
Eur. Phys. J. B 38, 321–330 (2004)
DOI: 10.1140/epjb/e2004-00124-y THE EUROPEAN

PHYSICAL JOURNAL B

Detecting community structure in networks

M.E.J. Newmana

Department of Physics and Center for the Study of Complex Systems, University of Michigan, Ann Arbor,
MI 48109–1120, USA

Received 10 November 2003
Published online 14 May 2004 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2004

Abstract. There has been considerable recent interest in algorithms for finding communities in networks—
groups of vertices within which connections are dense, but between which connections are sparser. Here
we review the progress that has been made towards this end. We begin by describing some traditional
methods of community detection, such as spectral bisection, the Kernighan–Lin algorithm and hierarchical
clustering based on similarity measures. None of these methods, however, is ideal for the types of real-world
network data with which current research is concerned, such as Internet and web data and biological and
social networks. We describe a number of more recent algorithms that appear to work well with these
data, including algorithms based on edge betweenness scores, on counts of short loops in networks and on
voltage differences in resistor networks.

PACS. 89.75.Hc Networks and genealogical trees – 87.23.Ge Dynamics of social systems – 89.20.Hh World
Wide Web, Internet – 05.10.-a Computational methods in statistical physics and nonlinear dynamics

1 Introduction

In the continuing flurry of research activity within physics
and mathematics on the properties of networks, a partic-
ular recent focus has been the analysis of communities
within networks [1–10]. In the simplest case, a network or
graph can be represented as a set of points, or vertices,
joined in pairs by lines, or edges. Many networks, it is
found, are inhomogeneous, consisting not of an undiffer-
entiated mass of vertices, but of distinct groups. Within
these groups there are many edges between vertices, but
between groups there are fewer edges, producing a struc-
ture like that sketched in Figure 1.

The ability to find communities within large networks
in some automated fashion could be of considerable use.
Communities in a web graph for instance might cor-
respond to sets of web sites dealing with related top-
ics [11,12], while communities in a biochemical network or
an electronic circuit might correspond to functional units
of some kind [4,5,13,14]. In this paper we discuss com-
puter algorithms for the extraction of communities from
raw network data.

The outline of the paper is as follows. In Section 2
we describe some of the historical approaches to finding
communities including spectral partitioning and hierarchi-
cal clustering. Then in Section 3 we describe some newer
methods that have appeared in the last few years, includ-
ing the edge betweenness method of Girvan and Newman

a e-mail: mejn@umich.edu

Fig. 1. A small network with community structure of the type
considered in this paper. In this case there are three communi-
ties, denoted by the dashed circles, which have dense internal
links but between which there are only a lower density of ex-
ternal links.

and a number of variations on it proposed by other au-
thors. In Section 4 we give our conclusions.

2 Traditional approaches

The methods described in this paper all assume that we
are given a network structure that we wish to divide into
communities in such a way that every vertex belongs to
one of the communities. We assume that the network is
of the simplest kind possible, with a single type of undi-
rected, unweighted edge connecting unweighted vertices



322 The European Physical Journal B

of a single type, although generalizations to more sophis-
ticated network types have been given for some of the
algorithms described.

The problem of finding good divisions of networks has
been studied for some decades now in two fields in particu-
lar, computer science and sociology, which have developed
quite different approaches as we now describe.

2.1 Computer science approaches

The typical problem in computer science is that of divid-
ing the vertices of a network into some number g of groups
with roughly equal size, while minimizing the number of
edges that run between vertices in different groups. Com-
puter scientists refer to this task as graph partitioning.
Graph partitioning problems arise for example in the opti-
mal allocation of processes to processors in a parallel com-
puter. In practice, most approaches to graph partitioning
have been based on iterative bisection: we find the best
division we can of the complete graph into two groups,
and then further subdivide those two until we have the
required number of groups. Among the many algorithms
suggested for the problem, two have dominated the lit-
erature: the spectral bisection method [15,16], which is
based on the eigenvectors of the graph Laplacian, and the
Kernighan–Lin algorithm [17], which improves on an ini-
tial division of the network by optimization of the number
of within- and between-community edges using a greedy
algorithm.

Spectral bisection: The Laplacian of an n-vertex undi-
rected graph G is the n × n symmetric matrix L whose
diagonal element Lii is the degree of vertex i, and whose
off-diagonal element Lij is −1 if vertices i and j are con-
nected by an edge and zero otherwise. Alternatively, one
can write L = D − A, where D is the diagonal matrix of
vertex degrees and A is the adjacency matrix. Since the
degree Dii =

∑
j Aij , it follows that all rows and columns

of the Laplacian sum to zero, and hence that the vector
1 = (1, 1, 1 . . .) is always an eigenvector with eigenvalue
zero.

If the network separates perfectly into communities,
i.e., divides into g non-overlapping groups of vertices
Gk(k = 1 . . . g) such that there are only within-community
edges and no between-community ones—the groups are
components of the graph—then the Laplacian will be
block diagonal. Each diagonal block will form the Lapla-
cian of its own component, and will therefore also have
an eigenvector v(k) with eigenvalue zero and elements
v
(k)
i = 1 if i ∈ Gk and 0 otherwise. Thus there will be

g degenerate eigenvectors with eigenvalue 0.
If the network separates well but not perfectly into

communities—if there are just a few edges that do not
fit the block-diagonal pattern—then this will no longer
be perfectly true. Instead there will in general be the one
eigenvector 1 with eigenvalue zero, and g − 1 eigenvalues
slightly different from zero, indeed slightly greater than
zero, since all eigenvalues of the graph Laplacian are non-

negative1. The corresponding eigenvectors will approxi-
mately be linear combinations of the eigenvectors v(k) de-
fined above. Hence, by looking for eigenvalues of the graph
Laplacian only slightly greater than zero and taking lin-
ear combinations of the corresponding eigenvectors, one
should in theory be able to find the blocks themselves, at
least approximately.

