc-
tion errors grouped by emotion (neutral, angry, happy, sad) and gender (females,
males). Sub-figures (c) and (d) compare the reconstruction errors obtained from neu-
tral utterances to those obtained from emotional utterances with lexical content fixed,
and to those obtained from neutral utterances but with different lexical content.
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p=4.242e-05). Finally, we find that the reconstruction error was significantly increased

by 0.490±0.071 when moving from neutral speech to sad speech (χ2(1)=17.560,

p=2.784e-05). If we use the reconstruction error as a feature and apply a thresh-

old to separate neutral and non-neutral speech, then we obtain an Area Under the

Receiver Operating Characteristic curve (AUC) of 0.782. This indicates that the

reconstruction errors obtained from an autoencoder that was exclusively trained on

neutral speech can be used for detecting non-neutral speech.

Figure 6.1(b). We find that the reconstruction error was significantly increased

by 0.645±0.126 when moving from neutral speech to angry speech (χ2(1)=11.683,

p=6.307e-4). Similarly, we find that the reconstruction error was significantly in-

creased by 0.458±0.070 when moving from neutral speech to happy speech (χ2(1)=11.871,

p=5.703e-4). Finally, we find that the reconstruction error was significantly increased

by 0.548±0.080 when moving from neutral speech to sad speech (χ2(1)=14.606,

p=1.325e-4). If we use the reconstruction error as a feature and apply a threshold to

separate neutral and non-neutral speech, then we obtain an AUC of 0.850. Again,

demonstrating the utility of this setup for speech novelty detection applications.

6.6.1.2 Question 2 Results

Our second question asked whether the modulations due to emotion are larger or

smaller compared to to those due to lexical variation. We find that variations in the

lexical content have a non-significant effect on neutral embeddings, compared to the

significant effect observed in the emotional utterances. We compare the reconstruction

errors in three partitions of data as described in Section 6.5.1: (1) control neutral; (2)

non-neutral with fixed lexical content; and (3) neutral with varying lexical content.

Figures 6.1(c) and 6.1(d) show the reconstruction errors, grouped by the afore-

mentioned three partitions, associated with 1,892 and 458 utterances, respectively.

Figure 6.1(c) displays the results obtained with intended emotion labels while Fig-
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ure 6.1(d) displays the results obtained with perceived emotion labels. As before,

the perceived emotions group includes utterances whose labels achieved at least 50%

agreement between the intended and perceived emotions.

Figures 6.1(c). We find that the reconstruction error was significantly increased

by 0.529±0.0253 when moving from neutral speech to non-neutral speech while keep-

ing content fixed (χ2(1)=384.450, p¡2.2e-16). If we use the reconstruction error as

a feature and apply a threshold to separate neutral and non-neutral speech, we ob-

tain an AUC of 0.785. In contrast, we find that the reconstruction error does not

significantly change when varying lexical content while keeping emotion fixed.

Figures 6.1(d). We find that the reconstruction error was significantly increased

by 0.649±0.091 when moving from neutral speech to non-neutral speech while keep-

ing content fixed (χ2(1)=14.398, p=1.480e-4). If we use the reconstruction error as

a feature and apply a threshold to separate neutral and non-neutral speech, then

we obtain an AUC of 0.840. We again find that the reconstruction error does not

significantly change when varying lexical content but fixing emotion to neutral.

6.6.1.3 Experiment 1 Discussion

The findings from this experiment suggest that while neutral speaker embeddings

may be invariant to modulations due to variations in lexical content, they are sig-

nificantly changed by variations in emotions. We find that using utterances with

majority emotion agreement yields smaller overlaps between the interquartile ranges

(IQRs) of reconstruction errors obtained from the neutral and emotional utterances,

for both female and male speakers, compared to those obtained when using all utter-

ances (i.e., intended emotions). One explanation for this is that the intended emotion

labels are more subtle than the perceived emotion labels that we use in this chapter.

As a result, we see more pronounced modulations with the perceived labels compared

to the modulations we see when using the intended labels. Finally, we note that none
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of the models we ran yielded significant interaction between emotion and gender,

suggesting that the increases in reconstruction error per emotion (for both intended

and perceived) are consistent across female and male speakers.

The findings suggest that speaker embeddings can be used for establishing a base-

line of how an individual sounds in their neutral state (i.e., normal behavior). Then,

disturbances to this speaker model can be used as a proxy for measuring deviations

from this normal behavior. This property of speaker embeddings can be beneficial in

applications where we have ample baseline data from a speaker in the neutral state,

but have limited or no access to outlier or novel data points from the speaker in

certain states (e.g., road rage detection applications in vehicles). In the next experi-

ment, we test if we can utilize these observed modulations in speaker embeddings for

detecting emotions in challenging settings.

6.6.2 Experiment 2: Speaker Embeddings as General Paralinguistic Fea-

tures

In the first experiment, we studied the relationship between emotion and speaker

embeddings. In this section, we compare speaker embeddings to state-of-the-art par-

alinguistic features on the task of emotion recognition. We first demonstrate the

relative ability of embeddings, compared to conventional speech emotion features,

in a within-corpus experiment. We then repeat the analysis cross-corpus. In both

cases, we assess the efficacy of the feature sets on the IEMOCAP and MSP-IMPROV

datasets.

We first compare the emotion recognition performance of different feature sets

within-domain. Overall, we find that speaker embeddings, when used as paralinguis-

tic features, significantly outperform or perform comparably to the baseline features

described in Section 6.5.1. We find that speaker embeddings significantly outperform

MFCCs, IS09, and GeMAPs; and perform comparably to eGeMAPs and ComParE for
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Table 6.2: The unweighted average recall (UAR) obtained for each setup in the within-
corpus and cross-corpus experiments. MSP and IEM denote the MSP-IMPROV and
IEMOCAP dataset, respectively. Models in the within-corpus experiments are eval-
uated following a leave-one-speaker-out evaluation scheme. MSP under cross-corpus
indicates the performance of a model that is trained on IEMOCAP and evaluated
on MSP-IMPROV; IEM under cross-corpus indicates the performance of a model
that is trained on MSP-IMPROV and evaluated on IEMOCAP. The results shown
are averages (±1 standard deviation) from 30 runs with different random seeds. The
best result in each experiment is bolded. ‡ indicates that the marked performance
is significantly higher than all baselines; ∗ indicates that the marked performance
is significantly higher than MFCCs; † indicates that the marked performance is sig-
nificantly higher than all but eGeMAPS and ComParE. Significance is assessed at
p < 0.05 using the Tukey’s honest test on the ANOVA statistics.

