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CHAPTER 1

INTRODUCTION

The need to accurately determine location has been a tpacbof human exploration
endeavors since the early days of human history. The ad¥eatellite and atomic clock
technologies in the second half of the last century has ledgaevelopment of satellite
based location detection techniques such as the GPS [36]a lemg time, the GPS
technology was only available for military applicationsit since May of 2000 it has
become possible farivilian GPS receivers to accurately identify the location of a GPS
receiver within a few meters. GPS technology is quickly dngmumerous new Location
Based Service (LBS) applications, including tracking 8egtvehicles, navigating ships
and aeroplanes, and tracking wildlife. Another popularligpion of this technology is
in cellular phones with embedded GPS sensors. In the Unitgdss cellular phones are
now required to be E911 [30] enabled. E911 is a federally ratttrequirement which
states that cellular phone companies must be able to |dvatgetographical location of
the cellular phone user with an accuracy of a few hundred rs@tenost cases. In case of
an emergency, E911 will provide better location informatio the emergency workers.
The reverse use of the E911 service (Reverse 911) [1] carentdale prompt delivery of
automated warnings to civilians in case of a crisis. For gairReverse 911 has been
successfully deployed and put to use in the 2007 San Diegtiikeil[4] and has helped
over 500,000 families evacuate from the danger zone [5].

While GPS works well for location detection in the outdoatstermining location

when inside a building requires usingférent techniques. A popular technique for



determining location indoors is using ultrasonic, or ragémuencies, or a combination of
these two techniques [7,45, 89, 110]. Location informaporduced by these techniques
can be very accurate; for example, the BAT system [45, 11®@fcmpute locations that is
usually accurate within 10 cm of the actual location. Theladity of indoor location
information is also giving rise to a new class of applicasiosuch as asset tracking
and context-aware applications that adapt to the userdsnae a user moves around in
physical space. Rapid advances in semiconductor techieglbgve made it possible to
build such location-computing devices for a small pricekimg mass deployments of
such devices possible.

These location-computing techniques allow us to gatheressive location updates
of an object, which can be either a user or a device, to prodwsagjuence of locations
that collectively form thdrajectoryfor that object. (A trajectory segment for an object
moving in 2-D physical space is essentially a line in 3-D gpadth time as one of the
dimensions.) In the last few years, we have seen a rapidaseri the deployment of
location-sensing devices and applications that make udesohformation, and this trend
is likely to accelerate in the near future. As a result, we $abn be faced with the task of
managing large volumes of trajectory data. For examplajéfwere to continually collect
GPS sensor readings from a fleet of trucks, then in a short ahodtime one would have
a large volume of trajectory data. Such trajectory datacside useful in safety research
such as analysis of factors that contribute to accidentsdmg car behavior such as
cruising speed, lane switching, following distance, etspecially when combined with
other data such as sensor readings from the braking system.

Spatio-temporal databases, also called moving objecbdsés, are required to support
gueries on large numbers of continuously moving objectseyArkequirement for indexing
methods in this domain is tdfeciently support both update and query operations. Previous
work on indexing such databases can be broadly classifiedwat categories: indexing

the past positions and indexing the future predicted posstiIn Chapter 2 we focus on an



efficient indexing method for indexing the future predictedipass of moving objects.

In Chapter 2 we propose an indexing method called STRIPESttiexes predicted
trajectories in a dual transformed space. Trajectorieslipects ind-dimensional space
are transformed into points in aalimensional space. This dual transformed space is then
indexed using a hierarchical grid decomposition indexcstme. STRIPES can evaluate a
range of queries including time-slice, window, and movingiges. We perform extensive
experimental evaluation comparing the performance of 88l with the leading existing
predicted trajectory index (the TPR*-tree), and show thatapproach is significantly
faster than TPR*-tree for both updates and search queries.

The All Nearest Neighbor (ANN) operation is a commonly usgohfgive for analyzing
large multi-dimensional spatial datasets. Since comguNN is very expensive, in
previous works R*-tree based methods have been proposgédal sip this computation.
These traditional index based methods use a pruning metitedcMAXMAXDIST,
which allows the algorithms to prune nodes in the index tlegidnot be examined during
the ANN computation. In Chapter 3 we introduce a new prunimegrit called NXNDIST,
and show that this metric is far moréective than the traditional MAXMAXDIST metric.
In addition, we also explore a range of algorithms for cormmuANN, which differ
in the way the spatial index is traversed and nodes are ergarfe show that one of
these methods, which uses a depth-first index traversaliasidelotional node expansion,
consistently outperforms all other methods. Furthermweeshow that our method can
also dficiently evaluate the more general All-k-Nearest-Neigh&NN) operation.

In Chapter 3, we also challenge the common practice of usintgeR index for
speeding up the ANN computation. We propose an enhancecbqgukdtree index
structure, called MBRQT, and using extensive experimestaluation show that the
MBRQT index dfers better speedup in ANN computation than the commonly used
R*-tree index.

Traditional spatial and traditional temporal joins haveme&videly studied in the past,



but there is very little work on the more complex problem ajectory join operations,
which have many interesting emerging applications, pyiy@eservation in publishing
trajectory data being one of them. As another example apic, during the Mad Cow
Disease epidemic, in the event where some animals arefiddrds having contracted the
disease, a decision needs to be made quickly regarding wkien animals have come
close to the infected animals within a certain period of timtéhe past. This computation
is essentially a trajectory join operation.

In Chapter 4 we present a general framework, call&d, that introduces a broad class
of trajectory join operations, includin@rajectory Distance Join (TDJand Trajectory
k Nearest Neighbors Join (TKNNJ)Vithin the JiST framework, we present a set of
algorithms to evaluate the join operations introduced ia thapter. We adapt the
STRIPES index structure presented in Chapter 2 and propos#ied index structure
that incorporates indexing both historical and futureeitégries of moving objects. We
then introduce the notions dtajectory k-AnonymitandTrajectory Cloakingand show
the application of the JiST operations in the context ofgmwpreservation. Finally, we
present results from detailed experiments that demopdtiatéficiency and scalability of
the JiST join algorithms. To the best of our knowledge, JiSthe first comprehensive
framework for complex trajectory join operations and paesfoundation for building a
complex querying platform for emerging trajectory basepliaptions.

This thesis makes the following contributions: we propasefcient access method
called STRIPES for indexing and querying predicted trajees; we devise a new pruning
metric and develop a number of algorithms for processingmexANN queries in spatial
databases, which can be employed fiiceently querying snapshots of spatio-temporal
databases; we extend the STRIPES index structure to urgfinttexing techniques of
past, present, and future trajectories; we identify angh@se algorithms for the set of
complex spatio-temporal join operations that span theeftitneline of the past, the

present and the future and form the foundation of the congmglie JiST framework for



processing trajectory joins; we also formulate the intinguconcept of trajectory privacy
and demonstrate the ease and flexibility with which the Ji@méwork can be applied to

solve a new class of problems.



CHAPTER 2

EFFICIENT INDEXING OF PREDICTED
TRAJECTORIES WITH STRIPES

2.1 Introduction

Over the last decade, we have witnessed an increasingshiettechniques for managing
databases consisting of a large number of continuously myosbjects. These research
interests have been fuelled by rapid advances in hardweheaéogies that allow for
cheap location-aware devices, which are often packagethall physical devices.
These devices have found applications in a variety of amind military monitoring
applications. Many of these applications demand extrera@lgient techniques for
dealing with a large update rate triggered by object cootisly updating their location
information. In addition, these application also requifieceent techniques for querying
on the location information. Queries in these applicaticens be divided into two broad
classes: queries on the past positions of moving objeatisgaeries on predicted positions
of the moving objects. In this chapter, we focus on this latass of queries, which are
often referred to as predictive queries. While there aremalar of proposals for modeling
the predicted positions of moving objects, the most widedgd model specifies the
predicted position as a current position and a velocityaeiadicating the direction of the
future motion [43,59, 72,81, 85, 86]. We also use this comgrased model.

To eficiently answer queries on predicted position, it is inigitio ask the question
if effective indexing methods can be built for these moving olijeta sets. Naturally,

a substantial amount of research has been undertaken iedhetrpast to answer
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this question. Some of the early work in this area employd ttaasformation
techniques [6, 59, 111]. These techniques typically regrethe predicted position

of an object moving in @-dimensional space as a point in d-@mensional space.
Most of this body of work is largely theoretical in nature daior most parts focuses

on objects moving in a one-dimensional space [59]. Morenews®rk in this area has
focused primarily on practical implementations of indexstructures for predictive
queries [21,70,72,87,88,90, 105]. Of these indexing nathperhaps the most influential
indexing method is the TPR-tree [72]. This indexing struetuses the basic R*-tree
indexing structure [10], and expands the traditional définiof bounding boxes to include
time-parameterized bounding boxes. Essentially eachdingiox now has an associated
velocity vector that captures the growth of the box as tinegpsses. The TPR-tree
has inspired a flurry of research aimed at improving the bBBiR-tree algorithms. A
recently proposed indexing structure, called the TPR&-{i®5] has been shown to vastly
outperform the basic TPR-tree index.

Surprisingly, in the more empirical research on predictregectory indexing, the
early dual transformed methods have been largely dismi¢$ee TPR-tree [72] employs
techniques that are inspired by the dual transformed methmat doesn’t actually
experimentally compare the TPR-tree index with any dualsi@am based methods.)
Perhaps a reason for this dismissal is because a) the rieseahgal transform indexing
methods has largely focused on deriving asymptotic peroca bounds, and b) these
researchers have suggested that the dual transformed lspacgexed using methods
such as partitions trees [59], which are not as widely usel-tises in practice. The
body of empirical research has largely dismissed thesedthieal results arguing that the
asymptotic performance bounds, though interesting, deal to practical structures since
these bounds have large constant factors [72, 105].

In this chapter, we reexamine this issue and consider if etiped indexing structure

can be built using a dual transformation technique. Thewatén for our interest in



this approach stems from the observation that R-tree baslking techniques are
known to rapidly degrade in performance as the dimensitynafithe underlying space
increases [12]. All the TPR-tree based indexing structusestime-parameterized boxes,
which require representing a velocity value for each dinendn efect, the underlying
indexing space can be viewed asddmensional space for objects moving irda
dimensional space. The dual transform techniques alsotngadex in a 21-dimensional
space. However, rather than indexing boxes the dual tremdfechniques only have to
index points, which is potentially easier to indek@ently. This key insight is at the heart
of the STRIPES indexing structure, which we propose in thagpter.

STRIPES is a &alable Tajectory hdex for Redicted Positions in Moving Object
DatabasesThe STRIPES index maps predicted positions to points ined tdansformed
space and indexes this space using a disjoint regularipaitigy of space. This style of
partition is called quadtrees, and can be extremgigient, especially for indexing point
data [93]. Even though the traditional quadtree leads tadalanced tree, it has proven to
be an &ective disk based indexing structure in some cases [33JIMRIPES essentially
employs a disk based bucket PR quadtree structure [93]. FHRLan evaluate the entire
range of predictive queries, which include time-slice,adw, and moving queries [72].

In this chapter, we compare the performance of STRIPES Wwihctrrently best
known indexing structure, namely the TPR*-tree [105]. dsactual implementations
of these two indices on top of the SHORE storage manger [2@]d@monstrate that
STRIPES outperforms the TPR*-tree for both updates andyqougerations.In most
cases, updates in STRIPES are more than an order of magnitudiaster that the
TPR*-tree, and queries are about 4x faster with STRIPES!

This chapter makes an important contribution which inciugi®@posing a new indexing
structure that is extremelyffecient for predictive queries. In addition, we have esséptia
come to a full circle with this work, where we now show that theeiition behind the

earlier theoretical work on dual transform based techriquaa indeed be leveraged to



produce a practical andfeient predicted trajectory indexing method.

The remainder of this chapter is organized as follows: Ini8e@.2, we cover the
model used for representing predicted positions. Secti®dm@scribes the TPR-tree and
the TPR*-tree indices. The STRIPES index is described ini@ee.4, with experimental
results in Section 2.5. Related work is reviewed in Sectidh) &nd we present our

conclusions and plans for future work in Section 2.7.

2.2 Background and Model

Location data for moving objects is continuously changiegNgen any two successive
updates of the location of the mobile object. This poses &lpro in representing

the location of the object at all times because most conveatimodels for data
representations are static in nature. A commonly used nfode¢presenting trajectory
data approximates the motion of an object as a straight Bgensnt between two
consecutive updates [43,59, 72,81, 85, 86]. The same Imedel is used for predicting
future trajectories as well [72,105]. The object is assutanove with some specified
current velocity from the current position until a new updet explicitly issued. If the
current position and velocity of an object is represente(pds , v (t)) at timet, then the
position at timet’(t’ > t) can be calculated using(t) = p(t’) + V(t) x (t - t’). When the
actual update arrives, which can b&eient from the predicted position, the velocity and
the current positions are updated in the index to reflect &éwepredicted trajectory.

As has been noted in previous studies, when indexing pestitcajectories an optimal
packing of a group of objects into a node in the index at tinseunlikely to be optimal at
a later timet’. Consequently, an index that is optimal for queries\aill not be optimal
at timet’, and the index performance gradually deteriorate$ iasreases. To reduce the
dramatic performance degradation of an index built at a tong in the past, the trajectory
indexing mechanisms often employ the notion of an indexitife [72]. The lifetime is

the time interval for which the index is designed to give gpediormance. After this



time interval the performance of the index is likely to deieate. The index is rebuilt
periodically to avoid such rapid deterioration.

Another practical observation is that for an object movim@ d-dimensional space,
the predicted trajectory includesdadimensional current spatial coordinate, and a
d-dimensional velocity vector. Consequently indexing ol trajectories requires
indexing these twal-dimensional entities, which essentially requires indgxentities
in 2d-dimensional space. The so called curse of dimensiondlty;, fand the related
challenges with query evaluation methods in high-dimeradiepace [12, 14] quickly start
becoming performance issues in this domain. In additiorgesthe optimal node for a
new update can beftierent from the node containing the old representation #othject,
updating the predicted trajectory of an index will oftenuiégn traversing multiple paths

down an index.

2.2.1 Query Types

There are three classes of future queries that have beemsasdly used in the previous
research for querying on predicted trajectories [72]. €hbsee classes are time-slice
guery, window query, and moving query. For a one-dimensigpace, Figure 2.1 shows
one example for each of these query types. In this figurethes represents the time
dimension, and thg-axis represents the single spatial dimension.

In Figure 2.1,Q1 is a time-slice query, which finds all objects at some spatiiiture
timet in some spatial regioR. Q2 is a window query for finding all objects in time
window [t, t'] in regionR. Q3 is a moving query to find all objects in time windotyt[] in

regionR that is moving with velocity.

10
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Figure 2.1: Query Examples for Figure 2.2: Area Computation in Figure 2.3: Motivation for the
Objects Moving in a 1-d Space the TPR-Tree Insert Algorithm in TPR*-tree

2.3 TPR-Tree and TPR*-Tree Indices

In this section we review the two popular predicted indiddeR-tree index [72] and the

TPR*-tree index [105].

2.3.1 TPR-Tree

The TPR-tree [72] is essentially a time parameterized RfeTiThe index stores velocities
of the elements along with their positions in nodes. Sineesfements are not static, the
corresponding MBRs are dynamic (see Figure 2.2).

The index structure as well as the algorithms for searcleriresd delete used are
very similar to that of R*-tree [10]. The R*-tree uses a humblkestatic parameters such
as the area, perimeter, distance from the centroid, andhtbesection between the two
MBRs. The TPR-tree uses time parameterized metrics foethasameters. The time
parameterized metric is computed using the forml:ﬂr%{’éL M(t)dt, whereM(t) is some
metric that is used in the original R*-tree (for example thead, andL is thelifetime (see
Section 2.3) of the index. The lifetime of an index is the tifmewhich the index is used
and queried.

Figure 2.2 shows an example of the time-parameterized aetécrfor four objects
a, b, ¢, andd, moving in a two-dimensional space. In this figure, the dadata objects

are shown as shaded boxes. The MBR of the index node afliynselabeled as A, and

11



the MBR of the node at tim&, + L is labeled as B. The size and the position of B are
calculated by extrapolating (position, velocity) of theres with in the node. Then the
area metric used is the volume of the trapezoid that is forbyettie moving MBR of the
node from timel, to T + L. All the other metrics are computed in a similar fashion.

The insert algorithm chooses a node such that the expamsianitime is the smallest
at non-leaf nodes and the expansion in integrated perirnsctiee smallest at the leaf node
level. When such a node is full, it is split similar to R*-Tredow instead of just sorting
boundaries of elements, the velocity vectors are alsodtotehoose the best distribution
of the elements.

The TPR-Tree inherits all the problems related to the R*eTmich as overlap and
dead space. Since the positions and the velocities areagstiland can change, the

optimal combination of elements can not be maintained dinaés in the future.

2.3.2 TPR*-Tree

The recently proposed TPR*-tree [105] provides a numbeiptifidzation over the basic
TPR-tree algorithms. The key observation made by the asiisdghat during an insertion
operation making a choice based on a local optimization reagl to a poor performing
predicted trajectory index. To illustrate this key insigtdnsider the example shown in
Figure 2.3. This figure shows a number of MBRs in the TPR-ttege given time for
objects moving in a two-dimensional space. In this exanthkepointp is being inserted
into the index.

