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ABSTRACT

The rapid evolution of network technologies and the increasing demand for fast, flex-

ible, and reliable connectivity have led to the emergence of next-generation network in-

frastructures, including new mobile networks such as 5G, new network protocols such as

QUIC, and even new communication paradigms such as LEO satellite networking. These

infrastructures possess the potential to revolutionize a wide range of applications such as

connected and autonomous vehicles. However, there is a lack of comprehensive inves-

tigation into their unique characteristics for enhancing network applications, as well as

the adaptation needed for existing applications to harness their full capabilities. To ad-

dress this challenge, in this dissertation, we demonstrate that systematic measurements

and analyses aimed at unveiling the intricacies of emerging network infrastructures, along

with the development and innovation of efficient network applications, hold the key to

unlocking the full potential of the next-generation network ecosystem.

For network application innovations, leveraging emerging vehicular connectivity and

advanced sensor perception capabilities, we explore cooperative sensing for connected and

autonomous vehicles. Specifically, we design an edge-assisted multi-vehicle collaboration

framework based on Voronoi diagrams. As for network infrastructure measurements and

improvements, we first characterize 5G network performance, power consumption, and

xiv



application QoE implications through large-scale real-world experiments. Then, we ex-

amine the QUIC transport protocol over high-speed Internet, reveal QUIC’s performance

issues after comparing it with the traditional TCP protocol stack, and conduct an in-depth

root cause analysis. Lastly, to understand LEO satellite networks, we take Starlink as an

example and compare it with existing cellular networks in various aspects. We also explore

the potential of enabling multipath transport between LEO satellite and cellular networks.

Collectively, this dissertation showcases the interconnected impacts of next-generation

network infrastructures and applications, and advocates for an organic integration of em-

pirical analysis with practical design.
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CHAPTER I

Introduction

The Internet has been undergoing a remarkable transformation in recent years, fueled

by the rapid advancement of network hardware [127, 74] and software [235, 121]. This

revolution has given rise to next-generation network infrastructures and applications that

promise to reshape the way we communicate, work, and live. The widespread adoption of

new technologies has been nothing short of astonishing, with the number of connected de-

vices projected to exceed 80 billion by 2025 [15], and global Internet bandwidth reaching

a staggering 997 Tbps in 2022 [71].

Some of the most notable progress being made includes the following aspects, which

together form the backbone of the next-generation network ecosystem. They strive to

not only advance individual capabilities beyond their predecessors but also synergize with

others to enhance overall network performance, reliability, and accessibility.

• New network applications. Connected and autonomous vehicles (CAVs) are trans-

forming ground transportation systems by significantly improving road safety [19]

and traffic efficiency [20]. Equipped with various 2D/3D sensors, CAVs continu-
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ously sense the surrounding environment and make appropriate driving decisions.

Numerous companies have begun developing CAV models and services [2, 4, 27],

and significant investment has been poured into autonomous driving research [81].

• New mobile networks. 5G is ushering in a new era of mobile connectivity. With

its massive MIMO [101], beamforming [208], network slicing [120], and more sup-

port from different layers, 5G aims to deliver significantly higher throughput, lower

latency, and increased capacity compared to 3G and 4G. The advent of 5G opens

up new possibilities for use cases requiring high-speed and reliable communication,

such as mixed reality [230, 229] and remote surgery [157]. It is estimated that 5G

will support 1.67 billion subscriptions worldwide by the end of 2023 [1].

• New network protocols. QUIC is expected to be a game-changer in improving web

applications. It is a multiplexed transport-layer protocol over UDP, originally devel-

oped by Google (known as gQUIC [161]) and later adopted by the IETF (known as

IETF QUIC [145]) as the transport layer basis of HTTP/3 [96]. Designed to enable

reliable and secure connections, QUIC is intended to replace the traditional reliable

TCP in web communication. QUIC is already responsible for over 75% of Meta’s

Internet traffic [32] and its adoption continues to grow fast [70].

• New communication paradigms. Beyond terrestrial networks, low-Earth-orbit

(LEO) satellite networks, such as SpaceX’s Starlink [6], are revolutionizing network

connectivity by providing Internet access to remote and underserved areas. With

more than 4800 satellites already in orbit and plans to deploy thousands more [5],

LEO satellite networks have the potential to connect billions of people who currently
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lack reliable Internet access, particularly while on the move.

However, as these next-generation network infrastructures and applications continue

to evolve, they bring forth new challenges that need to be addressed to fully realize their

potential. Emerging applications may not have achieved optimal performance levels. For

example, CAVs suffer from limited perception range and cannot see through occlusions

due to technological constraints. Similarly, the unique characteristics brought by new

infrastructures are not yet fully understood, potentially causing unexpected performance

degradation. For example, blindly running applications over 5G may lead to worse QoE

compared to 4G, and QUIC may fail to surpass TCP if not properly utilized. More specif-

ically, several concrete questions can be asked: (1) How can we deal with the limited

visibility of CAVs’ onboard sensors? (2) How do 5G’s performance, power consumption,

and QoE implications compare to those of 4G? (3) What is the performance of QUIC

over high-speed networks? (4) Can LEO satellite networks offer stable performance and

global coverage? Therefore, efficient application designs are essential for maximizing

overall performance and harnessing the capabilities of the networks. At the same time,

comprehensive investigations into the characteristics of new network infrastructures are

indispensable for gaining insights into the adaptation of network applications.

This research is dedicated to addressing these challenges. The overall goal is to con-

duct systematic measurements to characterize emerging network infrastructures and build

efficient network applications. With new generations of networks and network protocols,

it is crucial to compare them with existing counterparts or predecessors and develop in-

novative solutions for better utilization and integration with existing components (e.g.,

upper-layer applications). With new generations of systems with network capabilities, we
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Table 1.1: Summary of dissertation work.

Problem scope Project
Designing connected and autonomous EMP: Edge-assisted

vehicle cooperative sensing Multi-vehicle Perception
Characterizing power and application A Variegated Look at 5G in the Wild:

performance in 5G networks Performance, Power, and QoE Implications
Examining the QUIC transport QUIC is not Quick Enough

protocol over high-speed Internet over Fast Internet
Understanding network behavior LEO Satellite vs. Cellular Networks: Exploring

in LEO satellite networking the Potential for Synergistic Integration

should explore ways to improve performance with cross-entity communications in mind.

We demonstrate that: Systematic measurements and analyses aimed at unveiling

the intricacies of emerging network infrastructures, along with the development and

innovation of efficient network applications, hold the key to unlocking the full po-

tential of the next-generation network ecosystem. As summarized in Table 1.1, this

dissertation explores this problem along four use cases. We develop novel methodologies

to address the unique challenges posed by each technology and explore their joint impact

on advancing the state of network infrastructures and applications.

1.1 Designing connected and autonomous vehicle cooperative sensing

We identify the limited single-vehicle sensing problems, which cause poor perception

performance for occluded and distant objects. To address this issue, we propose multi-

vehicle cooperative sensing with assistance from nearby vehicles and computational edge

nodes to enhance the situational awareness of individual vehicles and avoid road haz-

ards. Faced with the challenge of bandwidth-overwhelming raw sensor data sharing over
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wireless links, we develop a principled 3D data partitioning algorithm to divide overlap-

ping areas in data from multiple vehicles. Furthermore, we build and evaluate EMP, an

edge-assisted multi-vehicle perception system that enables scalable, adaptive, and efficient

sensor data sharing.

1.2 Characterizing power and application performance in 5G net-

works

We carry out a comprehensive measurement study to reveal the effects of 5G deploy-

ment strategies, radio bands, and protocol-specific properties on power consumption and

application QoE, compared with 4G. First, we characterize the power consumption of

5G networks, including understanding the built-in radio state machine, measuring power

consumption for data transfer, and constructing a 5G power model considering various

impacting factors. Then, we examine 5G’s power and QoE implications for two main-

stream applications, ABR video streaming and web browsing, to identify the new benefits

and challenges introduced by 5G. Based on the insights, we propose solutions to improve

application performance over 5G.

1.3 Examining the QUIC transport protocol over high-speed Internet

We investigate QUIC’s performance over high-speed networks by comparing the

UDP+QUIC+HTTP/3 stack with TCP+TLS+HTTP/2. We first examine the two stacks’

bulk data transfer performance under QUIC toy applications, file downloaders, and web

browsers, and find that QUIC suffers from a reduced data rate. We also compare the QoE
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for video streaming and web browsing using both stacks and demonstrate that QUIC’s

slowness affects not only file transfer but also various web applications. We further deter-

mine the root causes of the observed performance gap. Through fine-grained packet trace

analysis and profiling experiments in both kernel and user spaces, we find the culprit of

performance issues to be excessive receiver-side processing and make recommendations

for mitigating the issues.

1.4 Understanding network behavior in LEO satellite networking.

Using Starlink as an example, we look at an emerging communication paradigm, LEO

satellite networks. We conduct a large-scale data collection campaign to understand the

network performance of LEO satellite networks and their fundamental differences from

terrestrial mobile networks. The data collection covers two Starlink services and three

cellular carriers in the US, with a variety of network performance statistics recorded. We

study the basic performance of the two network types, the impact of different factors on

Starlink’s performance, and their coverage in different areas. Lastly, we explore the po-

tential of enabling multipath transport between them.

1.5 Thesis Organization

The rest of the dissertation is organized as follows. We first provide background

knowledge in Chapter II. Chapter III presents an edge-assisted multi-vehicle collabora-

tion system that enables scalable, adaptive, and efficient sensor data sharing for enhancing

the local processing (e.g., perception) of individual vehicles [259]. In Chapter IV, we
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describe our comprehensive examination of 5G to understand the effects of 5G deploy-

ment strategies, radio bands, and protocol-specific properties on network performance,

power usage, and application QoE, in comparison with 4G [185]. In Chapter V, we sys-

tematically examine QUIC over high-speed Internet. Specifically, we compare the UDP,

QUIC, and HTTP/3 protocol stack with TCP, TLS, and HTTP/2 on different web applica-

tions. We also perform an in-depth root cause analysis [258]. Chapter VI describes our

measurement study comparing the Starlink LEO satellite network with cellular networks

and explores the potential for synergistic integration of the two network types (e.g., using

MPTCP) [136]. We discuss related work in Chapter VII and conclude the dissertation in

Chapter VIII.
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CHAPTER II

Background

In this chapter, we provide more details on the background of next-generation network

infrastructures and applications, including connected and autonomous vehicles (§2.1), 5G

networks (§2.2), the QUIC transport protocol (§2.3), and LEO satellite networks (§2.4).

2.1 Connected and Autonomous Vehicles

Connected and autonomous vehicles (CAVs) are vehicles equipped with various on-

board sensors that allow them to perceive their surrounding environment, including other

vehicles, pedestrians, and cyclists. LiDAR (Light Detection and Ranging) [55, 63] is one

of the primary sensors used on CAVs. A LiDAR sensor functions by emitting uniform laser

pulses at different angles and capturing their reflections from objects. It then calculates the

distance to those objects and generates a 3D point cloud consisting of point coordinates rel-

ative to the sensor, to represent the surroundings. Compared with cameras, LiDARs offer

advantages including a longer range and greater robustness under poor lighting conditions

and inclement weather. CAVs are also equipped with wireless communication capabilities
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and thus can exchange safety messages with other vehicles or infrastructures to enhance

situational awareness. Different software modules, such as perception, prediction, and

planning, are installed to further process the collected sensor data and make appropriate

driving decisions for safe movement.

2.2 5G Networks

5G is bringing in a new era of mobile connectivity. 5G deployment is rapidly in-

creasing since its roll-out in 2019. With more than 145,000 deployments in 142 countries

worldwide [192], and predictions of over 4.6 billion 5G subscriptions by 2028 [3], 5G aims

to deliver significantly higher throughput, lower latency, and increased capacity compared

to its predecessors, 3G and 4G.

5G is expected to benefit a wide range of new applications in three major areas:

enhanced mobile broadband (eMBB), ultra-reliable and low latency communications

(URLLC), and massive machine type communications (mMTC). However, given the di-

verse factors such as frequency bands, deployment schemes, and mobility patterns, there

are still many unknowns in terms of network performance, power consumption, and im-

plications on application QoE.

2.3 QUIC Transport Protocol

QUIC is a user-space transport over UDP and comes with enforced encryption. It

was initially proposed and developed by Google (gQUIC) [161] with the goal of enabling

fast, reliable, and secure connections. Earlier, Google reported significant performance
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gains compared with TCP [13, 30]. An IETF working group was launched in 2016 to

improve the original gQUIC design which fuses the transport, cryptographic handshakes,

and upper-layer HTTP. The group teased various functionalities into parts and later stan-

dardized the refined version into IETF QUIC [145]. As the application layer wrapper of

QUIC, HTTP/3 was also adopted as an IETF standard recently [96]. Essentially, HTTP/3

was structured to make the HTTP syntax as well as existing HTTP/2 functionalities com-

patible with QUIC. Together with the network layer and layers below, UDP, QUIC, and

HTTP/3 form a new protocol stack for next-generation network communication, whose

current counterpart is the stack of TCP, TLS, and HTTP/2. While QUIC’s design brings

benefits such as 0/1-RTT fast handshake, stream multiplexing for the removal of head-of-

line blocking, and connection migration, there are also potential downsides. For example,

QUIC involves heavy processing and copying data between the kernel space and user

space.

2.4 LEO Satellite Networks

Low-Earth-Orbit (LEO) satellite networks utilize distinct communication and connec-

tivity technologies that set them apart from traditional cellular networks. Unlike cellular

networks which rely on terrestrial base stations, an LEO satellite network operates through

a constellation of satellites orbiting the Earth at an altitude of hundreds of miles. A user-

side dish connects with a satellite, which in turn, communicates with a ground station.

These ground stations relay data to and from the Internet. Several commercial LEO satel-

lite networks have been announced, including SpaceX’s StarLink, Amazon’s Kuiper, and

OneWeb. They aim to improve global connectivity and offer a competitive alternative to
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traditional broadband services.

It is important to note that Starlink requires a Line-of-Sight between user dishes and

satellites. Obstructions such as tall buildings or trees can disrupt the satellite connections.

Consequently, Starlink has better performance in open and remote areas. In contrast, cel-

lular networks excel in densely populated areas where a dense deployment of base stations

ensures reliable connectivity. Moreover, due to their differing deployment strategies and

thus service availability, the two types of networks can exhibit highly varied performance

and coverage characteristics.
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CHAPTER III

EMP: Edge-assisted Multi-vehicle Perception

Connected and Autonomous Vehicles (CAVs) are vehicles equipped with network con-

necivity and sensing capabilities. They heavily rely on 3D sensors such as LiDARs, radars,

and stereo cameras. However, 3D sensors from a single vehicle suffer from two fundamen-

tal limitations: vulnerability to occlusion and loss of details on far-away objects. In this

chapter, to overcome both limitations, we design, implement, and evaluate EMP, a novel

edge-assisted multi-vehicle perception system for CAVs.

3.1 Introduction

Connected and autonomous vehicles (CAVs) are expected to transform the ground

transportation systems by significantly improving road safety [19] and traffic effi-

ciency [20]. 3D sensors such as LiDAR, radars, and stereo cameras are extremely im-

portant to CAVs as the sensors are their “eyes” that continuously sense the surrounding

environment. However, these sensors suffer from two fundamental limitations. First, they

are vulnerable to occlusion. Because of the rectilinear propagation of light, these sensors
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(b) Unprotected Left Turn(a) Blind Spots (c) Broken Down Vehicle

Figure 3.1: Use cases of multi-CAV sensor data sharing.

cannot perceive objects occluded by non-transparent objects. Second, similar to human

eyes, the farther an object is, the fewer details the sensors can capture. Take LiDAR as an

example, it emits uniform laser pulses and constructs the environment based on the pulses

reflected from objects. Therefore, the density of the pulses and henceforth the perception

resolution decrease with increasing distance.

To overcome the above limitations, nearby CAVs can share their sensor data so that

each vehicle can have a more complete view with a higher resolution compared to the view

constructed from its own sensors. We consider three use cases of sensor sharing among

nearby vehicles, as shown in Figure 3.1.

• Scenario 1 (blind spots from blocking vehicles): A pedestrian and a cyclist are cross-

ing a street, and a blue vehicle is changing to the center lane. However, the gray

vehicle cannot see them due to the occlusions of the two red vehicles. This can be

resolved by sharing the sensor data from either the red vehicle with the gray vehicle.

• Scenario 2 (blind spots from turning): A gray vehicle is turning left at an intersec-

tion without a protected left-turn signal [39]. Meanwhile, a blue vehicle, which the

gray vehicle cannot see, is traveling straight from the opposite direction, causing a
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potential collision. This risk can be eliminated if the red vehicle shares its sensor

data with the gray vehicle.

• Scenario 3 (distance-induced limited visibility): The blue vehicle breaks down in

the middle of a road. Several oncoming gray vehicles cannot detect it from far

away due to the low sensor data resolution. By aggregating their observed data, the

broken down vehicle is more likely to be detected much sooner, preventing potential

accidents.

Sharing Raw Sensor Data as Opposed to Processed Data. Several studies explored

vehicles sharing processed data such as information of detected objects [170, 103]. We

instead advocate sharing raw sensor data (when network resources permit) due to several

limitations of processed data. First, its limited data granularity cannot support application-

specific requirements. In other words, there will be a loss of information during data

processing. For example, in Figure 3.1c, if none of the three gray vehicles can detect the

blue vehicle, combining their processed data is ineffective, whereas sharing raw sensor

data may lead to successful detection. Second, sharing processed data lacks generality,

and may not be compatible with diverse CAV applications. In contrast, raw sensor data

has a simple, fundamental, and universal data format to flexibly support a wide range

of CAV applications. Traditionally, sharing raw sensor data was constrained by limited

network resources, but this is being changed by high-speed wireless networks such as

5G [179, 242, 185].

Sharing Raw Sensor Data in a Scalable Manner. There are a limited number of

works that do allow vehicles to share raw sensor data [202, 104, 190], but at a very lim-

ited scale. They all take a vehicle-to-vehicle (V2V) sharing approach which suffers from
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poor scalability. As illustrated in Figure 3.1, oftentimes multiple vehicles need to get

involved in sensor data sharing, particularly for congested roads. However, when many

vehicles need to share their sensor data over V2V, each vehicle has either to perform mul-

ticast/broadcast, which suffers from low throughput in particular under mobility [245],

or to unicast multiple copies of the data, incurring high delay and bandwidth overheads.

Furthermore, a vehicle may not have enough computational resources to process other

vehicles’ data at line rate.

Differing from all existing works, we develop a system called EMP that scales up

multi-vehicle sensor data sharing through edge computing [223, 137, 218]. We define edge

to be computing and storage resources in close proximity to the vehicles, which provides

low network latency to each vehicle. In our scheme, nearby vehicles upload their sensor

data to the edge which creates a global view by merging individual vehicles’ data. The

edge can then run customized CAV algorithms and return the corresponding results (e.g.,

detected vehicles as shown in Figure 3.2). With the edge support, each vehicle’s workload

and network bandwidth usage can be drastically reduced compared to the V2V scheme.

Note that EMP does not fully replace a CAV’s local processing, which is instead enhanced

by EMP. For example, the local object detection results and the results from the edge can

be combined to increase the detection coverage and accuracy. When there is a network

blackout or the edge is unavailable, vehicles can always fall back to the local mode.

Principled Spatial Partition. The key technical merit of this work is to address the

core algorithmic challenge for EMP: how do CAVs efficiently share their raw sensor data?

Ideally, CAVs can cooperatively create a disjoint spatial partition of the environment,

where (1) each CAV uploads only sensor data in its proximity, and (2) the union of all
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CAVs’ sensor data forms the entire surrounding environment. This strategy strikes a de-

sired balance between bandwidth consumption and data quality: there is no overlap among

CAVs’ data so no bandwidth is wasted; meanwhile, as mentioned earlier, each CAV’s close

proximity has the highest sensor data quality. We find that mathematically, such a desired

partition can be generated by a Voronoi Diagram [90] where the area that each vertex v

(a CAV in our context) belongs to consists of the points whose distances to v are less

than or equal to those to any other vertices. This key property nicely satisfies the above

“proximity” requirement of EMP.

Adapting to Available Network Resources. While partitioning based on Voronoi

diagrams is effective, it does not consider the available network bandwidth. For example,

if the available bandwidth of a CAV is low, then it should upload less data. This can be

realized by adjusting its uploaded area’s boundary in the Voronoi diagram. We develop a

robust algorithm that adaptively adjusts the sensor data uploading area of each vehicle (i.e.,

the boundaries in the Voronoi diagram) in real time according to the estimated bandwidth

of each CAV. In this way, vehicles with slow wireless connections can partially “offload”

their uploading tasks to their neighboring vehicles.

Adapting to Network Resource Uncertainty. Wireless network conditions are

known to be highly fluctuating, in particular under mobility. EMP embraces this through

three mechanisms. First, it assigns priorities to each CAV’s to-be-uploaded data, to ensure

that important portions (e.g., those that cannot be covered by other CAVs’ data) are up-

loaded first, so they are the least vulnerable to the network resource uncertainty. Second,

the above scheme naturally provides redundancy for regions that are perceivable from

more than one CAV, thus boosting the resilience to the network condition fluctuations.
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Third, in order to minimize the bandwidth waste incurred by the above redundancy, the

edge employs a lightweight graph-based scheduling algorithm to efficiently detect if the

entire environment is fully uploaded in real time.

Implementation and Evaluations. We incorporate the above algorithms into an edge-

assisted multi-vehicle perception system developed by us. Our system consists of a full-

fledged cooperative sensing pipeline including sensor data uploading, edge-side data merg-

ing, 3D object detection, and vehicle-side perception enhancement using the edge-side

results. The above components are judiciously pipelined to ensure good runtime perfor-

mance. We evaluate our system through extensive emulations using photorealistic sensor

data and real-world LTE/60GHz network traces, and real-world live tests. Our key results

consist of the following:

• EMP can achieve real-time processing at 24 FPS and end-to-end latency of 86 –

102 ms for the full partitioning-uploading-merging-detection pipeline, when 2 to 6

vehicles are involved in sensor sharing. EMP reduces the end-to-end latency by

49% – 65% compared to its V2V sharing counterpart.

• Compared to having all vehicles upload their full frames, EMP’s approach to adap-

tively uploading sensor data in vehicles’ proximity incurs a negligible perception

accuracy loss (0.1% – 2.2%) when vehicle detection is performed on the merged

view. Meanwhile, EMP’s approach leads to a significant bandwidth usage reduction

of 32% – 58%.

• We conduct case studies under realistic traffic scenarios and show that cooperative

sensing powered by EMP can detect dangers (e.g., occluded vehicles in blind spots
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and far-away vehicles) earlier by 0.5 to 1.1 seconds, compared to a single vehicle’s

perception, leading to successful collision avoidance.

• To complement the real system results, we also conduct large-scale simulations in-

volving up to 20 vehicles. The results further showcase the scalability and robustness

of EMP under diverse road traffic and wireless network conditions.

Overall, EMP is to our knowledge the first system that enables edge-assisted multi-

vehicle perception through raw sensor data sharing. We make two major contributions:

(1) From the algorithmic perspective, we develop robust algorithms for scalable, adaptive,

and resource-efficient sensor data sharing under potentially fluctuating network conditions.

(2) From the system perspective, we incorporate our algorithms into a real system that can

provide extended perceptual range and detection of occluded objects for CAVs.

3.2 Motivation

3.2.1 Benefit of Sensor Data Sharing

CAVs rely on various on-board sensors such as LiDARs for the perception of the en-

vironment to make driving decisions. However, there are limitations of these on-board

sensors: (1) They suffer from occlusion. Because of the rectilinear propagation of light,

they cannot ”see through” non-transparent objects and can only provide line-of-sight in-

formation. (2) The farther, the fewer details they can capture. As LiDAR emits uniformly

distributed lights and generates data based on the reflected lights, the data resolution de-

creases as the object distance from the sensor increases. Figure 3.2 illustrates these limi-

tations with a LiDAR point cloud. There are several blind spots caused by the occlusion
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Ego-Vehicle

Blind 
SpotsMissed Detections

Figure 3.2: A LiDAR point cloud (blue) and detected object bounding boxes (green). The
ego-vehicle fails to detect distant objects and loses information in the blind spots (red).

of the vehicles near the ego-vehicle. The ego-vehicle also fails to detect some distant

vehicles. All these limitations bring road risks and affect driving efficiency for CAVs.

Different vehicles have views at different locations. It is possible that objects occluded

in the views of some vehicles can be easily perceived by some others. Therefore, com-

bining sensor data from vehicles perceiving objects at various perspectives can effectively

eliminate occlusions and increase the perception resolution, thus further avoiding potential

road hazards, as demonstrated in the examples in Figure 3.1.

As opposed to sharing processed data such as detected objects, we advocate sharing

raw sensor data due to several limitations of sharing processed data. First, the informa-

tion granularity decreases after processing the raw data to a higher layer of data, such as

extracted features or detected objects. For example, in Figure 3.1c, a single gray vehicle

may not detect the blue vehicle from far away on its own (e.g., due to long distances or

poor weather [38]) and merging their detection results will yield nothing, whereas com-

bining the observations from all the vehicles altogether may lead to successful detection.
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Figure 3.3: Inference time on data from varying numbers of vehicles.

Second, sharing processed data lacks generality. For example, vehicles may have different

representations for processed data (e.g., object classes). One detection algorithm may out-

put car, human, etc. while another outputs sedan, bus, cyclist, pedestrian, etc. Instead, raw

sensor data has a simpler data format to flexibly support a wide range of CAV applications.

Furthermore, CAV’s local processing takes time. A CAV can share its sensor data once the

data is captured and some prepossessing is done. Then it starts the local processing while

waiting for the results from the edge. Upon receiving the edge’s enhanced results, it can

adjust the driving decisions accordingly. In contrast, a CAV cannot share the processed

data until it completely finishes the local processing.