Features
Within-corpus UAR (%) Cross-corpus UAR (%)

MSP IEM MSP IEM

Chance 25.0 25.0 25.0 25.0
MFCCs 40.7 (±1.8) 51.6 (±1.6) 39.2 (±2.7) 43.7 (±3.1)
IS09 45.6 (±2.3) 55.9 (±1.6) 42.1 (±0.9) 43.7 (±2.7)
ComParE 47.1 (±3.4) 56.0 (±1.9) 42.0 (±1.1) 48.6 (±3.0)
GeMAPS 42.5 (±3.6) 56.2 (±1.9) 42.2 (±1.1) 38.7 (±2.2)
eGeMAPS 45.7 (±3.0) 56.6 (±1.9) 39.9 (±1.3) 35.9 (±3.1)
Embeddings 47.7 (±1.8)∗† 57.3 (±3.1)∗ 47.3 (±2.1)‡ 50.9 (±2.1)‡

the within-corpus experiments on the MSP-IMPROV dataset. We find that speaker

embeddings only significantly outperform MFCCs and perform comparably to other

baseline features for the within-corpus experiments on the IEMOCAP dataset (Ta-

ble 6.2).

Next, we analyze the performance of these feature sets in a more challenging

cross-domain task. We find that speaker embeddings significantly outperform all

other features when evaluating the models on the IEMOCAP and MSP-IMPROV

datasets (Table 6.2). In addition, we observe a higher test performance when we test

on the IEMOCAP dataset than we do when we test on the MSP-IMPROV dataset.

Among the baselines, we find that the ComParE feature set outperforms all other

baselines on the IEMOCAP dataset but performs comparably to IS09 and GeMAPS

on the MSP-IMPROV dataset. The results suggest that the embeddings are more
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Figure 6.2: Confusion matrices obtained using speaker embeddings in the cross-corpus
setting when (a) training on IEMOCAP and testing on MSP-IMPROV; (b) training
on MSP-IMPROV and testing on IEMOCAP.

robust to domain-shifts than baseline features.

Figure 6.2 shows the confusion matrices obtained when using speaker embedding

in cross-corpus emotion recognition settings. When testing on the MSP-IMPROV

corpus, we find that the performance of detecting the neutral and happy emotions is

higher than the performance of detecting the angry and sad emotions. In contrast,

when testing on the IEMOCAP corpus, we find that the performance of detecting

the Angry and Sad emotions is higher than the performance of detecting the neutral

and happy emotions. The trends displayed by the confusion matrix in Figure 6.2(b)

agree with the trends we saw in Figures 6.1(a) and 6.1(b). Specifically, the confusion

matrix in Figure 6.2(b) shows that we obtain the highest performance when detecting

the angry emotion, followed by both the sad and happy emotions. However, the

confusion matrix in Figure 6.2(a) shows that the happy emotion is the easiest to

detect, followed by the angry and sad emotion. Finally, we find that the improvements

gained by using speaker embeddings over ComParE features cannot be attributed to

the improvement in recognizing a specific emotion, but instead, can be attributed to

a consistent improvement across all emotions.
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6.6.2.1 Experiment 2 Discussion

To the best of our knowledge, this is the first study to compare both within-corpus

and cross-corpus emotion recognition performance obtained using speaker embeddings

to the performance obtained using general features commonly used in the emotion

recognition community. Our results suggest that speaker embeddings are highly ver-

satile, and can easily be adapted to other paralinguistic applications such as emotion

recognition. We note that speaker embeddings also provide a more compact alterna-

tive to some of the features sets (e.g., ComParE). For example, the ComParE feature

set contains 6,373 parameters representing energy, spectral, and voicing features [149].

In contrast, speaker embeddings only contain 512 parameters and are extracted from

30-dimensional MFCCs (i.e., spectral).

6.7 Discussion and Conclusion

In this chapter, we proposed the use of speaker embeddings, representations ex-

tracted from neural networks trained on a speaker identification task, as paralinguistic

features to be used in emotion recognition applications. Speaker embeddings capture

high-level speaker characteristics and abstract extraneous low-level variations in the

acoustic signal that are not needed for recognizing speakers. The hypothesis that

drove our study is that emotionally charged vocal expressions make speakers sound

different from how they typically sound.

We first used autoencoders to quantify the effect of emotion on speaker embed-

dings. We trained our auto-encoders on neutral utterances from each speaker, and

used the reconstruction errors obtained for test utterances as a proxy for measuring

the effect emotion has on speaker embeddings. Our analysis showed that embed-

dings extracted from expressive speech resulted in significantly increased reconstruc-

tion error compared to neutral speech. In addition, our analysis showed that lexical
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variation had a non-significant effect on the reconstruction errors obtained from the

utterances. Our experiments also demonstrated how the reconstruction errors ob-

tained from the autoencoders can be used as features for detecting deviations from

the neutral state. Future work will study techniques for making changes in emotions

more pronounced while maintaining speaker discriminative properties in speaker em-

beddings (e.g., emotion-invariant x-vectors).

We then showed that speaker embeddings can be used as a replacement to com-

mon paralinguistic features used in emotion recognition tasks. We demonstrated this

by showing not only that speaker embeddings outperform baseline features in cross-

corpus emotion recognition tasks, but also that they are more compact (i.e., fewer

parameters) than state-of-the-art paralinguistic features. Speaker embeddings out-

performed other features despite being extracted from spectral representations (i.e.,

MFCCs) alone. In contrast, other features used a combination of energy, voicing,

and spectral representations. MFCCs used for extracting speaker embeddings were

originally designed based on observations from perceptual experiments and thus, may

not be optimal for all speech applications. For example, MFCC features smooth the

speech spectrum and make it difficult to extract other narrow-band information that

is known to be predictive of emotion (e.g., pitch, formants). One extension to the

current approach is to train the speaker identification models with representations

from which this fine-grained information is easily extractable (e.g., spectrograms,

raw waveform). Another extension to the current approach is to combine speaker

embeddings with common emotion features to provide the recognizer access to the

fine-grained information present in the speech signal.