In an R-tree based insert algorithm, a least deterioratost wode is chosen for
inserting the poinp. In Figure 2.3, at the top level, the least deterioratiort cofor
nodesA andD. The greedy algorithm in TPR-Tree will pick nodebecause it requires
the least area and perimeter expansion. And so at the lemeld2A2 will be picked for
inserting the poinp. However, the overall optimal node is for this insertion &&laD1,

which is the descendant of nole The insert algorithm of TPR*-tree recognizes that

12



a local optimal solution at a level (nodein the example shown in Figure 2.3) can be
from a broken-tie resulting from two elements having the sa®terioration, and that the
sub-elements (nod&2 in this example) of that element may not be optimal. It psgsoa
novel ChoosePattalgorithm that determines the node at any level that hasetdmst tost

of deterioration. It maintains a priority queue that is getkby the cost of deterioration
for each node, and the node with the least cost is pickeddwetsal at each step of the
algorithm. The traversal continues until the bottom-mast-teaf node that has the least
cost is found. This node is then chosen as the candidatedertion. The authors argue
that the extra cost incurred in traversing can beat by the benefits of finding an optimal
node for insertion. This algorithm leads to a tighter pagkofielements in nodes and thus
better query and insert performance.

The algorithm to deal with overflow nodes in TPR*-Tree is tstfiiorce reinsert and
then split the node. For objects moving in a two dimensiopats, the nodes are first
sorted along all the eighitt x d) possible dimensions and the firs{= 30%) entries from
the best possible sort are chosen for reinsert. If duringehmsert, a node overflows then
the node is split. The authors propose a heuristic to rechecaumber of sorts to just one,
by recognizing that the elements at leaf nodes can be assiorbeduniformly distributed,
and the largest extent of all the dimensions (positions ahalcities) would give the best
benefit.

The TPR*-tree authors also propose a cost model, and a hgfocsthoptimal tree for
predictive indices using a TPR-tree style of indexing. Thkegw that the performance
of the TPR*-tree is very close to the optimal indeRonsequently, one can conclude
that the TPR*-tree is currently the best known practicaldrithg technique for predicted

trajectories
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Table 2.1: Table of Frequently Used Notations

Notation Description
d Number of dimensions in real space.
D Number of dimensions in dual transformed spé2e- 2d).
L Index lifetime.
tref Reference time, a.k.a. initialization time of an index.
Vimaxi Maximum absolute velocity value iff dimension.
Viax Vector of maximum velocities.
Pmaxi Maximum position value of a moving object in tif& dimension. In thé™ dimen-
sion the position of an object ranges between O g .
Prax Vector defining the dimensions of the physical space.
pi Position of an object in the dimension in original space.
P Position vector of an object in original space.
Y Velocity of an object in the dimension of original space.
v Velocity vector of an object in original space.
Prefi Reference position of an object at tirfpg in i dimension of original space.
Pres Reference position vector of an object in original spacéa t.:.
Preti Reference position of an objectiifi plane of transformed dual space.
Prot Reference position vector of an object in dual transfornpests.
P Position vector of an object in dual transformed space.
Vv Velocity vector of an object in dual transformed space.
Preti Reference position of an objectifi plane of transformed dual space.
f Non-leaf node fanoutf = 2°.
2.4 STRIPES

In this section, we introduce the STRIPES index. To fad#itaur discussion, we will use

the notations described in Table 2.1.

2.4.1 Dual Transform for Moving Objects

The STRIPES index represents the moving object in a duadfivamed space. The basic

idea of a dual transform technique for predictive querie®$ is to transform a linear

trajectory defined by equatiqh= P,.; + \‘/(t - tref) in (d + 1)-dimensional space being

the additional dimension) into a poi(W, ﬁef) in 2d-dimensional dual space. Here,

V = (Vi, Vo, -+, Vy), andPyes = (Prefl, Prefa, - - ,Prefd) are the transformed velocity and

reference position vectors. We incorporate both negatidepmsitive values for velocity
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by applying the following transform: Give{v, p), the velocity and position vectors of an
object, the corresponding transformed velocity and refegeposition vectors(,V, ﬁef)

are calculated as follows:

I3ref = T) - (v - \_/max) (t - tref)
Thus the range fov is [6, 2\7max], and the range foP,cr is

| ~Vmax (t = tret), P+ VmaxX (£ = trer)|.

Since time is monotonically increasing, the valué®qf; is not bounded, which makes
building an index that extends into infinity impossible. Tdve this problem, we use
the same technique that has been used in previous worksZ58)5], namely requiring
that objects periodically issue an update to maintain al\eliry in the index. This time
period is essentially the lifetime of the index. As in previous works [59,72,105], we also
employ a two-index strategy where we keep two distinct instexctures in the system.
The first index covers the time range from OLtoand the second index covers the time
range fromL to 2L. The reference time of the first indextis;; = 0 and the reference
time for the second index ts; = L. Since an update consists of the deletion of the old
entry and the insertion of the new entry, when an update witestamp> 2L arrives, we
can simply delete the entries in the first index (either itgéy or the entries in that index
haveexpiredtheir lifetime [59, 72, 105]). At this point, we clear the fiiedex structure
and update it§er to 2L. New updates with timestamps in the range are now inserted in
this index. Using this strategy, we can observe that thea&mP, in each of the indexes
IS [~Vmax X L, Pmax+ Vmax X L]. To simplify the computation of index entry coordinates,
we addviyax X L to P, at transform time, and convert the rangeE(_Dpﬁmaﬁ 2 X Vimax X L].
Thus, the transform equation becomes:

Prer = P— (V= Vima) (t — tret) + Vmax X L

And, the linear motion equation becomes:

ﬁ = ﬁref + (\_/_ \_/max) (t - tref) — Vmax X L.
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2.4.2 Index Structure

The STRIPES index is essentially a disk based multidime@s$iBR bucket quadtree.
Each of thed dual planes(Vi, P1), (V2, P,), - - -, (Vg, Pg), are equally partitioned into four
quads This partitioning results in a total of'4= 224 partitions, which we calgjrids. The
fanout of non-leaf nodes is thus 24.

A non-leaf node stores the following information:
1. levetl indicating the level of the non-leaf node.

2. grid: which encodes information about the quadrant correspgndi this node, in
each of thad dual planes. In our implementation we simply indicate thadyant by
the lower vertex of the quadrant (this increases storagelmatsreduces computation

time).
3. children pointer array an array of 2 children pointers

4. isLeaf array a vector of length 2' indicating whether each of theé®2children

pointers point to a leaf or a non-leaf node.

5. size indicating total number of actual data entries stored lith& leaf nodes in the

subtree below this non-leaf node.

Leaf nodes store thevel grid, andsizeinformation, and the set of points that are being
stored in the leaf node.

We note that the grids consist of a seriesl@gfuads from thel two-dimensional planes
(i.e. the plane$V,, Py), (Vo, Py), - - -, (Vy4, Pg)). Thus each grid is uniquely defined by the
tuple /, Pret, S Ly, SLp), whereV (I3ref) is the vector of velocity (reference position)
coordinates of the leftmost (lowest) vertex of thquads, and Ly (S_Lp) is the vector of

side lengths along the velocity (reference position) akihed quads.
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2.4.3 Insertion

Being a dynamic index structure, STRIPES allows the insemif objects on the fly.

We first discuss the algorithm used to find the target leaf g an object to insert
into the index.

Given the tuplgVv, p) of a moving object, we first obtain transforméﬁ, I3ref) tuple
using the transform algorithm discussed in section 2.4henTstarting from the root node,
we recursively identify the next level target node by cadtinlg its array index in the

children pointer arrayusing the following formula:

Pretp—P;,

array index = Y9_, 22D‘1([T/'§mw -~ 1) o1

— Vp—V{
- 2842755

whereV(, P,

oo S Ly, @andS L, are the velocity, reference position, velocity side length

and reference position side length parameters of the duroete in theD™ dual plane.

The recursion terminates when either of the following twsesaoccurs: i) the target
leaf node is non-existent; ii) the target leaf node is fouBishce for case ii) there are two
sub-cases considering whether the leaf node is full or netemd up having to consider
the following three cases during an insert operation:

Case 1:the target leaf node is non-existent.

Case 2:the target leaf node is found and not full.

Case 3:the target leaf node is found and is full.

Next, we discuss each of these cases in turn. In case 1, a abmnolée is created, and
the new entry is inserted into this node. The grid paramdterthe new leaf node are

determined as follows:

SL, = SL,/2
Sl = SL/2
Poret = ([z—'eLj—i)xS_Lp
% - (&1



(Note: Multiplications and divisions between vectors ie tibove equation imply
element-wise operations.)

In the above equationéVGﬁGref,S_Lv,S_Lp) are the grid parameters of the newly
created leaf node; the vectc(f\?, I3ref) correspond to the new entry being insertﬁi,
andS_L; are existing grid parameters of the current node.

In case 2, the object is directly inserted into the leaf node.

In case 3, a split operation is performed, where the targétnede is promoted to a
non-leaf node, and new leaf nodes are created. For creagngetv leaf nodes, we follow
the same process as defined in case 1, and reinsert dats émtnethe old leaf node in
the sub-tree below this new non-leaf node.

An important aspect of this indexing structure is that newa®are created only when
necessary, which result in affieient insert operation. The drawback of this approach is
that it results in an unbalanced tree. However the actuklgpace used for the non-leaf

nodes is small, and often can stay resident in théebyool.

2.4.4 Deletion

When the motion parameters of an object are updated, theedekthod is invoked to
remove the previous entry for the object. Objects send iratggtimotion parameters
together with the old parameters which are used to locatedlkentries in the index.
The method for locating the old entry recursively appliesi&n 1 (see Section 2.4.3) to
locate the leaf node that contains this object. (Recall filoendiscussion in section 2.4.1
that it is possible that this object may hasseired In this case the update is simply treated
as an insert for a new object.)

At deletion time, non-leaf nodes are checked for undenitlich is defined as whether
the number of objects contained in the subtree below thig rfodlicate by the size
information stored in the non-leaf node) is less than or biguiie capacity of a leaf node.

The following two cases apply:
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Case 1:The non-leaf node is not under-filled, in which case the tagg#y is directly
deleted.

Case 2:The non-leaf node is under-filled, in which case all the estwithin this node
are first collected. Then, this node is converted to a leaénadd the collected entries are

re-inserted into the new leaf node. Finally, the targetyeistdeleted.

2.4.5 Update

Updates issued by objects contain the tuilgq( Void, Poig)s (thews Vnew Prew)) @nd are
evaluated as a delete followed by an insert. Theandt,, reference times are used to

determine which of the two indexes the old and new entry fgeton

2.4.6 Queries

We consider three types of queries: time-slice query, windaery, and moving query,
which were originally defined in [72].

For ease of reference, we modify the definition in [72] to éxefit within our context.

LetD, < Py Py < Py @andp, < Py, be the vectors of lower bounds and upper bounds
in position, and, t, t, be three time instants not earlier than current time, suatt th t,,
andt, < t,. The three types of queries can now be defined as:

Time-slice query:Q = (P, P, t) specifies a hyper-rectangle boundedpy p,] at
timet.

Window query:Q = (B, Py, ti, tu) specifies a hyper-rectan-gle bounded pyp,] that
covers the time intervak|[t.], i.e., this query retrieves points with trajectoriespr- t
space crossing the + 1)-dimensional hyper-rectanglepi, pw], [ P2, Pauls -+ » [ Pat» Paul
[t tu]).

Moving query: Q = ([Py, Piuls [P Pouls tis tu) specifies th€d + 1)-dimensional
trapezoid obtained by connecting the hyper-rectangle tedy|p,, p,,] at timet, and

the hyper-rectangle bounded [i3,, P, ] at timet,,.
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Figure 2.4: Transformed Figure 2.5: Transformed Figure 2.6: Transformed
One-dimensional Time-slice One-dimensional Window Query:One-dimensional Moving Query:
Query: Q1 from Figure 2.1 Q2 from Figure 2.1 Q3 from Figure 2.1

Figure 2.1 illustrates the three query types on objects nmin a native one-
dimensional space.

In Figure 2.1,Q1 is a time-slice query that returns objedt, Q2 is a window query
that returns objects2 ando3, andQ3 is a moving query that returns objec# ando5.

The most general query type is the moving query, which is efftrm Q =
([Py> Pwls [Pas P2l 11, tu). Window queries are essentially moving queries Viith= P,
andp,, = Py, Whereas time-slice queries are just window queries titht,. In essence,

the general quer® translates into the following set of inequalities:

tI tref) Vmax X L> I_Jll
)=V

Vmax X L < Py (2.2)

2.4.6.1 Time-slice Queries

For time-slice queriey;, = Py, Py = Pay, @ndty = ty, Eqn. (2.2) &ectively becomes:

I:)ref + (v - \_/max) (tl - tref) - \_/maxx L> l_3|

ey (2.3)
Pref + (V - \_/max) (tl - tref) - \_/maxx L< I_Du

The query region for the one-dimensional time-slice qu@tyshown in Figure 2.1 is
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illustrated in Figure 2.4. Poinsandb are obtained by plugging = 0 into Eqgn. (2.3),
and point andd are obtained by plugging = 2vnhaxinto Eqn. (2.3).

2.4.6.2 Window Queries

For window queriespy, = Py, Pi = Paus EQN. (2.2) Eectively becomes:

(2.4)

The query region for the one-dimensional window qué from Figure 2.1 is
illustrated in Figure 2.5. The values for the poiatd, ¢, andd are obtained by plugging
V = 0 into Eqgn. (2.4), and the values for the poiatsb’, ¢, andd’ are obtained by

pluggingV = 2vnaxinto Eqgn. (2.4).
2.4.6.3 Moving Queries

Figure 2.6 illustrates the query region for a one-dimeraiomoving query, using query
Q3 from Figure 2.1 as an example.

In all cases, the query region for one-dimensional ques@shounded polygon that
is confined within an upper bound and a lower bound. Note tlatipper bound and the
lower bound are not necessarily straight lines (refer tafég 2.5 and 2.6), since we take
into consideration the case where objects move in opposéetibns. We thus define the
guery region with six pointdJ)1, U2, U3, L1, L2, andL3 in Figure 2.6, among which
the four marginal point§1, U3, L1, andL3 are obtained by calculating intersections of
the four query region boundary lines (which are produceddtirg) the comparison in

Eqn. (2.4) to equals), with the boundaries of the underlyingl transformed space.
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L2 is obtained by calculating the intersection of the follogvset of lines:

Pre + (v - \_/max) (tl - tref) — VmaxX L = [_Jll

_ _ (2.5)
Pref + (V - \_/max) (tl - tref) - \_/maxx L= |_32|

U2 is obtained by calculating the intersection of the follogvset of lines:
5ref + (v_\_/max) (tl _tref) — VmaxX L = ﬁlu (26)

5ref + (v - \_/max) (tl - tref) — VmaxX L = ﬁ2u

In the case where either &R or U2 is outside the boundaries, the end points are used.
Effectively, ad-dimensional query body consists@&uch distinctive query regions

corresponding to thd dual transformed planes.
2.4.6.4 STRIPES Search Algorithm

Queries are processed in STRIPES as follows: At leveach of thef grids are tested
for relative position to the query body. This test is perfethas a conjunction af
two-dimensional relative position tests between dateoregand the corresponding query
region. Relative positions include INSIDE, OVERLAP, andSDUNCT. A grid is INSIDE
a query body if and only if all the sub-queries return INSIDtHs DISJUNCT as soon as
one of the sub-queries returns DISJUNCT,; otherwise OVERIARRturned. For all the
grids that return an INSIDE result, we immediately retridve entries within. DISJUNCT
results are discarded and OVERLAP results are further probeursively. Figure 2.7
shows the algorithm for relative position test between a dagion and a query region.
Figure 2.8 shows the relative positions between data regaod the query region. As
shown in Figure 2.8R3 is DISJUNCT to the query region, whilR2 is INSIDE the query
region andR1 OVERLAPs the query region.

An additional optimization technique that we use is basetherfiollowing observation.

The Z-dimensional grid with each of it$ 2-dimensional planes partitions the data space
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Figure 2.7: Algorithm to Test the Relative Positions of DataFigure 2.8: Relative Positions of Data and
and Query Regions Query Regions for One-dimensional Points
into quads in each of the d planes. For any node, if any of theads is DISJUNCT from
the query region, then we can safely discard all nodes tleatnapped to this disjunct
quad. Hfectively, whenever such quads are determined, number offseades that
must be examined is reduced by 25%! This optimization tepaiguickly prunes away

unnecessary node accesses, making the searchfliergre.

2.5 Experimental Evaluation

In this section, we present results comparing the perfoomah the STRIPES and the

TPR*-tree index.

2.5.1 Implementation Details and Experimental Platform

We implement both STRIPES and TPR*-tree [105] on top of the®O8H storage
manager [22]. We compiled the storage manager with a 4KB page In all our
experiments, we set the fiar pool size to 2048 pages; in making this choice for a
small buter pool size, we are essentially following the same philbgags in previous
studies [64, 72, 105] with the same goal of keeping the erpaEris manageable. SHORE
pointers are 16 bytes in size, and we use 4-byte floating pdantall the coordinate

representation in the system (the TPR-tree code [72] also flsating point numbers).
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The TPR*-tree is implemented using the algorithms desdrihg105]. The insert
algorithm used in the TPR*-tree employs a priority queud thamplemented using
heapsort (used in thehoosePattalgorithm in [105]). The priority queue stores the cost
degradation for each node to insert the update. This quehernsused to determine the
best node for inserting an update. TRiekWorstalgorithm of [105] is used to deal with
overflow nodes. The best possible entries are removed andeireserted again. Any
possible overflow nodes are then split. The index is optichipe static point interval
guery which is same as the one used in TPR*-Tree paper.

With the system settings used in our experimental platfosmgiSHORE, the
maximum fanout of a TPR*-tree non-leaf node is 78.