A particular special case of this argument is when there
are only two blocks. Noting that all eigenvectors corre-
sponding to non-degenerate eigenvalues of a real symmet-
ric matrix are orthogonal, it is clear that all eigenvectors
other than that corresponding to the lowest eigenvalue
must have both positive and negative elements. And for
the case of two weakly coupled communities there will thus
be one eigenvector with eigenvalue slightly greater than
zero and elements all positive for one community and all
negative for the other, since all elements are (nearly) equal
within a community (see above). Thus, we can divide the
network into its two communities by looking at the eigen-
vector corresponding to the second lowest eigenvalue and
separating the vertices by whether the corresponding ele-
ment in this eigenvector is greater than or less than zero.
This is the spectral bisection method. It works very well
in cases where the graph really does split nicely into two
communities, and predictably less well when it does not.
The second eigenvalue λ2, which is also called the alge-
braic connectivity of the graph, is a measure of how good
the split is, with smaller values corresponding to better
splits.

As an example of the application of the spectral bi-
section method, we consider a well-known graph from the
social networks literature. (We will use the same exam-
ple for many of the algorithms described in this paper.)
This is the “karate club” network of Zachary [18], which
was studied previously by a number of others in this
context [1,10,19]. The network represents the pattern of
friendships amongst the members of a karate club at a US
university, constructed from ethnographic observations by
Zachary over a period of two years in the early 1970s. Dur-
ing the period of study, the club split in two as a result
of a dispute between two factions, and previous studies
have found that the fault lines along which the split oc-
curred are readily visible in the structure of the network.
As a result the network makes a good test of the bisection
algorithm—can the algorithm predict the two groups into
which the club split, given only the pattern of edges in the
network?

In Figure 2a we show the results of a bisection of the
karate club network using the algorithm described above.
The algebraic connectivity is λ2 = 0.469, which is not ex-
actly tiny, but is at least not approaching 1. And in prac-
tice, as the figure shows, the algorithm works very well,
finding the known split of the network into two groups
almost perfectly. Only one vertex is classified wrongly,

1 This fact follows because the Laplacian can be expressed
as the product of the so-called incidence matrix with its own
transpose. It can also be regarded as a corollary of the Perron–
Frobenius theorem. See, for instance, Bollobás [44].



M.E.J. Newman: Detecting community structure in networks 323

(a)

(b)

(c)

Fig. 2. The karate club network of Zachary [18], with num-
bered vertices representing the members of the club and edges
representing friendships, as determined by observation of in-
teractions. The two factions into which the club split during
the course of the study are indicated by the squares and cir-
cles, while the dark grey and white show the divisions of the
network found by (a) the spectral bisection algorithm of Sec-
tion 2.1, (b) the hierarchical clustering method of Section 2.2
and (c) the Monte Carlo sampled version of the algorithm of
Girvan and Newman proposed by Tyler et al. and discussed
in Section 3.1. In (b) the lightly shaded vertices are those not
assigned by the algorithm to either of the two principal com-
munities. In (c) shades intermediate between the dark grey
and white indicate ambiguously assigned vertices that fall in
one community or the other, or neither, on different runs of
the algorithm.

vertex 3, which is on the border between the groups and so
it is understandable that it might be an ambiguous case.

The spectral bisection method is reasonably fast. Cal-
culation of the eigenvectors of an n × n matrix takes in
general a number of operations O(n3), which is slow. But
in most cases of practical interest the Laplacian is a sparse
matrix, in which case the leading eigenvectors can be cal-

culated more rapidly using the Lanczos method [20]. The
running time for the Lanczos method to find the second
eigenvector goes approximately as m/(λ3−λ2), where m is
the number of edges in the graph, and hence it can be
very fast, although it may become slow if λ2 is not well
separated from the other eigenvalues. In other words, con-
vergence is good if the graph separates cleanly into just
the two communities but may be poor otherwise.

The principal disadvantage of the spectral bisection
method is that it only bisects graphs. Division into a larger
number of communities is usually achieved by repeated bi-
section, but this does not always give satisfactory results.
And even if it did, we do not in general know ahead of
time how many communities we want to divide the graph
into. These issues are discussed further at the end of this
section.

The Kernighan–Lin algorithm: A completely different
approach to graph bisection was proposed by Kernighan
and Lin [17] which, while heuristic, appears to give good
results in practice and runs moderately quickly, in worst-
case time O(n2), where n is the number of vertices in the
network.

The Kernighan–Lin algorithm is a greedy optimization
method that assigns a benefit function Q to divisions of
the network and then attempts to optimize that benefit
over possible divisions. The benefit function is the number
of edges that lie within the two groups minus the number
that lie between them. The algorithm requires the user to
specify the size of the two groups into which the network
should be split and to choose a starting configuration for
the groups, for example by dividing the vertices at ran-
dom. The algorithm then has two stages. First, we con-
sider all possible pairs of vertices in which one vertex is
chosen from each of the groups, and calculate the change
∆Q in the benefit function that would result from swap-
ping them. Then we choose the pair that maximizes this
change and perform the swap. This process is repeated,
with the restriction that any vertex that has previously
been swapped is never swapped again. When all vertices
in one of the groups have been swapped once, this stage
of the algorithm ends.

In the second stage, we go back over the sequence of
swaps that were made and find the point during this se-
quence at which Q was highest. This is taken to be the
bisection of the graph.

This two-stage process allows for the possibility that
the value of Q does not increase monotonically. Even if
Q decreases, a higher value that occurs later in the se-
quence of swaps will still be found by the algorithm.