In conclusion, this chapter further contributed to our understanding of the rela-

tionship between emotions and speaker representations, and demonstrated how vari-

ations in emotion manifest themselves in speaker embeddings. These manifestations

not only can impact the performance of a verification system, but also can be lever-
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aged for detecting emotions.
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CHAPTER VII

Distilling Emotional Expression in Speech

Through Voice Conversion

7.1 Introduction

One major challenge with building robust paralinguistic models is the limited

access to large-scale datasets (i.e., several hundreds of hours) with accurate paralin-

guistic labels. In addition, the highly subjective nature of many paralinguistic tasks,

such as emotion expression and perception, exacerbates the data sparsity challenge

by making the data collection and annotation process both costly and time con-

suming. Consequently, datasets used for building paralinguistic models, specifically

emotion models, are significantly smaller than those used for developing other speech

applications. For instance, a typical emotion dataset (e.g., IEMOCAP) that is used

for building paralinguistic models contains around 12 hours of speech while a modern

dataset used for building speaker recognition models (e.g., VoxCeleb) contains around

2000 hours of speech. New solutions are needed to address the effects of the data size

discrepancy for paralinguistic tasks.

We introduce the Expressive Voice Conversion Autoencoder (EVoCA), an unsu-

pervised framework for learning features that distills paralinguistic attributes from

speech without relying on explicit emotion or style labels. EVoCA learns what it

80



means for speech to be expressive by treating expressive speech as a modulation of

neutral speech. The goal is to then train a style encoder that learns a style embed-

ding, a compact representation of the expressivity of an utterance, that can be used

to transform speech from neutral to expressive. EVoCA achieves this goal using par-

allel speech inputs: one expressive and one neutral. However, these types of parallel

paralinguistic corpora are not available at scale. Instead, we use a large audiobook

corpus (i.e., 200 hours) composed of expressive speech and artificially generate the

parallel neutral speech using the available transcriptions (see Figure 7.1). We train

the EVoCA model to convert between the synthetic neutral speech signal and the

real expressive speech, and demonstrate how this conversion yields a style embed-

ding that captures paralinguistic attributes (see Figure 7.2). We then show that the

learned style embeddings can be used in downstream emotion recognition and speak-

ing style classification tasks. The benefit is that a pre-trained style encoder could

be independently used in future applications to generate embeddings that highlight

paralinguistic content.

In summary, the contributions of this work are as follows:

• We present the EVoCA framework for learning speech emotion and style features

from audiobooks without relying on manual annotations for those attributes.

• We demonstrate the that the transformed features are more effective than sur-

face acoustic features for recognizing emotions and speaking style.

• We show that EVoCA learns embeddings that outperform those obtained using

other unsupervised and self-supervised speech feature learning methods from

the literature.

To the best of our knowledge, ours is the first work to demonstrate how one can learn

paralinguistic features by training a neural model to convert between non-expressive

synthetic speech and expressive real speech.
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Figure 7.1: An overview of the parallel data generation process. We use a speech
synthesis model to generate a synthetic version of each audio sample in the original
audiobook corpus. Synthesized samples lose paralinguistic attributes present in the
original samples but retain linguistic information. Our goal is to leverage the resulting
real/synthetic sample pairs to learn to extract paralinguistic features.

7.2 Related Work

Speech emotion recognition applications rely on an extensive set of acoustic fea-

tures that has evolved over the years [39, 168, 77, 40, 169]. Spectral features are a

crucial component of any emotion feature set, and are included in the widely used

ComParE and eGeMAPs feature sets [40, 169]. Common surface features that are de-

rived from the speech spectrum include Mel-frequency cepstral coefficients (MFCCs)

and Mel-filterbanks (MFBs). In this work, we propose a framework for learning an

MFB transformation that highlights the paralinguistic content of an utterance, and

we demonstrate the effectiveness of the learned transformation over using surface

MFB features on emotion and speaking style classification tasks.

Our work also explores the utility of using both synthetic and real speech to learn

paralinguistic information. Lotfian and Busso have previously demonstrated how

speech synthesizers can be used to remove emotion from speech, and provide trained

emotion recognizers with a neutral reference to aid in the recognition of expressive

speech [170]. They found that providing emotion recognizers with both real and

synthesized speech led to improved emotion recognition performance. One limitation
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Figure 7.2: An overview of the proposed Expressive Voice Conversion Autoencoder
(EVoCA). The model takes the expressive and synthetic speech samples as inputs;
and outputs the reconstructed expressive speech sample. The Style Encoder extracts
an embedding from the expressive speech sample such that it can be used by the
Voice Converter to insert paralinguistics into the synthetic speech input sample. The
network is trained with an L2 loss between the generated expressive sample and
the original expressive sample. Once the full model is trained, the Style Encoder is
disconnected and used as a general purpose paralinguistic feature extractor.

with their approach is that it relies on having access to a real-time speech synthesizer

to generate a neutral version of the input utterance for use by the emotion recognizer.

In contrast, we use the speech synthesizer only during the data preparation process

(Figure 7.1) and not during test time; which makes our approach more efficient to

run during test time.

Our approach is also related to works that focused on unsupervised and self-

supervised speech representation learning. Chung et al. introduced two auto-regressive

methods to learn MFB transformations for speech applications without relying on ex-

plicit labels [171]. Both of the proposed models were trained to predict future frames

of the input speech sequence in order to learn global structures represented in the

speech signal. They showed that the resulting transformation improved performance

over surface features on speaker verification and phone recognition tasks. Hsu et

al. devised a variational autoencoder that is capable of learning hierarchical informa-
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tion present in speech data [172]. Their approach disentangled frame-level features

from utterance-level features in order to provide robust embeddings for both speaker

recognition and automatic speech recognition tasks. Although many unsupervised

learning strategies exist for learning speech transformations, ours is the only approach

that is targeted at learning transformations that highlight expressive characteristics

in speech.