3.2.2 Need for an Edge-assisted System

In order to avoid such hazards during daily driving, some existing works leverage

sensor data sharing to improve the vehicle’s visibility [190, 202, 104]. However, these

systems only enable vehicle-to-vehicle (V2V) data sharing which suffers from poor scal-

ability from both the network and computation perspective. Network overhead: There
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are many scenarios (Figure 3.1) involving multiple vehicles for sensor data sharing. When

the number of vehicles grows larger than two, each vehicle has to either send more than

once or rely on another vehicle to relay its data, which introduces redundancy, additional

delay, and higher bandwidth consumption. Computational overhead: Processing data

shared from other vehicles involves additional overhead, challenging the limited on-board

resources. We examine how the sensor data volume affects the inference time of 3D ob-

ject detection using a state-of-the-art detection framework, PointPillars [160]. As shown

in Figure 3.3, the inference time is roughly proportional to the number of vehicles which

has a positive correlation with the data volume.

Edge computing services are becoming increasingly popular [26, 22, 34]. Edge nodes

usually have more computational resources to process aggregated sensor data compared

to on-board hardware which is equipped to process single-vehicle data. Communicating

with an edge server also involves lower latency compared to using a remote cloud. Unlike

V2V sharing, the vehicles only need to upload their data once to an edge node which can

process them together.

3.2.3 Challenges

Building such an edge-assisted system that processes vehicle sensor data in real-time

still poses several scalability challenges regarding network and computational resources.

• It is extremely hard for existing wireless techniques to support multiple vehicles

simultaneously uploading raw sensor data in real-time. A commercial 64-beam Li-

DAR collects point clouds (∼2MB1) at 5-20Hz [63], which means the data can be

1A point cloud contains ∼130K points (64 vertical angles and 2083 horizontal angles) consisting of location
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generated at up to 300Mbps. How does the system reduce the data size with little

impact on perception performance?

• Although an edge node usually has more computational power than individual

CAVs, the processing time grows as the data volume increases as demonstrated

in Figure 3.3. How can the system ensure real-time operation while providing an

extended perception range?

• The available network bandwidths vary across vehicles, leading to different trans-

mission times of data from different vehicles. Plus, wireless networks can fluctuate

in particular under high mobility. How does the system adapt to the variability of

network resources?

• Vehicles may upload frames at different times. There will be tremendous computa-

tional overhead if the edge processes a frame once it is received. In order to process

data collected at similar times from different vehicles together, how does the edge

determine when it can start processing the current frame and schedule for the next?

3.3 System Design

We propose EMP, an Edge-assisted Multi-vehicle Perception system for efficiently

sharing sensor data over wireless networks and improving perception accuracy for CAVs.

EMP tackles the above challenges through several design decisions: (1) EMP offloads

heavy computation of cooperative perception from vehicles to an edge node (§3.3.1); (2)

EMP efficiently partitions point cloud data to reduce network latency (§3.3.2); and (3)

and intensity information (xyz-i, 4 floating-point numbers).
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Figure 3.4: System Architecture of EMP.

EMP strategically coordinates the uploads from different vehicles (§3.3.3). EMP also in-

corporates view merging (§3.3.4), ground removal and system-level optimizations (§3.3.5)

for boosting the performance of cooperative perception.

3.3.1 Edge-assisted Perception Architecture

At a high level, EMP offloads the cooperative perception from each vehicle to the edge

side so that the edge performs object detection based on the aggregated sensor data and

provides improved perception results for better driving decisions. To achieve this, EMP

connects each vehicle with the same edge node with network channels in two layers, as

shown in Figure 3.4.

Data Plane transmits the sensor data from the vehicles to the edge, and performs

perception tasks at the edge. As shown in Figure 3.5, each vehicle preprocesses a single

frame of sensor data (the Preprocessing Module in Figure 3.4), and uploads the chunks to
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the edge. The partitioning is necessary for point cloud data as the size of a single frame can

be large and there may not be enough bandwidth to upload full frames from all vehicles to

the edge in time. Uploading chunk by chunk allows the edge to leverage partial point cloud

data if available. Upon receiving the point cloud chunks, the edge merges these chunks

with point cloud data from other vehicles based on the precise locations of all vehicles after

decompression, forming a holistic point cloud as the view of the surrounding area. The

edge can thus perform 3D object detection [160] on the holistic point cloud, and finally

send the detection results back to each vehicle (the Perception Module in Figure 3.4). The

results consist of locations, dimensions, headings, and confidence scores of the detected

objects. EMP pipelines the vehicle’s preprocessing and edge’s perception, i.e., a vehicle

can start transmitting the next frame of the point cloud before receiving the detection

results.
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Control Plane optimizes the network transmission of all vehicles according to their lo-

cations and network conditions by guiding the point cloud partitioning for vehicles, so that

the data to be uploaded by each vehicle is balanced and the edge can construct the holis-

tic point cloud promptly. The partitioning allows each vehicle to upload its surroundings

first, with the uploaded area adapted to its available network resources. Before uploading

the sensor data, each vehicle sends a control message containing its real-time location to

the edge. For each control message received, the edge uses the location, along with other

vehicles’ locations, to determine the region of the point cloud to upload for each vehicle.

The decision region is sent back to the vehicles in the form of multiple line equations rep-

resenting the region boundaries. Once a new frame of the point cloud is generated, the

vehicle partitions the frame following the latest partitioning decision provided by the edge

to reduce the data size. All the logic resides in the Adaptation Module in Figure 3.4.

Note that when the network connectivity is poor or the edge is unavailable, the vehicles

can always run their local processing for basic services. Besides, while we focus on the

assistance from a single edge in this work, the EMP’s design can be flexibly extended to

the scenarios of multiple edge nodes by introducing sensor data sharing among edge nodes

based on vehicle locations and a handover mechanism, which we leave for future work.

3.3.2 Edge-assisted Point Cloud Partitioning

Since a full frame of the point cloud data may not be uploaded in time to the edge,

the edge partitions the whole area into non-overlapping regions so that each vehicle only

uploads a subset of the points according to the corresponding decision region, to reduce

the amount of upload data.
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One intuitive idea of such partitioning is to assign each point in the 2D region (bird-

eye view) to the closest vehicle. In this case, the whole region is partitioned into multiple

non-overlapping regions close to each vehicle. Since the LiDAR point cloud has more

detailed information for the closer region, such partitioning ensures that each region has

the finest representation from point clouds of multiple vehicles. Mathematically, such a

partition is a Voronoi diagram [90], as shown in Figure 3.6. For each vertex v (a vehicle

in our context), there is a corresponding area that consists of the points whose distances to

v are less than or equal to those to any other vertices. Figure 3.7 visualizes an example of

such a partition on a global region consisting of five vehicles. The letters A−E represent

the vehicles and L1 − L7 represent region boundaries, i.e., the perpendicular bisectors in

the Voronoi diagram, between two vehicles. For example, any points in B’s region are

closer to vehicle B than to any other, so we have d1 > d2 where d1 and d2 are the distances

from the point to each vehicle. Note that the boundaries of a region for a vehicle only

depend on neighboring vehicle locations, and such boundaries can be derived by finding

the perpendicular bisectors between each pair of neighboring vehicles.
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Figure 3.7: Naive partitioning through Voronoi Diagram.

While the partitioning based on Voronoi diagrams is simple, it suffers from two limita-

tions. First, such partitioning depends only on the relative location of the vehicles, without

considering vehicles’ network conditions. This can still lead to a large network transmis-

sion time. For example, in Figure 3.7, when the network bandwidth of vehicle A is much

lower than that of vehicle B, A can still take a longer time to upload its share of point

cloud data than B to the edge, causing the edge to wait longer before leveraging A’s point

cloud data. Second, even if the initial partition of the region is proportional to the uplink

bandwidth of each vehicle, as the vehicles move, the bandwidth can fluctuate significantly

and thus lead to longer transmission times for some vehicles.

To address these limitations, we propose REAP, a Region-based Edge-Assisted

Partitioning which is bandwidth-aware and adaptive to the bandwidth fluctuations. REAP

decides the partitioning boundaries based on both the vehicle’s location and estimated up-
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link bandwidth (§3.3.2.1). REAP adapts to the fluctuating bandwidth by assigning multi-

ple small chunks to each vehicle for transmission, taking the degree of bandwidth variation

into account while partitioning, and dynamically determining when to finish transmission

(§3.3.2.2).

3.3.2.1 Bandwidth-aware Partitioning

The available network resources of different vehicles can very likely vary. To cope

with the different wireless uplink bandwidths across vehicles, REAP partitions the global

region based on both the vehicle location and the estimated uplink bandwidth. At a high

level, REAP achieves this through moving the region boundary between two vehicles to-

wards the vehicle that has lower bandwidth. Such partitioning results in a smaller region to

upload for vehicles with low bandwidth and a larger region for those with high bandwidth.

Specifically, REAP uses Power Diagram [89] in Mathematics to determine the precise

partitioning boundaries. Recall that a Voronoi diagram draws the perpendicular bisector

of the connection between every two neighboring vehicles as the partitioning boundary

(Figure 3.7), which means the distance to the boundary from both vehicles are the same.

A power diagram is a form of weighted Voronoi diagram, in which each vehicle is assigned

a weight, and the ratio between the distances of two vehicles to the boundary is positively

correlated to the ratio of the corresponding weights of the two vehicles. By adjusting the

weights of the vehicles based on their corresponding estimated uplink bandwidth, we can

thus make the partitioned region adapt to the vehicle’s uplink bandwidth (the bandwidth

usage is largely proportional to the uploaded area).

Figure 3.8 visualizes how the weights of vehicle A and B, r1 and r2 respectively,
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Figure 3.8: BW-aware partitioning through Power Diagram.

determine the boundary between the two vehicles. The boundary here is the radical axis of

two circles centered on these two vehicles and the weights are the circle radii. Any point

on the radical axis has the same power distance (R) to both circles. That is, R2 = d21−r21 =

d22−r22. As the estimated uplink bandwidth of A, and thus r1, increases, the boundary L1 is

moved to L′
1. As a result, vehicle A with a better network condition is scheduled to upload

more data. Note that the bandwidth bw (data volume divided by time) and the weight r

(distance) in such a diagram intrinsically have different units. In REAP, we interpret the

factor between these two values as a configurable parameter k which reflects the sensitivity

of the system to the bandwidth differences, so we have r = k × bw.

To estimate the uplink bandwidth of each vehicle, the edge measures the size and

transmission time of each point cloud chunk sent from each vehicle, and computes its

bandwidth as the exponentially weighted moving average (EWMA) of the ratio between
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Figure 3.9: Vehicle A’s (left) and C’s (right) point clouds partitioned into chunks by REAP
for adaptation to fluctuating bandwidth. Lover, Lorigin, and Lunder are region boundaries.
C1-C4 represents chunk IDs.

size and transmission time.

3.3.2.2 Adaptation to Bandwidth Fluctuation

The bandwidth estimation from the edge can be inaccurate as the network condition is

changing rapidly, especially for vehicles under high mobility. REAP addresses this chal-

lenge by further partitioning each vehicle’s region into multiple chunks, based on two sce-

narios, bandwidth underestimation and overestimation. Each chunk is assigned an upload

priority to ensure that important portions are uploaded first, so they are least vulnerable to

the network resource uncertainty.

Specifically, for each pair of neighboring vehicles, besides the boundary (Lorigin) cal-

culated based on the estimated bandwidths (§3.3.2.1), REAP determines two additional

boundaries, Lover and Lunder, by replacing the original estimations bwA and bwB (band-

widths of vehicle A and vehicle B) with two new pairs of values: (1) bwA × (1 − α) and

bwB × (1 + α), to account for the extreme case of overestimation of A’s bandwidth and

(2) bwA × (1 + α) and bwB × (1 − α), to account for the extreme case of underestima-
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tion. These boundaries together partition a point cloud into smaller chunks, as illustrated

in Figure 3.92. Here α defines the degree of network fluctuation to tolerate and thus is

correlated to the actual network characteristics. We adopt an auto-tuning strategy to set

α during runtime. More specifically, the edge can adjust the α value using the standard

deviation of estimated bandwidth values for different vehicles in the system across a past

period of time.

As shown, each vehicle has chunks numbered from 1 to 4. Chunk 1 (C1) is the area

enclosed by Lover and is on the side far from neighboring vehicles. C1 should be uploaded

in the highest priority because 1) it is the easiest area to upload as it is derived assuming

the bandwidth is overestimated, and 2) it has the least overlapping with other point clouds

and other vehicles may not be able to help. Chunk 2 (C2) is enclosed by Lorigin and C1

boundary. If all vehicles upload C1 and C2, the entire area is covered without overlapping,

which is the best case. Chunk 3 (C3) is enclosed by Lunder and C2 boundary. It further

extends towards the neighboring vehicles and is closer to them. C2 of one vehicle can be

replaced by its neighbors’ C3 in reduced quality. Chunk 4 (C4) is essentially the point

cloud excluding the first three areas. It is the least important to the vehicle because this

chunk is mostly blocked by its neighbors which can also capture more details. In case

one vehicle is suffering from very bad network conditions or just gets disconnected, its

neighbors can help by uploading their C4. From Figure 3.9, we can find that C2 of vehicle

C is partially covered by C3 of vehicle A (together with C3s of A’s other neighbors). C1

of vehicle C is partially covered by C4 of vehicle A.

Each vehicle sequentially uploads from C1 to C4. In this way, vehicles first share ar-

2The notations (A-E) used in previous figures are kept for consistency and we select vehicle A and vehicle
C for better visualization.
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Figure 3.10: Neighboring relationships (e.g., A-D) and chunk uploading progresses (vehi-
cleId: chunkId).

eas that can be better captured and may only upload overlapped areas at the later time

of the transmission. In different scenarios as the actual bandwidth differs from the esti-

mated bandwidth, such a mechanism allows the edge to receive enough data to construct a

holistic view as soon as possible, reducing the transmission time. In short, the goal of the

adaptation in REAP is to achieve that a chunk is always finished by the “best” candidates

who can provide the most details while other vehicles can help provide data with fewer

details to meet real-time requirements, balancing the trade-off between the level of details

in the point cloud and the time to start perception at the edge.

3.3.3 Upload Scheduling

According to REAP, each vehicle uploads its chunks sequentially. However, there

will be unnecessary bandwidth waste if vehicles keep uploading the remaining chunks

after the edge has received enough data to construct the global view. Besides, vehicles

may start uploading their frames at different times but it is meaningless for the edge to

process a frame without combining frames from other vehicles. Therefore, the edge needs

to schedule when the transmission of a frame should be ended and it can start processing.
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We propose a scheduling algorithm based on Delaunay Triangulation [91] for the edge

to determine from the received data. For a given set (P ) of discrete points, P ’s Delaunay

Triangulation (DT ) is a triangulation of P such that no point in P is inside the circumcircle

of any triangle in DT . In other words, there will be no points inside the triangle formed

by joining any three ”neighboring” points. Figure 3.10 shows the vehicle locations and

their neighboring relationships. For example, vehicle A, B, and D are neighbors to each

other while vehicle E is not A’s neighbor. Vehicle A has neighbor B, C, and D. In

this way, when calculating a Voronoi diagram (§3.3.2, or Power diagram in §3.3.2.1),

only A-B, A-C, and A-D are considered for vehicle A while A-E is not, which reduces

the processing overhead compared to deriving perpendicular lines of connections between

every two vehicles.

Based on how the chunks of each vehicle are divided, we define three conditions where

the edge can determine the transmission of the current frame is finished: (1) C1 and C2

of all vehicles have arrived; (2) C2 of one vehicle has not arrived (e.g., due to limited

bandwidth) but the C3 of all its neighboring vehicles have been delivered; (3) Neither C1

nor C2 of one vehicle has arrived but its neighbors finish uploading their C3s and C4s.

Once any of these conditions is satisfied, the edge broadcasts a “finish” signal to stop all

vehicles from uploading the remaining chunks.

As shown in Figure 3.10, the numbers after the vehicle letters (names) represent the

largest IDs of chunks received by the edge. According to the conditions defined above, if

all the numbers are 2, then the entire area is perfectly covered and the edge can notify the

vehicles of the end of the transmission. However, although the REAP algorithm enables

vehicles to upload chunk by chunk, from C1 to C4, their uploading progress will not be at
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the same pace and the conditions are not satisfied by all the vehicles at once. Therefore,

in order to check the satisfaction of these conditions, we develop a scheduling algorithm

as follows: Every time a new chunk is received, the edge will check whether the sum of a

vehicle’s largest chunk ID and another vehicle’s, is greater than 4. If so, that means these

two vehicles locally satisfy the conditions and the ridge between them is removed from

the set of ridges to be checked. When no ridges in the diagram are left, the entire area is

fully covered and the frame is ready to be processed. Otherwise, the edge keeps waiting

for the remaining data and rechecks when the next chunk arrives.

3.3.4 View Merging

After receiving frames from different vehicles, the edge performs 3D object detection

on the holistic point cloud. However, generated from the perspective of a vehicle, the point

cloud frame origin is the vehicle LiDAR sensor. Thus, in order to merge the data collected

by different vehicles, the edge needs to transform the points of each point cloud from their

original perspectives to a unified coordinate system. Given a target origin and axis orien-

tations, the relative position (∆x, ∆y, ∆z) and orientation (α, β, γ) of a vehicle can be

derived based on its navigation data (GPS/IMU) by calculating the differences. The edge

further generates a translation matrix, T = [∆x,∆y,∆z]T , and three rotation matrices,

Rz(α), Ry(β), Rx(γ). Then, the transformation of a point P = [X, Y, Z] can be calcu-

lated as follows: Pdst = RzRyRx × P + T . Note that this approach assumes the location

data is reasonably accurate, thanks to high-performance localization techniques [50, 64]

which can achieve centimeter-level accuracy. Existing point cloud calibration/registration

techniques [112, 124, 173, 211] can be applied when the navigation signals are less accu-
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rate.

3.3.5 Performance optimizations

We make several optimizations to save bandwidth, reduce end-to-end latency, and im-

prove processing efficiency.

Ground Removal. LiDAR sensors collect a significant amount of data from the

ground plane which is less useful than the data of surrounding objects for perception.

Therefore, EMP detects and removes the ground points before sharing to save bandwidth.

We use an algorithm called Random Sample Consensus (RANSAC) [119] assuming that

the ground plane is the plane containing the most points in a point cloud. Specifically,

EMP randomly picks several points to construct a plane and counts how many points in

the point cloud fall near this plane. It repeats until the plane contains enough points. As the

height of the sensor (atop the CAV) is known, we can estimate the approximate location

of the ground to effectively reduce ground detection time.

Edge-side Parallelization. As the edge receives multiple point cloud chunks and lo-

cations from different vehicles, the processing of incoming data can be done concurrently.

EMP takes decoding, merging, and location updating as individual tasks and parallelizes

the tasks for different chunks by scheduling a corresponding task once a data chunk is

received or decoded, or real-time navigation data is received. In this way, the edge saves a

significant amount of time while waiting for new chunks.

Pipelining. To improve the system throughput, i.e., the frame rate that EMP can sup-

port, we further pipeline the three parts (vehicle, network, edge) in the system, any of

which does not have to wait until the current frame goes through the entire workflow be-
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fore processing the next available frame. The vehicle is responsible for ground removal,

point cloud partitioning, and decoding. After pushing frame n into the send buffer queue,

a vehicle can process frame n+ 1 once it is available. Meanwhile, the edge is working on

a received frame such as frame n− 1.

Cloud Mode. Although edge nodes are being increasingly deployed [26, 22, 34], there

could be areas where no edge nodes are available. In this case, EMP will fall back to rely

on a cloud server for data aggregation and processing to provide seamless support. This

may lead to a longer transmission latency but CAVs can still benefit from the cooperative

perception. We evaluate the impact of EMP’s cloud mode on detecting road hazards in

§3.5.4.

3.4 Implementation

We implement EMP [48] in Java and the prototype consists of about 10K lines of

code. Vehicle-side: Our prototype supports obtaining the incoming sensor data (e.g., point

clouds and navigation data) from various sources including both real LiDAR / GPS and

recorded traces. The sensor data is provided to the processing pipeline at a configurable

and fixed rate (e.g., 10Hz in our experiments). The partitioning module takes as input the

coefficients of line equations representing the chunk boundaries received from the edge

and then crops out the chunks through linear algebra operations. We modify Draco [47]

for LiDAR point cloud compression. The Draco APIs are invoked through JNI. Edge-

side: The real-time 3D inference is built upon PointPillars [160], a state-of-the-art open-

source 3D object detection framework. It is computationally efficient and is adopted by

existing industry-level autonomous driving platforms such as Baidu Apollo [29] and Au-
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toware [43]. In the original implementation of PointPillars, the code for the entire object

detection pipeline is integrated. We thus separate different modules in the pipeline (model

loading, model configuration, inference, etc.), and make model loading/configuration a

one-time operation to enable fast inference. The edge also uses Draco to decompress the

uploaded point clouds. For all other components in Figure 3.4, we implement them by our-

selves. The vehicle and edge communicate through a custom protocol over TCP. Changing

the underlying transport protocol to other protocols such as QUIC [161] is straightforward.

Note, EMP is designed for efficient point cloud data sharing. In this work, we focus

on LiDAR point clouds for demonstration while the system is generally compatible with

other CAV sensors which capture point cloud data, such as stereo cameras.

3.5 Evaluation

We evaluate the performance and scalability of EMP under different vehicle and

network settings, demonstrating its advantage over vehicle-to-vehicle sharing schemes

(§3.5.2). We examine EMP’s enhancement on perception (§3.5.3). We showcase how

EMP improves road safety with driving case studies (§3.5.4) and show the benefit of shar-

ing raw data over sharing processed data. In addition, we present the latency contributed

by key EMP system components and the processing throughput improvement brought by

system-level optimizations (§3.5.5). A series of large-scale simulations are conducted to

further prove the effectiveness of REAP under a wider range of vehicle numbers (§3.5.6).
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3.5.1 Experimental Setup and Methodology

Due to a lack of open infrastructure support for multi-vehicle experiments, we adopt

trace-driven emulation to evaluate EMP in our local testbed and compare our system with

existing work. To emulate vehicle behavior in our experiments, instead of running a Li-

DAR device to generate data in real time, we replay LiDAR traces from a multi-vehicle

LiDAR dataset we collected in advance. Our setup considers both diverse driving sce-

narios and realistic network conditions to comprehensively evaluate the performance and

scalability of EMP. We also conduct live tests to demonstrate that EMP can work well

under real networks.

Comparing EMP with Existing Work. We consider two variants of EMP to evalu-

ate our design choices: (1) EMP-Naı̈ve: EMP without REAP adaptive partitioning and

scheduling, i.e., vehicles upload full point cloud frames to the edge node; (2) EMP: EMP

with all components enabled. We further compare them with vehicle-to-vehicle sharing

schemes: (1) V2V-Naı̈ve: each vehicle shares full frames with every other vehicle; (2)

V2V-Pro: each vehicle shares partial point clouds with other vehicles using REAP par-

titioning. Note that the partitioning for V2V-Pro is only based on vehicles’ relative loca-

tions, as bandwidth awareness cannot be achieved without an edge.

Multi-vehicle LiDAR Dataset. All existing LiDAR datasets such as KITTI [123] only

contain traces collected by a single vehicle, while the evaluation of multi-vehicle percep-

tion requires the traces collected from multiple vehicles which are physically proximate

at the same time. To fill this gap, we collect the first multi-vehicle LiDAR dataset using

DeepGTAV-PreSIL [141], a tool to collect synthetic LiDAR traces simultaneously from

multiple vehicles in a video game, GTA V. GTA V contains realistic 3D modeling of city
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landscape, vehicles, stationary objects to emulate real-world scenarios. Besides LiDAR

data, DeepGTAV-PreSIL also generates object labels for training machine learning mod-

els of perception. We extend the tool to enable panoramic (360◦) LiDAR scans besides

the default front-view-only settings. We construct our dataset by randomly driving a car

in the game and collect sensor data from multiple nearby cars. Our multi-vehicle LiDAR

dataset contains driving scenarios in both densely-populated urban areas and open rural

areas, with various numbers of vehicles in the scene.

Network Conditions. The vehicle-to-infrastructure networking conditions [195] are

emulated by throttling the bandwidth for individual TCP connections between each vehicle

and the edge node and adding 10ms latency using Linux tc [8]. To acquire realistic up-

link bandwidth of cellular networks for our experiments, we collect LTE uplink traces from

driving at different urban and rural locations. We run 10-minute 100Mbps UDP uploads

for a number of times over AT&T LTE networks on two smartphones (Pixel 2 and Nexus

6), to saturate the uplink. We run tcpdump at the server side to record raw packet traces

and calculate the uplink throughput every 100 ms. To emulate high-bandwidth network-

ing used by future vehicular communication [106], using a similar approach, we collect

uplink bandwidth traces under 60GHz networks (802.11ad) with a stationary NETGEAR

Nighthawk X10 AD7200 WiFi router [61] and a moving 802.11ad-compliant laptop. Note

the bandwidth statistics of our LTE and 60GHz network traces are 14.0 ± 3.4Mbps and

267.0 ± 71.4Mbps, respectively. Thus the standard deviation is around 24% and 27% of

the mean throughput which is close to the α value (∼ 0.3, defined in §3.3.2.2) we observed

during emulation.

Trace-driven Emulation and Real-world Test. We deploy the EMP-edge instance

39



on a server equipped with an Intel Xeon 4110 CPU clocked at 2.10GHz, an NVIDIA RTX

2080 GPU and 96GB of DDR4 RAM. The edge takes up to 390% CPU usage and 5GB

memory when running with 6 vehicles. For the trace-driven emulation, We run multiple

EMP-vehicle instances on another machine equipped with an Intel Xeon E5-2640 v2 CPU

clocked at 2.00GHz to share the computation resources. Each vehicle uses up to 2 cores

and 2GB memory, representing the often less computing power of a vehicle compared to

an edge. For our real-world tests, we place a laptop (4 cores, 8GB memory) connected to

LTE networks via tethering on a vehicle to run an EMP-vehicle instance.