The principal disadvantage of the Kernighan–Lin al-
gorithm is that we have to specify the sizes of the two
communities before we start. We can apply the algorithm,
for example, to the karate club network of Figure 2, and
on so doing, we find that it detects the split into the
two factions perfectly—every vertex is correctly classi-
fied, which is slightly better than the spectral bisection
method described above. However, to get this result we
need to specify that the algorithm should look for groups
of size 16 and 18, which are the known sizes of the groups



324 The European Physical Journal B

into which the network split. Giving any other sizes will of
course produce the “wrong” result. This problem makes
the Kernighan–Lin algorithm unsuitable for most applica-
tions to real-world network data, in which we have no idea
a priori what the sizes of the groups will be. One might
imagine that it would be possible to run the algorithm for
a variety of different choices of the group sizes and then
choose the one that gave the greatest value of Q overall
but, in addition to increasing the run-time of the algo-
rithm to O(n3), this will not work, since the best values
of Q are always achieved for very asymmetric divisions
of the network, with the global maximum being reserved
for the trivial division in which one group contains all the
vertices and the other none.

Even if this shortcoming could be overcome, the
Kernighan–Lin algorithm still suffers from the drawback
of all bisection algorithms, as mentioned above for the
spectral method: it only divides the network into two
groups and not an arbitrary number. Division into more
than two groups can be achieved by repeated bisection,
but there is no guarantee that the best division into three
groups (however we choose to define that) can be arrived
at by finding the best division into two and then divid-
ing one of those two again. Furthermore, these algorithms
give no hint about when we should stop the repeated bisec-
tion process, that is, about how many communities there
should be in a network. For these reasons, the traditional
graph partitioning methods are not ideal for analysing
general network data, and so we turn to other sources
in search of better methods.

2.2 Sociological approaches

Sociologists, in their study of social networks, have devel-
oped a substantial body of wisdom about the interpreta-
tion and analysis of graphs. Their approaches to finding
communities, which have been directed almost exclusively
at the analysis of empirically derived network data, are
perhaps better suited to our current purposes than the
methods of the previous section. The principal technique
in current use is hierarchical clustering [21]. The idea be-
hind this technique is to develop a measure of similar-
ity xij between pairs (i, j) of vertices, based on the net-
work structure one is given. Many different such similarity
measures are possible—several are discussed below. Once
one has such a measure then, starting with an empty net-
work of n vertices and no edges, one adds edges between
pairs of vertices in order of decreasing similarity, start-
ing with the pair with strongest similarity. Note that the
edges added in this way have no direct connection with the
edges of the original network; in this method the original
network is used only for the calculation of the similarity
measure.

There are a couple of different ways in which com-
munities can be extracted from this method. The most
common method, called the single linkage method, is to
declare the components formed as the edges are added
to be the communities. As we add more and more edges
in order of decreasing similarity, the components coalesce

Fig. 3. The hierarchical tree or dendrogram depicting the re-
sults of a single linkage hierarchical clustering of the karate club
network based on the Euclidean distance measure of structural
equivalence, equation (1). A cross-section of the tree at any
level will give the communities at that level. The cross-section
indicated by the dotted line corresponds to the community di-
vision shown in Figure 2b. The vertical height of the branching
points in the tree are indicative only of the order in which the
joins between vertices take place. Note that the heights of some
joins coincide, indicating that the vertices joined at that level
have identical similarities.

and get larger. If the similarity of the most recently added
edge is x, then the communities have the definitive prop-
erty that any two vertices with similarity greater than or
equal to x are necessarily in the same community. The
method does not however place any general conditions on
the similarities of vertices in the same community: such
vertices may have similarity either greater or less than x.
In other words xij ≥ x is a sufficient but not necessary
condition for vertices i and j to be in the same community.

As x is decreased and the communities join together,
the single linkage hierarchical clustering method divides
the network into fewer and fewer communities. At the
start of the algorithm there are n components consist-
ing of a single vertex each, and at the end there is just
one component containing all vertices. The components
at each step along the way are perfectly nested inside the
components at the next step, so that the entire progress of
the algorithm from start to finish can be represented as a
tree or dendrogram, an example of which is shown in Fig-
ure 3. The “leaves” at the bottom of the figure show the
individual vertices at the start of the algorithm, and the
“root” at the top represents the network after all vertices
have been joined into a single component. Horizontal cuts
through the tree at various heights represent the commu-
nities found if the process is halted at the corresponding
point. Like the bisection methods of Section 2.1, the hi-
erarchical clustering method provides no measure of how
many communities the network should be split into—it is
up to the investigator to make his or her own choice about
where the tree should be cut.

The opposite extreme to the single linkage method of
defining communities is the complete linkage method. In
this method edges are once again added to an initially
empty graph in order of decreasing similarity, but now
the communities are defined as being the maximal cliques
in the network rather than the components. A clique is a
set of vertices each of which is connected directly to all



M.E.J. Newman: Detecting community structure in networks 325

others in the set. A maximal clique is a clique that is not
contained inside any larger clique. If the similarity of the
most recently added edge is x, then the communities cre-
ated in this way have the definitive property that any two
vertices in the same community have similarity greater
than or equal to x. The method however places no gen-
eral conditions on the similarities of vertices in different
communities and the condition xij ≥ x is now a necessary
but not sufficient condition for vertices to be in the same
community.

Of the two methods described, the complete linkage
method has perhaps the more desirable properties, but it
is rarely used, for two reasons. First, finding cliques in a
graph is a hard problem. The algorithm of choice is the
Bron–Kerbosch algorithm [22], which runs in worst-case
time scaling exponentially with graph size. Second, the
cliques are, in general, not unique. A vertex can belong to
two or more different cliques, obliging us to assign it to
one community or another according to some rule. Typ-
ically one assigns it to the largest clique of which it is a
member, or randomly to one such if several cliques tie for
the honour, but this choice is to some extent arbitrary.