For the STRIPES index, we simply create non-leaf nodes aslisBHORE records.
Since all sibling non-leaf nodes for a given parent are egeabncurrently, these nodes
are usually stored sequentially on disk. This clusterirgpprty results in gicient disk
access for the non-leaf nodes. To implement the leaf nodeiseéwo leaf node sizes,
which in the following discussion are referred to as smatl kmge. When a leaf node is
first created, its size is set to small, which is approxinyatellf a disk page size. When a
small leaf node overflows, it is promoted to a large node. éaigdes occupy exactly one
disk page. We adopt this strategy since a split of a leaf neslglts in the creation of 16
new leaf nodes (for objects moving in two dimensions). Ircpca we have found that
many of these leaf nodes are empty, and we don't create dggsdar these nodes during
the split. Nevertheless the leaf page occupancy is stilldbaround 12%. Using the two
leaf node size allows us to nearly double this page occupaiith this implementation
we find that the STRIPES index is about 2.4 times larger thaT®PR*-tree index. In
the future, we plan on extending our current implementatonse more than two leaf
node sizes, which will increase the occupancy of the leaesdurther. However, based
on current experimental evaluation, we expect that this haa limited additional benefit

on the actual performance of the index as the index size issareionly in very limited
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cases. The key to the performance of STRIPES comes fromdhavielatively small
disk footprint for the non-leaf nodes, which results in $igant performance advantages
over the TPR*-tree index. As an example, for a data set witkb@sers, the TPR*-tree
index has a height of four and the index occupies around 4&d¥pages; whereas, the
STRIPES index has a maximum height of seven and occupieacili200 pages. For
this data set the STRIPES index has only 1, 486 non-leaf ndtiesh non-leaf node uses
352 bytes for its disk representation, which allows for a1 non-leaf nodes to fit on a
single disk page. Even as the index is updated over time,dhdeaf nodes are contained
within a few hundred pages.

The experimental platform used in these experiments is a 2 IGtdl Xeon machine
with a 512KB L2 cache, a 40GB Western Digital 7200 RPM IDE Hardve, running Red

Hat Linux 9.

2.5.2 Data Sets and Workload

We generated a number of workloads using the popular wadkémaerator, which
is generously provided by the inventors of the original Tiré& [72]. This workload
generator simulates objects moving in a two-dimensionatspand has a number of
different parameters which can be varied. Although we expetadesith a wide range
of workloads with dfferent combinations of parameter values, in the interespaces,
in this section we only present results from using a few regméative workloads. These
workloads closely correspond to the default values usedgdaménerator, which essentially
generates the key data sets used in [72]. In the followinggraphs, we describe the key
parameters of this workload generator, and also specifydhees for these parameter that
we used for generating our workloads.

The workload generator &altenis et al. [72] allows generation of both uniform data
workloads, and skewed workloads. In skewed workloads,dimtensional objects move

in a network of routes connecting a number of destinatidii3, As the value ofND
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decreases, the skew in the data increases. In our expesimengenerate skewed data
sets withND = 20, 40 and 60.

In our workloads, we vary the number of moving obje®sfrom 10K to 90XK. For
the 10K data set, the objects move around in a space with dimensfdr00 x 1000
kilometers. For larger data sets, we scale the dimensidkeep the densities same across
all data sets (this strategy for generating scaled datassattso recommended by [72]). For
the uniform workloads, the initial positions of objects aréformly distributed in space.
The workload generator assigns initial positions for eaching object in the system, and
then generates a workload which is a mix of update and quessatipns. The ratio of the
number of update and query operations can be varied, andegemirresults using a mix
of 80— 20, 50— 50, 20— 80. For the 8G- 20 case, 80% of the operations are updates and
20% are queries.

For updates, the directions of the velocity vectors aregassi randomly. The default
values for speeds are uniformly distributed between 0 &mg/@in. The rate of updates
is controlled by a parameter, called the update intetval, The time interval between
successive updates is uniformly distributed between 0 &hd 2n the experiments
presented in this section, we &&k to the default value of 60. The workloads are generated
for the default 600 time units.

For the queries, the generator can generate any arbitrarpitime-slice, window,
and moving queries. The default values for the query mix 8f#,620% and 20%; all
workloads used in this chapter are generated using thisilisttting. The temporal range
of the queries is set to the default value of 40, and the dpadiaof the queries is set to

the default value of 5% of the entire spatial extent.

2.5.3 Htfect of Workload Mix

In this first experiment, we use a uniform data set with’08oving objects. The first

experimental result for this data set is shown in Figure x@his figure, we plot the total
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Figure 2.9: 500K-Uniform: Continuous Performanéggure 2.10: 500K-Uniform:/O and CPU Costs for
Measurement for Batch of 5K Operations 50K Operations

execution time for the two index structures shown in batafeésk operations for the
first 50K operations. This experiment lets us determine if the perémce of the indices
deteriorates as the updates operations change the umdgpigitition boundaries in the
indexing structures.

As can be seen from Figure 2.9, the TPR*-tree index has g farbd steady state
behavior. This result is consistent with the results presem the [72]. (In [72] the
researches also show that in contrast to the TPR*-tree,@Hermance of the original
TPR-tree rapidly degrades for a similar experiment.) Th&F#ee has a good steady
state behavior since it uses a much more sophisticatedeipttgirithm (theChoosePath
component), which prevents the R*-tree from getting intaations when increasing
amounts of dead space and overlap amongst the bounding leexkt® a rapid drop in
performance.

From Figure 2.9 we observe that STRIPES also demonstrates gfjeady state
behavior. Furthermore, STRIPES is at ledstfaster than the TPR*-tree index! The
reason for this ficiency is that the non-leaf nodes of the STRIPES index oesupnly a
few hundred pages even as the indexing structure changesavit updates. These nodes
are typically resident in the Ifier pool and /Os are usually only needed for accessing the
leaf-pages. In contrast, during an insert operation in tAR*Ftree, multiple paths are
traversed down the tree in ti@hoosePatlalgorithm, which results in a large number of

I/Os.
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We see these results more clearly in Figure 2.10, which Brdatvn the total costs
for the first 5K operations into the CPU and th®l components. To produce this cost
breakup, we tracked the time spent i@ loperations, and used this measure to divide the
total execution time into thg® and the CPU compone#tiiote that in this figure the
y-axis uses a log-scale. As shown in Figure 2.10, t@ecbsts for TPR*-tree are very high
relative to the JO cost for STRIPES. This is because the STRIPES index onlyines)
a handful of JOs for every update operation. For this data set (withk600jects), the
STRIPES non-leaf nodes are usually spread across a fewduiddik pages. These are
usually resident in the iter pool, and JOs are only needed for the leaf-level pages.
In contrast, the TPR*-tree index incurs a large number©8! In this case, the index
occupies around,400 disk pages and the index is of height 4. During the ingestation,
theChoosePatlalgorithm has to find a good leaf node for the insertion. Teagdish this
task, it uses a priority queue based technique to traverséigpha paths to the leaf nodes
(see Section 2.3.2). This technique results in large numibg®s, and also leads to poor
reference locality as successive updates are likely tetsavwdiferent parts of the index!

For this workload, we also plot the average cost for a singlédate operation in

Figure 2.11, and the average cost for a single query in Figur2. As can be seen from

To accomplish this task, we turned asynchronousg/©s that are incurred by the SHORE background
cleaner thread, and used only one thread to carry out all tklead operations.
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these figures, the® cost for the TPR*-tree index is significantly higher thaa #© cost
incurred by STRIPES foboththe update and query operations. Thietence is much
more dramatic for the update operation, which is extremélgient in STRIPES (see
Figure 2.11). Update operations in both index structurgaire an insert operation. An
insertion in STRIPES only requires inserting a point ohjedtich can be accomplished by
asinglepath traversal from the root (see Section 2.4.3). This dijperés extremely fast in
guadtree based structures because of the non-overlaggoar decomposition strategy
used by the index structure. In contrast, multiple pathgrarersed by the TPR*-tree,
which results in a much highefQ cost.

Figure 2.11 and Figure 2.12 also show that the CPU costsrietiny STRIPES is
much lower than the CPU costs for the TPR*-tree index. Foatgs] the reason for this
is once again thefigciency of the update operation in STRIPES, as compared tatioh
more expensive technique of multiple path traversals ugedeoTPR*-tree, which require
expensive overlap comparisons at each node. In additierCBU costs for the TPR*-tree
insert also includes the sort cost and reinsert algoritpitk\W orsj cost. Calculation of
the integrals needed for the TPR*-tree are also expensiveantribute to the high CPU
cost.

For queries, the techniques employed by STRIPES (desdrirb8ection 2.4.6.4) are
much more CPU féicient as compared to the overlap comparisons that are ndbd in

TPR*-tree.

2.5.4 Scaling with Increasing Number of Moving Objects

In this experiment we explore théfect of increasing the number of moving objects from
10K to 90K users for the three workload80 - 20,50- 50, and 20- 80). In the
interest of space we only present results for the-&D case for 10K and 90K data set
cardinalities. These results are shown in Figure 2.13 aguosty and update costs, broken

down by the CPU and© costs.
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For the 10& data set the TPR*-tree index fits in theffar pool and incurs ngO cost,
whereas STRIPES incurgds, especially for the queries. For this case the smallexind
size of TPR*-tree works to its advantage, and the query padoce of STRIPES is about
35% worse than the query performance of the TPR*-tree indggressive disk space
optimization outlined in section 2.5.1, are may improve pleeformance of STRIPES in
this case, and we plan on undertaking tHfek as part of our future work.

Note that even in the case with the X0@ata set, the update operation in STRIPES
is aboutbx faster as compared to the TPR*-tree. Again the reason for this pedace
gap is the dierence between the expensive insert operation in TPR*amddhe highly
efficient insert operation in STRIPES.

For the 90K data set the performance gap between the two indices widems e
further from what we observed with the H@ata set in Section 2.5.4. The reasons for
this follow from the discussion in Section 2.5.4 as the STESRndex keeps most of its
non-leaf nodes resident in memory even for this larger dettaThe TPR*-tree’s insert

algorithm degrades even further because of the larger data s
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2.5.5 Hfect of Data Skew

In this final experiment, we evaluate the performance of Weeinhdices for skewed

data sets. We experimented with tN® parameter in the workload generator (see
Section 2.5.3) and generated data sets With= 20, 40, and 60. In the interest of space
we only present the results foID = 20 (highly skewed) an8iD = 40 (small skew) data
set, for only the 56- 50 workload. Figure 2.14 plots the per update and per questg dor

this experiment. Comparing the update and query costssrfighre with the costs for the
50— 50 workload in Figure 2.11 and Figure 2.12, we can obseruebttita index structures
handle skewed data sets well, ®BITRIPES continues to outperform the TPR*-tree by over

an order of magnitude for updates, and4yfor queries.

2.5.6 Summary

In summary, we have shown through extensive experimengliaiion that STRIPES is
significantly faster than the TPR*-tree index. The updaterafon in STRIPES is often
more than an order of magnitude faster, and the query pegioceis around 4x faster as
compared to the TPR*-tree. The regular disjoint decompositf space that is used by
STRIPES results in extremelyfieient inserts. In addition, even with very large data sets
(relative to the available iter pool size), the amount of space needed to hold the non-leaf
nodes of STRIPES is very small. Consequenii@slare rarely incurred for the non-leaf
nodes. In contrast the TPR*-treeffars from having to traverse multiple paths down the
index, which is JO intensive and results in a reference pattern that has patedocality.

These diferences in the indexing approaches also manifest in the ©Btd as the
TPR*-tree has to carry out many expensive box overlap coatjouls as it traverses
down the index. In contrast STRIPES employs a number of opaitions (refer to

Section 2.4.6.4) to keep CPU costs low.
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2.6 Related Work

Within the broader context of indexing trajectories for nmgvobjects, there are two broad
classes of related works. The first class includes methadadexing the historical and
the current positions. The second, and more closely coed@tass of research to our
work, is on indexing the predicted locations of moving obged he methods for indexing
the past and the current locations are typically concernddqueries on exact trajectory
points, whereas methods for indexing on the future locateme concerned primarily
with indexing the parameters of the predicted trajectopresentations, which typically
include a velocity vector and a start position vector. Hosvelsoth these classes of indices
are concerned withficient indexing mechanisms for supporting fast updates aedes
on spatial representations of the trajectories. In the pasdagraph we briefly review the
methods for indexing on the past trajectory locations, &ed turn our attention to the
more closely related work in indexing predicted trajecsri

Most of the work on indexing the past locations of trajeastis based on variations
of the R-tree [44] and the R*-tree [10]. These methods ingltite 3-D R-trees [108]
which simply treats time as a third dimension. The MR-treE3]land the HR-tree [76]
are also 3-D R-tree structures and maintain a separateeReresach time stamp.
The MV3R-tree [104] is a hybrid structure that uses a mudtision R-tree (MVR) for
time-stamp queries, and a small 3D R-tree for time-intequadries. This indexing
structure has been shown to outperform other historic@drary indexing structures, such
as the popular TB-tree [85]. SEB [98] and SETI [23] are histdrtrajectory indexing
techniques that partition the spatial extents, and budites on the temporal dimension.
A number of indexing methods have also focused fhicient methods for indexing the
current location of moving objects [61, 62, 75,97]. All thetmods described in this
paragraph are not concerned with indexing the predicteatitmt, and index the native
space of the trajectories. In contrast, STRIPES indexeprdicted locations in dual

transformed space.
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Two main approaches have been used for indexingpthdictedlocations of
trajectories. These two approaches are a) methods that iheeredicted trajectories in
the original spatial and temporal dimensions, and b) methioat transform the predicted
trajectories into a dual transform space and index the damastormed space.

One of the early works on indexing predicted trajectoridg/i$ayeb et al. [106]. In this
work, trajectories in al-dimensional space are treated as lines (d & 1)-dimen-sional
space, with time as the additional dimension. The line is thelexed using a PMR
guadtree [93]. The drawbacks of this approach are that theximay have excessive dead
space and replication since it is indexing high dimensidinak. The work by Tayeb et
al., carried out within the context of the MOST [93] projelags strongly influenced and
stimulated interests in methods for querying moving objie¢abases.

The TPR-tree [72] is a popular indexing structure for indexpredicted trajectories.
This index structure uses the basic R-tree indexing stracnd extends the notion of
bounding boxes to time-parameterized bounding boxes asided in Section 2.3.1.

The notion of time-parameterized bounding box has also beed by other related
indexing structures [21,87]. One of the problems with thestiparameterized boxes is that
estimating it requires reasoning about the positions obtijects enclosed by the box over
some period of time. The original TPR-tree paper [72] usedrservative bounding box,
but this has been improved in a number dfelient ways [70, 88, 90], often by exploiting
various additional parameters such as expiration timelseomaximum speed. The TPR*-
tree is an index structure which improved the methods pregasthe original TPR-tree,
and has been shown to be significantly faster than the TRRmehis paper we compare
STRIPES with the TPR*-tree, and show that STRIPES outpersdhe TPR*-tree by very
significant margins. An extensive critique of the TPR*-toam be found in [42]. Dual
transformation techniques have been successfully emglfmyequerying static spatial
data [51]. Drawing inspiration from this success, dual¢farmation techniques have also

been proposed for indexing predicted trajectories [11hesE indexing methods include
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the Kinetic data structure [6], the R-tree based paranzetgspace indexing method [87],
and the SV-model [25]. Perhaps the most popular dual tramsfioion approach for
predicted trajectories is the work by Kollios et al [59]. mgwork, the authors derive nice
lower bounds on the cost of answering predictive queriasgudual transformation. Most
of the paper is concerned with objects moving in one-dinmradispace, and the paper
sketches extensions to higher-dimensional space. Iniaddihe paper only considers
window queries. The largely theoretical approach has semgdhe basis for some of the
choices made in the TPR-tree [72], but has largely been dsadiby recent work that use
a more systems-approach [72,105]. The dual transformatethod used in STRIPES

is based on the Hough-X transform used in [59]. STRIPES cadlbahe entire range
of predictive queries, including moving window queriesdame show that STRIPES
vastly outperforms the current best know method for indgxredicted trajectories.
Immediately following the STRIPES work, a*Bree based dual transform indexing
technique called the’Btree [54] was also proposed for indexing predicted trajees.
However, no performance comparison study has been doneloat® the ficiency of
STRIPES against the*Bree yet.

In recent years, a few motion modeling approaches have a&eso proposed for
indexing historical (the PA-tree [77]) and predicted (tHEPSree [103]) trajectories.
Both the PA-tree and the STP-tree use complex polynomiaicappations to model
trajectories and use existing index structures to indexficoents derived from the
polynomial approximations.

For a more detailed overview of related work in this areaqriodSTRIPES, the reader

is directed to a comprehensive review [74].

2.7 Conclusions

In this chapter we have presented a new indexing structllexlc&TRIPES for indexing

and answering queries on predicted positions in movingablgjatabases. This new
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indexing structure draws inspiration from earlier largtdgoretical work in this area,
advocating the use of dual transformation for indexing sietia sets. The STRIPES index
leverages these dual transformation techniques and usspmtregular partitioning
technique to fficiently index the points in the dual transformed space. ThRIBES
index can support all the types of commonly used predictiverigs [72], which

include time-slice, window, and moving queries. We have jgarad the performance

of STRIPES with the mostfgcient predictive indexing structure, the TPR*-tree [105].
Our comprehensive experimental evaluations demonstratéSTRIPES outperforms the
TPR*-tree index for both updates and queries; updates &ee afore than an order of
magnitude faster using STRIPES, and queries are ofterr fagi@ factor of 4x. These
differences can be seen in both tf@ &nd the CPU costs. Consequently, STRIPES is an

extremely déicient and practical indexing structure for supporting prtae queries.
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CHAPTER 3

ALL NEAREST NEIGHBOR QUERY ALGORITHMS
AND METRICS

3.1 Introduction

The All Nearest Neighbor (ANN) operation takes as input tets ©f multi-dimensional
data points and computes for each point in the first set theeseaeighbor in the second
set. The ANN operation has a number of applications in aimaiylarge multi-dimensional
datasets. For example, clustering is commonly used to a@ddyge multi-dimensional
datasets, and algorithms such as the popular single-len&agtering method [52,56] uses
ANN as its first step. A related problem, called AKNN, whiclpoets the KNN for each
data point, is directly used in the Jarvis-Patrick Clusigm@lgorithm [53]. AKNN is also
used in a number of other clustering algorithms includirgktmeans clustering and the
k-medoid clustering algorithms [17].