Large-scale Simulation. We perform large-scale simulations to understand the per-

formance of REAP algorithm under scenarios having a large number of vehicles. To

mimic real-world driving scenarios, we randomly generate vehicle locations in a fixed

area (120m×30m) and ensure the horizontal/vertical distance between any two vehicles is

greater than 3m/6m. We simulate the network transfer of each vehicle based on the size of

to-be-uploaded data which is measured after applying REAP partitioning and Draco [47]

compression algorithms to the point cloud data, with the replay of our real network uplink

bandwidth traces.

3.5.2 End-to-end Performance

EMP is able to provide real-time enhanced perception under various processing work-

load and network conditions. We first compare the end-to-end performance and scalability

of EMP with V2V. Note that the bandwidth between vehicles will be constrained when a

vehicle simultaneously shares its data to multiple vehicles, which we also emulate using

tc.
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Figure 3.11: End-to-end latency of EMP
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Figure 3.12: Latency distribution of EMP
with varied numbers of vehicles.

Figure 3.11 shows the end-to-end latency of the four schemes when the number of

vehicles in the system varies from 2 to 63. End-to-end latency here is defined as the dura-

tion between when a vehicle starts preparing the collected sensor data and when the edge

or a receiver vehicle finishes processing (e.g., decoding, merging) data from all vehicles,

which means the data is ready for perception. This is the additional latency introduced

by EMP or the V2V counterpart and all the following steps such as perception need to

be performed either on the edge or on a CAV. From the figure, we can find that EMP

performs the best among all schemes and EMP-Naı̈ve performs slightly worse because

vehicles are dealing with full frames, which increases overhead for encoding/decoding

and uploading. V2V-Pro benefits from the partitioning algorithm. However, as the num-

ber of vehicles increases, the latency of either vehicle-to-vehicle schemes (V2V-Naı̈ve and

V2V-Pro) skyrockets while the EMP latency stays around 100ms, saving 49–65%. EMP

also outperforms EMP-Naı̈ve by 36%–43%, which highlights the advantage of REAP
3Based on the average traffic and vehicle speed in city areas in the US [16, 33], the average vehicle density
is 0.06 /m (6 vehicles in a 100m long road).
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Table 3.1: Size reduction brought by REAP partitioning and the size of shared data per
frame (raw point cloud size: ∼2.0MB).

# of vehicles 2 3 4 5 6
REAP size reduction 32.4% 52.4% 58.0% 50.0% 50.3%
Shared data size (KB) 38.8 29.4 29.7 37.1 36.4

partitioning. Next, we show the distribution of EMP latency in Figure 3.12. The vast ma-

jority of frames experience less than 100ms latency, the recommended processing delay

for autonomous driving [169]. Even in the worst case (e.g., due to a network blackout) a

vehicle does not receive the results for some frames, it can still rely on local processing

for driving decision making. EMP is designed to enhance CAVs’ local processing instead

of completely replacing it.

To better understand how EMP saves bandwidth, we also calculate and show the size

reduction of REAP partitioning in Table 3.1: the average size of partitioned chunks which

are shared to the edge is 49.7% of the original point cloud size across all setups (2 to 6

vehicles). Further with ground removal and point cloud compression applied, each vehicle
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only needs to upload 30–38KB for each frame. The data transmission can be finished

within ∼23ms over LTE.

EMP is robust under various network conditions. The current CAV communication

technologies are mainly DSRC and C-V2X which have limited bandwidth [153]. The

emergence of 5G NR and other short-range mmWave networks can provide higher band-

width and increase the vehicular communication capability [178]. However, there could

be severer fluctuations under mobility, so we evaluate EMP under LTE and 60GHz (also

used in [202]) networks and plot the results in Figure 3.13. EMP performs better under

60GHz networks as the high bandwidth helps reduce uploading times and the adaptation

mechanism still maintains the system robustness under bandwidth variability. Note the

bandwidth standard deviation of the LTE and 60GHz traces are 3Mbps and 71Mbps, re-

spectively.

Lastly, we conduct real-world driving tests with EMP. Figure 3.14 shows the end-to-

end latency of EMP and EMP-Naı̈ve under 2/3-vehicle scenarios. As the vehicles only

need to share the data once to the edge instead of multiple times to different receiver

vehicles, the latency does not inflate when increasing the number of vehicles. REAP helps

reduce the processing delay by reducing the uploaded data size so that EMP outperforms

EMP-Naı̈ve. We notice that the latency under real networks is higher than that measured

in the emulation. This is likely because we are using commercial cellular networks (56ms

of average RTT as measured) instead of directly communicating between vehicles and a

real edge node (¡10ms).
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Figure 3.15: Detection Accuracy (left, IoU threshold = 0.5) and Average IoU (right) of
single-CAV perception, multi-CAV perception, and combined perception.

3.5.3 Perception Enhancement

EMP can enhance CAVs’ local perception while reducing bandwidth consumption

to achieve real-time processing. We examine how EMP improves the perception of au-

tonomous driving, by comparing the detection accuracy of single-CAV perception on one

vehicle’s point clouds (CAV), multi-CAV perception on views merged from 2/3 vehicles’

data (EMP), and combined perception (EMP+CAV). The point clouds are merged in two

ways: merge from full frames (EMP-Naı̈ve) and merge from partitioned frames using

REAP.

To measure the detection accuracy, we calculate the Intersection over Union (IoU) be-

tween the detection results (locations and dimensions of detected object bounding boxes)

and the ground truth, which ranges from 0 to 1. A detection is true if its IoU with the

label is higher than a threshold (0.5, as widely used in the computer vision community).

Then we calculate the ratio of true detections out of all ground truth objects. We also

directly calculate the average IoU for the detected objects, in order to evaluate in a more
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fine-grained manner. When combining results from the edge and the CAV, if two detec-

tions match the same object, we record the one with a higher IoU. Besides, the locations

of vehicles in the system are known (IoU = 1) as they are reported to the edge together

with point cloud data. We focus on the 80m× 50m area in front of vehicles (front view).

Figure 3.15 plots the detection accuracy and average IoU for each setup. We find that

EMP perception outperforms CAV perception under both metrics. With EMP, the detec-

tion accuracy of combined results from edge’s and CAV’s is even higher. Comparing the

performance of detection on views merged from full frames and those on REAP-generated

frames, the accuracy is reduced by 0.1% – 2.2%, for 2-vehicle and 3-vehicle results. This

indicates that REAP only introduces a negligible perception accuracy loss while bringing

significant bandwidth saving as shown in §3.5.2. Therefore, we can conclude that EMP

successfully enhances CAVs’ local perceptions.

We also study the impact of ground removal on perception, by running object detection

on the point clouds with ground points (original data). Compared with the detection accu-

racy shown in Figure 3.15 (left), the accuracy differs by -2.58% – 1.26% (not shown in the

figure). Hence, the perception will not be affected by ground removal while sometimes it

can even be slightly improved, possibly due to the reduction of noise from the ground. We

run the same emulation on EMP without ground removal and the results show that EMP

creates 27% – 33% less end-to-end latency.

It is worth noting that the dataset and the object detection model have limitations that

may negatively affect the results. First, the vehicle sensors are not fully synchronized. As

a result, the object locations in the frames of two vehicles can be slightly different and

thus the detected object will have a location offset, lowering the IoU. The issue can be
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caused by the speed difference between vehicles and the movement of the object itself.

To mitigate it, we use data collected by stationary vehicles while other objects can still

move. Second, the detection model is trained with single-vehicle data4 whose patterns are

different from merged data, so the model may not perform perfectly on multi-vehicle data.

Hence, the multi-vehicle perception is expected to perform better without these issues.

Fully solving them can be non-trivial and we leave it for future work.

3.5.4 Case Study: Road Hazards Avoidance

Autonomous driving can benefit from EMP which provides vehicles with more knowl-

edge of road traffic and more time to make decisions. EMP’s design of sharing raw sensor

data performs better than sharing processed data. To showcase such benefits, we conduct

case studies and assess how EMP avoids potential road hazards in different scenarios. We

customize vehicle locations in GTA V to construct the three scenarios mentioned earlier

in Figure 3.1. Due to the limited performance of existing 3D object detection frameworks

on pedestrians and cyclists [123], we simplify the scenarios to only involve vehicles and

the benefits can still be shown. We measure in which frame the vehicles can detect the

hazards with EMP at the earliest versus in a single-CAV setup.

Blind Spots. In this scenario (Figure 3.16 (a, b)), from the view of the ego-vehicle (the

vehicle with a first-person view), a sedan is blocked by a big delivery truck behind it. The

sedan is changing to the center lane. As illustrated in the camera images, without EMP,

the ego-vehicle cannot detect the sedan until Frame X+8 due to occlusion. However, with

EMP, the ego-vehicle can detect the sedan in Frame X, 0.8s earlier than the single-CAV

4To our knowledge, no existing work on point cloud-based object detection has investigated training using
views merged from multiple point clouds.
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(a) Scenario 1 - Frame X (b) Scenario 1 - Frame X+8

(c) Scenario 2 - Frame Y (d) Scenario 2 - Frame Y+12

Figure 3.16: Image data collected by the ego-vehicle in two scenarios where EMP detect
road hazards earlier.

setup.

Unprotected Left Turn. As shown in Figure 3.16 (c, d), the ego-vehicle is trying to

make a left turn, and has to judge on its own whether there are vehicles going straight

from the opposite direction. An SUV is blocking the ego-vehicle view of a sedan behind

the SUV. With EMP, the ego-vehicle can detect the sedan in Frame Y instead of Frame

Y+12 at which point it may have already started turning. Figure 3.17 visualizes the point

cloud of the ego-vehicle (CAV) for Frame Y, the point cloud merged from two full frames

(EMP-Naı̈ve), and the point cloud merged from partitioned frames (EMP). The sedan is
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Ego-Vehicle

?

CAV Ego-VehicleEMP-Naive Ego-Vehicle

SUV

EMP

Figure 3.17: LiDAR point clouds in Scenario 2. The occluded sedan can be detected in
both EMP setups.

successfully detected in the last two setups.

Table 3.2: Distance when detecting the target vehicle (m).

Scenarios Initial distance EMP (EMP-cloud) CAV
Blind spots 28 26.3 (25.4) 19.8

Unprotected left turn 25 23.5 (22.5) 13.2

We also analyze how EMP can avoid the potential collision in both scenarios. As

shown in Table 3.2, the initial distances between the target vehicle and the ego-vehicle are

28m and 25m, respectively. In city areas, vehicles drive on average at 9.2m/s [33] and

the braking distance is around 20m correspondingly [12]. For a single CAV, there will

be a 0.8s/1.2s delay from frame differences. Together with the earlier experimental data

on processing latency, we derive the remaining distance when the ego-vehicle detects the

target vehicle. We can learn from the results in Table 3.2 that, without EMP, the CAV only

has a distance of less than 20m when it is aware of the occluded vehicle, while with EMP,

the CAV system or the drivers have enough time to react. We also evaluate EMP cloud

mode and calculate the remaining distance, and it is still above 20m.

Distant Broken Down Vehicle. In this case study (Figure 3.1c), we show that sharing

processed data can fail to detect the distant vehicle earlier. Three vehicles are approaching
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frames.

a car broken down in the middle of the road. With EMP, the broken down vehicle is

detected in Frame Z, while the earliest frames where each single vehicle (left, middle,

and right) can detect the broken down vehicle are Z+10, Z+6, and Z+14, respectively.

That means, by combining their processed data on the edge the detection success frame is

Frame Z+6. Further taking into account the processing latency, sharing raw sensor data

with EMP can detect the hazards 0.5s earlier than sharing processed data. Additionally,

we repeat the test over EMP-Naı̈ve in which the vehicles share full frames and the broken

down vehicle is detected 7 frames earlier. Without partitioning, all data were uploaded to

the edge so the details of the object build up even faster as the three vehicles approach the

distant one, showing a trade-off between transmission overhead perception performance.

3.5.5 Overhead Breakdown

We break down the latency of each system component and compare them in EMP and

EMP-Naı̈ve (no REAP partitioning and scheduling) to highlight the benefit of our design
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Figure 3.20: Edge-side parallelization and pipelining enable EMP to process at 24 FPS.

decisions. We then show the throughput (FPS) improvement brought by EMP edge-side

parallelization and pipelining.

Figure 3.18 presents the overhead of each component. Thanks to the REAP partition-

ing and scheduling, the uploading can be finished before all the vehicles share their full

frames, as soon as the edge receives enough chunks to build the global view. Thus, the

encoding, uploading, and decoding times of EMP are significantly reduced, compared to

those of EMP-Naı̈ve. There is also a small saving on the merging time. The saving on

these components is much more than the additional latency introduced by REAP partition-

ing (6.57 ms). Besides, we also measure the overhead of inference which is the time to run

3D object detection on merged frames generated from both system schemes (Figure 3.19).

Corresponding to the preliminary results discussed in §3.2.2, inference overhead increases

as the number of vehicles increases. This is because more vehicles lead to a larger amount

of points in the merged global view. EMP saves 21-33 ms for this step.

As mentioned in §3.3.5, we optimize the system workflow to increase throughput of
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Figure 3.21: Max uploading time of EMP remains stable when there are different numbers
of vehicles in the system.

EMP. Figure 3.20 illustrates the pipeline with the average latency of each part. The

throughput is determined by the vehicle side processing which takes the longest time

(41.39 ms), which means the system can process at 24 frames per second. Note that

we directly apply Draco [47] for point cloud compression. More advanced compression

approaches [164] can further reduce the vehicle-side latency.

3.5.6 Large-scale Simulation

We next study the scalability of REAP partitioning algorithm on reducing uploaded

data size and coping with network fluctuations under a large number of vehicles. We con-

duct large-scale simulation on the point cloud transmission with LTE uplink network traces

and compare the performances of 3 settings: (1) vehicles upload full point cloud frames

(Baseline); (2) vehicles partition data based on their locations following the Voronoi di-

agram (Voronoi); (3) vehicles partition data with REAP (REAP). In detail, we measure

maximum frame uploading time (tmax) among all vehicles. For REAP, it is the time be-

tween when the first byte from any vehicle is sent and when the data from all vehicles
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can cover the entire area, which means it is ready for processing based on the conditions

defined in §3.3.3. Figure 3.21 (a) plots tmax averaged over 1000 runs. By removing redun-

dant data based on vehicle locations, the Voronoi partitioning outperforms the Baseline.

Further considering estimated bandwidths of vehicles and dividing the frames into several

parts so that vehicles can help each other by opportunistically uploading, REAP provides

the best transmission performance. Noticeably, when the number of vehicles increases

from 4 to 5, tmax increases dramatically for Baseline and Voronoi schemes. The reason

for such a sharp increase is that the bandwidths in the fifth randomly selected piece of LTE

traces are mostly very low, making the fifth vehicle send the slowest. However, the results

of REAP remain stable, thanks to its bandwidth awareness and adaptation. Besides, the

standard deviation of tmax across different runs becomes better as we enable partitioning,

and add bandwidth-aware and adaptation (Baseline: 50.30, Voronoi: 40.07, REAP: 11.68).

To evaluate the system scalability under extreme network conditions, we conduct a

stress test. We randomly generate bandwidth profiles for different vehicles following

normal distributions. The average bandwidths vary greatly across different vehicles (4-

18Mbps) and the standard deviation is 1/4 of the mean. We also impose up to ±40%

estimation errors for REAP. As shown in Figure 3.21 (b), the performance of different

algorithms aligns with the first simulation results, proving the robustness of REAP.

3.6 Summary

Through edge assistance and adaptive spatial partitioning, EMP makes multi-vehicle

perception scalable, robust, and efficient. We believe that EMP can enable or boost a

wide range of cooperative sensing applications that require multiple participating vehicles,
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in particular given the fast deployment of mobile networks such as 5G that offers high

bandwidth and low latency. In addition to ground transportation, the underlying concept of

EMP can be potentially generalized to other domains such as cooperative UAVs (drones).
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CHAPTER IV

A Variegated Look at 5G in the Wild: Performance,

Power, and QoE Implications

This chapter1 describes an in-depth measurement study of the performance, power

consumption, and application quality-of-experience (QoE) of commercial 5G networks in

the wild. We examine different 5G carriers, deployment schemes (Non-Standalone, NSA

vs. Standalone, SA), radio bands (mmWave and sub 6-GHz), protocol configurations (e.g.,

Radio Resource Control state transitions), mobility patterns (stationary, walking, driving),

client devices (i.e., User Equipment), and upper-layer applications (file download, video

streaming, and web browsing).

4.1 Introduction

5G New Radio (NR) specifications [83] open a wide spectrum of frequencies. High-

band millimeter wave (mmWave) 5G, along with its mid-/low-band sub-6 GHz counter-

1Part of this work was carried out in collaboration with Arvind Narayanan, who was a Ph.D. student at the
University of Minnesota at the time.
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part, make up the current 5G market. We pay close attention to mmWave 5G due to

its ultra-high bandwidth which attracts emerging bandwidth-hungry applications. On the

other hand, mmWave is very sensitive to factors such as mobility and blockage due to

its much shorter wavelength, making the upper-layer network management (e.g., bitrate

adaptation of video streaming) more challenging. Despite numerous studies on modeling

and simulation of mmWave links [125, 162, 132, 154, 262, 206, 266, 263], the impact of

mmWave on commercial 5G performance, power consumption, as well as mobile applica-

tion Quality-of-Experience (QoE) is largely under-explored.

In addition to its high bandwidth and low latency enabled by physical-layer innova-

tions (e.g., massive MIMO, advanced channel coding, etc.), power saving is a top concern

to mobile users of 5G. In cellular networks, this is usually achieved by different Radio

Resource Control (RRC) states. 5G makes no exception. It is thus important to under-

stand the RRC state machine of commercial 5G networks and its implications. To reduce

time to market, most carriers employ the Non-Standalone (NSA) mode for their initial

deployment. NSA leverages 5G for data plane operations while reusing the existing 4G

infrastructure for control plane operations, making the RRC state machine 4G-like. Very

recently, Standalone (SA) 5G deployment has hit the commercial landspace. SA is com-

pletely independent of the legacy 4G cellular infrastructure, fully unleashing the potential

of 5G. The configurations of key parameters in the state machine lead to important perfor-

mance and energy trade-offs. They are usually carrier-specific and can be very different

between NSA and SA deployment modes.

In order to understand commercial 5G networks’ end-to-end performance and power

characteristics, as well as their Quality of Experience (QoE) implications on mobile appli-
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cations, we conduct a comprehensive yet in-depth measurement study of two commercial

5G networks in the US. As 5G technology evolves, its performance is expected to improve

over time. We therefore compare our measurement results with earlier studies to get the

initial longitudinal insights on 5G’s evolution. We also compare our findings on mmWave

with its low-band counterpart. Our study faced a number of challenges:

• 5G-NR supports a wide range of frequency spectrum: low-band, mid-band, and

mmWave. All these frequency bands have different performance and signal propa-

gation characteristics. Additionally, 5G can be deployed in either SA or NSA mode,

which further has implications on performance [135]. Conducting a measurement

study on such a heterogeneous ecosystem is challenging.

• The coverage of different bands and deployment modes is often sporadic. For in-

stance, in the case of mmWave with poor signal propagation characteristics, most

of its deployment is outdoor. Surveying the availability of band-specific 5G service

requires extensive field experiments.

• Evaluating mobile carriers’ end-to-end network performance in the wild is known

to be difficult. Many entities can become the performance bottleneck including the

Internet, mobile carrier’s infrastructure, as well as end devices themselves. Identi-

fying the bottleneck in mmWave 5G is particularly challenging due to its ultra-high

bandwidth.

• 5G power measurement is not trivial. The state-of-the-art hardware power monitors

often require a stable external power supply, making mobility experiments difficult

to perform in the wild. In addition, vendors have been making smartphones more
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“closed” by integrating the battery and back cover with the main body. Skilled

engineering efforts are required to connect off-the-shelf 5G smartphones to a power

monitor. It’s not easy to connect any commodity off-the-shelf (COTS) 5G capable

smartphones to a power monitor and conduct outdoor experiments.

• To understand the benefits that 5G brings to mobile applications and to identify the

new challenges in 5G, we need fair comparisons with the 4G baseline. However,

4G and 5G have very different characteristics, making it difficult to experimentally

compare them in a fair, efficient, and representative way.

To address these challenges, we first build a holistic testbed consisting of commercial

5G smartphones, external power monitors, and cloud servers. We further develop a set

of software and hardware tools to control the workloads and physical environments, as

well as to log important information at different layers in a fine-grained manner. Through

carefully designed experiments, we demystify the current 5G performance, power, and

QoE implications with special emphasis on mmWave. Our experiments over a 4-month

period consumed more than 15 TB of cellular data. The key contributions of our study are

summarized as follows.

• We perform a detailed performance examination of 5G over multiple frequency

bands including sub-6 GHz and mmWave. We find that both their throughput and la-

tency have experienced noticeable improvements compared to its initial deployment.

The end-to-end performance is highly correlated with geographical properties. We

quantify such properties and their vastly different impacts on NSA and SA 5G. In

particular, we perform experiments over T-Mobile’s SA 5G deployed for their low-
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band network. This is to our knowledge the first examination of commercial SA 5G

performance.

• Through principled probing algorithms, we infer the RRC states and configuration

parameters for SA 5G (T-Mobile) and NSA 5G (Verizon and T-Mobile). For NSA

5G that relies on 4G as an anchor, we find that the NR RRC CONNECTED to

LTE RRC IDLE state transition (due to data inactivity on UE) for the carriers con-

sidered in our study is 2× more energy efficient than those studied in a previous

NSA 5G measurement study [242].

• We take a closer look at the power characteristics of 5G and 4G/LTE. Over downlink

(uplink), 5G can be 79% (74%) less energy-efficient than 4G at low throughput but

up to 5× (2×) more energy-efficient when the throughput is high. Using a data-

driven approach, we build a first throughput and signal strength-aware radio power

model for different frequency bands of 5G.

• We conduct a first evaluation of state-of-the-art adaptive video bitrate adaptation

(ABR) algorithms over mmWave 5G, which is the key radio technology for support-

ing ultra-high definition (UHD) videos and beyond. We find that due to the poor

signal propagation characteristics of mmWave 5G, existing ABR mechanisms over

mmWave 5G can incur ∼3.7% to 259.5% higher stall time than 4G/LTE. We pro-

pose simple yet effective interface selection mechanisms for 5G video streaming.

It can yield a 26.9% video stall reduction and a 4.2% improvement in energy effi-

ciency without compromising user-perceived video quality, compared to unmodified

streaming algorithms.
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Table 4.1: Statistics of the data collected using two commercial 5G carriers: Verizon and
T-Mobile.

Dataset Statistics
5G Network Performance Tests 12,500+
Unique servers tested with 157+
Cumulative time of measurement traces 2,666 minutes+
Power Measurements @ 5000 Hz 2,336 minutes+
Total kilometers walked 148.5 km+
# of real Web Page Load Tests 30,000+
# of 5G smartphones (and models) 7 (3)

• We collect a large dataset consisting of more than 30,000 web page loadings of

diverse websites, and use it to compare mmWave 5G vs. 4G page load time and

energy consumption. We find that overall 5G improves the page load time at the

cost of higher energy consumption compared to 4G. Moreover, this impact is highly

web-page-dependent. We build decision tree models that can intelligently select the

appropriate network (5G or 4G) for web browsing.

• We have released the functional artifacts (both datasets and tools) of our study [62].

4.2 Measurement Settings & Tools

5G Carriers, 5G Bands and Locations. Since its commercial launch, the 5G ecosys-

tem – which includes service deployments, coverage, 5G-capable devices – is rapidly

expanding and evolving. In our measurement study, we select two commercial carriers

in the US for our experiments – Verizon and T-Mobile. While both these carriers have

deployed 5G services on several bands, in our dataset, we find that Verizon has deployed

NSA-based 5G service that provides both mmWave 5G over 28/39 GHz frequency bands
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(n261/n260) and low-band 5G (n5) w/ 4G bands by leveraging dynamic spectrum sharing

(DSS) technology. In contrast, T-Mobile provides low-band (@ 600MHz or n71)2 5G ser-

vice using both NSA and SA modes. The measurement study is conducted in two US cities

where both carriers have deployed 5G services. Key statistics of the datasets collected are

summarized in Table 4.1.

5G UE and Android Measurement Tool. We use multiple smartphone models of

user equipment (UE) with 5G support: Google Pixel 5 (PX5), Samsung Galaxy S20 Ultra

5G (S20U) and Samsung Galaxy S10 5G (S10). These phones have diverse specifica-

tions. For instance, compared to PX5, S20U has a superior chipset, 5G modem, increased

RAM and CPU frequencies. We make considerable additions to 5G Tracker [183] and

build a comprehensive monitoring toolkit with various functions to monitor network traf-

fic, battery status (current and voltage), signal strength etc.. Some of these functions re-

quire rooting the phones. We use both rooted and non-rooted phones (based on needs) to

measure various aspects of 5G performance and power usage under different settings.

Power Monitoring Tool. We use Monsoon Power Monitor [59] to power smartphones

and measure the power consumption. For outdoor walking experiments, we use a portable

external power source to supply power to the monitor.

4.3 Improvements and New Findings in 5G Network Performance

In this section, we closely examine the end-to-end network performance of commercial

5G networks by conducting several carefully designed experiments in the wild.

2T-Mobile also provides NSA-based mid-band (n41) and mmWave 5G (n261/n260) in select areas. However,
these services were not considered in this study.
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4.3.1 Measurement Methodology

Challenges. There are several known challenges while evaluating end-to-end network

performance of mobile carriers in the wild. [C1] First, Internet-side congestion can ad-

versely affect network performance. [C2] Secondly, we also have no clear visibility into

the carrier’s network/transport infrastructure and policies enforced by them. [C3] Finally,

there is significant diversity in end-device (e.g., server or smartphone) specifications and

capabilities which can affect network performance.

Methodology. We now describe our carefully designed methodology for evaluating 5G

network performance. Ookla’s Speedtest service [191] is a widely used and state-of-the-art

tool for testing Internet connection bandwidth and latency. By default, Speedtest chooses

a geographically nearby server with the least round-trip latency to measure downlink/u-

plink throughput. They also allow users to choose a server from a pool of geographically

distributed servers. More importantly, both the 5G carriers studied host servers on Ookla.