There are a variety of ways of defining the similarity
between vertices. Sociological studies have tended to con-
centrate on the property known as structural equivalence.
Two vertices are said to be structurally equivalent if they
have the same set of neighbours (other than each other,
if they are connected). Thus two individuals in a friend-
ship network are structurally equivalent if they have the
same friends. Since exact structural equivalence is rare in
real-world networks, one usually defines a measure of the
degree of equivalence, which can be done in several ways.
The confusingly named Euclidean distance [23,24], which
has nothing Euclidean about it, is

xij =
√ ∑

k �=i,j

(Aik − Aij)2, (1)

where Aij is once again the element of the adjacency ma-
trix for vertices i and j. The Euclidean distance is really
a dissimilarity measure, being zero for vertex pairs that
are precisely structurally equivalent and largest for pairs
that share none of the same neighbours at all. Thus a hi-
erarchical clustering performed using this measure should
add edges to the network in order of increasing xij , not
decreasing. Notice that two vertices can be perfectly struc-
turally equivalent by this measure without actually being
connected to one another—the existence or not of an edge
between i and j makes no difference to equation (1).

Another commonly used similarity measure is the
Pearson correlation between columns (or rows) of the ad-
jacency matrix [24]. Defining means and variances of the
columns thus:

µi =
1
n

∑
j

Aij , σ2
i =

1
n

∑
j

(Aij − µi)2, (2)

the correlation coefficient is

xij =
1
n

∑
k(Aik − µi)(Ajk − µj)

σiσj
. (3)

Vertices that have a high degree of structural equivalence
will have high values of this similarity measure, and those
that do not will have low values.

A similarity measure not based on structural equiv-
alence is the count of edge- (or vertex-) independent
paths between vertices. Two paths are said to be edge-
independent if they share none of the same edges. By the
max-flow/min-cut theorem, the number of such paths be-
tween two vertices is equal to the maximum flow that can
be propelled through the network between the same two
vertices if each edge can carry a maximum flow of one unit.
This quantity can be calculated in O(m) time, where m is
the number of edges in the graph, using, for instance, the
augmenting path algorithm [25]. Complete linkage com-
munities formed using independent path counts as the
similarity measure have the property that any two ver-
tices in the same community have at least k independent
paths between them, where k is the similarity for the most
recently added edge. In the graph theory literature such
communities are called k-components, and a number of
special-purpose algorithms have been developed specifi-
cally for finding them, the best known being the 2- and
3-component (or bicomponent and tricomponent) algo-
rithms of Hopcroft and Tarjan [26,27]. The k-components
of a network are sometimes of interest in social network
analyses—see references [28] and [29] for two recent exam-
ples.

As an example of the hierarchical clustering method,
we show in Figure 3 the dendrogram resulting from the
application of Euclidean distance single linkage clustering
to the karate club network of Section 2.1. Choosing the
cut through the tree that corresponds most closely to the
known division of the club, as indicated by the dotted line
in the figure, we get the separation shown in Figure 2b. As
the figure shows, the method finds a substantial number of
the members of each of the two groups, but some members
get left out of each, and crucially the central members of
both groups, vertices 1, 33 and 34, are left out. This is typ-
ical of the hierarchical clustering method: it tends to be
good at finding parts of communities—those parts corre-
sponding to individuals with high similarity according to
whatever similarity measure is chosen—but usually leaves
some others unassigned to any major group.

The method is moderately fast: similarity measures
like those in equations (1, 3) take O(mn) operations to
calculate for all vertex pairs. The actual clustering is lim-
ited by the time taken to sort the O(n2) similarities into
decreasing order, which is O(n2 log n). Construction of
the dendrogram can be achieved in near-linear time us-
ing, for example, the tree-based union/find algorithm of
Fischer [30,31]. Thus the overall run-time of the algorithm
scales as O(n2 log n) on a sparse graph.

The hierarchical clustering method has the advantage
that it doesn’t require us to specify the size or number
of groups we want to look for beforehand. It does not
however tell us how many groups should be used to get
the best division of the network. And even were this not
the case, the problems revealed in Figure 2b are suffi-
cient to make hierarchical clustering unsatisfactory for the



326 The European Physical Journal B

analysis of many large real-world networks. For these rea-
sons, researchers have in recent years developed new meth-
ods for identifying communities in such networks, a selec-
tion of which we now describe.

3 Recent approaches

Observing that while the traditional approaches to finding
communities in networks can be very useful for certain
types of problems they are not ideal for general network
analysis, we now turn to a description of some more recent
community structure algorithms. We start by describing
the algorithm of Girvan and Newman [1], which divides
networks by iterative removal of their edges, and some
variations on it that have been proposed by other authors.

3.1 Methods based on edge removal

The algorithm of Girvan and Newman: The basic require-
ments for a general community finding algorithm are that
it should find “natural” divisions among the vertices with-
out requiring the investigator to specify how many com-
munities there should be, or placing restrictions on their
sizes, and without showing the pathologies evident in the
hierarchical clustering method of Section 2.2. Girvan and
Newman [1] have proposed an algorithm that appears to
achieve these goals and which has three definitive fea-
tures thus: (1) it is a divisive method, in which edges are
progressively removed from a network, by contrast with
the agglomerative hierarchical clustering method; (2) the
edges to be removed are chosen by computing betweenness
scores as described in detail below; (3) the betweenness
scores are recomputed following the removal of each edge.

The motivation behind the method is as follows. In a
network such as that depicted in Figure 1, the few edges
that lie between communities can be thought of as form-
ing “bottlenecks” between the communities—traffic of one
kind or another that flows through the network will have
to travel along at least one of these bottleneck edges if
it wishes to pass from one community to another. Thus
if we consider some model of traffic on the network and
look for the edges with highest traffic, we should find the
edges between the communities. Removing these should
then split the network into its natural communities.