The list of applications of ANN and AKNN is quite extensivedaalso includes
co-location pattern mining [114], graph based computafidgarning [58], pattern
recognition and classification [78], N-body simulations ewstrophysical studies [31],
and particle physics [79].

ANN is a computationally expensive operatidd((?) in the worst case), and its
cost increases rapidly with increasing dataset sizes. mmyrapplications that use ANN,
especially large scientific applications, the datasetgawing rapidly and often the ANN
computation is one of the main computational bottleneclkecdgnizing this problem,

there has been a lot of interest in the database communigvelaping dicient external
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ANN algorithms [17,18, 29,46, 116]. All of these methodslthir*-tree indices [10] on
one or both datasets, and evaluate the ANN by traversingithexi During the index
traversal, these methods keep track of nodes in the indéxdea to be considered, and
employ a priority queue (PQ) to determine the order of thextdaversal. Thef&ciency
of these algorithms strongly depends on how many PQ entréesraated and processed.
The most common andfective pruning method that has been developed so far emaloys
pruning metric called MAXMAXDIST, which is roughly the mamum distance between
any points in two minimum bounding rectangles (MBR). Thisrpng metric can be used
to guarantee that certain subtrees in the index will not pceda nearest-neighbor (NN),
and hence can be pruned out from further consideration. isnctrapter we introduce
a new distance metric, called the MINMAXMINDIST (abbrewadtas NXNDIST), and
show that this new metric has a much more powerful pruniiigce Using extensive
experiments we show th#tis new distance metric often improves the performance of
ANN operation by more than an order of magnitude

In this chapter we also explore the properties of NXNDIST dedelop a fast
algorithm for computing this metric. This fast algorithnristical since for ANN queries
this distance computation is evaluated frequently.

In addition, we examine a family of index based ANN algorithrwhich difer
in the way that the spatial indices are traversed, and theinvashich the PQ entries
are expanded. We explore four options corresponding to twog of tree traversal —
breadth-first and depth-first, and two forms of PQ entry egman— expand both index
nodes in the priority queue entry or expand only one node i@ tTo the best of our
knowledge, no previous work has systematically exploregéhalternatives in the context
of ANN evaluation. A contribution of this chapter is the eogation of these alternatives.
More importantly, we show that of the four algorithms in tesign spacehe depth-first
bi-directional expansion method is consistently the mgstient

All of the previous index based ANN methods [17, 18, 29, 4&)1have used the
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“ubiquitous” R*-tree index as the indexing structure. Iistbhapter, we show that for ANN
gueries there is a much better choice for an index struciitnes new indexing structure
is called the MBRQT index, and is essentially a disk base#diLieR quadtree [93], with
the addition of the MBR (minimum bounding rectangle) infation for each internal
node. We show that the regular decomposition and non-qy@rig nature of the quadtree
results in a much moretective pruning strategy for ANN computation. Our experitaén
results show thaANN evaluation using MBRQT is around 3X faster than usindres:

Besides comparing our methods with previous index based ANthods, we
also extensively compare our methods with the GORDER [112NAnethod. Unlike
other methods, GORDER doesn’t employ an index to speed upNXi computation.
Instead it first transforms the data using Principal ComptsAnalysis and imposes a
grid structure on the transformed space. Then, it “joing’tihio datasets using the grid
structure, carefully exploring only a limited number ofdycell pairs. The GORDER [112]
approach has not been compared with BNN [116], which is atigréhe best index based
ANN method, and in this chapter we compare our technique both these previous
methods. These comparisons show that our method significauntperforms both these
previous methods.

We note that quadtree structures are not height-balanc¢dndéthods using a disk
based structure for the quadtree have been shown tdféetiee [33, 47] for spatial
database applications. The method using MBRQT can be uses@s where the database
system chooses to support quadtrees (for example, Oraslsumgort for traditional
guad-trees [60]), or in cases where ANN is run on datasetslthaot have a prebuilt index
(such as when running ANN as part of a complex query in whicklection predicate
may have been applied on the base datasets).

The remainder of this chapter is organized as follows: 88c3i.2 covers related
work. Section 3.3 outlines our new ANN approach. Sectionc8rtains a comprehensive

experimental evaluation of our new approach, and compéakeishi previous methods.

38



Finally, Section 3.5 contains our conclusions.

3.2 Related Work

The problem of Nearest-Neighbor (NN) to a query point hashbweell studied from a
database query processing perspective [46, 82, 92]. Thededs use an R*-tree index
for evaluating NN. Essentially these methods develop uargirategies for traversing the
index by using a priority queue (PQ) to record and order tldexmodes that must be
traversed. Usually, methods for pruning the PQ entries laewsed to discard portions
of the index that are guaranteed not to contain the NN. ThHeestof these methods by
Roussopoulos et al. [92] introduces two key metrics betveepaint and an MBR, called
MINDIST and MINMAXDIST, which are used in producing affieient traversal. The
MINDIST is the minimum distance between the query point andlBR entry of the
index, and the MINMAXDIST is the minimum value of the maximwlistance between
the query point and the points on the edges of an MBR. EsignddNDIST is an
optimistic NN bound and MINMAXDIST is a pessimistic one. @3 two key metrics
have also been often used in problems related to NN.) Thead@t{92] uses a depth-first
traversal, which was later shown to be suboptimal [82]. Ahdptimal algorithm for
NN search was later provided [46], which essentially emplayreadth-first (BF) search
technique to traverse the R*-tree index. Bohm et al. [18¢@ comprehensive comparison
and coverage of éierent structures and techniques that address NN querygsiage
Distance join algorithms are also related to ANN algoritHA®]. A distance join
operation works on two sets of spatial data, and computespdtt pairs, one from each
set, such that the distance between the two objects is larsatihon-negative valwk
A distance semi-join is a related operation [46], which aialy produces one result
per entry of the outer relation. Incremental algorithmstfaese operations are also
developed [46]. Later, Shin et al. [95] develop a moffeceent algorithm for a related

problem of k-distance join, which uses a bi-directionalaxgion of entries in the PQ and
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a plane-sweep method.

With respect to how results are produced, Corral et al. [2BpBopose both iterative
and recursive non-incremental distance join methods. & hesthods employ more
efficient pruning techniques and are thus mdfeative, while incremental algorithms are
more flexible and better suited for online query processing.

The closest body of related work is the collection of pregigwproposed external
memory ANN algorithms. A simple approach for computing ANS\td run a NN
algorithm on the inner datas8tfor each object in the outer datas&tFor this approach,
optimization techniques have also been proposed to rediteéand JO costs [19].
However, the assumption for such optimization is that therigs fit in main memory,
which makes it inficient when the size dR is larger than the main memory size.

Depending on whethd® andor S are indexed or not, existing techniques fall into two
categories: traversal of R*-tree indices using a Distaoge dlgorithm [29, 46], and hash
based algorithms using spatial partitions [38]. The worKlib6] spans both categories.
Bohm and Krebs [18] also provide a solution to the more garamoblem ofNearest
Neighbor Join namely find for each object IR, its k nearest neighbors i, which
degenerates to ANN whdn= 1. However, a specialized index structure termadtipage
indexis proposed for the solution provided, and thus the soltitig@8] does not apply to
general-purpose index structures such as R*-trees or igpesdt

Incremental Distance Join algorithms have also been usedainate ANN
gueries [29, 46]. However, in the case where some of the tshjpdRk have nearest
neighbors with large distances, these algorithms incunifsignt overhead, as more entries
than necessary will have to be processed before the NNsdeethbjects are identified.

The more recent work on ANN by Zhang et al. [116] suggests twam@aches to the
ANN problem when the datas8tis indexed:Multiple nearest neighbor search (MNN)
andBatched nearest neighbor search (BNNNN is essentially an index-nested-loops

join operation, where the locality of objects is maximizediinimize JO. However, the
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CPU cost is still high because of the large number of distaataulations for each NN
search. To reduce the CPU cost, BNN splits the point® into n mutually exclusive but
overall exhaustive groups, and traverses indexly n times, greatly reducing the number
of distance calculations.

For the case where neither dataset has an index, Zhang £18].dlso propose a hash
based method (HNN) using spatial hashing introduced in. [Bjwever, it was pointed
out that in many cases building an index and running BNN itefakan HNN, and HNN
is also susceptible to poor performance on skewed databoditms [116].

The recent GORDER [112] method also takes an approach sitoifa16]. However,
GORDER employs a Principal Components Analysis (PCA) tegleto transform the
union space of the two input datasets to a single principalpmment space, and then sorts
the transformed points using a superimpo&ei Order. The transformed datasets, often
more uniformly distributed, are written back to disk in safbrder. A Block Nested Loops
join algorithm is then used for solving the KNN join query.

The BNN and the GORDER approaches are currently regardelly lefficient
ANN methods. To the best knowledge of the authors, previous Wwas not compared
these two methods directly. In this chapter we make this @spn, and also compare
these two methods with our new techniques.

Interestingly, previous research on ANN and related joithmés (such as Distance
Join) has not considered the use of disk-resident quadickeeis. As we show in this
chapter, the regular decomposition and non-overlappioggsties of the quadtree make it

a much more icient indexing structure for ANN queries.

3.3 ANN Evaluation

In this section, we first introduce a new asymmetric distane&ric, MINMAXMINDIST
(abbreviated as NXNDIST), which has a higher pruning power&NN computation
compared to the traditional MAXMAXDIST metric. We also pees$ an dicient
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Table 3.1: Table of Frequently Used Notations

Notation | Description

D Dimensionality of data space
R Query object dataset

S Target object dataset

IR Index on dataseR

Is Index on datase®

M An MBR inindex|g

N An MBR in indexlg

r Point object in the datas&

S Point object in the datas&

algorithm for computing NXNDIST that has linear cost witlspect to dimensionality.
Next, we explore the family of four ANN algorithms, namelyrebdth-first search with
bi-directional node expansions (ANN-BFBI); breadth-festrch with uni-directional
node expansions (ANN-BFUNI); depth-first search with bredtional node expansions
(ANN-DFBI); depth-first search with uni-directional nodepansions (ANN-DFUNI),
together with the pruning heuristics that take advantag®pofe of the inherent properties
of the NXNDIST metric for more #ective pruning.

We then present a generalization of our method for handlikigMsearch problems.

Finally, we propose a new index structure, which is callezlMinimum Bounding
Rectangle enhanced Quad-Tree (MBRQT), which has signifedvantages over an
R*-tree for ANN computation as it maximizes data localitydaavoids the overlapping
MBR issue that is inherent in an R*-tree index.

To facilitate our discussion, we will use the notationsaduiced in Table 3.1.

3.3.1 A New Pruning Distance Metric

As is common with current ANN algorithms, a certain distanestric is required as the
upper bound for pruning entries frohg that do not need to be explored. Traditionally

the MAXMAXDIST metric has been used as such an upper boung2@8 The
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MAXMAXDIST between two MBRs is defined as the maximum possibistance
between any two points each falling within its own MBR [28].28/e observe that the
MAXMAXDIST metric is an overly conservative upper bound #&NN searches. We
show that, for ANN queries a much tighter upper bound of tistagice between points
within M and those withirN can be derived. This new upper bound guarantees the
enclosure of the nearest neighbor withrfor every point withinM. We call this new

metric the NXNDIST, and formally define it in the next section
3.3.1.1 Definition and Properties of NXNDIST

For completeness and ease of comparison, first we providé descriptions of two
related distance metrics on MBRs that have been previowsiget [28]. These metrics
are MINMINDIST and MINMAXDIST.

The MINMINDIST between two MBRs is the minimum possible diste between any
point in the first MBR and any point in the second MBR. This nodtias been extensively
used in previously proposed ANN methods as the lower bountdefer pruning ANN
processing. We also employ this metric as a lower bound me#&siXNDIST, which we
define in this section, is our upper bound metric).

Another distance metric termed MINMAXDIST [28], is the updsound of
the distance between at least one pair of points, one froin efthe two MBRs.
MINMAXDIST has been frequently used as an upper bound pgimetric in various
distance join algorithms (for example, [28, 29]). Howewee, note that MINMAXDIST
was proposed to address ddrent class of distance join operations, and is not suitble
a pruning metric for ANN computation as it does not provideeaect upper bound for
ANN.

In the following discussion, we define the NXNDIST metric mbigrary dimensions
and explore its properties.

We represent a D-dimensional MBR with two vectors: a lowarribvector to record
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the lower bound in each of the dimensions, and an upper bound vector to record the
upper bound in each of the dimensions. For example, the lower bound vector for an
MBR M is expressed as I}', 1!, ..., 1} >, and the upper bound vector fit is represented
as<u Ul .. ul >

On the other hand, a D-dimensional pomiis represented as the vecter
P1, P2, ..., Po >.

Next, we define a few auxiliary metrics, and then give the dedimof the NXNDIST

metric.

Definition 3.1. Given two D-dimensional points, p and g, DI&, g) in dimension d is

defined as:

DIS Ta(p, @) = [pd — 0l

Definition 3.2. Given two D-dimensional points, p and q, DISdJQ) is defined as:

DIST(p, 6) = /284 DIST(p. )

Definition 3.2 essentially gives the definition of the Euebah distance betwegnand
g

Definition 3.3. Given two D-dimensional MBRs, M and N, for all points p enetbsn M
and all points g enclosed in N, MAXDIQ(M, N) in dimension d is defined as:
MAXDIS T4(M, N) = maX;pem vqen DIS Ta(p, 0)

In other words,MAXDIS Ty(M, N) gives the maximum distance between any
points within M and those withirN in dimensiond. The geometric meaning of
MAXDIS T3(M, N) is as follows: in dimensiom, starting at any point withitM, an
interval of extentMAXDIS Ty(M, N) in either direction is guaranteed to cover all points

within N along this dimension.

Definition 3.4. Given two D-dimensional MBRs, M and N, and an arbitrary pgnt
enclosed in M, MAXMINM, N) in dimension d is defined as:
MAXMINg(M, N) = max;pem (Min (pa = 11, [pa — u}))
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Figure 3.1: 2-D Intuition of Figure 3.2: 3-D Computation of

NXNDIST NXNDIST Figure 3.3: Metrics on MBRs

We give the intuitive definition oMAXMINy(M, N) as “the maximum of the minimum
distances in dimensicthfrom any point within the range}, u}'] to at least one end point

N N»
I orugy™.

Definition 3.5. Given two D-dimensional MBRs, M and N, NXNDI@/ N) is defined

as:

MAXDIS T2(M, N)
NXNDISTM,N) = |S- max , Where

d=1,..D _MAXM|N§(M’N)
S =32, MAXDISTA(M,N).

Figure 3.1 gives a geometric intuition 8 XNDIS T(M, N) in 2-D space. Two
non-overlaping MBR3dM andN are shown, as well as an arbitrary point objeet M.
If an interval is constructed originating from with extent along the axis equivalent
to MAXDIS T,(M, N) in either direction, then it is guaranteed to encldbseompletely
along they axis. Sweeping the interval along tlRexis with extentMAXMIN,(M, N) , a
rectangular search region is formed, which is the shadednégbeledr in the figure. As
is shown in the figure, this rectangular search region isaguaed to enclose at least one
edge ofN. Sweeping along thgaxis in a similar fashion, a second search regiowhich
is shown as the hatched rectangle in the figure, can be alswibr Of the two search
regionsa andg, the shorter diagonal length is equivalenNXNDIS T(M, N).

To generalize to D dimensions, the sweeping interval isaegd by a (D-1)
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dimensional hyperplane, and there are a total of flecent ways in which the sweeping
can be performedNXNDIS T(M, N) is then the minimum diagonal length among the D
search regions.

A 3-D example of NXNDIST is depicted in Figure 3.2.

Figure 3.3 gives an illustration of two MBRs and various @mte metrics between
them.

Next, we prove the correctness of NXNDIST as an upper boundfN search as
well as derive several lemmas that reveal some importamtepties of the NXNDIST

metric.

Lemma3.l. Given two MBRs, M and N, and a point object M. Let NN, N) denote
r's nearest neighbor within N, then DISTNN(r, N)) < NXNDIS T(M, N).

Proof. From the definition oNXNDIS T(M, N) (Definition 3.5), leti be the dimension in

which
MAXDIS T2(M, N) — MAXMIN2(M, N)

.....