For instance, Verizon hosts 48 servers while T-Mobile hosts 47 servers. These are mainly

located in major metropolitan US cities. We leverage the flexibility of server selection as

well as the carrier’s presence in Speedtest’s pool of server network to evaluate a carrier’s

network performance by conducting several tests on carrier-hosted servers. Particularly,

this strategy helps us reduce the impact of [C1] and [C2] on our measurement tests.

The default policy of server selection from Speedtest is to choose a server located in the

same city as the UE. We also experimentally confirm that using carrier-hosted Speedtest

servers (especially if one is available in the UE’s city) usually provides best performance

over non-carrier based servers. Even when testing using carrier-hosted servers in other

states and cities, we believe this strategy helps eliminate most of the Internet side bot-
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tleneck as the carrier would usually place Speedtest servers at the edge of the carrier’s

city-level ingress points. Speedtest service uses TCP protocol for all its tests. Speedtest

additionally also allows us to conduct a test in one of the two connection modes: (i) us-

ing a single connection and (ii) using multiple connections that is non-configurable. The

number of multiple connections varies from one test to another, and the algorithm is not

disclosed on how Speedtest decides the number of connections to establish for a test. To

account for this limitation, we also provision VMs with high network-throughput (in dif-

ferent US locations) provided by Microsoft Azure’s public cloud service. This allowed us

to evaluate the impact of different transport layer protocols and parameters.

Lastly, we take two steps to address [C3]. First, to account for UE diversity, we use

two 5G smartphones: PX5 and a more powerful S20U (§4.2). Secondly, in addition to the

carrier-hosted Speedtest servers, we also use all the Speedtest servers located in the local

state of the UE. This allows to reduce the impact of geographic distance on network perfor-

mance, rather allows us to understand the impact of other potential server-side factors over

5G network performance. For each unique <UE-model,carrier,server> setting,

we repeat the test at least 10 times per connection mode. Our dataset contains over 12,500

Speedtest measurements. We develop scripts for Android smartphones to completely au-

tomate the process of conducting a test using Ookla’s Speedtest service (free version).

We report the 95th percentile performance results of all Speedtest sessions repeatedly con-

ducted for a setting. In other words, our approach measures the peak network performance,

and should not be confused with the user perceived network quality metrics [23]. Focusing

on the peak metrics helps us to further reduce the impact of congestion and other Internet-

side factors on our performance measurements, and rather helps us understand the impact
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Figure 4.1: Support for improved carrier aggregation schemes in 5G-NR radios boost
throughput performance.

of UE-Server distance and radio technology/band over network performance. Having this

information is particularly important for application and service providers so that they can

better harness 5G. Unless specified otherwise, all mmWave-5G based experiments were

conducted outdoors and the UE was held stationary with clear LoS to the 5G tower.

Baseline. To provide the initial longitudinal insights of commercial 5G’s network

performance in the US, we consider 5Gophers [180] dataset (reportedly measured in the

US as of October 2019) as the baseline for comparing results.

4.3.2 Impact of UE-Specs and Capabilities

Commercial 5G landspace has improved over time along several dimensions. Most

notably for this experiment that tries to quantify the impact of UE-specs on network per-

formance, we find that latest high-end smartphones such as S20U are able to improve

downlink and uplink throughput by increasing the number of radio channels (often referred

to as carrier aggregation) used between the UE and RAN. For example, previous genera-
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Figure 4.2: Impact of UE-Server distance on RTT.

tion of 5G smartphones (e.g., considered in the baseline with QC X50 modem [25]) as well

as the cheaper variants of mmWave 5G phones (e.g., PX5 with QC X52 modem [36]) uses

4×100 MHz or 4CC (component carriers) for downlink data transfers and 1CC for uplink.

On the other hand, S20U (with QC X55 modem [37]) supports 8CC over downlink (and

2CC over uplink) resulting in significant improvements in throughput performance. Fig-

ure 4.1 compares the downlink and uplink throughput between PX5 and S20U. Clearly,

S20U provides 50% to 60% improvements in both uplink and downlink throughput over

PX5 and the baseline. Of course, harnessing for such carrier aggregation schemes over

mmWave bands also requires support from 5G carriers and their infrastructure. We did not

find any significant impact of UE specs over latency.

4.3.3 Impact of UE-Server Distance

Latency. By tapping into the 5G carriers’ nationwide network of Speedtest servers,

we next quantify the impact of UE-Server distance over round-trip time (RTT). Figure 4.2
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Figure 4.3: End-to-end performance of Verizon’s networks in the wild.
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Figure 4.4: End-to-end performance of T-Mobile’s networks in the wild.

shows the latency characteristics of Verizon’s mmWave 5G service for different server

locations on a geographic map. UE’s location is fixed as Minneapolis, MN. Clearly, RTT

degrades severely as the UE-Server distance increases. The lowest observed RTT is ∼6ms

when tested with a server located closest (∼3 km) to the UE. Compared to latency observed

back in 2019 [180] (i.e., during early deployment), this is a ∼50% improvement over the

baseline performance. RTT gets doubled as the UE-Server distance increases to 320 km.

This trend is more clearly visible in Figure 4.3a3 which further signifies the importance

of edge computing for latency-sensitive apps and services. Figure 4.3a also compares

RTT values of mmWave 5G against that of low-band 5G and 4G/LTE. We find that low-

3Figures 4.3 and 4.4 shows servers located in the contiguous US region only.
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band 5G suffers an additional delay of ∼6 to 8 ms over mmWave 5G across the entire

UE-Server distance range. This is not surprising as mmWave 5G bands (n260/n261) with

higher subcarrier spacing and shorter OFDM symbol duration lead to lower latency when

compared to low-band 5G [216, 214]. On the other hand, due to flexible frame structure

and fine-grained transmission time interval (TTI) in 5G NR, we find both low-band and

mmWave 5G exhibit better RTT (6 to 15ms reduction) than LTE. Similar experiments

were also conducted over T-Mobile’s network (including SA Low-Band 5G) and results

are shown in Figure 4.4a. While the earlier trend observed in Verizon’s network about the

impact of UE-Server distance over RTT also holds true for T-Mobile’s network, we do not

find any significant difference yet in RTT performance between T-Mobile’s SA and NSA

deployments of low-band 5G.

Throughput. Figure 4.3b shows the impact of UE-Server distance on Verizon

mmWave 5G downlink throughput performance. With multiple TCP connections, the UE

is able to achieve an impressive downlink throughput of over 3 Gbps across all the servers

in the US. This is a ∼50-60% improvement over the baseline. We attribute this improve-

ment to ramping up of carrier aggregation from 4CC to 8CC which requires improvements

in carrier’s infrastructure as well as the UE’s chipset specifications (see §4.3.2). As pointed

out earlier, Speedtest does not allow us to control the number of TCP connections for a

test. Using packet dumps, we found that Speedtest would establish anywhere between

15 to 25 TCP connections for the multiple connection test. The packet loss rate was less

than 1%. However, with a single TCP connection, we find that the throughput degrades

as the UE-Server distance increases (see Figure 4.3b). We suspect this degradation is due

to the: (1) increase in RTT which is known to affect TCP performance, (2) packet loss
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(even at the slightest rate). The impact of both coupled with existing TCP mechanisms

gets amplified at ultra-high bandwidth levels thus degrading TCP performance. Nonethe-

less, compared to the baseline, we find there is a significant improvement in the single

TCP (1-TCP) connection’s performance. 1-TCP connection (with less overhead compared

to multiple connections) can also achieve close to 3 Gbps throughput provided the server

is much closer to the UE. This again signifies the importance of the edge especially for

bandwidth-hungry applications. Uplink throughput (see Figure 4.3c) performance has also

improved by a factor of 3× to 4× over the baseline. Both single and multiple connection

uplink tests can achieve a throughput of ∼220 Mbps. On the other hand, for T-Mobile

which also has SA-based deployments for the low-band 5G, we find that both downlink

and uplink performance can achieve only half the performance of what their low-band

NSA 5G service can provide (see Figure 4.4b and Figure 4.4c). We believe this to be due

to carrier aggregation not yet supported for SA or that the 5G core is not fully mature to

provide the benefits envisioned by SA 5G.

4.3.4 A Closer Look at Single-Connection Throughput

To get a better understanding of single-connection’s performance with mmWave 5G

(known to provide ultra-high bandwidth capacity), we perform controlled experiments

using Microsoft Azure’s public cloud service. We provision a high-network bandwidth

capacity VM (Type: DS4 v2) at every region in the US provided by Microsoft Azure. In

order to capture packet dumps and have the ability to change kernel parameters, we use

rooted PX5 to conduct these experiments. Unlike S20U that can achieve a throughput of

more than 3 Gbps, PX5 has a maximum observable downlink throughput of ∼2.2 Gbps
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Figure 4.5: Single connection downlink throughput across all US-based Azure regions
under different transport layer settings.

(see §4.3.2). For TCP, we use CUBIC [56] as the TCP congestion control algorithm. The

experimental setup uses UDP performance as baseline. As shown in Figure 4.5, UDP is

able to achieve peak observable throughput across all the server locations. We observe

a small yet noticeable gap between UDP and 8-TCP performance most likely due to the

protocol overhead of TCP. However, with default Linux kernel (v4.18.0) parameters for

TCP, we find 1-TCP connection’s throughput is limited to no more than 500 Mbps for

all servers. Upon further investigation, increasing the maximum size of TCP write buffer

(tcp wmem) parameter of Linux’s TCP kernel significantly improves the UE’s downlink

throughput using 1-TCP connection by a factor of 2.1× to 3× (denoted as “1-TCP tuned”

in Figure 4.5). Theoretically, the sender’s TCP buffer size (which is a per socket con-

figuration) must at the least be equal to the bandwidth-delay product (BDP) of the high-

throughput flow’s capacity. In other words, transport-layer kernel parameters should be

carefully tuned to meet the desired application QoE requirements. Nonetheless, even the

tuned 1-TCP performance falls short by ∼886 Mbps on average when compared to UDP.

Similar to the impact of UE-Server distance observed earlier in Figure 4.3b for the single-

connection performance using Ookla’s Speedtest service, we make similar observations in
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Figure 4.6: Handoff frequency (while driving) across different T-Mobile low-band set-
tings.

performance under controlled experimental settings using Azure servers. In that, we again

find that TCP performance (including that of 1-TCP tuned) exacerbates as the UE-Server

distance increases. These observations highlight the inefficacies that exist in current TCP

and congestion control mechanisms over mmWave 5G networks.

4.3.5 Handoffs in (Low-Band) NSA & SA 5G

Previous studies on handoffs4 of NSA mmWave 5G [180] have shown that, compared

to 4G/LTE, there are far more frequent handoffs. This is mainly due to the smaller cov-

erage footprint of mmWave towers as well as the fact that NSA 5G still relies on LTE for

control plane signaling. In this preliminary study, we focus on comparing T-Mobile’s SA

5G with NSA 5G that are commercially deployed. T-Mobile is the only carrier that has

deployed both NSA and SA-based 5G for their low-band network. To obtain connectivity

to SA 5G (over n71 band), it was critical to use T-Mobile’s firmware in S20U. We selected

a 10 km driving route which traversed via busy downtown regions and freeways with driv-

ing speeds ranging from 0 to 100 kph. Using Samsung’s service code (*#2263#), we

4Handoff here refers to the change in tower or data transmission technology.
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selectively enable a set of radio bands to configure the UE in one of the 5 setting: (i) en-

able SA-n71 band only, (ii) enable NSA-n71 and LTE bands only, (iii) enable LTE bands

only, (iv) enable SA-n71 and LTE bands only, and, (v) enables all bands (default setting).

For each configuration, while the UE was handheld by a passenger, we drove the route 2×

per direction and monitored the handoff activity. Figure 4.6 shows a representative set of

results. There are five horizontal bars, one for each of the 5 band configuration settings.

Within each horizontal bar, there are several colored-segments that denoted the active radio

(blue for 4G/LTE, orange for NSA-5G, and green for SA-5G). Ticks on these bars indicate

the occurrence of a horizontal handoff (i.e., across towers) or a vertical handoff (i.e., across

radio technologies). The most important finding here is that SA 5G has far fewer hand-

offs (i.e., 13 handoffs) compared to other configurations, NSA-5G + LTE (110), LTE (30),

SA+LTE (38) and all bands (64). These will have implications not just on control plane

signaling and scheduling overheads, but also over network performance. Due to increased

coverage of the low-band RF n71 band, both SA and NSA over n71 band experience very

few horizontal handoffs (13 to 20). But, in NSA, we found close to 90 vertical handoffs

(e.g., 4G to 5G or vice-versa) highlighting the complexities involved in NSA.

Now that we have seen the network performance characteristics of different 5G tech-

nologies, next we investigate how such performance characteristics impact power.

4.4 Power characteristics

In this section, we discuss the power characterization of 5G network and compare with

the latest 4G results. To better understand the UE’s power consumption, we construct

power models for different 5G networks with multiple factors including signal strength,
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Figure 4.7: Experimental setup: a smartphone is powered by a Monsoon Power Monitor
and a laptop running the Monsoon software is connected to the power monitor.

throughput, and frequency bands.

4.4.1 Methodology

RRC state inference. We first derive the built-in radio state machine which was de-

signed for power management of mobile devices, e.g., parameters of RRC states and tran-

sitions for 4G [41] and 5G [42]. For the parameter inference, we improve a network-based

approach used in existing studies [138, 209] to build our own inference tool, RRC-Probe,

in which a server sends UDP packets to a client (UE) at different packet intervals and the

UE sends an ACK once a packet is received. The length of RTT depends on the UE’s in-

stant RRC state when receiving the packet. Therefore, by measuring the RTT for different

packet intervals, we can identify different states and calculate the timers for the transitions

between states. Note that this approach does not require root access on smartphones.
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Power measurement. We use Monsoon power monitor [59] to measure the UE’s

power consumption for two purposes: First, we aim to understand power consumption

during RRC state transitions. To measure this, the UE is left idle without any data activity

for sufficient time (20s in our experiments) thus forcing the UE to be in RRC IDLE state.

A server then sends a packet to the UE which subsequently triggers an RRC IDLE →

RRC CONNECTED transition and switch to 5G. Then, the UE starts its inactivity timer

and demotes to RRC IDLE at the end. In this way, the power monitor can capture the full

tail period5 for RRC CONNECTED. Second, to study the throughput-power relationship

and its implications on energy efficiency, we control the UE’s data transfer throughput

while measuring its power. To reduce the impact of power consumption due to display

screen and brightness, we set the screen at the maximum brightness level and subtract the

screen power (which is obtained separately) from the total when presenting the results.

Figure 4.7 shows our experimental setup. In this study, power (in W) refers to energy

consumed per unit time.

Data Collection Methodology. We conduct both controlled and in-the-wild walk-

ing experiments to collect network and power traces at two different cities in the US –

Minneapolis, MN and Ann Arbor, MI – using two commercial 5G carriers (Verizon and

T-Mobile). For Verizon, we collect data for their NSA-based mmWave 5G as well as their

low-band 5G service. For T-Mobile, we focus on their low-band 5G which is deployed

in both SA and NSA modes. For all our experiments, we use two models of 5G smart-

phones: S10 and S20U. For the walking experiments, we fixed a 20-min loop (∼1.6km).

5The period after Continuous Reception (i.e., when UE finishes its data transfer) and before demoting to
RRC IDLE in which there are discontinuous reception cycles (DRX) and the UE can reduce power con-
sumption.
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Table 4.2: Important 4G/5G RRC parameters using RRC-Probe.

Mobile Service RRC Parameter (ms)
Carrier Radio type UE-inactivity timer Long DRX cycle IDLE DRX cycle 4G promotion delay 5G promotion delay
T-Mobile SA low-band 10400 40 1250 N/A 341
T-Mobile NSA low-band 10400 (12120) 320 1200 210 1440
Verizon NSA mmWave 10500 320 1280 396 1907
Verizon NSA low-band 10200 (18800) 400 1100 288 N/A

T-Mobile 4G 5000 400 1300 190 N/A
Verizon 4G 10200 300 1280 265 N/A

While low-band 5G connectivity for both carriers was omnipresent, mmWave was rather

limited. The loop contains three mmWave 5G towers each fitted with three directional

mmWave transceivers. We collect 10 traces for each unique carrier-mode-band setting

(e.g., Verizon-NSA-Low Band). The power monitor collects data at 5000Hz while we set

the network logging rate at 10Hz. As the traces are collected separately by 5G Tracker

tool [183] and Monsoon power monitor, we synchronize them by starting both loggers at

the same time and further verify by correlating measurements activities known to cause

significant power jump.

4.4.2 RRC Parameters and Power

4.4.2.1 RRC State Machine Parameters

Using RRC-Probe, we infer a list of RRC parameters for 4G and 5G. We summarize the

timers of RRC state transition for different networks, carriers, and band configurations in

Table 4.2. When the radio is active and there are no incoming/outgoing packets, UE starts

the tail timer (i.e., UE-inactivity timer) and stays in RRC CONNECTED for Ttail before

demoting to RRC IDLE. Discontinuous Reception (DRX) is adopted by both 4G and 5G

for power saving in which UE periodically wakes up to check paging messages and rests

for the remaining time of the cycle. The periods in RRC CONNECTED and RRC IDLE
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Figure 4.8: Results of inferring different RRC States using RRC-Probe for SA 5G, NSA
5G and 4G/LTE.

are different. Tlong drx is the cycle period of Long DRX in RRC CONNECTED and

Tidle drx is the cycle period of DRX in RRC IDLE. We do not observe and infer Short DRX

cycle with RRC-Probe due to its very small cycle period. We also calculate the delay for

promotion from RRC IDLE to 4G and 5G which is T4g pro and T5g pro respectively. From

the results, we find that the timers of NSA 5G and 4G LTE are very similar. This is

because NSA 5G still retains the existing 4G infrastructure for control plane operations

while innovating the data plane to enhance the network capacity.

Figure 4.8 illustrates the results of inferring the RRC states for all the configurations.

For NSA 5G, the RRC states are basically the same as 4G. However, according to the
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5G-NR specifications [83], a new RRC state called RRC INACTIVE is introduced in SA

5G. We believe this new state can be seen in Figure 4.8 (see top right part representing

T-Mobile SA 5G). We find that the UE remains in this state for about 5s (i.e., 10s to 15s

of interval) before transitioning to RRC IDLE. The main purpose of this state (akin to a

low-power state) is to provide an efficient mechanism for the UE’s radio to sleep (thus

saving power) and at the same time enable a quick and lightweight transition back to the

RRC CONNECTED state (thus improving latency by reducing the radio’s wake up time).

These benefits are largely achieved by reducing the control plane signaling overhead. Be-

sides, we notice that T-Mobile SA 5G has a tail timer of 10s which is similar to that of

T-Mobile NSA 5G and Verizon NSA 5G, indicating UE directly enters RRC IDLE after

leaving RRC CONNECTED. We also confirm the timers using Monsoon power monitor.

This is different from the observations in prior work [242] that found the 5G tail is 20s,

i.e., 2× of 4G tail (10s), which indicates the 5G module must go through both 5G and 4G

tails before entering RRC IDLE. Careful attention needs to be given in configuring such

timers as they impact energy efficiency. Although not shown, for 4G → 5G promotion

in NSA 5G, UE will first promote to 4G’s CONNECTED state before switching to 5G

(i.e., LTE RRC IDLE → LTE RRC CONNECTED → NR RRC CONNECTED). In

SA 5G though, the UE will directly reach NR RRC CONNECTED. Note, we observe

that in NSA, sometimes the packets might arrive over 4G interface (with higher latency)

while other times packets might arrive over 5G interface (with lower latency). This can be

seen for the NSA low-band 5G setting for both Verizon and T-Mobile carriers. We have

therefore also mentioned a second tail-timer for such settings (see timers in brackets in

Table 4.2).
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Table 4.3: Power during RRC state transitions.

Carrier Network Power (mW)
Tail 4G→5G switch

Verizon 4G 178 N/A
T-Mobile 4G 66 N/A
Verizon NSA 5G (low-band,DSS) 249 799
Verizon NSA 5G (mmWave) 1092 1494

T-Mobile NSA 5G (low-band) 260 699
T-Mobile SA 5G (low-band) 593 245

4.4.2.2 Power during RRC State Transitions

We next study the impact of 5G on power during RRC state transitions. We calculate

the tail power by averaging the power readings during the entire tail period considering

both DRX On duration and the rest of the DRX cycle. As shown in Table 4.3, 5G consumes

more energy than 4G during the tail period and for mmWave 5G the tail power is especially

higher. This is likely because the UE’s radio remains active during the tail period in order

to wake up periodically for paging and 5G radio consumes more power than 4G (when the

throughput is zero, shown later in §4.4.3). Further taking into account the 4G → 5G switch

which consumes additional power and is very common (see Figure 4.6), 5G is less efficient

in terms of state transitions. Therefore, to save power, traffic patterns like periodical data

transmission or intermittent waking up should be avoided under 5G. One solution would

be forcing the UE to stay in 4G when high throughput is not needed.

4.4.3 Power for Data Transfer

Previous work on 3G/4G power modeling [138] has constructed power models for data

transfer by taking into account the device throughput and concluded that higher through-
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Figure 4.10: Throughput vs. power for 4G & mmWave 5G (S10, Ann Arbor).

put leads to higher power consumption. As 5G (especially mmWave) can provide much

higher throughput compared to 4G, we study how throughput affects the device power

over 5G. With controlled experiments, we measure the device power when transferring

data at different download/upload throughput over 4G and 5G. We run UDP data transfer

and vary the target throughput using iPerf. To reduce the impact of poor signal propa-

gation issues of mmWave 5G, we run the experiments by hand-holding the smartphone at

a fixed location with Line-of-Sight (LoS) to a 5G panel.

Figure 4.9 presents the relationship between throughput and power with a comparison

77



between 4G/LTE and 5G. We also show this relationship across two different bands of

5G: NSA low-band (LB) and NSA mmWave. These experiments were done on S20U

over Verizon. We can find that for both 4G and 5G, and for both uplink and downlink

directions, the power increases linearly as throughput increases. However, the power for

mmWave 5G (uplink and downlink) increases at a slower rate than for the other two radio

networks. Although at low throughput levels the power consumption for mmWave 5G is

higher, it becomes more efficient when the throughput is high. As seen in Figure 4.9, the

crossover point at which mmWave 5G becomes more efficient than 4G and low-band 5G

is: (1) 187 Mbps and 189 Mbps for downlink; (2) 40 Mbps and 123 Mbps for uplink.

These results clearly reveal the power-performance relationships (and trade-offs) between

not just 4G and 5G but also the different bands within 5G. Note that different UE models

may have varied levels of power consumption [105].

We find that the power consumption across different UE models can be different [105].

Similar to Figure 4.9 which reports the throughput-power relationship for mmWave 5G,

low-band 5G, and 4G using S20U, we also conduct the same set of experiments using

S10 smartphones which have relatively older 5G modems and chipsets. The results are

shown in Figure 4.10. For the downlink and uplink transfer, we echo the observations

made above that mmWave 5G uses more power than 4G/LTE at low throughput levels,

but mmWave becomes more efficient at higher throughput levels. The crossover points

between mmWave 5G and 4G/LTE observed using S10 are different from those measured

using S20U.

It is also interesting to compare the slopes between low-band 5G and 4G/LTE. We

derive the slopes of throughput-power curves across different device models and radio
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bands/technologies and list them in Table 4.4. In the downlink direction, the slopes of

LB-5G ad 4G/LTE are almost identical. In the uplink direction though, LB 5G is much

more efficient than 4G/LTE.

Table 4.4: Slopes of Throughput-Power curves indicating increase in power for every
1 Mbps rise in throughput.

Device Network Downlink
(mW/Mbps)

Uplink
(mW/Mbps)

S10 4G 13.38 57.99
S10 5G (mmWave) 2.06 5.27

S20U 4G 14.55 80.21
S20U 5G (low-band) 13.52 29.15
S20U 5G (mmWave) 1.81 9.42

Next, we calculate the proportion of power consumed by data transfer activity out of

total power. On average, data transfer in mmWave 5G consumes 48-76% of the total

power consumption for downlink and 46-66% for uplink, while the same for 4G are 21-

53% (downlink) and 20-66% (uplink). This is similar to what was also observed earlier

by Xu et al. [242] (for mid-band 5G). But our results show that the upper bound for 5G

downlink is higher by an additional 21% when compared to [242], which is likely due to

higher data rates offered by mmWave 5G.

We further calculate the energy efficiency (energy per bit) and plot the results in Fig-

ure 4.11 and Figure 4.12 with a log scale, where we can also conclude the higher efficiency

when transferring at higher speeds under 5G. 5G can be 79% (74%) less efficient than 4G

at a low throughput but up to 5× (2×) more when the throughput is high, for downlink (up-

link). In fact, this can also be confirmed from mathematical modeling: Assume the device

power is P , energy efficiency is E and the throughput is T , we will have P = c1 ∗ T + c2
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Figure 4.11: Throughput vs. energy efficiency for 4G and 5G (S20U, Minneapolis).
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Figure 4.12: Throughput vs. energy efficiency for 4G & mmWave 5G (S10, Ann Arbor).

and E = P/T = c2/T + c1. So we can get logE ≈ c3 ∗ log T + c4, by taking logarithm

on both sides of the equation. Here ci is constant.

Downlink vs. Uplink. We next compare the downlink transfer with uplink transfer for

4G and 5G (Figure 4.9). Based on the carrier configurations, we conclude that the rate of

increase in power consumption for uplink is higher by 2.2× to 5.9× than downlink, which

is in consensus to prior work on 3G/4G [138]. Unsurprisingly, UE’s radio requires more

power for sending data than to receive [108].
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Figure 4.14: Energy efficiency-RSRP relationship (mmWave).