Recent works in voice conversion have also inspired our proposed approach. The

goal of voice conversion is to convert an utterance from one speaker so that it sounds

as if it was spoken by another speaker [173]. In other words, a voice converter retains

all linguistic content and only modulates the paralinguistics of speech. Previous

works demonstrated that voice conversion techniques can be used to convert between

emotional states [174, 175, 176]. However, to the best of our knowledge, our work

is the first to show that the voice conversion task can be adapted and incorporated

into a framework that enables a neural network to learn compact embeddings that

capture emotional expression in speech.

7.3 Approach

7.3.1 Creating Parallel Data using Speech Synthesis

A sketch of our data generation setup is shown in Figure 7.1. Given an audiobook

corpus, where both speech and text modalities are available, we use the text to create

synthetic speech samples using a speech synthesizer. The created synthetic speech

should lack expressiveness. This provides our system with the opportunity to learn

how to characterize expressiveness and imbue the non-expressive speech with expres-

sive characteristics. We use the open-source Festival toolkit1, as previous research has

demonstrated its utility to generate neutral non-emotionally expressive speech [53].

1http://festvox.org/festival/
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Once the speech synthesis process finishes, our data now contain pairs of real (ex-

pressive) speech and synthetic (neutral) speech. Our EVoCA model then leverages

the resulting parallel data to learn an embedding transformation that facilitates the

conversion from synthetic to real speech without relying on any manual emotion or

style labels.

7.3.2 Expressive Voice Conversion Autoencoder Setup

A sketch of EVoCA is shown in Figure 7.2. The key idea behind our proposed

framework is that expressive speech is a modulation to neutral speech. Thus, a model

that converts between neutral and expressive speech learns a quantification, in the

form of an embedding, which characterizes expressiveness. The proposed EVoCA

model consists of two components: a style encoder and a voice converter. The style

encoder condenses the paralinguistic attributes of the original expressive speech into

a fixed-size feature vector, which we refer to as the style embedding. The style

embedding and the paired synthetic speech sample are fed into the voice converter,

which produces expressive speech. A reconstruction loss (L2) between the generated

expressive speech and the original expressive speech is computed and used to train the

style autoencoder in an end-to-end fashion. The style embedding can be used to do

more than transform speech from non-expressive to expressive, it can also be viewed

as a numeric quantification of the expressive characteristics within a given speech

sample. Therefore, once trained, the style encoder can be used to transform the

original surface features into representations that highlight the emotional components

of the input data.
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Figure 7.3: Sample converted test utterance with three model setups.

7.4 Datasets, Features, and Metrics

7.4.1 Datasets

We use four datasets in this chapter: Blizzard2013, IEMOCAP, MSP-IMPROV,

and VESUS. Blizzard2013 is used to train the EVoCA model while the other three

datasets are used to test the effectiveness of the learned embeddings on the speech

emotion recognition and speaking style detection tasks. The Blizzard2013 dataset

contains around 200 hours from 55 American English audiobooks read by Catherine

Byers. Although other audiobook-based datasets are publicly available, we choose

the Blizzard2013 corpus due to its highly expressive and animated nature. This

corpus was used in previous research to model style and prosody in speech synthesis

applications [177, 178].. We use a segmented version of the corpus which we obtained

from the 2013 Blizzard Challenge website.2

2http://www.cstr.ed.ac.uk/projects/blizzard/
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A description of the IEMOCAP, MSP-IMPROV, and VESUS datasets can be

found in Chapter II. For IEMOCAP and MSP-IMPROV, we only consider utterances

that had majority agreement among the annotators and focus on four basic categorical

emotions: happy (merged with excited for IEMOCAP), angry, neutral, and sad.

In addition to emotion labels, the IEMOCAP dataset provides spontaneity labels,

which we use in our speaking style detection experiments. For VESUS, we focus on

utterances that achieved at least 50% agreement among the crowd-sourced annotators

with respect to the actor’s intended emotion.

7.4.2 Features

We first pre-process speech samples from all datasets such that they have a sam-

pling rate of 16 kHz and then extract 80-dimensional MFB features using the Librosa

toolkit [179] with a 50 ms Hanning window and a step size of 12.5 ms, consistent with

previous research in voice conversion [180]. We z-normalize the frequency bins per

utterance for the voice converter and mean-normalize the bins per-utterance for the

style encoder; consistent with normalization methods used in previous works [146,

178]. Normalization ensures that the features are robust to variations that could

arise from having different recording conditions [181].

7.4.3 Tasks

The voice conversion task is a regression task in which the goal is to output the

MFB features of an expressive speech utterance given the MFB features of the syn-

thesized speech utterance. The emotion recognition task is a multi-class classification

task in which the goal is to recognize the target emotion from the set available in the

dataset. Speaking style detection is a binary classification task in which the goal is

to recognize if the target data is acted or read.
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7.4.4 Metrics

We use Mel-cepstral distortion (MCD) and root mean square error (RMSE) of F0

for evaluating the quality of the converted speech [180] when training the end-to-end

model. MCD and F0 RMSE cannot be directly extracted from the MFB acoustic

features used by our conversion model. Thus, we use Librosa to invert the MFB

features to audio by first approximating the Short-time Fourier transform (STFT)

magnitude and then using the Griffin-Lim algorithm to reconstruct the phase. We

extract the F0 and 24-dimensional mel cepstral coefficients from the waveform using

the WORLD vocoder [182] following [180, 178].

We use unweighted average recall (UAR) and accuracy for evaluating the per-

formance on the emotion recognition and speaking style detection tasks. The UAR

metric is used to account for the class imbalance that is inherent in the emotion

data [115]. Chance UAR is 25% and 50% for the emotion recognition and speaking

style detection tasks, respectively.

7.5 Experiments

7.5.1 Experimental Questions

We design our experiments to address the following four questions regarding the

proposed framework shown in Figure 7.2:

1. Is the proposed framework capable of inserting expressiveness into synthetic

speech?