Let p be a point enclosed iM. From the definition ofMAXMIN (M, N)
(Definition 3.4), letg" be the end point coordinate valueNin thei™ dimension such that
MaX;pem P — Y| = MaXspem (Min (pi — 1N, [p; — u])). ForN to be a minimum bounding
rectangle, there must exist withik such a point objecs thats = ¢. Then from the

definition of nearest neighbor, the following inequalitylde

DIS T(r, NN(r, N)) < DIST(r, s) (3.1)

We observe the following inequalities from Definitions 3r1e8.4

DISTi(r, s) < MAXMIN(M, N) (3.2)

VD DISTy(r, s) < MAXDIS Ty(M, N) (3.3)
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Figure 3.4: Counter-Example for Figure 3.5: Counter-Example for Figure 3.6: Computation of 1-D
MAXMIN NXNDIST MAXMIN

We can also re-write the definition BFXNDIS TM, N) as

¢ 5 MAXDIST3(M,N)

NXNDISTM,N)= | — 77 (3.4)
+MAXMIN?(M, N)
It then follows from inequalities 3.2, 3.3 and equation Jdtt
DIST(r,s) < NXNDISTM, N) (3.5)
From inequalities 3.1 and 3.5 we obtd@S T(r, NN(r, N)) < NXNDISTM, N). O

Lemma 3.1 establishes the foundation for the pruning heécsipresented in

Sections 3.3.2.7 and 3.3.3.

Lemma3.2. The MAXMIN metric is not commutable, i.e., given two D-disi@mal MBRs

M and N: MAXMIN(M, N) £ MAXMINg(N, M).

Proof. Suppose that MAXMIN is commutable, that is:

MAXMIN;(M, N) # MAXMINg(N, M).

We provide a counter-example in Figure 3.4 as a trivial préiofan be observed in
Figure 3.4(a) thaMAXMINg(M, N) = I — I}, andMAXMINg(N, M) = u} — ul .

It is then straightforward to see thsBAXMINy(M, N) # MAXMINg(N, M). m|
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Lemma3.3. The NXNDIST metric is not commutable, i.e., given two D-dsimmal MBRs

M and N: NXNDIS TM, N) # NXNDIS TM, N).

Proof. We observe that the derivation 8fXNDIS T(M, N) is dependent on
MAXMIN (M, N) for somei € [0, D], and the derivation oNXNDIS TN, M) re-
lies onMAXMIN;(N, M) for somej € [0, D]. Following the conclusion in Lemma 3.2, it

is straightforward to see that NXNDIST is not commutable. m|

Lemma3.4. Let m be a child MBR of M, i.e., @ M then NXNDISTm,N) <
NXNDIS T(M, N).

Proof. Consider the following informal proof by contradiction:
SupposeN XNDIS Tm,N) > NXNDIST(M, N). Then it follows that there exists

some point € mfor which the following inequality holds:

DIS T(r, NN(r, N)) > NXNDIS (M, N) (3.6)

Sincer € M, from Lemma 3.1, the following inequality holds:

DIST(r, NN(r, N)) < NXNDIS T(M, N) (3.7)
This produces a contradiction to inequality ( 3.6). m|

Lemma 3.4 ensures the correctness of the traversal alg@igimd pruning heuristics

presented in Section 3.3.2.

Lemma3.5. Let m be a child MBR of M, and let n be a child MBR of N, then
MINMINDIS T(m, n) is not always smaller than NXNDISW, N).

Proof. Suppose that the following inequality always holds:

MINMINDIS T(m, n) < NXNDIS TM, N) (3.8)
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Algorithm 3.1: NXNDIS T(M, N)

MAXDIS T[D] < [0], MAXMIN[D] < [0];

S <0, mnS<0;

ford=1toDdo
MAXDIST[d] =
max(M.L[d] — N.U[d]|,|M.L[d] = N.L[d]|,|M.U[d] = N.U[d]|,|M.U[d] — N.L[d]);
S+ = MAXDIS T[d]?;

minS < S;

ford=1to Ddo

MAXMIN[d] & MAXMIN(M.L[d], M.U[d], N.L[d], N.U[d]);
minS < min(minS, S — MAXDIS T[d]? + MAXMIN[d]?);

10 return ¥vminS;

(&) A W N P
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We construct a counter example in Figure 3.5 to contradist ¢laim. As
shown in the figurem c M andn c N. Simple distance calculations show that
NXNDISTM,N) = V74, andMINMINDIST(m n) = V89. This produces a

contradiction to inequality 3.8. |

Lemma 3.5 presents an important property of the NXNDIST thakes it a more

efficient upper bound for pruning than the MAXMAXDIST metric.
3.3.1.2 Computing NXNDIST

Since NXNDIST is computed frequently during the evaluatd®ANN, it is crucial to
have an #icient algorithm for computing it. From Definition 3.5 we hadeveloped an
O(D) algorithm for computing NXNDIST, which is shown in Algohiin 3.1.

As is shown in Algorithm 3.1, the MBRBI andN are represented by two vectors, each
of sizeD, indicating the lower and upper bounds in each ofhéimensions. The lower
and upper bounds & in dimensiond are accessible vill.L[d] and M.U[d] respectively.
The same also applies kb

Algorithm 3.1 proceeds in two iterations: the first iteratiaccumulatesS =
Y a1 MAXDIS T?[d] ; the second iteration computes tMAXMIN[d] value in each

dimensiond and obtains
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Algorithm 3.2: MAXMIN(I;, u, Is, Us)

MAXMIN & oo;

diffy =1, —ls, diffiy, = Iy — ug;

diffy = u —ls, dif fyy, & ur — ug;

lens & us— lg, Midg < uS—Jr's;

if dif fy < 0then MAXMIN < |dif fy] //rq;

else ifdif fj < 0 && uy < midsthen MAXMIN < max(dif fy |, |dif ful) //ro;

else ifdif fj < 0 && dif fy, < 0then MAXMIN < max(dif fy|, Ieﬁ) //rs;

else ifdif fy < 0&& dif fyy > 0then MAXMIN <« max('% [dif fyl, |dif fuul) //ra;
else ifdif fi; > 0then MAXMIN < dif fy, //rs;

else ifdif fy > 0 && dif fy, < 0then MAXMIN < min('eT”S, [dif fiyl, |dif ful) //rs;
else ifl; > mids && dif fy, > 0then MAXMIN < max(dif fiy|, [dif fudl) //r7;
else ifdif f; > 0 && dif fy, > 0then MAXMIN < max('%, [dif fudl) //re;

return MAXMIN
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Figure 3.2 shows a 3-D example of Algorithm 3.1.

The MAXMIN procedure for producing the MAXMIN value in eaclingension is
shown in Algorithm 3.2. Figure 3.6 enumerates the eights#sat must be considered
during the computation of MAXMIN value in dimensiah In this algorithm,sindicates
the interval that is bounded by the lower and upper boundseoptojected interval ol
in dimensiond, whereasi(i = 1,2, ..., 8) indicates the possible positions of the bounded
interval of M’s projection in dimensiowl relative to that oiN.

The MAXMIN algorithm takes four parameters, namely;:the lower bound of the
projectedM interval in dimensiord; u,, the upper bound of the project®d interval in
dimensiond; I, the lower bound of the projectéd interval in dimensiord; us, the upper
bound of the projectel interval in dimensior. Corresponding cases are indicated in the

comments of the procedure presented in Algorithm 3.2.
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3.3.2 The ANN Algorithms
3.3.2.1 Data Structures

Before presenting the actual ANN algorithms, we briefly diésctwo data structures that
are used by these algorithms.

The first data structure, which is crucial to the pruning etias, is the Local Priority
Queue [LPQ). During the ANN procedure, each entry witHigbecomes thewner of
exactly oneLPQ, in which a priority queue stores entries frdg1 Each entrye within the
priority queue keeps a MIND and a MAXD field, accessibleeAdIND and e MAXD,
respectively. These fields indicate the lower bound and uippend of the distance from
theowners MBR to €s MBR.

The entries in the priority queues inside thieQs are ordered by their MIND field.
In addition, eachLPQ also keeps a MAXD field which records the minimum (for ANN
qgueries) or maximum (for AKNN queries) of &IMAXD values in the priority queue, as
the upper bound for pruning unnecessary entries.

There are two reasons for usihd?Q: (i) By requiring theowner of each of the
LPQs to be unique, we avoid duplicate node expansions fio(thus improving beyond
the bitmap approach of [29, 46], since the bitmap approady fmuilds a bitmap for
the point data objects withiR, but not the intermediate node entries); (iBQ gives
us the advantages of the Three-Stage pruning heuristigshwie discuss in detail in
Section 3.3.2.7.

The second data structure is simply a FIFO Queue, which s@iva container for the

LPQs during node expansions.
3.3.2.2 The Top Level ANN Procedure

The top level ANN procedure, which is common to all our ANNa@ithms, is shown in
Algorithm 3.3. The key part of this algorithm is calling tBexpand AndPrunenethod,

which performs a bi-directional expansion of the entriethi; root nodes ofg andls.
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Algorithm 3.3: ANN(Ig, Is, algo, Resul}

Qroot = NewFIFOQueuf;
LPQioot = NULL;
LPQoot.OWNEr < IR.root;
Distance §LPQoot.0Wner Is.root);
LPQroot. pushls.root);
ExpandAndPrun@l, LPQrgot, Qroot, RESUL);
if algo =BFBI then ANN-BFBI(Qyo0t, RESUI};
else ifalgo =BFUNI then ANN-BFUNI(Qyoot, ReSUL};
else ifalgo =DFBI then
| while LPQuew < dequeuéQroor) do ANN-DFBI(LPQneys Resul);

else ifalgo =DFUNI then
L while LPQpew < dequeuéQroot) do ANN-DFUNI(LPQnew Resulj;
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For each entry ilg, aLPQ is constructed, which is populated by entries friyr(and
the entry for the owner of thePQ). The top level FIFO Queue essentially contains all
the LPQs that are built. (Thé&xpandAndPrun@rocedure is described in more detail
in Section 3.3.2.7.) After this initialization, the seamgorithm specified by thalgo
parameter is invoked. In the following sections we give fodiescriptions on each of the

four ANN algorithms.
3.3.2.3 The ANN-BFBI Algorithm

Algorithm 3.4 outlines the ANN-BFBI algorithm which emplew Breadth-First traversal
of Ig, with Bl-directional node expansion. The procedEnepand AndPrunedetailed in
Algorithm 3.8, essentially expands an entry either in adirectional or a bi-directional
way (which is controlled by the first argument), and appligguning technique to limit
the number of expanded entries that need to be considertbefur

The ANN-BFBI algorithm traverses the index titeratively. The traversal ol is
achieved level by level, with a FIFO Queu®,{ and Q. in Algorithm 3.4) constructed
and populated with thePQs (LPQ in Algorithm 3.4)ownedby all entries fromlr on that
particular level. With bi-directional node expansidgjs explored synchronously witl.

Since entries at each level in bdthandls are visited only once, ANN-BFBI is very®
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Algorithm 3.4: ANN - BFBI(Qj,, Resuly
1 if Qjn not emptythen Qg < 0;
2 while Qj, not emptydo

3 L LPQ < dequeu&Qiy);

4 ExpandAndPrun@l, LPQ, Qou:, Resulj;
5 ANN-BFBI(Qoyt, Result);

Algorithm 3.5: ANN - BFUNI(Q;,, Resul}
1 if Qi not emptythen Quy; < 0;

2 while Qj, not emptydo

3 LPQ < dequeuéQin);

4 ExpandAndPrun@ NI, LPQ, Qout, Resuly;

5 ANN-BFUNI(Qou:, Result);

efficient.
3.3.2.4 The ANN-BFUNI Algorithm

The ANN-BFUNI algorithm (Breadth-First traversal tf, with UNI-directional node
expansion) is shown in Algorithm 3.5. Similar to ANN-BFBJ is traversed in a
level-by-level fashion, with one FIFO Queue for each let®hwer level FIFO Queues are
derived from higher level ones by dequeuingQs from them and expanding the entries

uni-directionally.
3.3.2.5 The ANN-DFBI Algorithm

Algorithm 3.6 shows the ANN-DFBI algorithm: Depth-Firsatersal oflg, with
Bl-directional node expansion. In this algorithm, the ixdigis explored in a depth-first
fashion. As a result, the FIFO Queu®,(; in Algorithm 3.6) at each level will only
containLPQs (LPQiig in Algorithm 3.6) obtained by expanding both tbenerentry of
the higher leveLPQ (LPQ in Algorithm 3.6) and the entries residing inside the ptiori
gueue contained within thatPQ. Consequently, memory consumption is dramatically
reduced compared to ANN-BFBI. In addition, because bidaliomal node expansion

implies synchronous traversal of both indexes, data Iycelialso maximized, which
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Algorithm 3.6: ANN - DFBI(LPQ,,, Resul}
1 Quut<=0;

2 ExpandAndPrun@l, LPQ,, Qout, RESUI);

3 while Quyt not emptydo

4 LPQchila < dequeu@Qout);
5 ANN-DFBI(LPQchiig, Result);

Algorithm 3.7: ANN- DFUNI(LPQ,, Resul)
1 Qout = 0;

2 ExpandAndPrun@ NI, LPQ, Qout, Resulj;

3 while Quy not emptydo

4 LPQchild < dequeu@Qout);
5 | ANN-DFUNI(LPQeig, Result);

improves JO efficiency.
3.3.2.6 The ANN-DFUNI Algorithm

Depth-First traversal afz, with UNI-directional node expansion, employs the samexnd
traversal technique as ANN-DFBI and is presented in AlgpomiB.7. The uni-directional
node expansion approach makes ANN-DFUNI essentially theeses the naive approach,

where a NN query ol is issued for each point data object within
3.3.2.7 Pruning Heuristics

In this section, we discuss thHexpand AndPrunealgorithm, which is presented in
Algorithm 3.8.

The basic heuristic for pruning is as follows: Let PM reprégbe chosen pruning
metric between two MBR#& andN (PM could be MAXMAXDIST or NXNDIST). The
pruning rule is that IMINMINDIS T(M, N) > PM(M, N’) , for someN’, then the path
corresponding toNl, N) can be safely pruned.

The LPQ owned by each unique entry dgacts as the main filter, and enforces three
stages of pruning: Expand Stage, Filter Stage, and GathgeSt

The Expand Stage refers to the stage wbeneis of LPQs are internal nodes dr
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Algorithm 3.8: ExpandAndPrune(dit,PQn, Qout, Result)

1 if owner of LPQ, is an OBJECTthen

2 initialize LPQ, and set itownerto that of LPQj;
3 passMAXDof LPQy to LPQy;
4 popped< 0;

5 while n & LPQ,.pop() do
6

7

8

9

popped<= popped+ 1;
if nis an OBJEC®& popped= 1then

Resultpusi{LPQ.ownet n);
break;
10 else
11 forall ee ndo
12 Distance$LPQ,.ownet e);
13 L if eMIND < LPQ,.MAXDthen LPQ,.puste);

14 | pushLPQy into Qoui;

15 else

16 forall c € LPQp.ownerdo

17 initialize LPQ; and set its owner to;

18 passMAXD of LPQ, to LPQ;

19 while n & LPQ,.pop() do

20 if dir = Bl then

21 forall ee ndo

22 forall c € LPQ,.ownerdo

23 Distance L PQ..owner €);

24 L if eMIND < LPQ..MAXDthen LPQ..puste);
25 else ifdir = UNI then

26 forall c € LPQ.ownerdo

27 Distance §L PQ..ownet n);

28 L if .MIND < LPQ..MAXDthen LPQ..pushn);

29 | push all non-empty.PQ; into Qqu;

and are expanded, new lower lexd?Qs (LPQ. as shown in Algorithm 3.8) are created
for and owned by their child entries (n Algorithm 3.8). At this time, the MAXD field
from the oldLPQ (LPQ,, parameter in Algorithm 3.8) is passed on to the ndQs,
and is used as the initial pruning upper bound (Lines 2-319& Algorithm 3.8). As
entries 0 in Algorithm 3.8) are popped out @fPQ,,, their MIND field, which holds the

MINMINDIST value from the MBR ofn to that of LPQ,,.owneris compared against
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LPQ..MAXD, and if it's smaller,n is further processed. At this time, depending on the
value of thedir parameter, two cases apply.

Case 1dir = BI): In this casen is expanded; its children are probed against all
LPQs, their MIND and MAXD values are computed against the owinéithe LPQ.s
(inside theDistancedunction in Algorithm 3.8), and are compared against the MAX
fields of theLPQ.s. At this time, these child entries are either discardedueugd by the
LPQ.’s, and if so, updating their MAXD fields, respectively (Lsx21-24). In this case
NXNDIST has additional pruning advantages over MAXMAXDI8Ue to Lemma 3.5,
namely, early pruning becomes possible even when the MAXD diethe LPQ.s has not
yet been updated, which is not possible when MAXMAXDIST isdis

Case 2 dir = UNI): This is the uni-directional node expansion casds not
expanded, but instead, its MIND and MAXD are re-computedresjahe owners of the
LPQ.s using theDistancedunction, and is either discarded or queued byltR€).s, and
if so, updating their MAXD fields, respectively (Lines 27)29

Note in the Expand Stage, the pruning happens in three platesnn is first popped
out of LPQn; when entries(eithem themselves, on's child entries) are probed against
the LPQ.s; and when the MAXDs of thePQ.s are updated, i.e., reduced by previously
gueued entries, thas that come in later will see a much tighter upper bound.

The Filter Stage happens in tipeishfunction in Algorithm 3.8. We observe that it is
possible that during the Expand Stage, the MAXD of a new irniogrentry may become
smaller than the MIND of some entries that are already inideueue, just because those
entries were pushed into the queue earlier, when the MAXM@ Bbélkthe corresponding
LPQ was not yet updated. This may lead to serious performanaadaton since more
nodes than necessary will be expan@egdlored in the next iteration. To address this
problem, we activate the Filter Stage.