As a measure of traffic flow Girvan and Newman use
“edge betweenness”, a generalization to edges of the well-
known vertex betweenness of Freeman [32], which in fact
seems to predate Freeman’s work [33], although its origi-
nal discoverer never published the discovery. The between-
ness of an edge is defined to be the number of geodesic
(i.e., shortest) paths between vertex pairs that run along
the edge in question, summed over all vertex pairs. This
quantity can be calculated for all edges in time that goes
as O(mn) on a graph with m edges and n vertices [34,35].

The algorithm of Girvan and Newman then involves
simply calculating the betweenness of all edges in the net-
work and removing the one with highest betweenness, and
repeating this process until no edges remain. If two or

Fig. 4. Community structure in the social network of bot-
tlenose dolphins assembled by Lusseau et al. [36,37], extracted
using the algorithm of Girvan and Newman [1]. The squares
and circles denote the primary split of the network into two
groups and the circles are further subdivided into four smaller
groups as shown. After Newman and Girvan [38].

more edges tie for highest betweenness then one can ei-
ther choose one at random to remove, or simultaneously
remove all of them. The entire progress of the algorithm
from start to finish can, as with the hierarchical cluster-
ing method, be represented as a dendrogram (see Fig. 3
again). The algorithm can be thought of as progressing
from the root of the dendrogram to the leaves, rather than
the other way round, the branches of the tree representing
the order of splitting of the network as edges are removed,
and the communities are taken to be the components of
the graph, as in the single linkage clustering method. Hori-
zontal cross-sections of the dendrogram represent possible
community divisions with a larger or smaller number of
communities depending on the position of the cut.

Applying the algorithm to the karate club network,
for example, gives precisely the same result as the spec-
tral bisection method (Fig. 2a)—the network is split into
two communities, with all vertices save one, number 3,
classified correctly. However, the algorithm is considerably
more useful than the spectral bisection method for general
network analysis because, like the hierarchical clustering
method, it also allows us to split the network into any
other number of communities, where the bisection method
only ever finds two. Furthermore, some networks divide
both at a coarse level into a few communities and then
subdivide further into a larger number of small communi-
ties, and this also can be represented by the dendrogram
generated by the algorithm. As one example of this, we
reproduce in Figure 4 the results of the application of
the algorithm to a network of social interactions within a
group of dolphins. The network data are taken from the
work of Lusseau et al. [36,37] and the algorithm in this
case finds first a split of the network into two groups, rep-
resented by the squares and circles in the figure, and then
a subdivision of the larger of these two groups into four
smaller ones. Some speculations about the origin of these
splits are given in reference [38].

While it appears to give good results in many cases,
there are two principal disadvantages of the algorithm of



M.E.J. Newman: Detecting community structure in networks 327

Girvan and Newman. The first is that, like all the others
described so far, it provides no guide to how many commu-
nities a network should be split into. To address this prob-
lem, Newman and Girvan [38] proposed that the divisions
the algorithm generates be evaluated using a measure they
call modularity, which is a numerical index of how good
a particular division is. For a division with g groups, we
define a g × g matrix e whose component eij is the frac-
tion of edges in the original network that connect vertices
in group i to those in group j. Then the modularity is
defined to be

Q =
∑

i

eii −
∑
ijk

eijeki = Tr e− ∥∥ e2
∥∥ , (4)

where ‖x ‖ indicates the sum of all elements of x. Phys-
ically, Q is the fraction of all edges that lie within com-
munities minus the expected value of the same quantity
in a graph in which the vertices have the same degrees
but edges are placed at random without regard for the
communities. A value of Q = 0 indicates that the commu-
nity structure is no stronger than would be expected by
random chance and values other than zero represent de-
viations from randomness. Local peaks in the modularity
during the progress of the community structure algorithm
indicate particularly good divisions of the network, and
this is, for instance, how the division depicted in Figure 4
was chosen. The definition and application of the modular-
ity is independent of the particular community structure
algorithm used, and it can therefore also be applied to
any other algorithm. We give another example of its use
in Section 3.2.

The other main disadvantage of the algorithm of
Girvan and Newman is that it is slow. Since there are
m edges to be removed in total and each iteration of the
algorithm takes O(mn) time, the worst-case running time
of the algorithm is O(m2n), or O(n3) on a sparse graph.

To address the slow speed of the algorithm, a num-
ber of authors have suggested modifications of the ba-
sic approach. We discuss two here, the algorithms of
Tyler et al. [6] and of Radicchi et al. [9].

The algorithm of Tyler et al.: In studies of email
networks—networks in which the vertices are email ad-
dresses and the edges are messages passing between
them—Tyler et al. [6] have introduced a variation on the
algorithm of Girvan and Newman that improves the speed
of the calculation substantially, although it does so at the
cost of a reduction in accuracy.

The algorithm employed by Girvan and Newman cal-
culates the contributions to edge betweenness for all paths
starting at a single vertex i, which takes O(m) operations,
and then sums the results over all n vertices to derive the
total betweenness scores for all edges. Tyler et al. suggest
instead that only a subset of vertices i be summed over,
giving partial betweenness scores for all edges; if a random
sample is chosen, this will give a Monte Carlo estimate of
betweenness that tends to the true betweenness as the
size of the sample becomes large. This estimate will con-
tain statistical errors, as all Monte Carlo estimates do, but
Tyler et al. show that good results can be obtained with

reasonably small sample sizes, which could potentially of-
fer substantial speed improvements over the original algo-
rithm. The number of vertices sampled is chosen so as to
make the betweenness of at least one edge in the network
greater than a certain threshold. (There is also a hard
lower limit on the number of samples.) Since one is in-
terested only in which edge has the highest betweenness,
this ensures that the error on that highest betweenness
falls below some satisfactory level chosen by the investi-
gator.