4.4.4 Impact of Signal Strength on Power

In addition to throughput, there are other factors affecting the power consumption dur-

ing data transfer. For example, poor wireless signal strength can negatively affect the

device power saving [219, 114]. Moreover, due to poor signal propagation, mmWave’s

signal strength are known to fluctuate frequently and wildly due to impact of UE-side fac-

tors such as mobility or signal reflection characteristics of the surroundings (e.g., open

space vs concrete buildings) [181].
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We conduct in-the-wild data transfer experiments to collect network throughput and

power traces at two locations with Verizon 5G: (1) Ann Arbor, MI: mmWave 5G only,

(2) Minneapolis, MN: both mmWave and low-band 5G. Figure 4.13 summarizes how

power can be affected by both RSRP and throughput. From the results, we find that

(1) higher throughput leads to higher power consumption; (2) Signal strength also af-

fects the power consumption, which aligns well with earlier findings (§4.4.3) and previous

work [114]. To better isolate the impact of signal strength and understand how it affects

power consumption, we show the energy efficiency for different signal strength (RSRP)

levels in Figure 4.14. As NR-SS-RSRP increases, the energy per bit decreases. This indi-

cates that better signal strength leads to improved energy efficiency. Moreover, from the

Minneapolis results in Figure 4.13, we can clearly see there are two clusters of data points.

By looking at the network status information, we further confirm that the points in the

upper-left cluster represent the data collected when the device is connected to low-band

5G while the other points are for mmWave 5G. In Ann Arbor, we only see mmWave 5G

in the logs. Hence, we quantitatively observe that the power consumption varies across

different 5G bands that the device is actively using.

4.4.5 5G Power Model Construction

Previous studies either only consider downlink/uplink throughput [138] or signal

strength [105, 188] when modeling the device power for data transfer. However, neither of

the assumptions hold given the high variability of 5G throughput in particular for downlink

and the vulnerability of 5G signal to the physical environment. Besides, we have seen dif-

ferent bands can have varied power consumption characteristics, hence, it is also important
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Figure 4.15: Comparing performance of different models.

to take into account the band information. To improve model accuracy, we propose to build

a network power model for 5G by considering both signal strength and throughput. Based

on the observations in §4.4.3, a linear model can fit well for both uplink and downlink

if we solely consider throughput while controlling other factors. However, our prelimi-

nary experiments show that linearly regressing with multiple factors such as throughput

and signal strength together on our walking dataset leads to even higher errors compared to

only considering throughput, indicating that the diverse array of multiple impacting factors

may not be accurately fit linearly, we instead turn to machine learning-based data-driven

approaches to identify the relationships among features for power modeling. Specifically,

we apply the Decision Tree Regression (DTR) algorithm.

Model Evaluation. We construct our models and evaluate using a standard metric

for regression performance – Mean Absolute Percentage Error (MAPE) to reflect the ac-

curacy of our model in terms of relative errors. As observed in §4.4.4, we construct the

power model for different devices (S10, S20U), networks (Verizon, T-Mobile), and radio
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technologies (NSA/SA, mmWave/low-bands) separately. Note we build models for each

setting as opposed to using such information as a feature in the model. We also generate

models using previous approaches for comparison. We plot the performance results for

all the models in Figure 4.15, in which TH+SS represents our model which takes into

account both throughput and signal strength while TH and SS represent the models gen-

erated only considering throughput or signal strength, respectively. Our models always

outperform the models generated from both the previous approaches, which indicates that

both features play an important role in affecting the device network power consumption.

Without considering the throughput information, the errors of SS models are found to be

huge compared to TH+SS, especially for mmWave (high-band, HB) which can deliver

ultra-high bandwidth. For example, using S20U, Verizon’s mmWave 5G service can pro-

vide up to 3 Gbps (see in §4.3.3). S10 achieves around 2 Gbps over Verizon mmWave 5G

(similar to PX5). This highlights the importance of throughput information for the power

model construction, especially for mmWave-based networks. Note that there are perfor-

mance differences between the models constructed using data from different devices (e.g.,

between first two models). Not surprisingly, this signifies that different devices have dif-

ferent hardware specs (e.g., chipset lithography) that impact power consumption.

Validation on Real Applications. Finally, we evaluate the accuracy of our power

model by running two real-world applications: (1) video streaming over YouTube app;

(2) web browsing over Google Chrome Browser app. For video experiments, we play a

video [18] at 2K resolution, in both online mode (over cellular radio) and offline mode

(downloaded to SD card). To get the network energy consumption, we subtract the total

offline energy which contains energy consumed by decoding and rendering of video from
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the total energy measured when running online. Similarly for web experiments, we down-

load the whole website to SD card and open the locally stored homepage (.html) file on

Chrome to load the website in offline mode and then compare the same when loaded in

online mode. We compare the energy consumption estimated by our model with the actual

energy consumption measured by Monsoon power monitor. The average relative errors

are 3.7% for video streaming and 2.1% for web browsing.

4.4.6 Software Power Monitor Calibration

Although hardware power monitors such as Monsoon [59] provides highly accurate

power readings of mobile devices by directly supplying power to them, it will be ex-

tremely inconvenient for users to retrieves such information in daily use. In particu-

lar, it requires non-trivial hardware engineering efforts on current COTS smartphones

(e.g., remove the non-removable back cover and battery). Android exposes battery status

such as current (/sys/class/power supply/battery/current now) and volt-

age (/sys/class/power supply/battery/voltage now) which can be used

to measure the device power. Thus, besides different impacting factors for power model

construction, we also study the accuracy of battery status (current, voltage) readings and

whether it can be calibrated and further used to report the device power.

We first benchmark the software-based power monitor with different activities includ-

ing (1) randomly tapping on the screen and opening/closing applications, (2) leaving the

UE idle with the screen on/off, (3) performing UDP download at different speeds, and

(4) running a video playback. We collect the battery status using both software (API)

and hardware (Monsoon) approaches and calculate the average relative errors between the
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Table 4.5: Benchmarking results on different test cases.

Test Case Relative error = SW / HW
@ 1Hz @ 10Hz

Random activities 84.2% 94.3%
Idle (screen on) 87.9% 93.7%
Idle (screen off) 80.9% 94.9%

UDP DL 50Mbps 87.1% 91.5%
UDP DL 400Mbps 87.4% 89.7%
UDP DL 800Mbps 87.5% 91.3%

UDP DL 1200Mbps 86.8% 91.2%
Video streaming 92.2% 92.9%

Table 4.6: A higher sampling rate incurs more overhead.

Activity Average Power (mW)
Idle 2014.3

Monitor on (1Hz) 2668.5
Monitor on (10Hz) 3125.7

two approaches. As shown in Table 4.5, the software monitor always underestimates the

UE power. A higher sampling rate may help provide better estimation, but this will incur

higher energy overhead (Table 4.6).

Next, we use DTR to calibrate the software power values. Figure 4.16 shows the

calibration performance (SW) together with our TH+SS model results. After calibration,

the software-based approach can achieve comparable performance. A higher sampling rate

(e.g., 10Hz) can even lead to better performance (i.e., lower MAPE). However, we argue

that a higher sampling rate will incur higher overhead which is less energy-efficient.

To summarize, we empirically characterize several impacting factors such as signal

strength and throughput over power consumption by smartphones using 5G services. We

propose an ML-based data-driven approach to construct power models for 5G networks.
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Figure 4.16: Software power monitor calibration.

We demonstrate that our models help increase accuracy in predicting device power con-

sumption. We show that the software power monitor can achieve comparable accuracy

after calibration.

Next, we take a closer look at two popular mobile applications, video streaming and

web browsing, both combined are expected to cover more than 80% of the mobile traffic

share by 2025 [31]. We look at them from the perspective of both application QoE and

energy efficiency. We believe the proposed power models can be useful to aid developers

in making their application more energy-efficient. For the following sections, we focus

on mmWave 5G which are considered key to mainstream 5G and have not been studied

before in the context of mobile applications.

4.5 Video Streaming over 5G

Adaptive bitrate (ABR) algorithms are the primary tools used to optimize video quality

of experience (QoE). The research community has proposed a plethora of ABR algorithms
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for video streaming in recent years [174, 249, 246, 148, 149]. In this section, we demystify

5G’s implication on video streaming by conducting the first in-depth investigation of ABR

streaming QoE over 5G with mmWave. We aim to answer the following questions:

• What is the performance footprint of the current state-of-the-art ABR algorithms

under 5G and how does it compare with 4G?

• What are the major factors that impact ABR streaming performance over 5G?

• What new mechanisms are needed to make future ABR algorithms 5G-aware and

further improve the QoE?

4.5.1 Evaluation Methodology

Our testbed consists of an Apache server hosting the videos and a DASH.js [46] video

client. We use trace-driven emulation to ensure that all algorithms experience the same set

of network conditions. We use the Lumos5G dataset [181] which contains 121 5G and 175

4G throughput traces, collected at 1-second granularity. We focus on traces collected with

mmWave coverage as 5G’s high-band frequency range is considered key to support UHD

and beyond video streaming [205]. We use a custom 4K video [17] and encode it using

FFmpeg [24] with libx264 into 6 tracks (or qualities) with different bitrates. 4K (or

even 16K) video streaming usually requires 25-120 Mbps (246-328 Mbps) bandwidth [65,

40, 60, 256] which can be easily met by 5G. Thus, to identify rate adaptation challenges

in 5G which has a mean throughput value that is 10× of 4G, we scale the video bitrate

of 5G tracks used to match its throughput range. This ensures avoiding any trivial bitrate

selection. We set the bitrate of the top track (i.e., highest video quality) to match the
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median throughput of 5G/4G network traces. In this study, the maximum bitrate track

for 5G is 160 Mbps, and 20 Mbps for 4G. We then decide the bitrates for lower-quality

tracks by keeping the encoded bitrate ratio as ∼1.5 [198] between two adjacent tracks.

Note, our goal here is not to understand whether video streaming is better over 5G or

4G. Rather, we focus on studying whether existing ABR algorithms can work well over

mmWave 5G. Using the throughput traces, we use Linux tc on the client side and control

the instantaneous bandwidth. For showing results, we normalize the video bitrates by the

bitrate of the top track.

We study the following 7 state-of-the-art ABR algorithms covering 4 different cate-

gories. (1) Buffer-based: BBA [140] and BOLA [227] make bitrate decisions based on

the buffer occupancy. (2) Throughput-based: simple rate-based (RB) and FESTIVE [148]

use information of past chunks to estimate future throughput and decide the bitrate of the

next chunk to download. (3) Control theoretic: FastMPC and RobustMPC [249] make

bitrate decisions by solving an optimization problem of the QoE for the next n chunks

(e.g., n = 5). (4) Machine learning-based: Pensieve [174] adopts a deep neural-network

to learn bitrate decisions that maximize a QoE reward6.

4.5.2 Performance of Existing ABR Schemes

Overall, we find that multiple ABR algorithms that work well under 4G do not maintain

the high performance under 5G. Figure 4.17 summarizes the bitrate and the video stall time

for different ABR algorithms. The top-right rectangular region marked using maroon-

6We show the results of the Pensieve model trained with real Lumos5G [181] network traces. We also
verify that the performance observed by using models trained with synthetic traces (as suggested in their
paper [174]) and Lumos5G traces are similar.

89



0.02.55.07.510.0
Time Spent on Stall (%)

0.6

0.8

1.0
N

or
m

al
iz

ed
B

it
ra

te

BBARBBOLA

fastMPC

Pensieve

robustMPC

FESTIVE
Better QoE

0.02.55.07.510.0
Time Spent on Stall (%)

0.6

0.8

1.0

N
or

m
al

iz
ed

B
it

ra
te

BBA

RB

BOLA

fastMPC
robustMPC

FESTIVE

Better QoE

Pensieve

BBA RB
BOLA

fastM
PC

Pensieve

robustM
PC

FESTIVE

0

5

10

15

P
la

yb
ac

k
T

im
e

S
p

en
t

on
S

ta
ll

(%
)

4G

5G

(a) Two dimensional QoE for 5G. (b) Two dimensional QoE for 4G. (c) 4G & 5G video stall time.

Figure 4.17: QoE of different ABR algorithms in 4G/5G and a comparison of video stall.

colored dashed lines represents ABR algorithms with better QoE. Here, better QoE refers

to ABR algorithms that achieve less than 5% video stall and over 0.8 normalized bitrate

across different traces. For 5G, only one algorithm (robustMPC) provides better QoE

while for 4G there are 3 more algorithms.

Although most of the ABR algorithms under 5G can achieve similar normalized bi-

trates as they are in 4G (i.e., similar Y-axis values in Figure 4.17a and Figure 4.17b, with

an average drop of only 3.5%), the concerning problem for video streaming over 5G lies

in the video stalls. For RB, BOLA, MPC, and Pensieve, we observe a significant increase

(58.2% on average) of video stall. Figure 4.17c shows that except for BBA all other ABR

algorithms suffer an increase in video stalls when running over 5G. For instance, the mean

video stall time for fastMPC and Pensieve has increased by 82.0% and 259.5%, respec-

tively. Pensieve outperforms all other algorithms in 4G but incurs the highest video stall

time under 5G setting. Since Pensieve makes bitrate selection to optimize its QoE reward,

we also compare its QoE reward with that of fastMPC and robustMPC. Pensieve’s QoE

reward improvement is also marginal compared to other algorithms (0.66% improvement

over fastMPC and 5.93% over robustMPC), which is 3× lower than the results in the

original Pensieve paper. A possible explanation is that for 5G networks, a larger dataset
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Figure 4.18: QoE impact of: (a) throughput predictors (b) chunk length, and (c) interface
selection schemes.

is needed for training the model to learn 5G specific characteristics and make better de-

cisions, which deserves further study. After taking a closer look at the bitrate decisions

taken by Pensieve and fastMPC, we find that they sometimes choose the highest bitrate

chunk only to regret that it was a wrong decision that is difficult to undo, resulting in a

very high stall time. This is not happening in 4G scenarios with the same optimization

metric used. Based on this phenomenon, next we dig further to quantitatively understand

the challenges involved in running ABR algorithms for video streaming over 5G networks

(§4.5.3).

4.5.3 Challenges in ABR Streaming under 5G

Throughput prediction. Many ABR algorithms incorporate network throughput into

its decision by leveraging a throughput predictor and their performance heavily depends

on prediction accuracy. To study the impact of throughput prediction on 5G video stream-

ing, we fix other parts in an ABR algorithm and plug in different throughput predictors

and compare the incurred QoE. Considered as one of the state-of-the-art ABR algorithms,

we choose fastMPC as the baseline since it explicitly incorporates a throughput predic-
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tor while Fugu [246] and Pensieve use throughput information implicitly. We compare

three different throughput predictors: (1) hmMPC: the original throughput predictor used

by fastMPC uses harmonic mean of past throughput values to predict future through-

put, (2) MPC GDBT: a state-of-the-art mmWave 5G-specific throughput predictor [181]

that adopts a ML based approach called Gradient Boosted Decision Tree (GDBT), and

(3) truthMPC: ground-truth throughput trace to represent the optimal online throughput

prediction scheme. Since MPC’s goal is to maximize its QoE function [249], we use

the QoE function as the metric to evaluate the effectiveness of applying the 5G-specific

throughput predictor. Figure 4.18a indicates that using the GDBT throughput predictor

can achieve 31.98% higher normalized QoE compared to the default harmonic mean pre-

dictor. Compared to truthMPC though, adopting the GDBT predictor only provides 1.3%

less QoE. Therefore, improving throughput prediction accuracy in ABR algorithms can

significantly enhance video streaming QoE and provide opportunities to build better 5G-

aware throughput-predictors. Since 5G now spans across many different bands and its net-

work performance variation is large (§4.3), building better throughput prediction schemes

is not only vital to make ABRs work well over 5G but also to improve our understanding

of the 5G ecosystem in general.

Decision making granularity. An ABR algorithm’s decisions are coarse-grained in

that it has to do chunk selection on chunk boundaries, and once made, such decisions can-

not be rolled back. Specifically in our 5G video streaming results, we find that just one or

two bad chunk selections can significantly affect QoE of the entire stream. This one chunk

download decision indeed quickly drains the playback buffer or even causes 5–10 seconds

of rebuffering. One fix is to reduce the video chunk length to support fine-grained selec-
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Table 4.7: Energy consumption for different interface selection schemes.

Interface selection scheme Energy (J)
5G-only MPC 495.0±55.1

5G-aware MPC 474.4±59.1
5G-aware MPC (No Overhead) 475.0±58.9

tions. We study the effect of different chunk lengths (1/2/4s) on 5G video streaming (with

fastMPC). Figure 4.18b shows that using 1s chunks provides 21.5% (35.9%) higher bitrate

and 33.6% (29.8%) less video stalls compared to 2s (4s) chunks. Therefore, although 2s

and 4s chunks are typically suggested for ABR [14], we argue video content providers

should consider shorter length chunks (e.g., 1s) so that ABR algorithms can make finer-

grained decisions and adapt better to the highly fluctuating 5G network conditions.

4.5.4 Improving 5G ABR Streaming

Based on our observation that 5G consumes more power than 4G when the throughput

is low (§4.4) and 5G throughput fluctuates a lot, we propose 5G-aware video streaming.

The idea is switch to 4G when ABR algorithms predict that 5G throughput is low (i.e.,

¡4G’s average throughput), given that 4G provides relatively stable bandwidth, and switch

back to 5G when the video buffer level has reached over some threshold (empirically set

to 10s). We also take into account the switching overhead between 4G and 5G (§4.4) and

emulate the switching delay using Linux tc. Similarly, we use fastMPC as the baseline

ABR algorithm. Figure 4.18c depicts that our selection scheme (denoted as 5G-aware

MPC) can reduce video stall time by 26.9% compared to always using 5G interface during

the entire video. Compared to the 5G-aware MPC with no overhead version (where we

remove the interface switch delay, assuming the UE can instantly switch between 4G and
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5G), our realistic interface selection model only incurs 4.0% more stall time. Table 4.7

shows the corresponding energy consumption, measured by feeding the collected video

packet traces into our 5G power model (§4.4). As shown, the proposed 5G-aware schemes

consumes 4.2% less energy than always using 5G. It’s also slightly “greener” than the no

overhead version by trading a little bit of video quality: downloading higher quality chunks

and consuming more energy. Figure 4.18c and Table 4.7 conclude that carefully selecting

between 4G and 5G interfaces can both improve adaptive video streaming performance

(26.9% fewer stalls) as well as reduce the energy consumption (by 4.2%, comparative to

the 4.7% saving achieved in [242]).

4.6 QoE Implications of Web Browsing over mmWave 5G

Previous sections have shown that mmWave 5G is able to provide ultra-high through-

put but requires more power to deliver this performance. On the other hand, low-band 5G

or LTE uses much less power but delivers lower performance than mmWave. Hence, there

is a trade-off between achieving high performance and energy efficiency. To get better

insights about this trade-off, in this section we use web browsing as a case study to under-

stand the QoE implications of radio type (e.g., 4G or mmWave 5G) used to load websites

in-the-wild.

Data Collection Methodology. Using chrome-har-capturer [44], we build scripts

to instrument and load Alexa’s top 1500 websites via the Chrome Browser app. For each

website, we collect HTTP Archive (i.e., HAR [9]) files as well as capture the packet traces.

Since packet capturing requires root permission, we used PX5.We conduct this experiment

under stationary conditions in two radio settings: (i) mmWave 5G is active, (ii) 4G/LTE is
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Table 4.8: Factors considered for analyzing their impact on page load time and energy
consumption.

Factor Abbr Factor Abbr
# of dynamic/total objs DNO # of images (videos) NI (NV)

Size of dynamic objs / total page size (in bytes) DSO Total Page Size PS
# of objects NO Avg. Object Size AOS

active. mmWave-based experiments were conducted with UE having LoS to 5G tower. We

repeat the experiment at least 8 times per device per radio type. To eliminate the impact of

browser cache, we clear the cache before loading the next website.

The HAR file of each website loading provides us the total page load time (PLT),

time to fetch each individual object (e.g., images, .css or .js files) associated with

the website, etc. We also extract the per-second throughput trace observed in the packet

dumps. This trace is then fed to our power model proposed in §4.4 to estimate the radio’s

energy consumption for loading the website. All references to 5G in this section refer to

Verizon mmWave 5G service.

4.6.1 When does mmWave 5G help?

We list several factors (see Table 4.8 for the entire list) that might potentially affect

PLT performance and/or energy utilization. For each radio type, Figure 4.19 compares

their empirical impact for a subset of these factors on the two QoE metrics, performance

and energy consumption. We have the following key observations: (i) As the number

of objects contained in a website increases, the PLT performance gap between 4G and

5G increases with 4G being on the poor side. Similar observations are made for other

factors such as total page size and number of dynamic objects. (ii) On the other hand,
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Figure 4.19: Understanding how different factors affect the page load times under
mmWave 5G or 4G setting.
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Figure 4.20: CDF for PLT and energy.

the implications of the same factors have an opposite effect when seen under the purview

of energy consumption where 4G consumes far less energy than 5G. The CDF plots in

Figure 4.20 show these differences more clearly. We find that due to the high throughput

offered by mmWave 5G, PLT performance in 5G is always better than 4G. However, as

demonstrated earlier in §4.4, when applications are not bandwidth-hungry (e.g., normal

web browsing), the energy utilization of 4G is better than that of mmWave 5G.

While the importance of performance and energy utilization can differ based on the us-
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Figure 4.21: 4G’s PLT penalty and energy saving over 5G.

age context, we normalize both metrics for fair comparison. Figure 4.21 shows that even a

10% penalty over PLT incurred for choosing 4G over 5G can reduce energy consumption

by almost 70%. While such a high level of savings diminish as the PLT penalty grows, the

important takeaway here is that the slightest permissible penalty in PLT (caused by choos-

ing 4G) leads to high energy savings. Understanding where such a permissible penalty

might lie depends on how much additional delay in PLT is permissible such that there

is no significant impact on user experience. For example, a PLT of 2s or less remains a

widely considered golden standard [196] for web page load times. An average 4G through-

put of say 60 Mbps can theoretically load a website with a total page size of 15 MB in

<2s and might potentially save energy without significantly affecting QoE and/or bounce

rate [196] which is the percentage of visitors that leave a page without taking an action.

4.6.2 Interface Selection for Web Browsing

Using all the above insights, we next propose a simple yet insightful model generation

algorithm that takes into account all the factors listed in Table 4.8 to decide whether to

use the 4G or 5G radio interface for loading a website. To help make this decision, we
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come up with a simple linear utility function: QoE = (α × EC) + (β × PLT) that allows

us to tune the weights α and β for the two competing QoE metrics - energy consumption

(EC) and page load times (PLT), respectively. To make the generated model insightful, it

will be useful to know what factors (from Table 4.8) of a website makes a model choose a

particular radio interface over another.

For this case study, we choose Decision Tree (DT) learning algorithm for two reasons.

First, DT is easy to run as it does not require any massive computational power. Secondly,

it provides indices (e.g., Gini index) for each of the features included in the input feature

vector making it easily interpretable. Both these benefits can potentially help applica-

tion/service developers to not only get insights on improving and achieving their designed

QoE but also enable them to account for the usage context and quickly build more models

for achieving different QoE goals.

Model Setup. We randomly split our dataset using a ratio of 7:3 such that 70% is used

for training and validation and the rest is used for testing. With over 30K data points, the

time to generate the model was less than a minute on a general-purpose laptop.

Table 4.9: DT’s radio interface selection results.

#ID Desired QoE α β Use 4G Use 5G

M1 High Performance 0.2 0.8 19 401
M2 Performance Oriented 0.4 0.6 366 54
M3 Balanced 0.5 0.5 387 33
M4 Better Energy Saving 0.6 0.4 405 15
M5 High Energy Saving 0.8 0.2 420 0

Results. Table 4.9 shows the results of different models’ radio interface selection

results over the 420 websites in the test set. Figure 4.22 shows the bottom-up post-pruned

98



PS < !!

Use 4G Use
mmWave 5G

True False
DNO < !!

True
False

(a) M1 (σ1=4.6MB, δ1=0.2).

NO < #!

Use 4G Use
mmWave 5G

True
False

DNO < !"
True False

(b) M4 (η1=411, δ2=0.76).

Figure 4.22: High-Performance (M1) vs. Energy-Saving (M4) models.

DT for models M1 and M4. When performance matters (M1), we find that two factors are

important in deciding the radio type: (1) the total page size in bytes, and (2) the proportion

of dynamic vs. static objects (e.g., ads vs. logos) In contrast, when energy utilization is

preferred (M4), 4G radio can handle more websites while 5G will be the preferred radio

when the website has an extremely high number of dynamic objects (¿76%) compared to

static objects. By feeding the web packet traces into our constructed power model (§4.4),

we find that interface selection help save 15-66% energy while improving the overall QoE.

The dynamic 4G/5G switching scheme proposed in [242] brings a 25% saving on energy

but does not consider the page load time.

4.7 Summary

Leveraging a custom measurement platform, we have conducted comprehensive mea-

surements of several key aspects of commercial 5G: end-to-end network performance,

power characteristics, 4G/5G interaction, and application QoE. Our findings reveal the
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state-of-the-art landscape of the 5G ecosystem, in particular the higher protocol stack. We

have released our datasets and measurement tools to the research community.
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CHAPTER V

QUIC is not Quick Enough over Fast Internet

QUIC is expected to be a game-changer in improving web application performance. In

this chapter, we conduct a systematic examination of QUIC’s performance over high-speed

networks. We find that over fast Internet, the UDP+QUIC+HTTP/3 stack suffers a data

rate reduction of up to 45.2% compared to the TCP+TLS+HTTP/2 counterpart. Moreover,

the performance gap between QUIC and HTTP/2 grows as the underlying bandwidth in-

creases. We observe this issue on lightweight data transfer clients and major web browsers

(Chrome, Edge, Firefox, Opera), on different hosts (desktop, mobile), and over diverse

networks (wired broadband, cellular). It affects not only file transfers, but also various

applications such as video streaming and web browsing. We conduct root cause analysis

through rigorous packet trace analysis and kernel- and user-space profiling, make concrete

recommendations for mitigating the observed performance issues.
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5.1 Introduction

QUIC is a multiplexed transport-layer protocol over UDP, poised to be a foundational

pillar of the next-generation Web infrastructures. It has recently been standardized by the

IETF (known as IETF QUIC [145]) as the transport foundation of HTTP/3 [96]. Since

2013, QUIC has been commercially deployed by numerous companies including Google,

Akamai, Meta, and Cloudflare [11, 161, 52, 32, 70]. As its adoption continues to grow

rapidly, QUIC (together with HTTP/3) is standing at the forefront to reshape the perfor-

mance paradigm of the World Wide Web. There is a plethora of literature on characteriz-

ing QUIC performance [150, 197, 213, 239, 175, 250, 122, 224]. They have used various

QUIC implementations (customized vs. commercial), compute environments (mobile vs.

desktop), and network conditions (wired vs. wireless). Due to such diversity, their find-

ings are understandably a mixture of performance gains, and in some cases, degradations,

compared to TCP and earlier generations of HTTP. In addition, a majority of these studies

focus on low-throughput use cases.