During the Filter Stage, as the new node is being pushedhetptiority queue inside

aLPQ, its MAXD is compared against the MIND field of all the entribsit it passes as
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it floats up to the top of the queue, searching for entries @ikliND that is larger than
its own MAXD. When such an entry is found, it is replaced by tiesv entry, instead of
being swapped down to a lower level of the priority queue.imythis stage, there may
be a tie on the MIND value. We break the tie by comparing theMie&D fields of these
two entries, and swap the new entry with the old one if the nedX is less than the old
entry’s. In doing so, we are essentially optimizing the lidg®f pruning heuristics.

The Gather Stage refers to the stage whenotlieer of LPQ, is an actual point
data object, then as entries are popped oWtRD,,, if the first out is also an actual data
object, then the search is over for this particular objeaték 7-9). Otherwise, the entry is
expanded and processed, updating the MAXD field®€), accordingly (Lines 11-16).

Note that the Three-Stage-Pruning strategy proposed besiegeneral-case
optimization technique for ANN processing and can be eaxilgpted on any indices

where the upper bound is non-increasing during the search.
3.3.2.8 Hfectiveness of NXNDIST

The Three-Stage-Pruning strategy discussed above be@xmemely &ective when
NXNDIST is used as the upper bound for pruning, compared toMAXDIST. The
reasons for thisféect are as follows: (a) NXNDIST by itself is a much tighter eppound
than MAXMAXDIST, so the chances of the NXNDIST of a new entsitg less than the
MIND field of an existing entry in the priority queue becomechthigher. (b) As the
search descends down the indices, the reduction in thehefdtXNDIST is higher than
that of MAXMAXDIST (see Lemma 3.5). As a result, better pmgiis achieved with
NXNDIST as it discards non-leaf nodes that don’t need to Ipapesed — which drastically

reduces the number of the next level nodes to examine.

3.3.3 Extension to AKNN

The intuition behind the extension of our method to computekANearest-Neighbor

(AKNN) is as follows: At any time, in order to guarante®N results for all point objects

57



Algorithm 3.9: AKNN _ExpandAndPrune(dit,PQn, Qout, Result)

1 if owner of LP@Q, is an OBJECTthen

2 initialize LPQ, and set itownerto that of LPQj;
3 pass MAXD ofLPQ, to LPQx;
4 popped< 0;

5 while n & LPQ,.pop() do
6

7

8

9

if nis an OBJECTthen
Resultpusi{LPQ.ownet n);
if popped= k then break;
elsepopped< popped+ 1;

10 else

11 forall ee ndo

12 Distance$LPQ,.ownet e);

13 L if e.MIND< LPQ,.MAXD|LPQ,.size< kthen LPQ,.pusHe);

14 | pushLPQy into Qoui;

15 else

16 forall c € LPQp.ownerdo

17 initialize LPQ; and set its owner to;

18 pass MAXD ofLPQ;, to LPQ;

19 while n & LPQ,.pop() do

20 if dir = Bl then

21 forall ee ndo

22 forall c € LPQ,.ownerdo

23 Distance L PQ..owner €);

24 L if e.MIND< LPQ..MAXD||LPQ..size< kthen LPQ..pushe);
25 else ifdir = UNI then

26 forall c € LPQ.ownerdo

27 Distance §L PQ..ownet n);

28 L if N.MIND< LPQ..MAXD||LPQcsize< kthen LPQ..pusHhn);

29 | push all non-empty.PQ; into Qqu;

within theownerof a LPQ, there must be at leaktentries fromls in the LPQ. An entry
e from Is can only be pruned away when there are at lgasitries in theLPQ and the
MINMINDIST from the ownerMBR to that ofe is greater than the MAXD field of the
LPQ.

The extension of our methods to AKNN processing [18, 112]lm@anealized through
slight modifications of th& xpand AndPrunalgorithm (Algorithm 3.8), using NXNDIST
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and the parametder as the pruning metric. The modifiegkNN ExpandAndPrune
algorithm is shown in Algorithm 3.9. Notice the only partathnave changed from
Algorithm 3.8 are the termination condition (lines-711), and the filtering conditions
(lines 15, 27, and 32). These changes incorporate the adaitcardinality constraint

of the LPQs. The pruning heuristics discussed in Section 3.3.2.7tdragplicable to
AKNN, with fairly straight-forward modifications. (In theterest of space we omit these

extensions here.)

3.3.4 MBRQT

The ANN algorithms and NXNDIST metric proposed so far arehbgeneral purpose
and can be applied to various index structures that incatpdhe notion of MBR and
Euclidean distance metrics. In a number of previous ANN w¢28, 29, 46, 95, 116], the
R*-tree index has been used. This is understandable singeeR*s the “ubiquitous”
spatial indexing structure. However it is natural to asktifes indexing structures have
an advantage over the R*-tree for ANN processing. Notice thea R*-tree family of
indices basically partition the underlying space basecheratctual data distributions.
Consequently, the partition boundaries for two R*-treesdvwom different datasets will

be diferent. As a result when running ANN, th&extiveness of the pruning metrics
such as NXNDIST will be reduced, as the pruning heuristiesebn this metric being
smaller than some MINMINDIST. In contrast, an indexing noethhat imposes a regular
partitioning of the underlying space is likely to be much mamenable to the pruning
heuristic. A natural candidate for a regular decompositi@thod is the quadtree [93].
We do note that quadtrees are not a balanced data structtitdely can be mapped to
disk resident structures quit&ectively [33,47], and some commercial DBMSs already
support quadtrees [60]. The question that we raise, andeanswthis chapter is how
effective is a quadtree index compared to an R*-tree index foNAuxbcessing.

Note that with a traditional quadtree, spatially neighbgrnodes all border each
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other and the pairwise MINMINDIST value is zero. This mawiit@bly cause excessive
memory overhead due to large queue or stack size resultngdrlow pruning rate. To fix
this this problem, we associate an explicit MBR with eaclkerinal node, which produces
a tighter approximation of the entries below that node (tfioat the cost of increasing
storage cost). Essentially, our proposal is to enhancewdaeBR bucket quadtree with
MBRs. This enhanced indexing structure is called the MBRejree, or simply MBRQT.
As our experimental results show this index structure isigantly more &ective than

R*-trees for ANN processing.

3.4 Experimental Evaluation

In this section, we present the results of our experimenbuation. We first evaluate
the dfectiveness of the various ANN algorithms proposed in Se@i®, using both the
MBRQT index structure and the R*-tree index structure, WNDIST as the pruning
metric.

Then, we compare our ANN methods with previous ANN algorghrof all the
previously proposed ANN methods, the recent batch NN (BNINIB] and GORDER [112]
methods are considered to be the mdstient. Consequently, in our empirical evaluations,
we only compare our method with these two methods.

We note that BNN and GORDER haven't actually been compar&adth other in
previous work. A part of the contribution that we make via eyperimental evaluation is

to also evaluate the relative performance of these two ndstho

3.4.1 Implementation Details

We have implemented a persistent MBRQT and an R*-tree onfttipeocSHORE
storage manager [22]. We compiled the storage manager WBhp&ge size, and set the
buffer pool size to 64 pages (5KB). The purpose of having a relatively smallftar

pool size is to to keep the experiments manageable, whichealsentially follows the
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experimental design philosophy used in previous rese&4/[L, 105, 116]. At these
smaller buifer pool sizes, even with small datasets, we can easily sded¢hkdown of the
IO and the CPU costs.

We have also experimented with varioudtleu pool sizes, and the conclusions
presented in this section hold even for these largéiebypool sizes. In the interest of
space, these additional experiments are suppressed présisntation. One exception to
this behavior, is the performance of GORDER, which is vensgee to the bifer pool
size for high-dimensional dataset. To quantify thiget, we present one experiment with
varying bufer pool sizes (in Section 3.4.5).

For both MBRQT and the R*-tree the leaf node size is set to theage manager
page size, and the non-leaf nodes in MBRQT are simply smactd We do not employ
any specific packing strategy for the MBRQT non-leaf nodes sbmply use the default
clustering mechanism provided by the storage manager.

For the set of experiments that compare the MBRQT approaamstgprevious
methods, we take advantage of the original source code gasigiprovided by the authors
of [116] and the authors of [112]. For consistency, we modifiee BNN implementation,
switched the default page size from 4KB to 8KB, and retaiedltRU cache size of
512KB. The parameters used for the GORDER methods are clisgemthe suggested
optimal values in the experimental section of [112], &hds set to 1 for all of the
experiments comparing the ANN performance of these methods

All experiments were run on a 1.2GHz Intel Pentium M processith 1GB of RAM,
running Red Hat Linux Fedora Core 2. For each measuremenwéheeport, we actually
ran the experiment five times. We then took the average of ildlenithree numbers, and

report this number.
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Table 3.2: Table of Experimental Datasets

Dataset | Cardinality | Dimensions| Description

100K2D 100K 2 2D 100K point data

500K2D 500K 2 2D 500K point data

500K4D 500K 4 4D 500K point data

500K6D 500K 6 6D 500K point data

TAC 700K 2 Twin Astrographic Catalog Data
FC 580K 10 Forest Cover Type data

3.4.2 Experimental Datasets and Workload

We perform experiments on both real and synthetic datadétsise two real datasets: The
Twin Astrographic Catalog dataset (TAC) from the U.S. Navakervatory site [3], and
the Forest Cover Type (FC) from the UCI KDD data repositofly Jhe TAC data contains
high quality positions of around 700K stars. This datasat2® dataset. The Forest Cover
dataset contains information about various 30 x 30 metés fml the Rocky Mountain
Region (US Forest Service Region 2). Each tuple in this eatess 54 attributes, of which
10 attributes are real numbers. The ANN operation is run esdtl0 attributes (following
similar use of this dataset in previous ANN works, such as2]11

We also modified the popular GSTD data generator [107] to yredmedium-
to-large scale multi-dimensional synthetic datasets. Yoeyced synthetic datasets by
varying the number of objects from 1RQo 50K. Although we experimented with
various combinations of datasets with a wide range of sirethe interest of space,
we only present selected results from a few representatir&l@ads. The synthetic
datasets that we use in this section are: KL@bject points to represent relatively small
datasets, and 56800bject points to represent large sized datasets. To testtdwt of
data dimensionality on the ANN methods, two more datasetsuafinality 500K are also
generated, with dimensionality of 4 and 6, respectivelylda&.2 summarizes the datasets

that we use in our experiments.
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Figure 3.7: Evaluating the ANN Algorithms

3.4.3 Evaluating the ANN Algorithms

In this experiment, we compare the performance of the faofifpur ANN algorithms
presented in Section 3.3.2. In the interest of space, wepmealsent the results with the
synthetic datasets.

Figure 3.7 summarizes the results for the four ANN algorghming the MBRQT
indexing method. All graphs in this figure show both the 10 #melCPU components in
the total query execution cost. All the y-axis in these geapée a log scale. Further, the
number in the CPU portion of the bar shows the actual CPU times
Effect of bi-directional v/s uni-directional expansion From Figure 3.7, we observe
that with the traversal pattern fixed, the CPU cost for thdilectional node expansion
technique is lower than that for the uni-directional tecfus by at least an order of
magnitude. This is because with bi-directional node exjpansew nodes are produced at
a quadratic rate, and if arfficient pruning metric such as NXNDIST is used, a lot of early
pruning occurs at the non-leaf node levels. This behavidhé&n magnifies theféect of
pruning, resulting in much smaller number of distance datans than if uni-directional
expansion technique is used. The reduction in number ofstbdd have to be considered
(because of better pruning), also leads to a lower 10 coghfbi-directional method.
Effect of depth-first v/s breadth-first traversal: From Figure 3.7, we observe that
with a fixed node expansion technique, the depth-first tealdechnique outperforms

breadth-first traversal. The depth-first method has botletd® and CPU costs. With
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a breadth-first traversal the index entries are expandedisilevel, which results in
repeated accesses to index entries. Since these accesspsead across the entire run of
the algorithm, it resulted many more random IOs.

The depth-first method also has lower CPU costs. This is Isecaudepth-first
expansion will quickly result in examining index entriesittare deeper down in the
tree. These entries have smaller MBRs and result in moraaecNXNDIST values.
Consequently, there is better pruning with the depth-firsthod, which results in a lower
CPU cost. In addition, the depth-first method has a much smalémory footprint.

To summarize the results shown in Figure 3.7, we note that ANABI is the most
efficient of the four ANN algorithms with respect to both CPU af@ performance. The
ANN-BFBI is the second best method, and the ANN-DFUNI altjon has the lowest
performance.

We also repeated this same set of experiments using theeR*ridex. The results
we obtained were consistent with the conclusion that ANNBDIS consistently the
most dficient alternative. In the interest of space, these resutsiat shown here.
We also observed that MBRQT consistently outperforms thar& method across all
four ANN methods. In the interest of space we omit these te$dre, but present the
comparison using the TAC dataset in Figure 3.8. In this figlieebars corresponding to
“RBA NXNDIST” and “MBA NXNDIST” present a direct comparisoof the ANN-DBFI
method with the two index structures. As can be seen in thisdigimply switching the
indexing structure from R*-tree to MBRQT improves the ollgrarformance of ANN
search by 3Xfor reasons discussed in Section 3.3.4.

For the remainder of this section, we only consider the ANRBDalgorithm. For
simplicity, we refer to this ANN method adBA (MBRQT BasedANN method) andRBA
(R*-tree BasedANN method) for the implementation with the MBRQT and the Reet

indexing methods respectively.
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3.4.4 Hfectiveness of the NXNDIST Metric

In this experiment, we evaluate th&ertiveness of the NXNDIST metric and compare
it with the traditional, looser pruning metric — MAXMAXDISTor this experiment, we
use the TAC dataset. Since BNN [116] is currently the méstient R*-tree based ANN
method, we compare both our MBA and RBA methods with BNN. Témults of this
experiment are shown in Figure 3.8.

In Figure 3.8, results for, BNN, MBA, and RBA approaches dreven, with both
the MAXMAXDIST and the new NXNDIST pruning metric. (Similaesults are
also observed with the synthetic datasets, which we omé Imethe interest of space.)
Note that the original BNN algorithm of [116] correspondghie bars labeled as “BNN
MAXMAXDIST”, and the BNN algorithm with NXNDIST as the prung metric
corresponds to the bars labeled as “BNN NXNDIST”.

An informed reader may note that the original BNN algorithas laglobaldist
parameter, which is set to sonMAXREALthat is defined in the code. We replaced this
with MAXMAXDIST and have observed that it improves the perfance slightly over
the original version. Similarly, setting tlgtobaldistparameter to NXNDIST gives us the
BNN NXNDIST algorithm.

From Figure 3.8, we notice that for all three methods, BNN,ABnd RBA, the
use of NXNDIST metric dramatically improves the query peariance.Observe the
order-of-magnitude improvement in execution time for tH@AMnethod, and a 6X
performance gain for both the BNN and RBA methods, by simptghing to the new
NXNDIST metric

The drastic improvement of NXNDIST over MAXMAXDIST is due teasons
discussed in Section 3.3.2.8. Also, the slightly redudéece of NXNDIST on BNN
and RBA can be attributed to the MBR overlapping problem iehewith R*-trees (see
Section 3.3.4), which reduces theetiveness of the pruning metrics. For example, for a

certain MBR inlg, overlapping MBRs withirls often have very similar lower and upper
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distance bounds, and thus become harder to prune.

3.4.5 Comparison of BNN, MBA, and GORDER

In Figures 3.8 and 3.9 we show the results comparing BNN, Mi&#A&l GORDER using
the two real datasets.

BNN v/s MBA: For this comparison, consider Figure 3.8. Comparing BNN and
MBA in this figure, we observe that with the same pruning nceiBA is superior to
the R*-tree BNN algorithm, both in terms of the CPU cost aralli® cost The superior
performance of MBA over BNN is a result of the underlying MBR@dex, which has
the advantages of the regular non-overlapping decompostrategy employed by the
guadtree (see Section 3.3.4 for details).

GORDER v/s BNN: From Figure 3.8 we observe that in general ®®@RDER
algorithm is superior to the BNN method@here are two main reasons: (a) Both methods
employ techniques to group the datasets to maximize lgcalbwever, BNN does
this only for the dataseR, while in GORDER the locality optimization is achieved by
partitioning both input datasets and by using a transfaonab produce nearly uniform
datasets. (b) In BNN, an R*-tree index is built for dataSefThe inherent problem of

overlapping MBRs in an R*-tree results in both high& bknd CPU costs during the index
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traversal. In GORDER, however, the two datasets are dibygartitioned, which leads to
better CPU and/O characteristics.

We also compared GORDER and BNN for the synthetic datasetsfaund that
GORDER was faster than BNN in all cases (these results haee bappressed in the
interest of space). Since GORDER is faster than BNN, for ¢éneainder of this section
we only present results comparing our MBA method with GORDER

GORDER v/s MBA: The results in Figure 3.8 show theBA outperforms GORDER
by at least 2Xon the two-dimensional TAC dataset. The reasons for thederpence
gains are three-fold: (a) GORDER requires repeated relsex the datase®, while
MBA traverses the indicelk andls simultaneously. This synchronized traversal of the
indices results in better locality of access, which resultewer bufer misses; (b) The
pruning metric employed in GORDER is similar to that in BNNitially set to a certain
sentinel value (thtMAXREALvalue, described in Section 3.4.4). Although this value is
updated as the algorithm proceeds, it is set using the MAXNMAXT metric, which is
less dfective than the NXNDIST (as discussed in Section 3.4.4)Tf® MBRQT index
structure of MBA has an advantage over the nested-loopsajgiorithm employed by
GORDER. With MBRQT, the pruning happens at multiple levdlthe index structure,
where early non-leaf node level pruning will save a signiftmount of computation.
GORDER, on the other hand, is essentially a block nestegislgmn algorithm, with the
pruning happening only on the block and object levels, and thcurring significantly
more distance computations.