Tyler et al. were in their calculations primarily inter-
ested not in increasing the speed of the community struc-
ture algorithm. Rather, their interest was in finding a way
of introducing a stochastic element into the algorithm. By
doing so, vertices whose community assignment is ambigu-
ous, like vertex 3 in Figure 2, will sometimes be put in one
community and sometimes in another, and by repeating
the calculation many times one can make an estimate of
the extent to which particular assignments are reliable.
As an example of this technique, we show in Figure 2c
the result of applying the algorithm of Tyler et al. to the
karate club network twenty times and then averaging the
results. As the figure shows, one community, the one on
the left in the figure, is quite unambiguous, while ver-
tex 3, predictably, falls somewhere between the left and
right communities. The right community is mostly identi-
fied correctly, but contains a number of peripheral vertices
whose community assignment is less strong—on some of
the runs these vertices are assigned to their own separate
communities, indicating that their link to the rest of the
group is weaker.

The algorithm of Radicchi et al.: In order to speed
up the identification of communities, Radicchi et al. [9]
have proposed another algorithm that takes a different ap-
proach. Their algorithm, like that of Girvan and Newman,
is based on iterative removal of edges, but uses a different
measure instead of betweenness to identify the edges to
be removed. As in the algorithm of Girvan and Newman,
this measure is recalculated after each removal, but it is
a local measure that can be calculated quickly, and hence
the overall algorithm runs faster, in time O(m4/n2) on a
graph with m edges and n vertices, or O(n2) on a sparse
graph, which is one order of system size faster than the
original algorithm.

The algorithm of Radicchi et al. is based on counting
short loops of edges in the network—loops of length three,
or triangles, in the simplest case. Edges that run between
communities (see Fig. 1) are unlikely to belong to many
short loops, because to complete a loop containing such
an edge we need another edge that runs between the same
two communities, and such other edges are, by hypothe-
sis, rare. Thus one should be able to spot the between-
community edges by looking for ones that belong to an
unusually small number of loops.

Consider an edge that runs between two vertices i
and j having degrees ki and kj . The maximum number
of triangles to which such an edge can belong, assuming
that there is at most one edge between any pair of vertices,
is min(ki − 1, kj − 1). Radicchi et al. define what they call



328 The European Physical Journal B

the edge clustering coefficient Cij , which is roughly the
fraction of these triangles that are actually realized:

Cij =
zij + 1

min(ki − 1, kj − 1)
, (5)

where zij is the measured number of triangles to which the
edge belongs. The extra +1 in the numerator is included
to avoid penalizing too heavily edges that belong to zero
triangles, but which join vertices of low degree.

The quantity Cij will be small for edges between com-
munities, and Radicchi et al. show that it is in fact quite
strongly negatively correlated with edge betweenness in
the networks they looked at. Their algorithm consists of
iterative removal of edges with low values of Cij , followed
by recalculation of Cij for the remaining edges2. Edges for
which either ki or kj is 1, so that equation (5) diverges, are
excluded from consideration. They give a number of tests
of the algorithm for different networks, showing that it is
effective at finding known community structure in many
cases. They also examine generalizations of the algorithm
in which one counts loops of length four or higher, instead
of triangles, and find in some cases that these out-perform
the simple triangle-based version.

The time taken to calculate the edge clustering coef-
ficient for an edge goes like the product of the degrees ki

and kj . Assuming these are uncorrelated (which is known
not to be true in some networks [39,40]), this time scales
as the square of the mean degree, i.e., as m2/n2. Repeat-
ing the calculation for each of m edges and each of m re-
movals then gives a total running time O(m4/n2) as above.
In practice, the algorithm is fast enough to analyse some
moderately large graphs: Radicchi et al. study the struc-
ture of a collaboration network of about 13 000 scientists,
some 30% bigger than the largest network that has been
tackled with the algorithm of Girvan and Newman, and
it seems likely that bigger networks still would be within
reach of the patient researcher.

The principal disadvantage of the method of Radic-
chi et al. is that it relies on the presence of triangles in the
network. Clearly if a network has few triangles in the first
place, then the edge clustering coefficient will be small
for all edges, and the algorithm will fail to find the com-
munities. On the basis of comparisons with a standard
Erdös–Rényi random graph, it has been conjectured that
essentially all real-world networks have a statistically high
proportion of triangles in them [41], but recent results
making use of a more accurate null model argue other-
wise [42]. In fact, it appears that triangle counts are indeed
unusually high in most social networks (with the excep-
tion of networks of sexual contacts [29]), but in nonsocial
networks they are relatively low. This suggests that the
method of Radicchi et al. would probably work well when
applied to social networks, but perhaps less well for other
network types.

2 Their paper also discusses possible definitions of a commu-
nity and ways in which these definitions can be used to improve
the performance of the algorithm, but these issues are outside
the scope of the present article.

3.2 Other methods

Recently, the present author has proposed an alternative
approach to the discovery of community structure based
on the modularity Q defined in equation (4) [43]. This
quantity, it is claimed, is high for good community di-
visions and low for poor ones, so one ought to be able
to find the communities in a network by optimizing Q
over possible divisions. Unfortunately, optimizing Q ex-
haustively would take an amount of time at least expo-
nential in the number of vertices, so to get an algorithm
with reasonable running time one must use some approx-
imate optimization strategy. The simplest such strategy
is a greedy algorithm that starts with each vertex in a
separate community on its own, and amalgamates com-
munities in pairs, choosing at each step the pair whose
amalgamation will give the greatest increase (or small-
est decrease) in Q. Since the greatest increase in Q can
never be produced by amalgamating groups that are not
actually connected by any edges, the largest number of
pairs one need ever consider is equal to the number of
edges m, and a total of n − 1 amalgamations are neces-
sary to connect all n vertices into a single large group, at
which point the algorithm stops. Thus the total running
time is O(mn), or O(n2) on a sparse graph. The output
of the algorithm can be represented in the form of a den-
drogram and the optimal cross-section of the dendrogram
found by looking for the optimal value of Q.