In this study, we systematically examine an under-explored scenario: running QUIC

over high-speed networks. This scenario is becoming increasingly important with the de-

but of faster networks such as high-speed wired links, WiFi 6/7, and 5G, which often

reach more than 500 Mbps and up to 1+ Gbps per connection. Meanwhile, given the ubiq-

uity of HTTP on today’s Internet, HTTP (QUIC) is being utilized for bandwidth-intensive

applications like ultra-high-resolution videos [193] and VR/AR [248]. This makes under-

standing QUIC’s performance on high-speed networks even more crucial.

QUIC is Slow over Fast Internet. Despite typically being referred to as a transport-

layer protocol, QUIC is deeply coupled with upper-layer components, namely TLS and
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HTTP. Its user-space nature makes such coupling more complex and extensive. Note

that an apple-to-apple comparison should be done on the UDP+QUIC+HTTP/3 proto-

col stack and TCP+TLS+HTTP/2 stack. For brevity, we refer to the two stacks as QUIC

and HTTP/2. We begin with comparing QUIC and HTTP/2 in a simple environment:

file download using a command-line data transfer tool, cURL [7], and a Chromium-based

client, quic client [79]. For a fair comparison, we keep factors such as the conges-

tion control algorithm, server configuration, and network condition the same. The results

show that QUIC and HTTP/2 exhibit similar performance when the network bandwidth

is relatively low (below ∼600 Mbps), whereas under a higher network bandwidth, QUIC

consistently lags behind HTTP/2 by up to 15.7% in terms of throughput. The performance

gap becomes more pronounced as the bandwidth increases. Notably, during packet recep-

tion, QUIC incurs considerably higher CPU usage than HTTP/2 on state-of-the-art client

hosts.

Next, we investigate more realistic scenarios by conducting the same file download

experiments on major browsers: Chrome, Edge, Firefox, and Opera. We observe that the

performance gap is even larger than that in the cURL and quic client experiments:

on Chrome, QUIC begins to fall behind when the bandwidth exceeds ∼500 Mbps. When

the bandwidth reaches 1 Gbps, QUIC becomes 45.2% slower than HTTP/2. On weaker

clients such as mobile devices, the gap is even larger.

QUIC’s Slowness Impacts Multiple Web Applications. We experimentally demon-

strate that QUIC’s performance degradation affects not only bulk file transfers but also

other applications including video content delivery and web browsing, despite their inter-

mittent traffic patterns. QUIC incurs a video bitrate reduction of up to 9.8% compared
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to HTTP/2 when delivering DASH [226] video chunks over high-speed Ethernet and 5G.

Again, such QoE degradation only exhibits when the underlying bandwidth is sufficiently

high. For example, the impact is hidden over 4G but unleashed over 5G. QUIC’s page

load time (PLT) is 3.0% longer than HTTP/2’s, averaged across 100 representative web-

sites, with a long tail of page load time gaps over 50%.

QUIC’s Slowness over Fast Internet is due to Receiver-side Processing. With the

above results, we then identify the primary culprit of the QUIC-HTTP/2 performance gap.

This is a highly challenging task due to a wide range of factors in the Web ecosystem, the

high complexity of QUIC, and various engineering difficulties. We first make two obser-

vations by looking into packet traces and performance data: (1) The client running QUIC

receives a much higher number of packets compared to those during HTTP/2 downloads;

(2) There is a high delay between incoming data packets and their corresponding ACK

packets when QUIC receives at a high data rate, suggesting that it takes longer to process

QUIC packets. Both observations indicate that the slow performance of QUIC over fast

Internet is due to limited receiver-side processing capability. It is important to note that

although QUIC’s user-space implementation is known to cause performance degradation

in general [161] and there have been efforts to optimize UDP/QUIC’s sender-side trans-

mission performance [110, 28, 142], we are the first to identify the receiver side as a more

likely performance bottleneck for QUIC over fast Internet. This is not only because servers

are typically more powerful than clients (desktops, laptops, mobile phones), but also at-

tributed to unique challenges in handling data reception per QUIC’s design, as detailed

next.

The Poor Receiver-side Performance is due to Excessive Data Packets and User-
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space ACKs. We conduct deep performance profiling on the user-space Chromium (open-

sourced version of Chrome) and the underlying OS networking stack. We identify two

main root causes of QUIC’s poor receiver-side performance.

• Issue 1. When downloading the same file, the in-kernel UDP stack issues much more

packet reads (netif receive skb) than TCP, leading to a significantly higher CPU

usage. This is because none of the QUIC implementations we examine uses UDP

generic receive offload (GRO) where the link layer module combines multiple received

UDP datagrams into a mega datagram before passing it to the transport layer. This is

in sharp contrast to the wide deployment of TCP segmentation offload, and recent

advocacy of UDP send-side offload (GSO).

• Issue 2. In the user space, QUIC incurs a higher overhead when processing received

packets and generating responses. This can be attributed to multiple factors: excessive

packets passed from the kernel (Issue 1), user-space nature of QUIC ACKs, and lack

of certain optimizations such as delayed ACK in QUIC.

Recommendations for Mitigation. We make several recommendations for mitigating

the above impact, including deploying UDP GRO on the receiver side, making generic of-

floading solutions (GSO and GRO) more QUIC-friendly, improving relevant QUIC logic

on the receiver side, and using multiple CPU cores to receive data for QUIC. We also

discuss some practical challenges of realizing the above recommendations, such as the

heterogeneity of today’s commodity client hosts (PCs, mobile devices, and embedded de-

vices, with diverse OSes) compared to the servers.

At a high level, we advocate careful examinations of upper-layer protocols over emerg-

ing networks, applications, and services. This work instantiates this idea by conducting
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Table 5.1: Preliminary file download tests.

Testbed
Download Time (s) CPU Usage (%)

HTTP/2 HTTP/3 HTTP/2 HTTP/3
Desktop, Ethernet 9.32 18.60 (+99%) 77.5 96.9

Pixel 5, low-band 5G 37.11 78.65 (+112%) 121.55 161.77
Pixel 5, mmWave 5G 30.10 63.20 (+110%) 128.43 165.20

a pioneering study on QUIC performance over fast Internet. We make two-fold contri-

butions: the measurement findings and the root cause analysis. We have released all the

measurement data and source code associated with this study [82].

5.2 Motivation

QUIC is a user-space transport protocol over UDP, designed to provide fast, reliable,

and secure connections. It offers benefits such as 0/1-RTT fast handshake, stream multi-

plexing to remove head-of-line blocking, and connection migration. However, QUIC also

has potential downsides, such as the overhead of processing and copying data between the

kernel space and user space.

Downloading data over QUIC can become very slow in particular given the emergence

of high-speed Internet. We conduct a preliminary experiment on both desktop and mobile

Chrome browsers to download 1 GB files (see §5.3.1 for details). Table 5.1 presents the

results averaged over 10 runs. We can find that, the file download time when QUIC is en-

abled is around double the time with QUIC disabled. The CPU usage is also higher during

QUIC download. The performance disparity between QUIC and HTTP/2 is even larger

on smartphones. Note that the CPU usage for the desktop is measured from the browser’s

network service while the measurement refers to the CPU usage of the entire browser pro-
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cess for the smartphone. CPU usage exceeding 100% indicates that the browser process

was utilizing more than one cores in a multi-core system.

The results raise a couple of questions: When is QUIC data transfer slower than

HTTP/2? What are the underlying reasons for the performance gap? Can users bene-

fit from the current deployment of QUIC? To answer these questions, we carry out an

in-depth measurement study on QUIC performance over high-speed networks.

5.3 QUIC Transport Performance

In this section, we conduct a series of experiments comparing the performance of

QUIC and HTTP/2. We start with introducing our experimental methodologies in §5.3.1.

Then, we present file download experiments on lightweight data transfer clients in §5.3.2.

Finally, we discuss the results on commercial web browsers in §5.3.3.

5.3.1 Methodology

Various factors within different components in the network can affect the over-

all performance and potentially become the bottleneck. When comparing the

UDP+QUIC+HTTP/3 (QUIC) stack with the TCP+TLS+HTTP/2 (HTTP/2) stack, we

carefully set up the following testbed to ensure a fair comparison, that is, the observed

performance gaps originate solely from the differences in the protocol themselves.

We deploy a server machine equipped with an Intel Xeon E5-2640 CPU and a client

desktop featuring an Intel Core i7-6700 CPU. They are connected through a 1-Gbps Eth-

ernet, only two hops away from each other. This setup avoids several network-related im-

pacts such as network congestion and bandwidth throttling imposed by middleboxes which

107



 750

 800

 850

 900

 950

 1000

 1050

 0  200  400  600  800  1000

Th
ro

ug
hp

ut
 (M

bp
s)

File size (MB)

cURL-HTTP/2
cURL-QUIC
quic_client-QUIC
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are often unfriendly to QUIC [161, 111, 247, 134]. Both machines run Ubuntu 18.04. We

host an HTTP server using OpenLiteSpeed (v1.7.15) [76] built based on a mainstream

QUIC library, LSQUIC [69]. The congestion control algorithm for QUIC is set to CUBIC,

which is the default algorithm used for TCP in the OS. We also make sure their initial

transport settings stay the same. Furthermore, both the UDP and TCP buffer sizes are ad-

justed to exceed 10x the link’s bandwidth-delay product (BDP) to prevent buffer starvation

during experiments. We run tcpdump to collect packet traces. We employ Linux tc [8]

to control available network bandwidth when evaluating QUIC and HTTP/2 under low or

changing bandwidth conditions.

5.3.2 File Download on Lightweight Clients

We start our investigation with a simplified setup, using two non-browser download

tools, cURL [7] and quic client [79]. cURL is a command-line data transfer tool that

supports both QUIC and HTTP/2. quic client is a standalone QUIC client implemen-
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Figure 5.3: Throughput and CPU usage of cURL and quic client during file download
under limited bandwidth.

tation, built with the same QUIC stack as Chrome/Chromium.

We use the clients to download files of different sizes, ranging from 50 MB to 1 GB,

over QUIC and HTTP/2. For each file size, both tools undergo 20 repeated download

sessions. Figure 5.1 reports the mean values and standard deviations from the collected

traces. The results show that cURL running HTTP/2 noticeably outperforms both QUIC

clients, well utilizing the 1 Gbps available bandwidth. quic client’s results stand very

close to those of cURL on QUIC. On average, the throughput of cURL running QUIC and

that of quic client is 7-16% and 8-12% lower, respectively, compared to cURL with

HTTP/2. Moreover, both cURL on QUIC and quic client display an almost parallel

trajectory, which indicate the similar efficiency in their QUIC implementations.

We present in Figure 5.2 the distribution of the client’s CPU usage during the download

of a 1 GB file. The CPU usage for cURL when running QUIC is higher than that of cURL

on HTTP/2. quic client’s CPU usage is further elevated, nearly maxing out at 100%,

while its throughput remains similar to cURL on QUIC. Note that, for quic client, we
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have deactivated any debug mode for optimal performance (is debug=false). Since

it is a simplistic implementation of the QUIC protocol stack, for instance, not designed

for handling multiple concurrent connections or non-transfer functionalities such as log-

ging, it just consumes all available CPU resources during the download process without

reservation, unlike cURL which is engineered for versatility across various scenarios.

We next limit the available network bandwidth from 50 Mbps to 1000 Mbps. As

shown in Figure 5.3, when the available bandwidth is low, QUIC and HTTP/2 exhibit

similar performance. Both QUIC clients can catch up with the available bandwidth, with

quic client’s throughput being slightly lower. However, as the bandwidth provision

grows beyond around 600 Mbps, QUIC’s actual throughput starts to be bottlenecked and

a noticeable throughput disparity between QUIC and HTTP/2 emerges. The CPU usage

for quic client is always high and that of cURL QUIC hovers around 70%, reem-

phasizing the computational challenges associated with the protocol. We analyze possible

performance inhibitors leading to the high CPU usage later in §5.5.

5.3.3 File Download on Real Browsers

Transitioning from lightweight clients, we look into experiments on real web browsers.

This exploration mainly focuses on the well-known Chrome browser.

We repeat the file download tests on Chrome. As shown in Figure 5.4, the performance

gap between QUIC and HTTP/2 is even larger than that in our prior lightweight client

experiments (§5.3.2). Figure 5.5 plots the CPU usage of the network process (“Utility:

Network Service” [80], responsible for network-related tasks.) during the download. It

is evident that the Chrome browser running QUIC demands more computational power
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than Chrome with HTTP/2. Different from the lightweight cURL and quic client,

Chrome is a full-fledged web browser, so the CPU saturation issue is exacerbated, leading

to even lower QUIC performance. Remarkably, QUIC’s average throughput can barely hit

478 Mbps.

The experimental results in controlled bandwidth scenarios are depicted in Figure 5.6.

QUIC fails to fully utilize the bandwidth starting earlier at approximately 500 Mbps, com-

pared to the 600 Mbps bottleneck point identified in the lightweight client tests (see Fig-

ure 5.3). Chrome with QUIC approaches 100% CPU usage when the throughput is only

200 Mbps. Recall that, with further limited compute resources, the HTTP/2-QUIC perfor-

mance gap on mobile devices is more pronounced, as shown in Table 5.1.

Additionally, we run experiments of changing the CPU frequency (i.e., CPU clock

speed). The Intel Core i7-6700 CPU equipped on the client machine has a base frequency

of 3.40 GHz and can be boosted to 4.00 GHz. In Figure 5.7, as we reduce the CPU

frequency, Chrome’s QUIC download throughput further drops to around 200 Mbps while

111



 0

 200

 400

 600

 800

 1000

 0  200  400  600  800  1000

Ac
tu

al
 T

hr
ou

gh
pu

t (
M

bp
s)

Available Bandwidth (Mbps)

Chrome-HTTP/2
Chrome-QUIC

 0

 20

 40

 60

 80

 100

 0  200  400  600  800  1000

C
PU

 U
sa

ge
 (%

)

Available Bandwidth (Mbps)

Chrome-HTTP/2
Chrome-QUIC

Figure 5.6: Throughput and CPU usage of the Chrome browser during file download under
limited bandwidth.
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the throughput over HTTP/2 still remains above 900 Mbps even at 1.60 GHz. Note, unless

otherwise specified, all the other experiments in this work are done with the CPU set to

3.40 GHz. Then, we test on a machine with a more advanced CPU, Intel Core i7-10700

with a 4.80 GHz maximum turbo frequency. The QUIC downlink throughput stays close

compared to the 6700 machine at the same frequency while it can reach 530 Mbps at

4.80 GHz. This suggests that increasing CPU computing power can marginally narrow the

performance gap between QUIC and HTTP/2.

112



Table 5.2: Browsers’ CPU usage (%).

Browser HTTP/2 HTTP/3
Chrome 77.1±4.7 97.4±4.5
Edge 28.4±3.9 81.1±7.7
Opera 27.9±3.3 84.9±14.5
Firefox 185.8±61.9 213.0±46.5

Comparing Different Browsers. In addition to Google Chrome (v102), we extend our

HTTP file download experiments to other QUIC-enabled web browsers: Mozilla Firefox

(v105), Microsoft Edge (v106), and Opera (v93). We plot the download throughput statis-

tics for four browsers in Figure 5.8 and list their CPU usage data in Table 5.2. Note that we

were unable to isolate the CPU usage of Firefox’s network service but we ensure that no

other activities running in Firefox. We find that, all the browsers have a worse performance

when QUIC is enabled, with increased CPU usage. The variation in QUIC performance

across browsers likely comes from differences in their QUIC implementation, networking

stack efficiency, and interaction with the underlying OS for packet processing. Therefore,

the slow QUIC download issue is prevalent across major commercial browsers. This can

significantly affects the end-user experience, especially when downloading bulk data at a

high speed.

5.4 Application Study

Our experimental findings have painted a compelling narrative about QUIC’s perfor-

mance not just in bulk file transfers, but also other applications, including video content

delivery and web page loading, despite their intermittent traffic patterns. We now delve

into these application areas to further showcase the impact of QUIC.
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Figure 5.9: Comparing average video chunk bitrate between HTTP/3 (QUIC) and HTTP/2.

5.4.1 Video Streaming

The vast and growing demand for high-quality video content and smooth delivery on

the Internet underscores the importance of efficient protocols for adaptive bitrate (ABR)

video streaming [88]. Leveraging both QUIC and HTTP/2, we set out to explore their

real-world implications on video streaming performance.

We employ ffmpeg to encode a custom 4K video with H.264, generating six tracks at

different bitrates. 4K video streaming usually requires 35-100 Mbps [65, 40, 185], which

can be easily achieved by today’s high-speed networking like 5G. In order to challenge the

rate adaptation controllers, avoid trivial bitrate selection, and examine future ultra-high

resolution videos and extended reality (XR) performance over high-speed connectivity,

we scale up the video bitrates with the top track bitrate reaching 200 Mbps, to match the

median throughput of 5G network traces [260, 185]. Specifically, the bitrates are 20 Mbps,

40 Mbps, 80 Mbps, 120 Mbps, 160 Mbps, and 200 Mbps. We also encode the video into

three different chunk durations, 1s, 2s, and 4s. We set up a dash.js server for ABR video

streaming. The server is configured to support two major categories of bitrate adaptation

algorithms: Buffer-Based (BB) [140] which selects bitrates with the goal of keeping the
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buffer occupancy high, and Rate-Based (RB) [174] which selects the highest bitrate below

the bandwidth predicted from experienced throughputs during past chunk downloads. The

client machine runs a Chrome browser to fetch and play the video content from the server.

We evaluate ABR video streaming under three types of network conditions. In addi-

tion to the 1 Gbps Ethernet link considered in our previous experiments, we run tc [8]

to emulate 4G and 5G networks using real network traces, randomly selected from the

Lumos5G dataset [182]. For each network type, we have two traces each for walking and

driving scenarios to incorporate various mobility patterns. We conduct such a trace-driven

emulation to ensure QUIC and HTTP/2 experience the same set of network conditions and

to provide better reproducibility across different rounds.

We measure video chunk bitrate and CPU usage during the streaming process. Each

experimental setup is executed 20 times. As shown in Figure 5.9, the results of streaming

ABR videos over QUIC and HTTP/2 suggest that QUIC performs worse than HTTP/2 in

Ethernet and 5G scenarios. The bitrate reduction goes up to 9.8%. This is likely due to

the bandwidth in these two network settings being high enough to saturate the client CPU.

Revisiting our earlier discussions in §5.3, we discover that, the bottleneck bandwidths after

which QUIC cannot fully utilize the link capacity for the lightweight clients and Chrome

are around 500 Mbps and 600 Mbps, respectively. Taking into account the video playback

overhead (e.g., decoding and rendering), this bottleneck point could be further lowered.

On the other hand, for the slow 4G networks, shown in Figure 5.9c, the performance

difference is not that significant. The HTTP/2 setups have a slightly better overall bitrate.
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Figure 5.10: Website characterization.

5.4.2 Web Page Loading

Web browsing (i.e., web page loading) plays another crucial role in the Web ecosystem.

Unlike bulk file download, loading a web page usually involves transferring multiple small

objects that can be either concurrent or sequential depending on object dependencies. We

conduct an extensive experiment with Alexa’s top 100 websites.

First, we use the original URLs to directly load the remote websites, with QUIC en-

abled on Chrome. We repeat the tests on each website 20 times. Surprisingly, the page load

tests on most websites do not capture any HTTP/3 objects, which means those websites

have not enabled QUIC yet. Only 16 websites exhibit HTTP/3 traffic during page loads.

The website containing the largest portion of HTTP/3 objects is www.discord.com

with no HTTP/1.1 objects, 8.5 HTTP/2 objects, and 30.0 HTTP/3 objects on average. It

is also noteworthy that, with various third-party links (for example, for tracking or gener-

ating dynamic content purposes) visited from JavaScript files embedded in the main page,

none of the tested websites are completely loaded over HTTP/3.

Then we download these 100 websites using SiteSucker [72] and host them locally
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Figure 5.11: Web page loading results (HTTP/3 over HTTP/2).

on our web server. One challenge we encountered is, to our knowledge, there is no tool

that can be used to download an entire website with countless external links so that it

can be fully hosted locally. There are tools to record web page load and replay locally,

e.g., Web Page Replay (WprGo) [67] and Fiddler [68]. However, since they do not re-

ally copy the entire website, it is not possible to toggle between different HTTP proto-

cols during the replay. Figure 5.10 shows the website features which include the number

of objects and the total page size, illustrating the diversity of our test websites. Using

chrome-har-capturer [45], we build scripts to collect HTTP Archive (HAR) [10]

files and calculate the evaluation metrics. To compare the page load performance of QUIC

and HTTP/2, we utilize three major metrics: (1) content download time (CDT) [99], de-

fined as the time to download all content needed to load the website, after which the

rendering process can start; (2) page load time (PLT) [236, 186], at which the rendering

of all components of the page is finished; and (3) time-to-first-byte (TTFB) [97], which is

the delay from sending the request to receiving the first byte of the response.

We repeat the page load tests 20 times for each website over Ethernet. We also use

tc to throttle bandwidth at 100 Mbps, to examine the performance at limited bandwidth
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conditions (e.g., 4G/5G). Note that we do not directly use mobile network traces because a

web page load is too fast, making it difficult to ensure consistent network conditions across

rounds by replaying traces. Figure 5.11 compares the timers (CDT, PLT, and TTFB) for

QUIC and HTTP/2. A data point greater than 1.0 means the corresponding timer is longer

in QUIC tests. We can learn from the results that, the performance difference is not as

significant as that observed in video streaming tests. On average, QUIC’s PLT is 3.0%

longer than HTTP/2’s. However, there is a long tail indicating that in some cases the gap

can be over 50% and up to 74.9%. We also observe the increased CPU usage in QUIC,

compared to HTTP/2 page load tests. The PLT increase is not as significant as the bulk

download time increase, because web page loading involves both local page rendering,

which is not affected by the network protocol selection, and network data transfer.

5.5 Root Cause Analysis

With the QUIC and HTTP/2 results on various applications, we now identify the root

cause of the observed performance gap. Unless otherwise noted, for experiments and anal-

ysis in this section, we use Chromium (v102) as it is a production-level implementation

supporting both HTTP/2, and QUIC and it is not proprietary, thus easy to profile internal

activities.

5.5.1 Eliminating Non-contributing Factors

We begin with eliminating several potential factors, most backed up with controlled

experiments.

• Server Software. We set up another web server, Nginx-quic (v1.14.0) [75], on the
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same server machine. We compare the time to download 1 GB file from Nginx and

from OpenLiteSpeed (our server setup in §5.3) using Google Chrome. HTTP/2 per-

forms similarly on both web servers while QUIC performs even worse when running

on Nginx, being slower by 18%.

• UDP/TCP Protocols. We conduct iPerf UDP and TCP tests under the same net-

work setup. The results show that both protocols can fully utilize the link bandwidth

(1 Gbps), with UDP achieving 958 Mbps and TCP achieving 944 Mbps on average.

• HTTP syntax. HTTP/3 [96] serves as the mapping of HTTP for using QUIC as the

transport. Adapted from HTTP/2 [93], it has an almost identical syntax structure to

HTTP/2 [118, 51].

• TLS Encryption. Both QUIC (TLS v1.3) and HTTP/2 (TLS v1.2) employ the

TLS AES 128 GCM SHA256 cipher on our web server. We also benchmark differ-

ent cipher suites and the results do not significantly affect the performance.

• Parameter Tuning. We tune QUIC-specific parameters such as enabling/disabling

packet pacing and adjusting path MTU discovery [116]. We do not observe noticeable

improvements compared to the original performance gap.

• Client OS. We repeat the above experiments on Mac OS and Windows for the receiver,

and observe similar results.

• Disk and Memory. We download files directly to a volatile RAM-based disk using

Linux tmpfs [58]. We also test with Linux HugePages [92] to avoid frequent memory

swaps. Neither approach helps in improving QUIC performance.
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5.5.2 Evidence from Packet Trace Analyses

Next, We get insights by analyzing tcpdump packet traces.

QUIC Perceives Much More Packets than HTTP/2. We notice that for QUIC, the

number of packets received by the OS’s UDP stack is an order of magnitude higher than

the number of packets received by the TCP stack during HTTP/2 downloads (744K versus

58K on average). We have confirmed this is not caused by retransmissions. While prior

tests show that increasing the packet size up to MTU can help [35], all QUIC packets in

our experiments are already MTU-sized (1472 bytes, excluding the 8-byte UDP header

and the 20-byte IP header in the standard 1500-byte MTU setup). We also verify that the

numbers of packets transmitted over the wire are very close between QUIC and HTTP/2.

The difference of their transport-layer-perceived packets is because TCP (HTTP/2) uses

generic receive offload (GRO), where the link layer module in the OS combines multi-

ple received TCP segments into a large segment of up to 64 KB. However, despite the

availability of UDP GRO, it is not used by QUIC, and integrating GRO with QUIC faces

challenges as to be discussed in §5.5.3.

QUIC has a much Higher RTT Dominated by Local Processing. We measure the

packet round-trip time (RTT), defined as the time between when a data packet is sent

out from the server and when the first packet to acknowledge it is received. The RTT

consists of the propagation delay spent on the paths and the processing delay spent on the

receiver side. Though TCP and QUIC have different ACK mechanisms, the average packet

RTT can still reflect how fast packets are transferred and processed, and thus help adjust

the sending rate. The average RTT for HTTP/2 download is 1.9ms while QUIC’s RTT

skyrockets to 16.2ms. Also, both protocols exhibit similar temporal RTT patterns, mostly
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stable. Since the ping RTT between the two machines is only 0.23ms as measured, the

endpoint packet processing takes most of the packet latency.