Theperformance advantages of MBA over GORDER continue forenigimensional
datasets Figure 3.9 shows the execution time for these two algostimm the 10-
dimensional FC dataset. We also use this experiment tdrgligsthe &ect of buter pool

size on the GORDER method when using high-dimensional é&ta3o quantify this

We note that the performance of GORDER is sensitive to tifgebpool size only for high-dimensional
datasets. For low-dimensional datasets thfégoypool dfects are very small. For example, with the TAC data
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effect, for this experiment, we vary thefber pool size from 512KB to 8MB.

The first observation to make in Figure 3.9 is the performaric@ORDER improves
rapidly as the bfier pool size increases from 1MB to 4MB, after the 4MB point
the performance of GORDER is stable. The reason for thiswiehaith GORDER
is as follows: GORDER essentially executes a block nestepslgoin and is joining a
single block of the outer relatioR with a number of blocks of the inner relati@ Before
actually executing an in-memory join of the data in “matd/iiR andS blocks, GORDER
uses a distance based pruning criteria to safely discard pfblocks that are guaranteed
to not produce any matches. This distance pruning is mideeteze when there are larger
number ofS blocks to examine, which happens naturally at largéfdmpool sizes. Since
the pruning criteria is influenced by the number of neighlodra grid cell (which grows
rapidly as the dimensionality increases), tffeet of the smaller kiier pool size is more
pronounced at higher dimensions. On the other hand, assdisdun Section 3.3.2.5,
the MBA algorithm using MBRQT only keeps a small number ofaidate entries from
Is, inside the LPQ for eacR index entry. Spatial locality is thus preserved and the
performance is not significantlyfffacted by the size of the Her pool.

The second observation to make in Figure 3.9 is that MBA istently faster than
GORDER for all bdifter pool sizes. For larger Hier pool sizes MBA is 2X faster, and for

smaller bdifter pool sizes it is 6X faster.

3.4.6 Hfect of Dimensionality

In this section, we systematically increase the data dinaasty, and measure itgfect
on the performance of MBA and GORDER.

For this experiment, we generated a number of synthetisdetawith varying
cardinalities and dimensionalities. In the interest ofcgpae show in Figure 3.10 results

for a representative workload, namely the 500K2D, 500K 412, 200K6D datasets. (The

changing the bfiier pool size from 512KB to 8MB only improved the performanE&®RDER by 5%.
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numbers in the bars in this graph show the actual CPU coseonsls.)

As is shown in the figurayIBA consistently outperforms GORDER by approximately
3X for all 2D, 4D, and 6D dataset#\s the dimensionality of the data increases, the CPU
time for both methods increases very gradually, and ABdime also elegantly scales up
with the dimensionality of the datasets. This observatsoconsistent for both the TAC
and FC datasets in Figures 3.8 and 3.9.

As we have noted previously, ANN is a very computationallgnsive operation,
and most of the execution time is spent on distance computatid comparisons. Thus,
having an éicient distance computation algorithm for high-dimenslalaa is crucial to
the performance of ANN methods. Looking at the CPU time forAABrhich uses the
NXNDIST metric) in Figure 3.10, we observe that the CPU cestadt shooting up sharply
as the dimensionality increases, which shows fiiecéveness of th©(D) NXNDIST

computation algorithm (presented in Section 3.3.1.2).

3.4.7 Evaluating AKNN Performace

We use both real-world datasets, TAC and FC, for the expettimemparing AKNN
performance of MBA against GORDER. We follow the examplelihd] and varyk value
from 10 to 50, with increment of 10. Figures 3.11 and 3.12 shwmwresults of this
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experiment.

As can be seen in these figures, on both the TAC and FC dattseésecution time of
MBA and GORDER increases as th@alue goes up. HoweveaVv)BA is over an order of
magnitude faster than GORDER in all cas@$e reasons for this performance advantage

for MBA over GORDER are similar to those described in Sec8ah5.

3.5 Conclusions

In this chapter we have presented a new metric, called NXND&8d have shown that
this metric is much morefgective for pruning ANN computation than previously propibse
methods. We have also explored the properties of this metnid have presented an
efficient O(D) algorithm for computing this metric, whei2 is the data dimensionality.
We have also explored a family of index based methods for coimgp ANN queries. In
addition, for ANN computation, we have shown that travegdime index trees using a
depth-first paradigm, and using a bi-directional expanefarandidate search nodes is the
most dficient strategy. With the application of NXNDIST, we havecashown how to
extend our solution tof@ciently answer the more general AKNN question.

Finally, we have shown that for ANN queries, using an quadineex enhanced with
MBR keys for the internal nodes, is a much moficgent indexing structure than the

commonly used R*-tree index. Overall the methods that wes lpresented generally
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result in significant speed-up of at least 2X for ANN compiotatand over an order of
magnitude for AKNN computation over the previous best atgors (BNN [116] and
GORDER [112]), for both low and high-dimensional datasets.
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CHAPTER 4

TRAJECTORY JOINS WITH APPLICATION IN
PRIVACY PRESERVATION

4.1 Introduction

In Location Based Service (LBS) applications, large volaroétrajectory datasets

are collected, where each trajectory traces the movemembbfect in space and time
coordinates as it moves around in physical space. A largeop@arevious research on
trajectory processing has focused dhogent access methods for bdtistorical and
predictivetrajectories (where the prediction is based on past histndyfollows certain
motion model). While both spatial join and temporal join ®ns have been widely
researched in the past (e.g. [18,28,29,32,68,84,94,109115-117]), very limited work
has been done to address the more complex problem of trajgoto operations. We
present)iST, a framework for trajectory join processing in spatio-temrgd databases, and
develop scalable algorithms for these operations.

A trajectory join, also calledpatio-temporajoin, is a join operation between two
trajectory data-sets. It is defined by a combination of gpamd temporal predicates.
Spatial predicates include the distance measure betwaeotories (Trajectory Distance
Join, or TDJ), or the number of Nearest Neighbors of certajedttories (Trajectori
Nearest Neighbors Join, or TKNNJ). Temporal predicatesherother hand, specify the
duration of the join, i.e., the time window, or the temporigement of the join, be it in
the past or the future.

Figure 4.1 shows two examples of one-dimensional trajggtmn operations.
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Figure 4.1: Trajectory Joins: A One-dimensional Example

Figure 4.1(a) depicts a trajectory distance join operatéord Figure 4.1(b) gives an
illustration of a TkKNNJ operation. Thieaxis in both figures denotes the time, and the
x axis shows the one-dimensional spatial extent. In bothdguthere are two sets of
objects, namelyR andS. The objectss (i = 1 to 4) belong to the s& For simplicity, we
only show one objeat in the setR. Thin solid lines indicate the trajectories followed by
objectss, and thick dashed lines depict the trajectory followed bjgoty.

Using Figure 4.1, consider a TDJ operation, which retrideesll objectsr € R, all
objectss € S, such that eack object comes withi\d distance of at some time. For
objectr, this is translated into a region that is bounded by the twodbtted lines along its
trajectory. As time progresses, any objgaivhose trajectory intersects with the bounded
region should be reported as part of the query result.

In Figure 4.1(b), a TKNNJ operation is shown foe 3. This TKNNJ query retrieves
for all objectsr € R, their respectivé nearest neighbors in dataggtat any specified time
instance, or within a time window. In Figure 4.1(b) the peiimt time when the result set
changes for the query are marked ontlaais.

Trajectory join operations (TDJ or TKNNJ) have many impottapplications, an
example of which is privacy preservation of trajectory ddia date, a number of privacy
preservation techniques proposed for relational databaseh ag-Anonymity [101, 102]
andl-Diversity [69], have been adapted for spatio-temporahdases [9, 34, 37,39, 73],

among which locatiok-Anonymity [39] has proven to be most popular arfteetive.
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However, past methods have mainly focused on protecting@yion current snapshot
of location data, while oftentimes analysis needs to be daatieprivacy preservation on
large amounts of historical trajectory data in reposi®ra which no previous research
has been done. In this chapter, we introduce the concepragéctory k-Anonymityand
deviseTrajectory Cloakingechniques based on the JiST operations to preserve trgject
k-Anonymity.

Besides trajectory privacy preservation, there are nuoseesample applications on
which the JiST operations can be applied in a straightfadwaanner. We briefly describe

a few of these example applications in the following.

¢ During the Mad Cow Disease epidemic, in the event where saws are identified
as having contracted the disease, a decision needs to beguiaitly regarding which
other cows (in the same or afidirent herd) have come in close contact with the infected
units within a certain period of time in the past, dependindnow long the infected units

have been sick.

e Consider a battlefield scenario where soldiers need to ex¢asks in small groups at
night time when limited visibility can very likely cause sersoldiers to go astray. To
help mitigate the damage that can potentially be causedibytbblem, the central
database server may periodically issue a TKNNJ operatiérép track of the nearest
neighbors of each soldier and send them a warning if someeaf thegin to deviate from

their group.

The rest of the chapter is organized as follows: Section dr2eys the related work.
Section 4.3 presents the JiST operations. Section 4.4 arak4cribe the JiST algorithms.
The application of this framework on trajectory privacy $gevation is presented in
Section 4.6. Experimental results are presented in SedtibGrand Section 4.8 contains

concluding remarks.

74



4.2 Related Work

Related previous research work can be largely classifiedw areas, Spatio-Temporal

Joins, and Location Privacy.

4.2.1 Spatio-Temporal Joins

There is a large body of research on both spatial join [1&034,27-29, 46, 48, 49, 80,
95,109,112,116,117] and temporal join [32,41,63,91,08499, 115, 118] operations,
respectively. However, there is very limited work on spaémporal Join operations that
comprehensively cover both the spatial and temporal aspéthe problem.

lwerks et al. [50] proposed an algorithm for maintaining aayic view of the “spatial
semijoin” results as time progresses. The “join” operatimwever, focuses on thpgesent
time, which is essentially a time point.

Jeong et al. [55] experimentally evaluated the performariceveral previously
proposed join strategies in a spatio-temporal setting. él&w the spatio-temporal join
operations addressed in this work considers spatial oelstiips such amtersects
containsbetween stationary objects that evolve over time, whicimisréhogonal problem
to the moving object trajectory join operations we studyhiis thapter.

Bakalov et al. [8] address th&/indow Time-Parameterized Distance Jpioblem
using symbolic representation [66]. The query operatiodisd in [8] returns the pairs
of objects from two spatio-temporal datasets whose disthetween each other remains
below a certain threshold valuethroughout a time windowt. This is a very specific
instantiation of the broad class of query operations weagNer with the JiST framework,
including the Window Trajectory Distance Join operatiorichilcannot be answered using
the techniques proposed in [8]. In addition, the techniqueposed in [8] are applicable
specifically to historical data, on which a static symbodipnesentation can be built.

Sun et al. [100] present detailed discussion on selectgtynation of spatio-temporal

join operations, but only focus on a specific operation, rigrpeedictive time-stamp
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distance join
The index structure we use in this chapter is a simple exdensi the STRIPES
structure presented in Chapter 2, which employs the duafimamation techniques [6,59].
The basic idea is to transform a linear trajectory definedHsydquation:P =
Prer + V(t — ter) in (D + 1)-dimensional space peing the additional dimension)
into a point(V, P,er) in 2D-dimensional dual space. HeM,= (V1,Vs,---,Vp), and
Pret = (Pref1, Pref2, -+ » Pretp) are the transformed velocity and reference position vector
Since time is monotonically increasing, the valuébk; is not bounded, which makes
it impossible to build an index that extends into the infifiteire. To address this problem,
previous works have employed a two-index strategy [54, 583, 105]. This strategy
keeps two temporally consecutive index structures in tiséesy, both with lifetime.. For
example, if the first index structure igfective within time interval [QL), then the second
index structure will be fective in interval [, 2L). Objects are required to issue an update

everyL time units to maintain a valid entry in the index.

4.2.2 Location Privacy

Previous work on location privacy preservation methodsHseen classified into three
categories [67]: user-defined or system-provided poli@csjgation [9, 13, 40], location
anonymization [9, 26, 34, 37, 39, 73], and pseudonymity ef udentities [13].

Existing methods for preserving locatitmAnonymity focus on processing current
locations, and are not applicable to trajectories. We defireconcept offrajectory
k-Anonymity introduce a set of trajectory privacy policies, and adaptliST join

operations to provide a new classTogjectory Cloakingalgorithms.

4.3 Trajectory Join Operations

In this section we formally define the set of JiIST operatidnsaddition, we also relate

these general definitions and previously defined spatigpoeah query operations. As a
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Table 4.1: Table of Frequently Used Notations

Notation Description

D Dimensionality of data space

R Query trajectory dataset

S Target trajectory dataset

r Trajectory object in datas&

s Trajectory object in datas&

r(t) D-dimensional position vector of trajectory objecit timet
s(t) D-dimensional position vector of trajectory objexat timet
Vi (t) D-dimensional velocity vector of trajectory objecét timet
V(1) D-dimensional velocity vector of trajectory objesat timet

w A half-open time interval, i.e.t{, tp)

r(w) Segment of trajectory within intervalw

s(w) Segment of trajectorg within intervalw

DIST(r(t), s(t)) | The Euclidean distance between trajectoriesds at timet
Ir JiST index on datas®

Is JiST index on datas&

IR(1) Base index irlg with tje =t
Is(t) Base index irlg with tes = t
L Lifetime of dual transformed spatial indexes

Ir(W) Base index ing with [tief, tref + L) NW# 0
Is(w) Base index ins with [tref, trer + L) NW £ 0
Nr A node entry in indexg
Ns A node entry in indexs

conseqguence, we also show that the JiST operations are mwexfpl and general than
previous methods.

To facilitate the discussion, we use the notations desgibb&able 4.1. Also, for ease
of presentation, in the rest of our discussion, we use tmeséobjects” and “trajectories”

interchangeably, since an object is uniquely associatddauirajectory and vice versa.

4.3.1 Trajectory Distance Join (TDJ)

Definition 4.1 (General Trajectory Distance Join (G-TDJ))
Given two point trajectory datasets, the query datd®eind the target datases,
and a positive real numbexd, the G-TDJ operation finds, for each trajectorg R, all

trajectories se Ssuch that s is within distanckd of r for some time intervals. The formal
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definition is:

Riag S={(r,{(s{W})}) | reRASeSA
YiewDIS T(r (1), S(t)) < Ad A

Ay -wrew DIST(r(t'), () < Ad}

Definition 4.1 gives the general case definition of the TDJafpen, which spans the
entire time horizon of both datasd®sandS. However, often we are only concerned with
a short time window, such a$ive minutes from notyor “yesterday between two 2 and 3
PM”. To address these types of questions, we impose a temgstalction on G-TDJ and

introduce the Window Trajectory Distance Join (W-TDJ) gtien in Definition 4.2.

Definition 4.2 (Window Trajectory Distance Join (W-TDJ))

Given two point trajectory datasets, the query datd®etnd the target datased, a
positive real numbend, and a time window w, the W-TDdperation finds, for each
trajectory r € R, all trajectories se Ssuch that each s is within distandel of r for some

duration within the time window w. It is formally defined b&lo

Radw S={(r.{(sW})}) | reRAseSA
W C W, YiewDIS T(r (1), s(t)) < Ad A

=Tyrow Vrew DIS T(r (1), S(t)) < Ad}
In relational algebra, the relation between W-TRdd G-TDJ is as follows:

R >XAd,w S= TT(r,s, W Nw) (O'me;&qﬁ(ll{W}(ll{s}(R X Ad S))))

In practice, the W-TDJ operation defined in Definition 4.2assidered to be the more

commonly used operation as opposed to the G-TDJ operakios We provide detailed
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discussion and algorithms for W-TDJ in the rest of this ceagdEor simplicity, in the rest

of our discussion we use the term TDJ to refer to the W-TDJaijmar.

4.3.2 Trajectory KNN Join (TKNNJ)

Definition 4.3 (General Trajectory KNN Join (G-TKNNJ))

Given two point trajectory datasets, the query dataeind the target datase&3, and
a positive integer k, the G-TKNNJ operation finds, for aljécories re R, the sets of
their k Nearest Neighbors i, and the time intervals in which the results remain valid.

Formally, this operation is defined as:

RS = {(rn{w,{sihire RA{S;C SAUy=WAI{s}|=kA
Y wiewWi NTWj = ¢ A

ViewV ses) 7 dses—sDIS T(W, W) <DIS T(W, @}

Definition 4.3 gives the general case definition of the TkNNdration. Similar to the
TDJ operation, the Window Trajectory KNN Join (W-TkNNJ) ogion is more commonly
used and is formally presented in Definition 4.4. We refer taMNJ as TKNNJ in the

rest of this chapter.

Definition 4.4 (Window Trajectory KNN Join (W-TKNNJ))

Given two point trajectory datasets, the query datd®etnd the target datased, a
positive integer k, and a time window w, the W-TKNNJ opendiiads, for all re R, the
sets of their k Nearest Neighbors$yand the time intervals in which the results remain

valid, throughout the time window w. The formal definitiogigen below.

RowS = {(r{W,{S)Ir e RA{SCSAUy =WA
sl = kAW CWA
YwwjewWi N Wj = ¢ A

View Vse(g~Ises-(gDIS T(r(t), S (1)) < DIST(r(t), s(t)}
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In relational algebra, the relation between W-TKNNJ andKBHYJ is as follows:

R>w S= 7T(r,v\mw,s)(U'me;&q&(ﬂ{v\/}(ﬂ{s}(R >k S))))

4.3.3 Relaxations and Restrictions

There are two aspects to the relaxations and restrictiotieafeneral JiST join operations:
the temporal domain and the cardinalities of the dataséteijoin operations. We provide

brief discussions for each of these aspects below.
4.3.3.1 Temporal Domain

In the temporal domain, there are two factors to considerettient of the query window,
i.e., the query window sizgv|; and the placement of the query window, e.g, in the past or
sometime in the future.