2. Can the learned style embeddings be used for emotion and style classification?

3. How do changes to the structure of the proposed framework affect both the qual-

ity of the converted speech and the effectiveness of the extracted embeddings

for emotion and speaking style detection tasks?
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4. How does the performance of style embeddings in emotion and speaking style

detection tasks compare to those of feature transformations learned using other

unsupervised and supervised methods?

The first question studies if the style encoder provides an embedding that the voice

converter uses for inserting paralinguistics into a neutral speech signal. The second

question looks at whether or not these compact embeddings are more useful for emo-

tion and style classification tasks than surface-level MFB features. The third question

asks how the capacities (i.e., number of hidden units) of both the style encoder and

the voice converter affect the performance of both the voice conversion task and the

downstream classification tasks. The fourth question aims to compare the utility of

the learned feature transformation to those learned via other unsupervised and su-

pervised methods from the literature. Next, we provide more details regarding the

experimental setup.

7.5.2 Expressive Voice Conversion Autoencoder (EVoCA)

The proposed EVoCA consists of two components: the voice converter and the

style encoder. The voice converter consists of a stack of four Bidirectional Long

Short-Term Memory (BLSTM) layers, each with a hidden size of 256, followed by a

1D convolution layer with 80 channels and a kernel size of one. The style encoder

we use consists of a stack of two BLSTM layers, each with a hidden size of 256.

The fixed-size embeddings from the style encoder are induced by taking the mean of

the hidden representations from the last BLSTM layer and then passing the outputs

through a linear layer, which reduces the size by half. The reasoning for this linear

layer is to counteract the bidirectional property of BLSTM which outputs hidden

representations that are twice the size of the hidden layer. Our voice converter is

inspired by the one used in [183]. However, in this work we utilize a basic version of

the model that does not include a two-layer fully connected PreNet, a five-layer 1D
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convolution PostNet, nor an attention module. We opt to use a simple implementa-

tion for voice conversion since our problem does not follow the sequence-to-sequence

learning paradigm as our input features are pre-aligned using dynamic time warping

(DTW). Our final style autoencoder model has approximately 2.2 million parameters.

We investigate how changes to the structure of the proposed EVoCA affect not only

the quality of the converted speech, but also the quality of the extracted embeddings.

We study the impact that the style embedding and synthetic speech has on the voice

converter by comparing the voice conversion performance when only one component

is present. We also investigate the effect of reducing the capacity (i.e., the number of

hidden units) of the style encoder and the voice converter on the converted speech as

well as on the extracted embeddings for downstream classification tasks. Specifically,

we keep the voice converter fixed and reduce the hidden size of the BLSTM style

encoder gradually from 256 units to 32 units (reducing the number of parameters

from 2.2 million to 1.5 million), noting performance changes on the two tasks. Then,

we keep the style encoder fixed and reduce the hidden size of the BLSTM voice

converter from 256 units to 32 units (reducing the number of parameters from 2.2

million to 0.7 million), again noting performance changes on the two tasks. Note that

these hyper-parameters are not and should not be tuned based on the performance of

the downstream task as the goal of this experiment is to analyze how these parameters

affect the qualities of the transformed features and the converted speech.

We split the Blizzard2013 data into training, validation, and test partitions follow-

ing a random 90%-5%-5% split rule. We train our style autoencoder on the training

partition, and use the validation partition for loss monitoring and early stopping.

Conversion performance is reported on the test partition of the data. We construct

the network in PyTorch and train it from scratch with batches of size 128 using the

ADAM optimizer for a total of 80 epochs. We use an initial learning rate of 10−4

and decrease it exponentially using a decay factor of 0.95 after each epoch starting
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from epoch 30. We monitor the validation loss after each epoch and perform early

stopping if the validation loss does not improve for 15 consecutive epochs.

7.5.3 Unsupervised and Supervised Baselines

The first unsupervised baseline that we consider is a convolutional autoencoder

that is applied to fixed-length MFB segments of 128 frames. The autoencoder is

similar to the one used in [184]. The encoder consists of three 2D convolution layers,

of shape: [32 × 9 × 9], [64 × 7 × 7], and [128 × 5 × 5], followed by a linear layer

with 256 units. A [2× 2] max pooling operation is applied after each layer to reduce

the dimensionality of the input by two. The decoder consists of a linear layer with

256 units followed by four 2D convolution layers of shape: [32× 9× 9], [64× 7× 7],

[128×5×5], and [1×1×1]. A [2×2] nearest neighbor up-sampling operation is applied

after each layer to get back the original size of the input. Both the encoder and the

decoder use Leaky ReLU activation units and the autoencoder has approximately 3.9

million parameters.

The second unsupervised baseline that we consider is the Autoregressive Predictive

Coding (APC) model that was introduced in [171]. Given an input of MFB features,

the APC model is trained to predict the features n time-steps in the future. The

APC model that we use is similar to the one used by Chung et al. and it consists

of three LSTM layers, each with a width of 512. We run our experiments with three

values for n: 5, 10, and 20. Once trained, the outputs from the last LSTM layer are

averaged to obtain fixed-size features for downstream tasks. The APC model that we

use has approximately 5.5 million parameters.

We train both the autoencoder and the APC baselines on the Blizzard2013 dataset.

We use the same protocol we use for training EVoCA when training the autoencoder

baseline. However, we train the APC baselines for 100 epochs following the authors’

recommendation.
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The supervised baseline is the x-vector embeddings used for speaker identifica-

tion [146]. The x-vectors model is a supervised neural model that is trained to identify

speakers in a large corpus given MFCC features as input. Previous research demon-

strated that x-vectors encode various paralinguistic attributes relating to speaking

rate, style, and emotion [157, 154].

It is not possible to train the x-vector model on the same data because the dataset

only has one speaker. Thus, we use a pre-trained x-vector model that was trained on

an augmented version of the combined VoxCeleb datasets.3 Due to the large size (2000

hrs) and diversity (7000+ speakers) of VoxCeleb, we consider the performance we get

from the x-vector embeddings as a strong benchmark for feature transformation.