The above results provide further evidence that the performance bottleneck of QUIC

appears to be on the receiver side.

5.5.3 Root Causes via OS/Chromium Profiling

To definitively pinpoint the root cause, we conduct fine-grained profiling in both the

OS kernel (OS’s networking stack) and the user space (Chromium’s networking stack)

using Linux perf [57].

Excessive Receiver-side Processing in the Kernel. We run 1 GB file downloads on

Chromium with QUIC and HTTP/2. Meanwhile, we use perf to monitor events in the

Linux networking subsystem (net) associated with Chromium’s network service. For

QUIC, we observe a huge number of calls on netif receive skb which is invoked

when a packet is received at the network interface. Specifically, there are 231K calls of this

type witnessed during a single QUIC download compared to a mere 15K in an HTTP/2

download. This difference roughly corresponds to the difference in the number of received

UDP and TCP packets (§5.5.2).

A standard way to reduce packet processing overhead in the OS is to involve NIC

offloading that has been widely used for TCP, including segmentation offload such as

TCP Segmentation Offload (TSO) and Generic Segment Offload (GSO) on the sender

side and receive offload such as Generic Receive Offload (GRO) on the receiver side1.

While some existing efforts [28, 35] have shown the effectiveness of UDP sender-side

1Another solution, UDP Fragmentation Offload (UFO), uses IP fragmentation. It was deprecated so we do
not consider it in this work.
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Table 5.3: Download 1 GB file with and without offloading.

Setup # Sent Packets # Recv Packets Time (s)
QUIC (on) 743K 743K 18.60
QUIC (off) 744K 744K 18.82
HTTP/2 (on) 19K 53K 9.36
HTTP/2 (off) 744K 744K 10.84

offloading, our work pioneers in pinpointing the criticality of receiver-side offloading for

today’s commodity QUIC client hosts.

In addition, we note that realizing offloading for QUIC is challenging. First, unlike

TCP which uses a byte stream model so its payload can be flexibly (re)packetized, UDP’s

offloading logic must preserve the packet boundaries. The existing UDP GSO/GRO thus

only supports offloading a train of UDP packets with identical lengths specified by the

application [110]. This constraint makes directly applying UDP GSO/GRO to QUIC

inefficient, due to QUIC’s inherent multiplex nature: QUIC frames belonging to differ-

ent streams vary in size and are multiplexed after encryption. As a result, if a train of

UDP datagrams (containing the encrypted frames) has different packet sizes, existing UDP

GSO/GRO cannot offload them. Second, blindly aggregating many UDP datagrams and

transmitting them in a single burst may cause congestion-related packet losses and fair-

ness issues, particularly over the wide-area Internet [110, 142]. Third, the diverse QUIC

variants add complexity to realizing the QUIC offloading logic in NIC hardware. Likely

due to the above reasons, although UDP GSO/GRO [21] is available in the newer Linux

kernel versions, none of the QUIC implementations have adopted it.

We carry out additional experiments with available offloading mechanisms (TSO,

GSO, and GRO) enabled and disabled on both server and client sides. The results in
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Table 5.4: A breakdown of packet processing time.

Chromium Networking Stack QUIC (8.5s) HTTP/2 (4.1s)
Read UDP/TCP packets from socket 0.248s 0.037s
Process UDP/TCP packets for payload 0.310s 0.084s
Decode QUIC/TLS-encrypted packets 0.660s 0.814s
Parse decrypted QUIC/HTTP2 frames 3.468s 3.182s
Generate QUIC responses (e.g., ACK) 2.972s –
Others 0.859s 0.001s

Table 5.3 indicate that UDP (QUIC) does not benefit from GRO/GSO. In contrast, TCP

shows a more significant reduction in download time, with much fewer packets processed

by the OS’s TCP stack. The discrepancy in the number of packets sent and received is

likely because the server-side offload may have a different power on segmentation com-

pared to client-side receive offload capability on packet reassembly. Note, all other exper-

iments in this study have them turned on.

When profiling kernel-level activities for QUIC, we also observe a more significant

proportion of calls to function do syscall 64 (17K for QUIC, compared to 4K for

HTTP/2) and function copy

user enhanced fast string (4K vs. 3K). Such intensive interactions across the

user-kernel boundary are resulted from the substantial volume of QUIC packets perceived

by the UDP stack. They further increase the processing overhead.

Excessive Receiver-side Processing in the User Space. The high in-kernel packet

processing overhead results in high processing overhead in the user space for QUIC.

To demonstrate the latter, we profile Chromium’s networking stack, specifically, the

Chrome ChildIOT thread. Table 5.4 provides a breakdown of the time spent by each

packet processing stages. The stack is primarily responsible for (1) reading UDP/TCP
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packets from the socket; (2) processing UDP/TCP packets to extract the payload; (3) de-

coding QUIC/TLS-encrypted packets; and (4) parsing decrypted QUIC/HTTP2 frames.

For QUIC, QuicChromiumPacketReader is responsible for reading and processing

the incoming QUIC packets. Its entry point is StartReading and consumes 8.7s out

of the total download time of 20.6s on average when downloading a 1 GB file. On the flip

side, the HTTP/2 counterpart is SpdySession starting from DoReadLoop, and spends

4.1s out of 9.4s. QUIC lags behind HTTP/2 at each of the four stages above. Furthermore,

we notice that, out of the 8.7s consumed by QuicChromiumPacketReader, QUIC

spends 3.0s generating responses such as ACKs. In contrast, for HTTP/2, the ACKs are

handled by the OS kernel, and they are generated more efficiently and sparsely due to

various optimizations such as TCP delayed ACK and receive offload.

5.6 Recommendations for Mitigation

Following the above experiments and analysis, we make several recommendations for

mitigating the observed issues.

Adoption of UDP GRO on the Receiver Side. Most importantly, UDP GRO needs

to be deployed on the receiver side to reduce the number of packets handled by the UDP

stack. This will reduce not only the in-kernel overhead, but also QUIC’s processing over-

head in the user space. However, given the heterogeneity of today’s commodity hosts

(PCs, mobile devices, and even embedded devices, with diverse OSes), wide deployment

of UDP GRO can be challenging, not to mention supporting it in the NIC hardware.

QUIC-friendly Improvements to the offloading solutions. We advocate that the

generic offloading solutions need some QUIC-friendly improvements. First, UDP GSO/-
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Figure 5.12: Parallel download experiments (instances of cURL or quic client down-
load 1 GB of files in total).

GRO needs to support offloading a train of packets with different sizes (§5.5.3). Second,

UDP GSO needs proper pacing configurations (i.e., avoid transmitting too many UDP

packets in a single burst that may incur network congestion) over the wild Internet. Ide-

ally, the pacing logic should be properly interfaced with QUIC’s logic such as congestion

control2.

Optimizing QUIC logic on the Receiver Side. There is also room for improvement in

the QUIC logic on the receiver side. Sending delayed QUIC ACKs [144] can help reduce

the overhead on generating QUIC responses. Besides, we note that Chromium currently

uses recvmsg to read individual UDP packets; using recvmmsg to read multiple UDP

packets in a single system call may help improve the receiver-side performance.

Multi-threaded download. We also notice that Chromium uses a single thread for

receiving network data. When fetching large files, using multi-threaded download (each

thread running on a separate CPU core) can improve the receive-side performance. Since

the tested Chrome browser version does not have built-in support of multi-threaded down-

load, we conduct an experiment where we launch k instances of cURL or quic client,

2Google has a simple experimental pacing design for UDP GSO, but it is not designed specifically for QUIC
and was only tested in data center networks.

125



each downloading a file of 1 GB/k (k = 1, 2, 5, 10). We use the latest finishing time across

the k instances to calculate the overall transfer time of 1 GB worth of data. As shown in

Figure 5.12, increasing k helps reduce the download time, in particular for QUIC. Nev-

ertheless, similar to parallel TCP connections, this approach may incur fairness issues in

network resource allocation. The sender could use existing solutions such as coupled con-

gestion control [204, 238] to bound the aggregated aggressiveness of the k QUIC sessions.

5.7 Summary

QUIC, with its design principles aimed at eliminating head-of-line blocking, intro-

ducing fast connection establishments, and integrating transport-layer security, promises a

more responsive and secure Web experience. However, our study, along with others, high-

lights areas where QUIC might not meet expectations. In environments like fast Internet

(>500 Mbps in our experiments), QUIC’s performance may not always live up to its name

(“quick”). Through comprehensive performance profiling, we reveal the root cause to be

the pronounced receiver-side processing overhead. This overhead manifests in the form

of excessive data packets observed at Layer 3 and above, as well as QUIC’s distinctive

user-space ACKs.

There are notable challenges to grapple with. The absence of certain offloading tech-

niques like UDP GRO, the user-space nature of QUIC, and QUIC’s inherent reliance on

UDP might complicate its deployment, especially in environments that have been meticu-

lously optimized for TCP. Nevertheless, it is pivotal to note that QUIC is still in its nascent

phase, with considerable research, exploration, and development fervently aiming to en-

hance its performance. The ongoing efforts and collaborations from multiple stakehold-
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ers in the Web ecosystem, including OS vendors, QUIC developers, and standardization

organizations, will play a crucial role in the evolution of QUIC. As more web services

transition to HTTP/3, we can expect a broader adoption of QUIC across the Internet. We

hope that our findings can spur more explorations to improve QUIC, and upper-layer pro-

tocols in general, boosting their performance for the next generation networks, services,

and applications.
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CHAPTER VI

LEO Satellite vs. Cellular Networks: Exploring the

Potential for Synergistic Integration

Low-Earth-Orbit (LEO) satellite networks, such as Starlink, are transforming global

network connectivity by bringing Internet access to remote and underserved areas. How-

ever, the current coverage and performance of the LEO satellite network service compared

with those of cellular networks are under-explored. In this chapter1, we present a measure-

ment study of the Starlink LEO satellite network in comparison with cellular networks,

aiming to uncover the potential for synergistic integration. Through a large-scale data

collection campaign and in-depth analysis, we identify the performance characteristics of

two Starlink configurations, evaluate the coverage of the current Starlink deployment com-

pared to major cellular carriers, and investigate the potential benefits of enabling multipath

using both LEO satellite and cellular networks.

1Part of this work was carried out in collaboration with Bin Hu, who was a Ph.D. student at the University
of Southern California at the time.
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6.1 Introduction

Since its debut in 2020, SpaceX’s revolutionary Starlink, a Low-Earth-Orbit (LEO)

satellite network, has gained over 1 million users with its promise of delivering global

connectivity [73]. It aims to provide services to remote and inaccessible areas where tra-

ditional wired or wireless networks fall short. However, both LEO satellite systems and

cellular networks face distinctive challenges that impede their ability to consistently attain

peak network performance. The seamless operation of Starlink requires an unobstructed

view of the sky. On the other hand, the coverage of 4G/5G cellular networks heavily relies

on the extensive deployment of base stations. Although some initial research has pre-

viously touched on Starlink’s performance [177, 151, 172], there lacks a comprehensive

investigation that compares the LEO satellite networks to terrestrial cellular networks. It

is also necessary to explore the mobility of Starlink dishes. Additionally, the performance

and accessibility of Starlink and cellular networks can often complement each other, and

thus enabling multipath connections may bring superior throughput and reliability com-

pared to relying on a single network.

To fill this gap, we conduct a large-scale measurement study to understand the perfor-

mance characteristics of Starlink satellite networks and compare the performance coverage

between Starlink and cellular networks.

First, we collect a unique driving dataset comprising experimental results of both Star-

link and cellular networks, including two types of Starlink configurations and three cellular

carriers. During our data collection, we conduct a range of experiments on several network

performance metrics. Our driving routes that span across five states in the US, consider

different geographical areas, densities of infrastructure deployment, and user populations.
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Throughout the data collection process, we cover a total distance of over 3,800 km in over

one month. The main challenge comes from how to collect data for both network types

simultaneously and ensure apple-to-apple fair comparison. We address this by installing

two Starlink dishes on the vehicle rooftop and carrying five smartphones set side by side.

With our dataset, we aim to answer the following questions:

What is the performance achievable by Starlink networks, in particular under

mobility? Previous studies look at Starlink’s performance using stationary hardware and

none of them considers mobility. For stationary use, there are already numerous ways

to access the Internet, while on the move people basically only rely on cellular networks.

Therefore, we take a different view to examine Starlink under mobility and compare it with

cellular networks. We evaluate key performance metrics of Starlink, such as throughput,

latency, and packet loss. Through bulk transfer and ping tests conducted during driv-

ing sessions across diverse geographic locations, we evaluated the performance dispari-

ties between TCP and UDP, uplink and downlink, and different Starlink configurations.

Furthermore, we analyze the impact of different factors such as moving speed and TCP

parallelism on network performance.

How does Starlink’s performance and coverage compare to that of major cellular

carriers? To better understand whether Starlink offers a broader coverage than traditional

cellular services. We compare the coverage and performance distribution of Starlink and

cellular networks in different areas. We aim to provide insights into the viability of Starlink

as a potential alternative to cellular networks for those who require reliable connectivity

in the wild.

What is the potential of enabling multipath for Starlink and cellular networks?
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The multipath technology was introduced to enhance network performance by utilizing

multiple network paths simultaneously. Given the highly variable performance of Starlink

and cellular networks, combining both networks may lead to a more satisfactory user

experience. Thus, we conduct emulation using our collected network traces to compare

the performance of single-path and multipath transports and understand the improvements

brought by MPTCP in throughput and reliability.

We summarize our key findings as follows:

• Compared to cellular networks, Starlink suffers from elevated packet loss while the

latency stays similar. We find that TCP severely suffers from such a high packet loss

of Starlink, leading to only 1/5 of the throughput achieved by UDP over Starlink.

TCP parallelism brings more benefits to Starlink than to cellular networks likely due

to its effective handling of packet loss. Nonetheless, this finding also calls for better

congestion control or Forward Error Correction (FEC) algorithms tailored for such

characteristics.

• We compare two types of Starlink configurations, Roam and Mobility, both de-

signed for use outdoors. While we do find better overall performance offered by the

more expensive one (Mobility, having 2× higher mean/median throughput), its addi-

tional cost cannot be fully justified by current usages. The 75-percentile throughput

of Roam, 93 Mbps, can already meet most application requirements in the wild.

• Due to the ultra-high speed operations of LEO satellites, the user’s moving speed is

negligible and thus poses little impact on Starlink’s network performance, resulting

in a similar trend across different speeds compared to cellular networks.
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• Cellular networks offer better performance in urban areas thanks to the densely de-

ployed base stations, while Starlink wins in suburban and rural areas with fewer

obstructions. Since most of the time, the cellular services experiences are either

low-band 5G or 4G LTE, the cellular throughput does not often reach very high.

Starlink demonstrates better overall performance. However, even after combining

cellular and Starlink, there are still areas with low performance (¡50 Mbps), likely

due to the combined effect from cellular base station deployment and obstruction to

satellite connections.

• In our MPTCP experiments, we first find that, under the default OS configuration,

MPTCP using Starlink and cellular networks brings marginal throughput gains com-

pared to single-path transfer due to the high variation of both networks easily filling

the buffer. After tuning the OS buffer settings, we see more significant improve-

ments (up to 66% improvement over the better path), benefiting from the comple-

mentary characteristics between Starlink and cellular networks. This emphasizes

the need for better MPTCP scheduler and congestion control algorithms.

To the best of our knowledge, this work represents the first in-depth investigation that

closely examines the performance of Starlink in comparison to cellular networks, particu-

larly under mobility. Through our measurements and analysis, we have firmly supported

the case for multi-path transport using LEO satellite networks and cellular networks. We

have released all the measurement data and source code associated with this study [78].
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Figure 6.1: Download throughput of different networks.

6.2 Motivation

An LEO satellite network consists of thousands of satellites orbiting the Earth at an

altitude of hundreds of miles. These networks operate differently from cellular networks.

The user terminal, typically a satellite dish, communicates with an LEO satellite, which is

connected to a ground station. The ground station is responsible for relaying data to and

from the Internet. They aim to provide services to remote and inaccessible areas where

traditional wired or wireless networks fall short.

However, both LEO satellite networks and cellular networks face unique challenges.

For example, LEO networks require an unobstructed view of the sky, whereas 4G/5G

cellular networks heavily rely on the extensive deployment of base stations. These issues

are further pronounced when users are moving. There has been a lack of comprehensive

investigation comparing LEO satellite networks to terrestrial cellular networks, and it is

necessary to explore the mobility of Starlink dishes. Given the distinct nature of the two

types of networks, the performance and accessibility of Starlink and cellular networks may

vary, but they may complement each other.
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Figure 6.2: Two dishes are mounted on the rooftop and five smartphones are placed side
by side in the vehicle.

To validate our hypothesis, we conduct a preliminary experiment using smartphones

connected to Starlink routers via Wi-Fi and to cellular networks, in a moving vehicle. We

perform iPerf data transfer tests to AWS servers and compare the throughput between

Starlink and cellular networks. Our results are summarized in Figure 6.1, where darker

colors (blue/green/orange/red) indicate periods of higher throughput. As we traversed

different areas, we can observe instances where Starlink demonstrated better throughput

performance compared to the cellular network, and vice versa. If combining the strengths

of both networks, users can enjoy a seamless and stable high-performance experience

throughout their journey. This motivates us to conduct further investigations to compre-

hensively understand the performance and coverage of both network types in real-world

scenarios, and to assess the feasibility of multi-path transport for LEO satellite and cellular

networks.
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6.3 Measurement Methodology

6.3.1 Hardware and Services

We first introduce the hardware setups and network services used.

Starlink offers a variety of plans, including Residential, Business, Roam, and Mobility,

among others. In this study, our focus is on the Roam (RM, for short) and Mobility (MOB)

plans, specifically designed for portable and in-motion use. The Roam plan offers easy

portability compared to a standard Starlink dish and provides Internet access while station-

ary or on the move. The Mobility plan, on the other hand, receives the highest priority in

the network, for instance, during congestion. It is specifically designed to support critical

in-motion applications, such as those used by emergency personnel. Besides, Mobility has

over 4× the hardware cost and a higher monthly fee than Roam. For a direct comparison

between the two plans, we have installed both Starlink dishes on the rooftop of a vehicle.

However, we acknowledge the possibility of interference that may affect the results. For

experiments involving cellular networks, we have selected three major commercial carri-

ers in the US: AT&T (ATT), T-Mobile (TM), and Verizon (VZ). We utilize five Samsung

Galaxy S21 smartphones. Three of these devices are connected to the cellular services,

while the remaining two are connected to the Starlink dishes using Wi-Fi.

Figure 6.2 shows our dish placement and smartphone setup.

6.3.2 Software Measurement Tools

We utilize several software tools for data collection: (1) We use iPerf to run

TCP/UDP downlink and uplink data transfer tests. (2) To measure latency accurately, we
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have developed an Android application that sends ping packets using UDP (UDP-Ping),

as ICMP ping packets are often blocked by certain servers. (3) To collect informa-

tion on network type, vehicle speed, GPS location, and signal strength, we employ 5G

Tracker [184, 185], a monitoring toolkit for cellular networks. We have made modifica-

tions to enable its functionality under both Wi-Fi and cellular connectivity.

6.3.3 Data Collection

We perform extensive drive tests across major cities and interstate freeways (spanning

five states) in the US. It encompasses diverse geographical regions, including densely pop-

ulated urban areas with tall buildings and open rural areas with minimal obstructions. We

drive at varying speeds in various areas. However, our driving speed is capped at 100 km/h

due to speed limits on different road segments. The driving routes consist of both straight

and curved roads, aiming to generalize our results with regard to vehicle steering. We

collect data during both daytime and nighttime. Furthermore, our data collection includes

not only clear weather conditions but also rainy and snowy conditions, to capture poten-

tial performance variations caused by environmental conditions. Note that, despite the

breadth of factors considered, not all are explicitly discussed in the following sections.

Upon analysis, certain environmental factors such as terrain and the time of day, along

with network-related factors such as server locations, are found to have a minimal impact

on the network performance.

Our driving trip yields a unique driving dataset, containing 1,239 network tests and

9,083 minutes of traces. Our field trip covers a total travel distance of over 3,800 km.
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Figure 6.3: Throughput performance comparison from different aspects.

6.4 Starlink Basic Performance

In this section, we analyze and compare the performance characteristics of Starlink

satellite networks with cellular networks, focusing on two Starlink configurations, Roam

and Mobility. We evaluate fundamental performance metrics including throughput, la-

tency, and packet loss, and conduct an in-depth examination of the performance gaps from

different aspects. Besides, we also examine the impact of vehicle speed and TCP paral-

lelism on performance.

6.4.1 Throughput, Latency, and Packet Loss

We start with analyzing the key performance metrics of Starlink.

TCP vs. UDP downlink. Figure 6.3a plots the Cumulative Distribution Functions

(CDFs) for TCP and UDP downlink throughput of both Starlink (Mobility) and cellular

(AT&T, T-Mobile, and Verizon) networks. While the performance disparity between cel-

lular TCP and UDP is minimal, the results consistently reveal that UDP outperforms TCP

in satellite networks, with the mean throughput being 128 Mbps and 29 Mbps, respec-

tively. This performance advantage of UDP can be attributed to the significant packet loss
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experienced by TCP in satellite networks. To substantiate this proposition, we analyze the

tcpdump traces collected while running iPerf and plot the average TCP packet loss

across all networks in Figure 6.5. When using Starlink, there is a much higher occurrence

of packet loss in both the uplink and downlink directions, compared to cellular networks.

This leads to retransmissions ranging from 0.3% to 1.3%. Such elevated packet loss sig-

nificantly impacts TCP performance and ultimately decreases Starlink’s TCP throughput.

Additionally, it is important to note that the UDP performance achieved with the Mobility

plan demonstrates a level of throughput that is comparable to that of cellular networks,

highlighting its effectiveness in facilitating data transfer.

Roam vs. Mobility. Figure 6.3b compares the network performance between the

Starlink Roam and Mobility plans. The Mobility plan exhibits superior performance

compared to Roam, likely because Roam’s dish lacks the ability to adjust its orienta-

tion promptly under high mobility while Mobility is designed for in-motion use with a

wider field of view. This may also benefit from the advertised prioritization for Mobil-

ity during network congestion. The median/mean throughput for Mobility and Roam are

197/128 Mbps and 93/63 Mbps, respectively. However, such 2x performance improve-

ments are not that significant compared to the over 4x higher cost on the hardware [6],

since the network requirements of most applications such as 1080P video streaming can

already be met by Roam. Unless for critical applications with demanding requirements,

the more cost-friendly Roam plan can effectively serve as a viable alternative to the Mo-

bility plan.

Uplink vs. downlink. Comparing the UDP uplink and downlink transfer of Starlink,

we find that the downlink throughput is around 10x higher than the uplink, as depicted
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Figure 6.5: Packet loss in TCP transfer.

in Figure 6.3c. This design choice of using FDD for dividing uplink and downlink chan-

nels [143] aligns with the inherent characteristics of network traffic, where users typically

consume more data in the form of downloads rather than uploads. Additionally, Starlink’s

satellite dishes are optimized to prioritize downlink speed over uplink speed due to limited

power resources and transmitting capacity. It is more energy-efficient to receive a signal

than to transmit it [147, 228]. We also learn that, by design, the Starlink network offers

higher downlink bandwidth than the uplink [77].

Latency. We utilize our Android application, UDP-Ping, to measure latency. We

allocate 1024 bytes to each UDP packet and calculate the round-trip time (RTT) for each

acknowledged packet. Figure 6.4 illustrates the CDF of latency for five different networks.

Overall, the RTTs for all networks primarily fall within the range of 50 to 100ms. Verizon

and T-Mobile exhibit the lowest RTT values, while Starlink Roam and Starlink Mobil-

ity plans experience comparatively higher latency. It is surprising to see that Starlink’s

latency is not significantly worse than that of cellular networks. Intuitively, satellite net-

works should incur significantly higher latency due to the long satellite-ground distance.

However, the additional latency introduced by satellite data transmission is only approxi-
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Figure 6.7: Impact of TCP parallelism.

mately 1.8 ms one way, thanks to the “low-earth” orbiting nature. The estimation is derived

from the LEO satellites’ orbital altitude of around 550 km and the speed of light:

Latency =

(
Distance

Speed of light

)
=

(
550 km

299792 km/s

)
= 1.835ms (6.1)

This acceptable level of latency indicates that satellite networks can provide reliable per-

formance comparable to cellular networks. Notably, AT&T demonstrates the highest net-

work latency among the tested networks, likely due to its relatively low coverage along

our trip [49].

6.4.2 Potential Factors Affecting Throughput

We discuss the impact of two factors, moving speed and TCP parallelism, on the

throughput performance of Starlink.

Moving speed. To ensure an unbiased analysis and isolate other factors, we specifi-

cally extract data collected in rural areas which offer minimal obstructions. This methodol-

ogy mitigates the challenges associated with conducting high-speed driving tests in urban

environments, where speed limits restrict the full exploration of network performance.
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More than 90% of our urban data were collected at speeds below 50 km/h. Moreover, the

satellite connections can be negatively impacted by obstructions, while cellular networks

may exhibit better performance in urban areas.

Figure 6.6 shows the average throughput grouped by speed. Notably, both satellite

(Mobility) and cellular (AT&T, T-Mobile, and Verizon) network throughputs have min-

imal variation in relation to driving speed. This suggests that the network performance

remains largely unaffected by the vehicle’s speed during normal driving conditions. Con-

sidering Starlink’s operation in low earth orbit at an approximate speed of 28,000 km/h,

the speed of an object on the ground is negligible and can be considered stationary. For cel-

lular networks, on the other hand, efficient handovers contribute to maintaining consistent

throughput.