The main advantage of the algorithm is its speed,
which allows large networks to be analysed; an application
to a collaboration network of more than fifty thousand sci-
entists is given in reference [43]. It should also work well
on networks of all types, although it appears in general to
give results slightly less good than the algorithm of Girvan
and Newman.

A quite different approach has been proposed by Wu
and Huberman [10], based on the properties of resistor
networks. Their algorithm is fundamentally a bisection
algorithm, like those described in Section 2.1, although
they also give a version that will divide a network into a
larger number of communities provided one knows in ad-
vance how many communities there are. The idea behind
the algorithm is to consider the electrical circuit formed
by placing a unit resistor on each edge of the network
and then applying a unit potential difference between two
vertices chosen arbitrarily. If the network divides strongly
into two communities and the vertices in question hap-
pen to fall in different communities, then the spectrum of
voltages on the rest of the vertices should, the authors ar-
gue, show a large gap corresponding to the border between
the communities. We can thus identify the communities by
finding the largest gap and dividing the vertices according
to whether their voltages lie above or below it. Since the
largest gap sometimes falls at the end of the spectrum,
giving a highly asymmetric division of the network, the
authors restrict themselves to looking only within some
central portion of the spectrum.

The calculation of the voltages requires the inversion of
the graph Laplacian (see Sect. 2.1), which will normally
take time O(n3). However, as Wu and Huberman point



M.E.J. Newman: Detecting community structure in networks 329

out, a reasonable approximation to the inverse can ob-
tained by expanding it as a power series and truncating
at some finite order. On a sparse graph, for which the
Laplacian is sparse also, each term in the expansion can
be evaluated from the previous one in O(m) time, and
the speed of the algorithm then depends on how fast the
series converges. Typically we have to take a number of
terms of order 1/(λ3−λ2) to get good convergence, where
λ2 and λ3 are the second and third smallest eigenvalues
of the Laplacian. This means the running time goes as
m/(λ3 − λ2). Thus, like the Lanczos-based spectral bisec-
tion of Section 2.1, the algorithm works well when the
network separates cleanly into two communities, but can
be slow otherwise3.

Assuming that the network separates cleanly and con-
vergence is fast, then the rate-determining step in the al-
gorithm is the sorting of the vertices according to their
voltages in order to find the largest gap, which takes
time O(n log n). Repeating the calculation for all pairs
of vertices to which the initial potential difference is ap-
plied gives an algorithm that bisects the graph in time
O(n3 log n). However, Wu and Huberman find that good
results can be obtained by a trick similar to the one em-
ployed by Tyler et al. [6] in the algorithm described in
Section 3.1, of randomly sampling vertex pairs from the
complete set. If only a fixed number of pairs is sampled
then one gets an algorithm that runs in O(n log n) time.
Wu and Huberman argue that a pair of vertices need only
lie in different halves of the network in order for the algo-
rithm to find the correct bisection, and provided the two
communities are roughly equal in size, this will happen
about a half of the time, so a reasonably small fixed-size
sample should be adequate to bisect the network.

The algorithm appears to work well when applied, for
instance, to the karate club network—it successfully finds
the two known communities in the network. As with the
other bisection methods, it can be applied repeatedly to
find divisions of a network into more than two commu-
nities, although, as discussed in Section 2.1, this is not
always an ideal approach. Wu and Huberman give a more
detailed discussion of this point in the final section of their
paper.

An interesting further feature of the algorithm of Wu
and Huberman is that it can also be used to find the par-
ticular community to which a specified vertex belongs,
without first finding all communities in the network. There
are certainly circumstances (e.g., web searching) in which
one would imagine this could be useful. Applying a source
voltage to the one vertex of interest and placing a sink
at another chosen at random, one can look for the set of
vertices with voltages close in some sense to that of the
vertex of interest, and regard those as its community.

3 Indeed, as Wu and Huberman point out, there are close
mathematical connections between their method and the spec-
tral bisection method, and it is no coincidence that the two
methods converge at the same rate—both fundamentally in-
volve the repeated multiplication of the Laplacian into a given
vector.

Interestingly, this is similar to another earlier method
for solving the same problem proposed by Flake et al. [12].
They considered a different definition of flow in the
network—the computer scientist’s max-flow definition,
which can also be calculated in linear time—and they av-
eraged over all possible sink vertices rather than choosing
one at random. However, the basic idea is the same and
the two algorithms appear to give qualitatively similar re-
sults.

4 Conclusions

In this paper we have reviewed algorithmic methods for
finding communities of densely connected vertices in net-
work data. We have discussed some of the traditional ap-
proaches, such as spectral graph partitioning [15,16] and
hierarchical clustering [21], but, as we have pointed out,
these have a number of shortcomings as far as the analysis
of large real-world networks is concerned. In the last few
years, therefore, several new methods have been developed
that are flexible enough to apply to quite general network
structures. We have described a number of methods based
on iterative removal of between-community edges, includ-
ing the betweenness-based method of Girvan and New-
man [1,38] and the Monte Carlo resampled variation pro-
posed by Tyler et al. [6], as well as the algorithm based on
counts of short loops proposed by Radicchi et al. [9]. We
have also discussed briefly two more recent algorithms that
are notable for their relative computational efficiency, the
modularity maximization algorithm of Newman [43] and
the resistor network algorithm of Wu and Huberman [10].
We have compared results produced by these algorithms
and outlined their strengths and weaknesses.