7.5.4 Emotion and Speaking Style Recognition

We test the utility of the learned style encoder for transforming MFB features to

highlight their paralinguistic attributes in emotion recognition and speaking style de-

tection tasks. First, we assess if transforming MFB features provides any advantage

over using surface MFB features on the two tasks. Then, we compare the learned

feature transformation to those obtained using the unsupervised and supervised base-

lines.

We follow a leave-one-speaker-out evaluation scheme and report the average per-

formance across all test speakers on all four downstream tasks. For each test speaker,

we pick the model that gives the best performance on a held-out validation set. The

hyper-parameters that we optimize on the validation set include the number of hidden

layers {1, 2, 3}, the width of each hidden layer {64, 128, 256}, and the activation unit

{Tanh, ReLU}. We construct the networks in PyTorch and train them with batches

of size 32 using the ADAM optimizer with learning rate of 10−4 and a cross-entropy

loss function. We train each model for a maximum of 100 epochs and apply early

3https://kaldi-asr.org/models/m7
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stopping if the validation loss does not improve for five consecutive epochs. We repeat

each experiment with 30 different random seeds and report the average and standard

deviation to account for performance fluctuation due to random initialization and

training.

7.6 Results

In this section, we provide the results of our four experiments (see Section 7.5.1

for an overview).

1. Is the proposed framework capable of inserting expressiveness into

synthetic speech? Table 7.1 shows that we obtain an MCD of 24.01 and an F0

RMSE of 146.20 when computing the performance using the synthetic reference

speech and ground-truth expressive speech. In comparison, we obtain an MCD of

10.71 and an F0 RMSE of 64.36 when computing the performance using the converted

speech and the ground-truth expressive speech. This suggests that that proposed

EVoCA framework converts the synthetic speech so that its closer to the expressive

speech. We note that it is possible to obtain better conversion performance if we in-

crease the capacity of the model and utilize a more sophisticated vocoder. However,

as the results for question 3 will suggest, increasing the capacity of the voice converter

might not necessarily yield better embeddings for downstream classification tasks.

2. Can the learned style embeddings be used for emotion and style

classification? Table 7.2 shows that our style embeddings significantly outperform

MFB surface features on both the emotion recognition and the speaking style detec-

tion tasks. This suggests that the style encoder learns a feature transformation that

highlights paralinguistic attributes that are obfuscated in surface acoustic features.

3. How do changes to the structure of the proposed framework af-

fect both the quality of the converted speech and the effectiveness of the

extracted embeddings for emotion and speaking style detection tasks? Fig-
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Table 7.1: Objective performance measures for the style voice conversion task with
different setups. The base EVoCA consists of a 256-dimensional style encoder and a
256-dimensional voice converter. Reference numbers are computed using the synthetic
speech and ground-truth expressive speech. All other numbers are computed using
converted speech and ground-truth expressive speech.

Setup MCD (dB) F0 RMSE (Hz)

Reference 24.01 146.20
Base EVoCA 10.71 64.36

w/o synth. ref. +8.33 +106.23
w/o style enc. +1.90 +79.50

w/ 128-dim style enc. +0.31 +6.14
w/ 64-dim style enc. +0.69 +19.41
w/ 32-dim style enc. +0.97 +31.06

w/ 128-dim converter +1.03 +15.60
w/ 64-dim converter +1.77 +31.73
w/ 32-dim converter +2.61 +61.82

ure 7.3 visually demonstrates the effect of each input on the quality of a converted

utterance. Figure 7.3a shows that the converted speech has higher quality when the

style embedding is provided as an input compared to Figure 7.3b. Specifically, the

harmonic structure in Figure 7.3a is well defined and dynamic while that in Fig-

ure 7.3b is relatively static and not well separated. Figure 7.3c shows that the model

is unable to generate speech solely from style embeddings. We hypothesize that this

is due to the style embeddings’ limited capacity to encode both linguistic and paralin-

guistic information present in the original signal to allow for accurate reconstruction.

Additionally, we believe style embeddings struggle to model time-varying phenomena

like rhythm and speech activity because they are computed using a global average

over LSTM outputs.

Table 7.1 quantitatively shows the effect of each of these two inputs on the con-

version performance. We find that the synthesized reference input is more important

to the conversion task than the style embedding. In other words, reducing the capac-

ity of the style encoder has a less detrimental effect on the quality of the converted
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speech, as measured by the performance metrics, than reducing the capacity of the

voice converter does. This can be due to the fact that the style embeddings do not

have enough capacity to encode the linguistic attributes in speech that are necessary

for obtaining good voice conversion performance.

Tables 7.1 and 7.2 show the results obtained on the voice conversion task and

the downstream classification tasks, respectively. We find that while a high capacity

voice converter improves the quality of the converted speech, it can also degrade

the quality of the extracted embeddings as measured on the classification tasks. For

instance, we find that reducing the capacity of the voice converter from 256 to 128

decreases the conversion performance on the voice conversion task but improves the

classification performance on two out of the four downstream tasks. We believe this

is because using a high-capacity voice converter can reduce EVoCA’s reliance on the

style encoder for providing paralinguistic information; which causes the style encoder

to perform poorly when used to transform features for downstream applications.

4. How does the performance of style embeddings in emotion and

speaking style detection tasks compare to those of feature transformations

learned using other unsupervised and supervised methods? Table 7.2 shows

that style embeddings encode information that is more suited to paralinguistic tasks

than those extracted from other unsupervised methods, namely APC and a traditional

autoencoder. The APC model provides improvements over surface features on all

four downstream tasks when using the 20-step setup, and shows improvements over

surface features on three downstream tasks when using the 10-step setup. In contrast,

a standard autoencoder fails to provide any improvements over surface features on

all tasks. We believe that the success of the extracted embeddings from EVoCA

demonstrate the importance of targeted unsupervised tasks.

EVoCA was also able to close a large margin of the performance gap between

the x-vector system, which represents a strong model that was trained on a bigger
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dataset with more than 7, 000 speakers. In contrast, EVoCA utilizes a smaller dataset

without any speaker labels, which highlights how a carefully devised unsupervised

training task can offset the requirement for having access to a large number of labels

in a related task.