TCP parallelism. TCP parallelism is a technique that enables parallel TCP connec-

tions between senders and receivers to increase throughput. Our experiments compare

three schemes: 1, 4, and 8 TCP connections. Figure 6.7 demonstrates the improvement

achieved by TCP parallelism on downlink throughput for both satellite (Roam) and cel-

lular networks. “P” denotes parallelism, where ’8P’ represents 8 parallel connections.

Increasing the number of parallel TCP connections enhances throughput in both networks.

Starlink achieves a better throughput improvement, over 50% with 4 parallel TCP con-

nections and over 130% improvement with 8 connections. TCP parallelism optimizes

bandwidth utilization by distributing data across multiple connections, thereby mitigating

the impact of TCP congestion control. It also improves packet loss handling. In case of

packet loss in one connection, other connections continue data transmission, minimizing

the impact on overall throughput. Given the higher packet loss observed in the Starlink
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network (§6.4.1), increasing TCP parallelism enables more efficient handling of packet

loss, resulting in improved throughput.

6.5 Coverage Study

This section focuses on the coverage area of Starlink. We discuss the network per-

formance in different geographical regions and the proportion of coverage within each

performance level.

6.5.1 Impact of Area Types

Deploying and operating cellular base stations in rural areas incurs much higher costs

due to low population density [66], while users in urban areas enjoy more reliable cellular

network connections thanks to the dense base station deployment. For Starlink, urban

areas with tall buildings can obstruct satellite signal transmission. Thus, the location of

the network affects both Starlink and cellular networks.

During data collection, we traversed through different types of areas, recording the

latitude and longitude of each data point. Then we compile a list of all cities and towns

we passed through, calculate the distances from each data point to these locations, and

select the smallest distance. Subsequently, using predetermined thresholds, we categorize

the data into three area types: urban, suburban, and rural. The data proportion of the three

areas is 29.78%, 34.30%, and 35.91%, respectively.

Figure 6.8 shows the throughput distributions for both Starlink (Mobility) and cellu-

lar networks. Here, we highlight the results of UDP downlink since Starlink’s down-

link throughput is inherently higher and UDP is less affected by packet loss compared to
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TCP. They also reflect the upper limit of network bandwidth. It can be observed that the

throughput of cellular networks decreases when reaching rural areas, while the throughput

of Starlink networks increases in rural areas. This is because cellular network base sta-

tions are more densely deployed in populated areas, whereas in densely populated areas,

the network performance of Starlink can be affected by obstacles such as tall buildings.

From our analysis of UDP Downlink, we find that the throughput of Starlink networks is

even higher than that of cellular networks in suburban and rural areas. We also find that

the throughput of Starlink is distributed similarly in suburban and rural areas. During our

driving trip, we found a lot of obstructions only in urban areas. Suburban areas such as

towns have much fewer high buildings, leading to similar obstruction conditions to rural

areas.

6.5.2 Performance Coverage

To visually represent the coverage of Starlink and cellular networks, we analyze our

data and group data points of different network performance based on different perfor-

143



mance levels. The high-performance regions are characterized by throughput exceeding

100 Mbps, while the medium-performance regions exhibit throughput ranging between 50

and 100 Mbps. The low-performance regions have a throughput between 20 and 50 Mbps.

Additionally, we consider a ”very-low” performance level, where the throughput is under

20 Mbps, to understand if there are regions with extremely poor coverage for the different

technologies. Although our data was collected during certain periods in each region and

might not reflect the long-term network performance in specific regions, it still provides

insights into the coverage of network performance of Starlink and cellular networks. The

results of our analysis are presented in Figure 6.9, showcasing the proportions of different

performance regions for the five networks.

We can learn that Starlink Mobility exhibits the best overall performance, with a pro-

portion of high-performance regions at 60.61%. Verizon and T-Mobile closely follow,

with proportions of high-performance regions at 44.39% and 42.47%, respectively. Star-

link Roam and AT&T, however, demonstrate the poorest performance, with proportions of

low and very-low performance regions approximately at 39.88% and 53.45%, respectively.

We plot a bar named BestCL which indicates the best performance of all three cellular net-

works. This is reasonable since many mobile virtual network operators (MVNOs) utilize

the services of several mobile carriers and automatically pick the best option for users.

We also combine the measurement records of Starlink and cellular as shown as the bars,

RM+CL and MOB+CL, in Figure 6.9. Their improvements over a single cellular network

are likely due to the significant presence of non-urban areas with minimal obstructions,

which currently favor Starlink’s performance. Noticeably, combining all cellular networks

also leads to results comparable to RM+CL. As mentioned earlier, compared to Roam
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which is not designed for mobile use, the Mobility dish has a wider field of view and better

positioning capability, resulting in Mobility having the overall best coverage of network

performance regions.

We also plot two additional bars representing the best performance if a user has ac-

cess to both Starlink and cellular networks (and can switch between them with zero ef-

fort). From a user experience perspective, this highlights the importance of implementing

multipath for Starlink and cellular networks. Due to their inherent differences, Starlink

and cellular networks exhibit significant variations in the coverage of high-performance

regions. Compared with the original measurement records, these combinations achieve

better high-performance network coverage. We are encouraged to explore the multipath

feasibility in the next section.

6.6 Multipath Transport

Multipath transport, in particular MPTCP, has shown its success in numerous combi-

nations of networks [107, 168, 215] and various applications [130, 126, 189, 265]. In this

section, through realistic emulation, we demonstrate the potential of enabling multipath

for Starlink and cellular networks.

Experimental setup. We run MPTCP experiments on two Ubuntu 22.04 hosts, using

MpShell (a variant of Mahi-mahi [113, 187]). It creates multiple virtual interfaces with

controlled network conditions, using packet traces and latency statistics. To this end, we

use the UDP downlink throughput traces in our driving dataset and convert them to packet

traces for replay on MpShell. Different network traces are aligned via timestamps so that

they reflect the network conditions experienced by users at the same location and time.
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Figure 6.10: Single-path TCP and MPTCP data download performance.

Note that we opt for UDP data instead of TCP data to emulate the available bandwidth at

each timestamp and avoid the impact of TCP congestion control. For multipath transport,

we run a modified version of iPerf [54] that supports MPTCP. It opens MPTCP sockets

instead of regular TCP sockets. To compare the performance between MPTCP and each

single-path transport, we run two types of experiments in the MpShell environment: (1)

We start two iPerf client instances on the client machine and two server instances on

the server side. Each client downloads data using one network interface from the iPerf

server; (2) We start an iPerf client with the MPTCP option enabled and a iPerf server.

The client downloads data from the server using MPTCP.

Results. Figure 6.10 presents the performance of 5-min download tests. The first three

boxes represent the single-path TCP transfer results under AT&T, Verizon, and Mobility

networks. The next two show the MPTCP results (Mobility+AT&T, Mobility+Verizon)

when concurrently using a Starlink and a cellular service. The benefits of MPTCP are

clear; it improves the overall download throughput. On average, the bandwidth utilization

of the two tested combinations is 81% and 84%, and the improvement over the better path
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Figure 6.11: Throughput traces for single-path TCP and MPTCP data download.

reaches 30% and 66%, respectively.

We also put another two boxes showing the multipath results before tuning the sys-

tem buffer. Initially, we notice that, with the default buffer sizes, MPTCP has marginal

improvements over single-path transfers. In some cases, the throughput collapses to “0”,

leading to the failure of the iPerf test. Therefore, we increase the buffer size to exceed

10× the link’s bandwidth-delay product to accommodate such network fluctuations.

Looking into the throughput progression over time in Figure 6.11, we can learn that

MPTCP almost always outperforms either single-path transfer, taking advantage of the
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bandwidth of the faster path. For example, in Figure 6.11a, between 0-85s, AT&T expe-

riences severe performance degradation, likely due to weak cellular signal strength. With

MPTCP, the throughput is maintained at a much higher level. Also, in Figure 6.11b,

when both network conditions are favorable at around 50-90s, MPTCP throughput ex-

ceeds 300 Mbps which can never be achieved by either network alone.

The current MPTCP experiments are conducted via emulation and we leave developing

a MPTCP scheduler for LEO satellite networks and running real MPTCP experiments

as future work. The default MPTCP scheduler implemented in the OS (kernel v5.19)

is BLEST [117] which optimizes MPTCP send window occupation to avoid transport-

layer head-of-line blocking. We envision that, considering the specific usage scenarios

and characteristics of the two network types, further improvements can be made to future

MPTCP scheduler design, such as reducing throughput fluctuations.

6.7 Summary

We present a measurement study on the performance of Starlink satellite and cellular

networks. Rigorous analyses reveal that Starlink outperforms cellular networks in open

areas, but suffers from higher packet loss leading to degraded TCP performance. Their

complementary characteristics offer potential improvements to network connectivity but

require optimizations. We hope that our findings can spur more research to improve LEO

satellite networks.
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CHAPTER VII

Related Work

We summarize the related work in several categories below.

7.1 Cooperative Vehicular Sensing

Numerous efforts have been made on cooperative vehicular perception. AVR [202]

extends two vehicles’ vision by wirelessly sharing stereo camera data between them.

The See-Through System [190] streams video data directly from a leader vehicle to a

follower to enhance the follower driver’s visibility. Cooper [104] improves 3D object

detection algorithms for sensor sharing but relies on a single-vehicle dataset and sim-

ulates cooperative perception by merging data collected by the same vehicle at differ-

ent timestamps. Arnold et al. [86] instead give attention to perception using station-

ary infrastructure sensors. Various studies also target vehicle-to-vehicle communica-

tions [156, 109, 251, 234, 203, 255]. However, existing wireless techniques struggle to

support the sharing of raw sensor data at a high frame rate, particularly as the system

scales up. Prior works mostly focus on data exchange between two vehicles (e.g., a leader
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and a follower) and do not evaluate vehicle-to-vehicle sharing at scale. EMP employs edge

servers to aggregate data from vehicles, which allows each vehicle to only upload the data

once instead of sharing multiple times to different peer vehicles. We further evaluate its

performance with varying numbers of vehicles in the system. Beyond sharing raw sensor

data, feature-level and object-level sharing approaches have been explored to save band-

width and reduce processing complexity. F-Cooper [103] devises a cooperative perception

framework based on features extracted from point cloud data. This solution may not save

much bandwidth while sacrificing some original information. FusionEye [170] leverages

Bipartite Graph to merge objects detected from image data. Rauch et al. [207] discuss

sharing locally perceived object data and investigate the temporal and spatial alignment

for the shared data. Nonetheless, object-level sharing can fail when there are missed ob-

jects in the single-view detection since the missed ones will never appear in the combined

data. In our work, to retain important sensor details while reducing bandwidth usage, we

enable efficient raw sensor data sharing by carefully partitioning the data and prioritizing

different portions to be uploaded.

There are many CAV applications that can make use of on-board sensor data such

as 2D images and 3D point clouds and benefit from EMP’s sharing framework. For ex-

ample, connected and autonomous driving systems rely on sensor data for object detec-

tion [252, 160, 222], object tracking [87, 217, 257], motion prediction [240], and path

planning [165]. Sharing sensor information can provide CAVs and roadside infrastruc-

tures with a broader understanding of the surroundings, ultimately leading to a safer driv-

ing environment [102, 221]. Research has also looked at the attack and defense aspects of

cooperative perception [254, 221, 128].
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7.2 5G Performance, Power, and QoE Implications

Xu et al. [242] conduct a measurement study of a commercial mid-band 5G service in

China. Narayanan et al. [179] establish baseline performance for the initial 5G commercial

deployments (mmWave and mid-band) in the US. Lumos5G [182] focused on mmWave

5G throughput characterization and proposed machine learning models for throughput pre-

diction. Our work considers both mmWave and low-band 5G with a broader range of 5G

smartphone models and server locations. A plethora of studies have extensively explored

3G/4G power characteristics and power modeling [201, 219, 253, 200, 138, 105, 210], but

5G remains under-explored. Xu et al. [242] conducted a preliminary measurement study

to understand mid-band 5G’s power consumption and energy efficiency using a software

power monitor. In our work, we utilize both a software-based approach and a hardware

power monitor, providing a more thorough characterization of 5G power consumption for

mmWave and low-band 5G and comparing it to existing 4G. Besides, we model data trans-

fer power considering factors such as signal strength and throughput. For mobile applica-

tions, 4G video delivery has been widely investigated in the literature [244, 231, 163, 264].

Han et al. [129] demonstrate streaming volumetric video over mmWave 5G under line-of-

sight conditions. Efforts have been made to evaluate different ABR algorithms for HTTP

adaptive streaming [174, 84, 167, 246]. Meanwhile, most previous studies focus on un-

derstanding and improving web page loading over legacy 3G/4G networks [199, 98, 241].

Narayanan et al. [179] experiment with different HTTP versions and encryption configura-

tions using mmWave 5G. Xu et al. [242] perform a preliminary study of UHD panoramic

video telephony and examine the downloading and rendering performance with various

types of websites using mid-band 5G. In our work, we perform a comprehensive exam-
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ination of the performance and energy consumption for streaming videos using existing

ABR algorithms and loading top websites over 5G. Furthermore, based on the insights,

we propose intelligent interface selection schemes to satisfy different QoE goals.

7.3 QUIC Characterization

Since its advent at Google in 2013, QUIC has been extensively researched in the lit-

erature. Google presented their experience with QUIC after years of Internet-wide de-

ployment. Carlucci et al. [100] examined an early version of QUIC (v21) and showed

its superior performance over TCP. Likewise, Megyesi et al. [176] compared QUIC with

SPDY [237] and HTTP/1.1 and highlighted QUIC’s performance improvements. QUIC’s

rapid evolution has led to efforts investigating the interoperability across QUIC imple-

mentations [220, 175, 146]. Longitudinal studies, such as by Kakhki et al. [150] and

Piraux et al. [197], traced QUIC’s progression over time. Rüth et al. [212] took a first

look at QUIC deployment and usage at an early stage. Similarly, QScanner [267] is imple-

mented to analyze early QUIC deployments. There is also a rich tapestry of research diving

into the impact of QUIC on various applications including videos streaming [194, 243],

web browsing [239, 213], and a mix of different workloads [224, 250], and on various

platforms including mobile [122] and satellite communication [155, 115]. None of these

works specifically focus on IETF QUIC’s performance on major applications over high-

speed networks as we do.

With various measurement studies on different aspects of QUIC, some efforts have

been made to optimize QUIC from the industry. Through presentations and blogs, compa-

nies like Google [142], Cloudflare [28], and Fastly [35] reported their progress on optimiz-
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ing QUIC. Some of their findings such as using UDP GSO [21] are relevant to ours. How-

ever, all the above works are concerned with the server-side performance. Since downlink

traffic dominates the overall server-side traffic, they naturally focus on optimizing data

transmission performance. Furthermore, some of their measurement methodologies are

not very realistic or not documented in details, making it difficult to reproduce the exper-

iments. For example, Cloudflare [28] made some attempts in accelerating sending data

over QUIC including using sendmmsg and UDP GSO, but both the client and server run

on the same host (a laptop) instead of a production environment. Fastly [35] attributed

the high computational cost of QUIC to ACK processing and per-packet sender over-

head. However, they also focus on the sender-side optimization and use a simple setting

where the CPU’s clock is limited at only 400 MHz in order to measure the throughput

sustainable with all available computational power. Red Hat [53] also mentioned enabling

optional TSO/GSO support in a new release but omitted a performance examination on

QUIC. In contrast, we investigate the receiver-side performance bottleneck through rigor-

ous measurements and profiling on multiple dimensions (network traces, OS kernel, QUIC

runtime, and higher-layer applications). Besides, we identify new challenges in making

offloading solutions harmonize with QUIC.

7.4 Understanding LEO Satellite Networks

Compared to widely deployed mobile networks like 4G/5G [139, 185], LEO satellite

networks are relatively new and have not been extensively studied in large-scale commer-

cial deployments. Some works take the first step to evaluate the performance of LEO

satellite networks. Michel et al. [177] compare Starlink with SatCom and a wired net-
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work. Kassem et al. [151] analyze Starlink connectivity from a browser-side view. Ma et

al. [172] present initial measurement results on Starlink’s network characteristics. Li et

al. [166] evaluate the network impact of Starlink’s self-driving for its satellites. Our study

differs from these, focusing on Starlink’s network performance under mobility and its

comparison with cellular networks.

Other research has offered insights into future LEO satellite networks and the in-

tegration of satellite and terrestrial networks [158, 133, 171]. Some focus on rout-

ing [95, 233, 131] and network topology design [261, 225, 94], as well as handovers [85].

L2D2 [232] is a satellite ground station design for low-latency downlink transmission.

Tools and platforms are proposed for evaluating LEO satellite networks [85, 159, 152]. In

our paper, we explore the potential of combining Starlink and cellular networks for better

network performance.
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CHAPTER VIII

Conclusion and Future Work

8.1 Conclusion

Recent years have witnessed explosive growth in innovations in network infrastruc-

tures and applications. For example, connected and autonomous vehicles aim to improve

road safety and driving efficiency. 5G promises to deliver ultra-high throughput, low la-

tency, and large capacity. QUIC is expected to replace the original TCP stack to enhance

the Web experience. LEO satellite networks strive to ensure stable connectivity anytime,

anywhere. However, these advancements also bring numerous unknowns. Blindly run-

ning new network applications on existing networks or running existing applications on

top of new network infrastructures may not yield expected performance. This dissertation

is dedicated to addressing this challenge. We demonstrate that systematic measurements

and analyses aimed at unveiling the intricacies of emerging network infrastructures, along

with the development and innovation of efficient network applications, hold the key to

unlocking the full potential of the next-generation network ecosystem.

Specifically, we start with investigating and improving the performance of connected
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and autonomous vehicles. We identify key limitations in single-vehicle perception capabil-

ities. With the idea of sensor data sharing in mind, we further realize the need for an edge

node to process shared sensor data. To address the challenges of system scalability, we

leverage Voronoi Diagrams to optimize data sharing, balancing data quality and size. We

design and implement EMP, an edge-assisted multi-vehicle collaboration framework for

perception enhancement with key components including sensor data partitioning, schedul-

ing, and merging. In order to better evaluate multi-vehicle perception, we collect the first

synthetic multi-vehicle LiDAR dataset using a video game containing realistic scenes. Ex-

tensive experiments demonstrate that EMP outperforms naı̈ve (no data partitioning) and

vehicle-to-vehicle sharing schemes under different vehicle and network settings, with low

overhead. A case study of driving scenarios with road hazards showcases EMP benefits in

improving road safety.

Next, we study the network performance, power characteristics, and application impli-

cations of commercial 5G networks. We examine 5G from several dimensions, including

5G carriers, deployment schemes, frequency bands, mobility patterns, user devices, and

upper-layer applications. We compare 5G results with those measured over 4G/LTE. We

build various measurement tools including 5G Tracker and RRC-Probe to facilitate data

collection. Key findings include but are not limited to: 5G provides satisfactory perfor-

mance and has gained noticeable improvements since its debut; its performance is im-

pacted by geographical properties, calling for the deployment of edge nodes; During data

transfer, 5G’s absolute power consumption is higher than 4G but is more power-efficient;

downlink transfer is more efficient than uplink; adaptation of ABR algorithms can boost

their performance over 5G; and web browsing can benefit from intelligent selection be-
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tween 4G and 5G. Overall, our study highlights the challenges posed by the unique char-

acteristics of 5G and demonstrates potential ways for leveraging these features to improve

user experience.

Moving forward, we look into the performance of the QUIC transport protocol. Given

numerous existing works providing findings of both performance gains and degradations

compared to other protocol stacks, we advocate performance examinations in the context

of specific services and setups. In our scope, we consider a relatively under-explored yet

important scenario, running QUIC over high-speed networks. Our experiments reveal the

gap between QUIC’s design goal and its actual performance. QUIC is not “quick” enough

— its slowness is prevalent across data transfer tools and production browsers, affecting

various web applications including file download, video content delivery, and web page

loading, though to different extents. We perform rigorous analysis with packet traces and

kernel/user space profiling to find the root cause. The results indicate that QUIC incurs

higher overhead when processing packets on the receiver side and fails to benefit from

existing NIC offloading mechanisms as TCP does. We make several recommendations

including the adoption and adaptation of offloading solutions and receiver-side QUIC op-

timization, to mitigate the performance issues and unleash its potential.

To validate the promise of LEO satellite networks’ performance stability and accessi-

bility, we carry out a large-scale inter-state data collection campaign for Starlink satellite

networks and cellular networks. The results show that Starlink suffers from elevated packet

loss, leading to lower TCP throughput than UDP, while the latency stays similar. A com-

parison between two Starlink configurations (both designed for outdoor use) indicates that

the less expensive one may already meet average applications’ requirements in the wild.
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User’s moving speed is negligible considering LEO satellites’ ultra-high speed operations

in space. Notably, the two networks exhibit totally different coverage. Cellular networks

offer better performance in urban areas, while LEO networks win in suburban and rural

areas given their design and deployment nature. This further led us to explore the potential

of combining the two types of networks for an always-on experience.

In summary, EMP represents the first framework for multi-vehicle perception with

edge assistance. It is expected to enable or boost various cooperative sensing applications

involving multiple vehicles. Our findings on commercial 5G reveal the current state of

the 5G ecosystem. We have seen follow-ups on understanding the evolution of 5G over

the years as well as applications of our proposed algorithms for 5G-specific application

adaptation. With the excessive receiver-side processing overhead identified as the major

contributor to QUIC’s performance issues over fast Internet, and considering the increas-

ing adoption of QUIC, we call for more efforts to explore and refine QUIC, and more

broadly, upper-layer protocols. As LEO satellite networks are getting hot, we hope our

comparative study of Starlink and cellular networks can inspire further research to im-

prove the functionality and integration of LEO satellite networks with terrestrial networks.

We have made our system prototype, datasets, and measurement tools [48, 62, 82, 78]

publicly available to support ongoing research in all four areas covered in this dissertation.

8.2 Limitations and Future Work

While this dissertation has provided valuable insights and solutions into characterizing

and improving next-generation network infrastructures and applications, a number of di-

rections that are worth exploration remain. We summarize them as follows and encourage

158



future efforts for further investigation.

• Cooperative vehicular perception. Future work can explore improvements in sen-

sor sharing and cooperative perception. EMP’s REAP algorithm partitions the sen-

sor data based on vehicle locations and network resources. Following this direction,

further accounting for occlusions to adjust the region boundaries may lead to bet-

ter performance. Besides, vehicle-to-infrastructure based sharing may not always

work best. Ideally, a combination of both vehicle-to-infrastructure and vehicle-to-

vehicle sensor sharing schemes with dynamic adaptation may benefit more different

driving scenarios, environments, weather conditions, and CAV and infrastructure

deployment stages. Additionally, object detection algorithms specifically tailored

(built and trained) for multi-vehicle sensor data can potentially outperform current

general-purpose algorithms made for sensor data collected by single vehicles.

• 5G networks. We have conducted a comprehensive measurement study on commer-

cial 5G, which provides an overall idea of what 5G currently looks like in terms of

network performance, power, and application QoE, compared to 4G/LTE. With the

findings revealed, future work can further dig into specific aspects seeking improve-

ments. For example, with our 5G power model, one can build a power consump-

tion prediction module to intelligently wake up or shut down the UE’s 5G interface

based on instant power saving needs. The application logic can also be adjusted to

balance QoE and power consumption. Moreover, taking into account 5G’s unique

characteristics such as high and fluctuating throughput, video adaptation and web

page loading strategies should be redesigned to work better under 5G or even the

coexistence of 4G, 5G, and WiFi.
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• QUIC. As emphasized earlier, it is important to examine a transport protocol “in

context”. It is hard to generalize the findings obtained from a specific service and

setup, for example, high-speed Internet, in our case. Consider the following scenar-

ios: data center networks supporting ultra high bandwidth for large volumes of data

traffic versus networks connecting IoT devices, and continuous application traffic

versus intermittent traffic. The performance of QUIC, as well as the comparison

with other protocols, can be totally different and awaits exploration.

• LEO satellite networks. Our research primarily focuses on understanding Star-

link’s basic network performance compared with cellular networks, their coverage,

and potential combination. However, there is still a long way to go for LEO satellite

networking research. For example, the handover mechanism in LEO satellite net-

works is entirely different from terrestrial cellular networks that rely on the deploy-

ment of base stations. Also, this will be a black-box study since the operator does

not release any design or runtime details. Our initial experiments and analyses have

shown that satellite handover exhibits strong periodicity and predictability. Future

work can look at how to predict satellite handover events and prepare different layers

(e.g., transport, application) for the incoming handover, which potentially leads to

temporal disruption. Cross-layer adaptation can improve application performance.

It is crucial to integrate measurement findings with system design to fully harness

the potential of next-generation network infrastructures. This dissertation highlights the

importance of systematic measurements and analyses in understanding the intricacies of

emerging network technologies and applications. By identifying key performance lim-

itations and proposing innovative solutions, we advocate for a balanced approach that
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combines empirical analysis with practical design. The lessons learned from this research

provide a robust foundation for future advancements, promoting the development of a

more resilient, efficient, and intelligent network ecosystem.
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[167] M. Licciardello, M. Grüner, and A. Singla. Understanding video streaming algo-
rithms in the wild. In Passive and Active Measurement: 21st International Con-
ference, PAM 2020, Eugene, Oregon, USA, March 30–31, 2020, Proceedings 21,
pages 298–313. Springer, 2020.

[168] Y.-s. Lim, E. M. Nahum, D. Towsley, and R. J. Gibbens. Ecf: An mptcp path
scheduler to manage heterogeneous paths. In Proceedings of the 13th international
conference on emerging networking experiments and technologies, pages 147–159,
2017.

[169] S.-C. Lin, Y. Zhang, C.-H. Hsu, M. Skach, M. E. Haque, L. Tang, and J. Mars. The
architectural implications of autonomous driving: Constraints and acceleration. In
Proceedings of the Twenty-Third International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 751–766, 2018.

[170] H. Liu, P. Ren, S. Jain, M. Murad, M. Gruteser, and F. Bai. Fusioneye: Perception
sharing for connected vehicles and its bandwidth-accuracy trade-offs. In 2019 16th
Annual IEEE International Conference on Sensing, Communication, and Network-
ing (SECON), pages 1–9. IEEE, 2019.
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