As a result of substantial progress in recent years, it
appears we now have an effective toolkit for studying com-
munity structure in networks. There is certainly still room
for improvement however in both the speed and sensitivity
of community structure algorithms, and there are many in-
teresting networked systems awaiting analysis using these
methods.

The author thanks Michelle Girvan for useful conversations
and comments. Thanks also to Oliver Boisseau, Patti Haase,
David Lusseau, and Karsten Schneider for providing the data
for the dolphin network and to Douglas White for the karate
club data. This work was funded in part by the National Sci-
ence Foundation under grant number DMS–0234188.

References

1. M. Girvan, M.E.J. Newman, Proc. Natl. Acad. Sci. USA
99, 7821 (2002)

2. D. Wilkinson, B.A. Huberman, preprint
cond-mat/0210147 (2002)

3. R. Guimerà, L. Danon, A. Dı́az-Guilera, F. Giralt,
A. Arenas, Phys. Rev. E 68, 065103 (2003)

4. P. Holme, M. Huss, H. Jeong, Bioinformatics 19, 532
(2003)



330 The European Physical Journal B

5. P. Holme, M. Huss, Proceedings of 3rd Workshop
on Computation of Biochemical Pathways and Genetic
Networks, edited by R. Gauges, U. Kummer, J. Pahle, U.
Rost (Logos, Berlin, 2003), pp. 3–9

6. J.R. Tyler, D.M. Wilkinson, B.A. Huberman, in
Proceedings of the First International Conference on
Communities and Technologies, edited by M. Huysman,
E. Wenger, V. Wulf (Kluwer, Dordrecht, 2003)

7. P. Gleiser, L. Danon, preprint cond-mat/0307434 (2003)
8. M. Boguñá, R. Pastor-Satorras, A. Dı́az-Guilera,

A. Arenas, preprint cond-mat/0309263 (2003)
9. F. Radicchi, C. Castellano, F. Cecconi, V. Loreto,

D. Parisi, preprint cond-mat/0309488 (2003)
10. F. Wu, B.A. Huberman, preprint cond-mat/0310600

(2003)
11. D. Gibson, J. Kleinberg, P. Raghavan, in Proceedings of

the 9th ACM Conference on Hypertext and Hypermedia
(Association of Computing Machinery, New York, 1998)

12. G.W. Flake, S.R. Lawrence, C.L. Giles, F.M. Coetzee,
IEEE Computer 35, 66 (2002)

13. R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan,
D. Chklovskii, U. Alon, Science 298, 824 (2002)

14. S. Shen-Orr, R. Milo, S. Mangan, U. Alon, Nature
Genetics 31, 64 (2002)

15. M. Fiedler, Czech. Math. J. 23, 298 (1973)
16. A. Pothen, H. Simon, K.-P. Liou, SIAM J. Matrix Anal.

Appl. 11, 430 (1990)
17. B.W. Kernighan, S. Lin, Bell Sys. Techn. J. 49, 291 (1970)
18. W.W. Zachary, J. Anthropological Research 33, 452 (1977)
19. H. Zhou, Phys. Rev. E 67, 061901 (2003)
20. G.H. Golub, C.F. Van Loan, Matrix computations (Johns

Hopkins University Press, Baltimore, MD, 1989)
21. J. Scott, Social Network Analysis: A Handbook (Sage,

London, 2000), 2nd ed.
22. C. Bron, J. Kerbosch, Comm. ACM 16, 575 (1973)
23. R.S. Burt, Social Forces 55, 93 (1976)

24. S. Wasserman, K. Faust, Social Network Analysis
(Cambridge University Press, Cambridge, 1994)

25. R.K. Ahuja, T.L. Magnanti, J.B. Orlin, Network Flows:
Theory, Algorithms, and Applications (Prentice Hall,
Upper Saddle River, NJ, 1993)

26. R.E. Tarjan, SIAM J. Comput. 1, 146 (1972)
27. J.E. Hopcroft, R.E. Tarjan, SIAM J. Comput. 2, 135

(1973)
28. D.R. White, F. Harary, Sociological Methodology 31, 305

(2001)
29. P.S. Bearman, J. Moody, K. Stovel, preprint, Department

of Sociology, Columbia University (2002)
30. M.J. Fischer, in Complexity of Computer Computations,

edited by R.E. Miller, J.W. Thatcher (Plunum Press, New
York, 1972), pp. 153–167

31. R.E. Tarjan, J. ACM 22, 215 (1975)
32. L.C. Freeman, Sociometry 40, 35 (1977)
33. J.M. Anthonisse, Technical Report BN 9/71, Stichting

Mathematicsh Centrum, Amsterdam (1971)
34. M.E.J. Newman, Phys. Rev. E 64, 016132 (2001)
35. U. Brandes, J. Math. Soc. 25, 163 (2001)
36. D. Lusseau, K. Schneider, O.J. Boisseau, P. Haase,

E. Slooten, S.M. Dawson, Behavioral Ecology and
Sociobiology 54, 396 (2003)

37. D. Lusseau, Proc. R. Soc. London B (suppl.) 270, S186
(2003)

38. M.E.J. Newman, M. Girvan, Phys. Rev. E 69, 026113
(2004)

39. R. Pastor-Satorras, A. Vázquez, A. Vespignani, Phys.
Rev. Lett. 87, 258701 (2001)

40. M.E.J. Newman, Phys. Rev. Lett. 89, 208701 (2002)
41. D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998)
42. M.E.J. Newman, J. Park, Phys. Rev. E 68, 036122 (2003)
43. M.E.J. Newman, preprint cond-mat/0309508 (2003)
44. B. Bollobás, Modern Graph Theory (Springer, New York,

1998)