7.7 Concluding Remarks

In this work we proposed EVoCA, a framework for learning a surface feature

transformation that highlights paralinguistic content needed for detecting emotion

and speaking style. We first showed that speech synthesizers can be used to strip

away paralinguistic attributes from speech while retaining linguistic information. We

demonstrated how a neural voice conversion model can be adapted to facilitate the

extraction of paralinguistic features by converting synthetic neutral speech to real

expressive speech. Finally, we showed that these extracted embeddings improve per-

formance over surface features and can outperform other embeddings extracted from

existing unsupervised and self-supervised methods on emotion recognition and speak-

ing style detection tasks. Future work will consider how the choice of the synthesis

model, the number of speakers in the training set, and the architecture used for the

speaker encoder affect the quality of the extracted embeddings.
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Table 7.2: Performance obtained using different features for emotion recognition and
speaking style classification. The performance on the emotion recognition task is
measured using the unweighted average recall (UAR) while the performance on the
speaking style detection task is measured using accuracy (Acc.). IEM, MSP, and
VES denote the IEMOCAP, MSP-IMPROV, and the VESUS datasets, respectively.
Performance is evaluated using a leave-one-speaker-out scheme and the numbers re-
ported are averages (±1 standard deviation) from 30 runs to account for randomness
in initialization and training. ∗ indicates that the marked performance is significantly
higher than MFBs. † indicates that the marked performance is significantly higher
than best APC model. Significance is assessed at p < 0.05 using the Tukey’s honest
test on the ANOVA statistics.

Emotion (UAR) Style (Acc.)
Features IEM MSP VES IEM

Baseline – Surface Features

Chance 25.0 25.0 20.0 52.3
MFBs 53.0± 0.6 43.6± 1.2 36.0± 1.4 67.0± 0.7

Baseline – Unsupervised

Autoencoder 50.6± 0.9 38.7± 1.0 33.6± 1.1 64.2± 0.6
APC (5-steps) 51.7± 0.8 42.2± 0.8 33.5± 1.2 68.3± 0.6
APC (10-steps) 53.9± 0.9 44.6± 0.9 35.5± 1.6 69.7± 0.6
APC (20-steps) 54.3± 0.9 44.1± 0.9 36.1± 1.5 69.7± 0.6

Style Embeddings (ours)

Base EVoCA 56.4± 0.6∗† 46.0± 0.6∗† 44.2± 0.9∗† 71.7± 0.5∗†

w/ 128-dim style enc. 55.4± 0.8∗† 45.3± 0.9∗ 42.6± 1.4∗† 69.6± 0.5∗

w/ 64-dim style enc. 53.0± 0.6 42.9± 0.8 38.2± 0.9∗† 67.2± 0.5
w/ 32-dim style enc. 51.7± 0.6 41.0± 0.4 36.0± 1.3 65.7± 0.5
w/ 128-dim converter 57.1± 0.5∗† 46.3± 0.9∗† 43.5± 1.3∗† 70.4± 0.5∗†

w/ 64-dim converter 57.0± 0.7∗† 44.9± 0.9∗ 41.0± 0.9∗† 69.6± 0.6∗

w/ 32-dim converter 54.9± 0.6∗ 44.6± 0.7∗ 38.1± 1.0∗† 68.8± 0.5∗

Supervised

x-vectors 57.9± 1.0∗† 47.7± 1.8∗† 44.0± 1.5∗† 72.0± 1.1∗†
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CHAPTER VIII

Concluding Remarks

This dissertation presented novel solutions for detecting and quantifying emotional

expression from speech. Chapters III, IV, and V focused on the introduction and

investigation of modeling techniques that improve SER performance by addressing

speech data variability and emotion annotation variability; Chapters VI and VII

addressed data sparsity by introducing methods that learn to extract embeddings that

highlight emotion content in speech using data that are not annotated for emotion.

This chapter highlights the key findings and contributions of these works, and provides

potential future directions.

8.1 Summary of Contributions

In Chapter III, we explored one limitation of the current two-step feature extrac-

tion pipeline that is commonly employed by SER systems, and proposed a modeling

approach to address this limitation. The first step in this pipeline is to extract a

sequence of low-level features that represent the speech utterance; the second step is

to take statistics (over time) to induce a fixed-size feature vector from the sequence.

We showed that the second step of this feature extraction pipeline can obfuscate the

short-time dynamical properties of the acoustic features, which provide critical cues

into an individual’s emotions. We proposed to address this limitation by forgoing
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the second step in the feature extraction pipeline, and instead, utilizing classification

models that work directly on the sequential low-level acoustic features (e.g., convo-

lutional neural networks). Finally, we proposed the use of speed perturbation as an

effective data augmentation technique for improving the robustness of these models

that work directly on the sequential low-level acoustic features.

In Chapter IV, we explored various methods for fusing (i.e., combining) multi-

modal speech data (i.e., acoustics and lexical) for predicting emotions, specifically

predicting valence, from speech. A multimodal recognition system that is provided

with multiple input streams needs to fuse the features obtained from these multiple

streams before making a prediction. We focused our study on intermediate fusion

methods, which take place in the context of neural networks, to combine feature de-

scriptors from the acoustic and lexical modalities. We first showed that multimodal

SER systems that combine acoustic and lexical features are better than unimodal sys-

tems for the valence prediction task. Then, we demonstrated how the lexical modality

encodes more information about valence than the acoustic modality does. Finally, we

showed how fusion strategies that consider fine-grained interactions between the ex-

tracted multimodal features (i.e., bilinear pooling based methods) are more effective

than traditional fusion methods.

In Chapter V, we proposed the use of two convolutional neural architectures to

improve time-continuous SER performance. The proposed architectures address two

challenges that are inherent in time-continuous SER problems. The first challenge is

that the reaction delay of the annotators introduces a mismatch between the acoustic

and the annotation signals. The second challenge is that the acoustic signal exhibits

more abrupt variations in time compared to the slow moving annotation signal (i.e.,

the annotation signal is smooth and has considerable time dependencies). We showed

how designing network architectures that explicitly account for these two effects im-

proves the performance of SER over baselines methods. Specifically, we showed that
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convolutional network architectures that cover large contexts allow SER models to

compensate for the mismatch between the acoustic and the annotation signals. Fur-

ther, we showed how convolutional network architectures that model a downsampled

version of the input signal and then generate the output signal through an upsampling

operation can generate outputs that are more in-line with the slow moving nature of

human annotations.

In Chapter VI, we explored the use of speaker embeddings, embeddings extracted

from speaker recognition models, as robust features for SER systems. Speaker embed-

dings provide a compact representation that captures the high-level characteristics of

a speaker while suppressing extraneous low-level variations that are present in the

speech signal. The large and diverse datasets available for the speaker recognition

task make the task an attractive alternative to the emotion recognition task, where

the data is small and limited, for learning robust embeddings from speech. To this

end, we first demonstrated how speaker embeddings can be used for highlighting the

differences that exist between neutral speech and emotionally expressive speech. We

then showed how speaker embeddings can be used for establishing behavioral base-

lines for speakers, and we demonstrated how deviations from this baseline can be

used for detecting emotions. Finally, we showed that speaker embeddings can replace

general paralinguistic features for recognizing emotions as they are more robust to

changes in domains and recording environments.

In Chapter VII, we introduced a framework that enables a neural network to learn

embeddings that capture expressiveness in speech by using audio-textual data that

are not annotated for emotion. The proposed framework allowed us to learn embed-

dings using datasets that are larger than those typically used in SER research since

we are no longer limited by the sizes of the labeled emotion datasets available. We

showed how a neural network that is trained to convert between synthesized neutral

speech (obtained by passing the text through an off-the-shelf speech synthesizer) and
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natural expressive speech learns to extract embeddings that capture expressiveness.

We demonstrated that the resulting embeddings improve emotion recognition per-

formance over surface acoustic features (e.g., MFBs). Further, we showed that the

resulting embeddings outperform other embeddings obtained from unsupervised and

self-supervised baselines.

8.2 Future Work

Data sparsity is an overwhelming challenge in SER research. One consequence

of data sparsity is that it becomes difficult to train models to extract emotion from

speech. Chapters VI and VII of this dissertation introduced methods that alleviate

some of the problems that arise from the data sparsity challenge. Future work will

expand on, and combine, these methods.

First, we propose to use data augmentation methods to further increase the

amount of data and improve the robustness of the embeddings extracted using the

framework introduced in Chapter VII. Data augmentation has been successfully used

in previous research to improve the robustness of speech models (e.g., [99, 185, 146]).

In Chapter III of this dissertation, for instance, we demonstrated how data augmen-

tation via speed perturbation can result in a significant performance improvements

in SER. In addition, the x-vector system used for extracting the embeddings used in

Chapter VI employed several data augmentation strategies (e.g., additive noise and

reverberation) to increase the robustness of speaker embeddings [146]. We expect

data augmentation to improve the robustness of the embeddings that we learn to

extract with our framework.

Second, we propose to extend our study in Chapter VII to include datasets with

a large number of speakers. We used the Blizzard dataset in our study because

of its highly expressive and dynamic speech content. However, the single-speaker

nature of the Blizzard dataset can impact the generalization prospects of the learned

101



embedding extractor. Thus, we propose to investigate using the LibriSpeech dataset

in our framework [162]. Similar to the Blizzard dataset, the LibriSpeech dataset

consists of audiobook data which contain both speech and text. However, unlike

the Blizzard dataset, the LibriSpeech dataset contains a more diverse set of speakers

(more than 9,000 speakers). Although it is intuitive to think that the addition of

more speakers can yield better embeddings, we note that the speech content of the

LibriSpeech dataset is less expressive than that of the Blizzard dataset. Thus, a

thorough investigation needs to be carried before determining the utility of using

LibriSpeech in our framework.

Finally, we propose to investigate how changes to the architecture of the style

encoder used in Chapter VII impacts the quality of the extracted embeddings. One

clear limitation of the style encoder proposed in Chapter VII is that it induces fixed

size embeddings by taking mean of the output sequence from the last LSTM layer.

As discussed in Chapter III, taking the mean over all acoustic frames assumes that

all frames are considered equally important. However, some frames might not con-

tain information that is relevant for capturing speech expressiveness. As a result, a

mean operation can obfuscate the information from relevant frames with those from

irrelevant frames. One method to alleviate this challenge is through the use of a max

pooling operation as we demonstrated in Chapter III. Another method to alleviate

this by the introduction of an an attention mechanism in the style encoder to select

relevant frames for the embeddings [186].

8.3 Work Published

• Part of Chapters I, II, and III, in Zakaria Aldeneh and Emily Mower Provost.

“Using regional saliency for speech emotion recognition.” IEEE international

conference on acoustics, speech and signal processing (ICASSP). 2017.
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• Part of Chapters I, II, and IV in Zakaria Aldeneh, Soheil Khorram, Dimitrios

Dimitriadis, and Emily Mower Provost. “Pooling acoustic and lexical features

for the prediction of valence.” Proceedings of the 19th ACM International Con-

ference on Multimodal Interaction (ICMI). 2017.

• Part of Chapters I, II, and V in Soheil Khorram, Zakaria Aldeneh, Dimitrios

Dimitriadis, Melvin McInnis, and Emily Mower Provost. “Capturing long-

term temporal dependencies with convolutional networks for continuous emo-

tion recognition.” INTERSPEECH . 2017.

• Part of Chapters I, II, and VI in Zakaria Aldeneh and Emily Mower Provost.

“You’re Not You When You’re Angry: Robust Emotion Features Emerge by

Recognizing Speakers.” IEEE Transactions on Affective Computing. 2020. (in

submission)

• Part of Chapters I, II, and VII in Zakaria Aldeneh, Mathew Perez, and Emily

Mower Provost. “Learning Paralinguistic Attributes from Audiobooks with

Voice Conversion.” AAAI Conference on Artificial Intelligence. 2021. (in

submission)
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