In the case whergyv] = 0, the JiST join operations become pure spatial join
operations on top of a snapshot of the spatio-temporal dagallhese operations include
Spatial Distance Join operations [20, 46, 49, 95] and Spatiearest Neighbors Join
operations [18,27,112,116]. If an additional cardinatégtrictionk is imposed on the
result set of the join operations then the query operatioadsiced to the Top-k Spatial
Join problem [117].

Depending on whether the query window refers to some timearpast or the future,

the JiST join operations evaluate historical or predictjueries.
4.3.3.2 Data Cardinality

Consider the JiST join operations willRl = 1, then these operations are reduced to
either time-parameterized range queries or KNN queriesif@ie query points that are

applicable both in historical and predictive settings.
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4.4 JiST Join Algorithms

In this section we present the JiST join algorithms. We omégulss in detail the JiST
Window Trajectory Distance Join, which we call TDJ, and tt&TJWindow Trajectory
kNN Join algorithm, which is termed TKNNJ. The extension ® gieneral join operations
defined in Sections 4.3.1 and 4.3.2 is straightforward andeanferred by extending the
query window.

Before delving into the algorithms, we make a few assumptaiyout the data model
used in JiST to represent trajectories, and introduce thee-Rarameterized Distance

measure between trajectories.

4.4.1 Representing Trajectories in JiST

We make the following assumptions about object movemenepes in JiST.

Assumption 1. A moving objectr updates its motion parametei®) andV, (t) either
periodically or when the velocity vector change exceedsrtairethreshold since last
update, together with the timestamprhe update information (t), r(t), t) is stored as a
tuple in a table or as an entry in an index.

Assumption 2. In between updates, objects move in a straight line with #mes
velocity as reported in the most recent update.

Based on Assumption 1, a trajectaryn JiST is represented as the time-ordered
sequence(V;(t), rtr), ta), (Vi (t2), r(t2), t2), - - ).

As a result of Assumption 2, let" andw’ denote the lower and upper boundaries of
the time intervalv between updates, then a trajectory segmenmy that starts at time/
and is updated at tim is represented in JiST agw) = (V;(w), r(w), w).

Next we present the Time-Parameterized Distance meastwedretrajectories.
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4.4.2 Time-Parameterized Distance Between Trajectories

Definition 4.5. Using vector operations, the Time-Parameterized Distgmé¢eD) between

trajectoriesr and s at time t is defined as:

TPD(,st) = DIST(r(®). )

(@ -5) - (@ - 0) @)

We observe thal PD is not defined for two trajectories that do not have any temlpor
overlap.

Next we provide measures to bound thED of trajectories.

Given timet, letr(w) be the segment on trajectorysuch that € w, and lets(w’) be
the segment on trajectorysuch that € w. We obtain the following representations of
r(t) ands(t) according to assumption 2.

r(®) = r(w) + Ve (Wt

(4.2)
S(t) = swr) + Vs(w)t

Substituting 4.2 into 4.1 and re-organizing yields Equatda3,

TPD(r,st) = yJat?+pt+y (4.3)

where
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Figure 4.2: Findingl PD (r, s,w”) andT PD'(r, s, w”)

and the subscript indicates the dimension.
To solve for the minimum and maximum &fPDA(r, s,t) three cases need to be

considered, which can also be observed in Figure 4.2:

(a)(Figure 4.2(a)) -£ ew’ TPD(,sw’)=TPD(r.s-4%),

TPD'(r, s w”’) = max(T PD(r, s, w”"), TPD(r, s,w”’"))
(b)(Figure 4.2(b)) —2% <w’ TPD(r,sw’) =TPD(r,sw"),

TPD'(r,sw’) = TPD(r, s, W)
(c)(Figure 4.2(c)) —zﬂ—a >w’? TPD(r,sw’) =TPD(r,sw’"),

TPD'(r,sw’) = TPD(r, s, W)

On the other hand, given a distance upper batiddthe set of time intervalsw} in
which two trajectories ands are no farther thand from each other can be obtained by

solving ranges fot in the equationT PD(r, s, t) < Ad.

4.4.3 Ndve Algorithms

In cases where there are no indices available on eRl@1S, we provide the Block Nested

Loops Join algorithms that employ sequential table scarsartthg techniques.

Block Nested Loops Distance Join (BNLDJ)

The Block Nested Loops Distance Join algorithm presentédgorithm 4.1 is fairly
straightforward. The algorithm proceeds in two stages:aa sad filter stage (lines 1 and
2), and a join stage.

The algorithm starts with a sequential scan on both tabldsiaas the query window
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Algorithm 4.1: BNLDJ(R, S, W, Ad)

Ry < TableS cafR, W), Sy « TableS caf5, W);
MaterializeRy, Sw ;
foreachry < TableS cafRy) do
sy < TableS ca(Sy);
foreache e ry do
foreaches € sy do

L w < find_overlapw(e .w, es.w, W);

(W} < solve TPOe, es,t) < Ad for t;
Return resulté&, (es, {w N {W'}}));

© 0O N O O B~ W N PP

W as the filtering predicate. Qualifying trajectories areieged from the tables and
materialized as intermediate vieRg andSy,. During the join operation, trajectories are
scanned froniRy one at a time (line 4). For each trajectaty retrieved fromRy, another
sequential scan is performed 8y, to retrieve trajectoriesy one at a time (line 5). The
trajectoriesryy andsy, are then broken into segmergsandes with overlapping time
intervals, and line 8 directly applies the solution of inalify discussed in Section 4.4.2 to
obtain the results.

On the other hand, the Block Nested Loops kNN Join algoritBML(_kJ), as is shown

in Algorithm 4.2, is slightly more involved, and we will digss it in more details below.

Block Nested Loops kNN Join (BNLkJ)

Algorithm 4.2 presents the top level BNKJ algorithm. The scan and filter stage on
lines 1 and 2 is exactly the same as that in BRI However, the join stage of BNkJ
introduces two new data structures, the Temporal Prioritgii@ T PQ and the Window
Priority Queue (WPQ.

EachTPQis “owned” by a trajectory segmest in tableR. The T PQ structure
consists of the following fields: 1) amwner, e, which is a trajectory segmeatin tableR
2) a priority queue that contains instances of WP Qstructure.

The WPQstructure consists of the following fields: 1) a time intémaof which the

lower bound serves as the key for ordering in THeQ, 2) a priority queue; 3) anaxtpd
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Algorithm 4.2: BNLKJ(R, S, W, k)
Ry < TableS cafR, W), Sy « TableS caf5, W);
MaterializeRy, Sw ;
foreachry < TableS cafRy) do
sy < TableS ca(Sy);
foreache e ry do
TPQ < new TPQe);
foreaches € sy do
w < find_overlapw(e .w, es.w, W);
L updateTPQT PQ, w, e, K);

| while wpq < TPQn.DEQUEUK) do refineResult&, e, wpq);

© 0O N O 0o B~ W N PP

=
o

Algorithm 4.3: updateT PQT PQn, w, &g, k)

e < TPQ,.owner,

if notExistwpqge TPQ, such that Overlapsvpgw, w)) then
wpgq < new WPQw);

mintpd & TPD (g, es,w), maxtpd & TPD'(e, es, W);
wpd.ENQUEUHmMmIntpd, maxtpd, es);
TPQh.ENQUEUHRwWpPQ);

Ise foreachwpge TPQ, AND Overlap$wpgw, w) do
W3] < {wpgw — w, wpgw N w, w — Wpgw};
fori < 1to 3do

9
10 L wpd[i] & new WPQwi]);

11 fori & 2to3do

D o~ W N

~
D

12 mintpd = TPD (e, es, WT[i]);

13 maxtpd = TPD'(e, es, W[i]);

14 wpq[i.ENQUEUHmIntpd, maxtpd, es);

15 while & & wpgDEQUEUEK) do

16 fori = 1to2do

17 mintpd & TPD (e, €, WT[i]);

18 maxtpd < TPD'(e, €, W[i]);

19 if sizeo{wpd[i]) < k OR mintpd < wpd[i].maxtpdthen
wpd[i].ENQUEUHmMmIntpd, maxtpd, €);

20 | fori«<1to3do TPQ,ENQUEUEWpI);

field which serves as the pruning threshold.
Entries in the priority queue of W PQcontain the following information: 1) trajectory
segmengs from tableS; 2) mintpd = TPD (&, es,w); and 3)maxtpd = TPD(g, es,w). The

min_tpd field is used as the sort key in the priority queud\PQ and themaxtpd
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Algorithm 4.4: refineResult&, e, wpq)

1 if wpq follows Total Orderinghen Return resulté, wpg);
2 else

3 TQ < new PriorityQueug;

4 foreach es € wpqgdo

5 foreach e, e wpg AND ¢ > es do

6

7

8

if el.min_tpd > es.maxtpd then break;
else t & solve Equatiorm PD(es, €, t) = O for t;
if t e wpgwthen TQENQUEUHRY);

9 t" < wpgw';
10 whilet &« TQDEQUEUHK) do

11 wpd & new WPQ[t", t));

12 foreach es € wpqgdo

13 mintpd & TPD (g, s, [t7,1));

14 maxtpd = TPD'(e, e, [t", 1));

15 if sizeo{wpd) < k OR mintpd < wpd.maxtpdthen
16 | wpd.ENQUEUHMIntpd, maxtpd, e);

17 | refineResult&, e, wpd);

18 tr <t

field is used by th&VPQto set the pruning threshold for result retrieval.

TheupdateT PQorocedure is presented in Algorithm 4.3. IntuitivalygdateT PQ
proceeds in two stages: in the first stage, overlapping tmegvals are identified between
the interval (v) of the incoming entrgs and thoseW) of the the existingVPQs in aT PQ,
and new time intervalsf —w, w Nnw, andw — w’) together with correspondingy PQs are
generated; in the second stage, entries in tha\dRD are re-distributed among the new
WP with an overlapping time interval. During the re-disttibn stage, thenin_tpd
andmaxtpd fields of the entries are updated with respect to the new tint@evals, and
un-qualified entries are pruned.

TherefineResultgunction shown in Algorithm 4.4 processes a singléQ wpg
It essentially identifies all the intersection points amafigsegments, splits the time
intervalw of wpginto even smaller time intervals within which none of taesegments
intersect with each other, and thus followfatal Ordering Finally newWPQs are

constructed for the smaller time intervals, entriesving are re-distributed into the new
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Figure 4.3: The JiST Time Partitioned Storage Model

WP and pruned at the same timé&/P(s that follow the Total Ordering are then
reported together with the TPQwner g as results.

We note that based on the linear movement assumption inoBetd.1, the proposed
BNL_DJ and BNLKkJ algorithms are applicable to both historical and préediciettings,

which only difer in the algorithms in the range of query wind@Wto be examined.
4.4.3.1 Time Partitioned Block Nested Loops Join

The main drawback of the BNL algorithms is the sequentiahstay and sorting of
large tables, which are both CPU ari@ linefficient. However, we observe that the most
common JiST join queries are window queries that only re¢ri@sults within a time
window specified by the query. In this section we slightly rifpthe storage model in
JiST and introduce the moréheient Time Partitioned Block Nested Loops (TPBNL) join
algorithms.

To facilitate the TPBNL join algorithms, we introduce anriremory hash structure
that splits time into intervals of length, each corresponding to a table that stores
trajectories with time stamp falling within the intervaligbre 4.3 depicts the new data
storage model.

Using the new Time-Partitioned storage model, TPBNL athams are straightforward
extensions of the BNL algorithms.

The TPBNLDJ algorithm presented in Algorithm 4.5 simply identifiesadtables

Ry andS,, with time intervals overlapping query window and executes the BNDJ
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Algorithm 4.5: TPBNLDJR, S, W Ad)

1 {w} & find_overlapw(R, S,W);
2 foreachw € {w} do BNL.DJ(Ry, Sw);

Algorithm 4.6: TPBNLkJ(R, S, W, k)

1 {w} & find_overlapw(R, S,W);
2 foreachw € {w} do BNLKkJ(Ry, Sw);

algorithm on these tables.
Similar to TPBNLDJ, the TPBNLkJ algorithm in Algorithm 4.6 is a simple extension
of the BNL_kJ algorithm, which executes the BN\J algorithm on partition tables &

andS with overlapping time intervals.

4.4.4 Dual Index Based Algorithms

The naive algorithms presented in Section 4.4.3 are basegquential table scan
techniques and do not make any assumptions about indexwstac Often this is not
the case, since variousfieient index structures have been proposed in the past ta spee
up query processing on trajectory data ( [54, 65, 83, 104)10% this section, we take
advantage of existing indexing techniques and proposeathmére #icient JiST Dual
Index Based join algorithms.

Although the algorithms we present in this section do not ozl any specific index
structure, they do require that it provide certain featungsch we discuss in the following

subsection.
4.4.4.1 Index Requirements in JiST

In order for the proposed algorithms in this section to wevk,impose the following
requirements on the underlying index structure: (1) Theetigthg index uses a two-level
indexing scheme, with an in-memory temporal hash struaiarehe top level, that splits
time into intervals of length., and a tree structure on the bottom level corresponding to

each time interval in the hash structure; (2) The bottomllexex trees, termebtase
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Figure 4.4: The General JiST Index Structure

indexes employ the dual transform technique [6, 59] to represexqjédtories; (3) The
underlying index supports the concept of Dual-transforidé@dmum Bounding Rectangle
(D-MBR) with Validity Interval (VI), which we define in the n& section. Figure 4.4
depicts the general index structure assumed by the JiSTewank.

The reasons for choosing a dual transform index structwedves-fold: 1) dual
transform technique enables the integration of predicive historical index structures
into one general indexing framework, and 2) dual transfaramhique enables processing

of both historical and predictive queries in a similar fashi
4.4.4.2 Time-parameterized Bounding Regions and Distanddetrics

In this section we first define the concept of Dual-transfaiivenimum Bounding
Rectangle (D-MBR) with Validity Interval (VI) within the atext of dual transformation,
then we proceed to introduce the notion of Time-parametdriounding Region and
the relevant distance metrics that will be used as pruniigria in the index based join
algorithms.

Using dual transform technique, a linear trajectory segm@v) can be represented as
a point in dual transform space coupled with the time intewaf the segment, namely,

(Vr, r(tref),w), wherew is called thevalidity Interval (VI)of this trajectory segment.

Definition 4.6. Let {r(w)} = {(Vr r(tref),w)} represent a set of dual transformed trajectory

segments that share the same reference tjgae The Dual-transformed Minimum

Bounding Rectangle (D-MBR) ¢f(w)} is defined asv (W, V-, R(tref)", R(trer)?), where
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Figure 4.5: TBR Construction and Distance Metrics

V= min{V,}, V7 = maxV;}, R(trer)” = min{r(tre)}, R(tres)” = maxr(ter)} . And the VI of M is
defined a&/1 = (J{w}.

With the D-MBR and VI information stored in the index structuwe are able to infer

the Time-parameterized Bounding RegidrBR for an index entry. We start with the

internal index nodes.

Let MR(W,W, R(tref)", R(trer)*) denote the D-MBR of an internal nodé in dual
transformed indexg(tef), and letw denote the VI ofMg, the Time-parameterized

Bounding Regiom BRINr, W) can be inferred in the following set of equations:

R(t)F R(tref)k + W(\NF - tref)

(4.4)

Rt = R(trer)’+ W(W4 — tref)

In Equation Set 4.4 th® dimensional vectoR(t)- denotes the lower bounds of
TBRNg, W) for all t € W. Similarly, the vectoR(t)" denotes the upper bounds.

The geometric intuition off BRINg, W) is that it covers the spatial region that all
objects enclosed iNg may traverse during time intervell. Figure 4.5(a) illustrates the
inference of a one-dimensionBBR As is shown, the top portion of the figure indicates

the bounding regions in dual-space, while the bottom portibthe figure shows the
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inferredT BRregions as a dark thick line segments onR axis.

Another observation that we make from Figure 4.5(a) is timatesthe one-dimensional
TBRIs a continuous spatial interval BRs in multi-dimensional space take the shape of
hyper-rectangle regions. TraditiondIBR distance metrics such &aNMINDIST and

MAXMAXDIST are also applicable onBRs.

Definition 4.7. Let TBRNr, W) and TBRNs, W) be two inferred time-parameterized
bounding regions across a time interval W for index nodgahd Ns, then the metric
MINMINDIST(T BRNg, W), TBRINs, W)) is defined as the minimum distance between any

point withinT BRINg, W) and any point withinf BR'Ns, W) over time interval W.

TheMINMINDIST metric betweed BRs gives the lower bound of the distance between

any object withinNg and any object withifNs, during time intervalv.

Definition 4.8. Let TBRINg, W) and TBRNs, W) be two inferred time-parametereized
bounding regions across a time interval for index nodes Nand N5, then the metric
MAXMAXDIST(T BR\g, W), TBRNs, W)) is defined as the maximum distance between any

point withinT BRINg, W) and any point withirmT BRINs, W)

The MAXMAXDIST metric betweerT BRs gives the upper bound of the distance
between any object withiNr and any object withifiNs, during time intervaiv

The computation of th®IINMINDIST andMAXMAXDIST metrics betweed BRs is
exactly the same as that between traditiod&8Rs( [28]), which we will omit to avoid
repetition.

For a trajectory segmenfw), TBRr, w) is simply theMBRthat bounds the trajectory
within time intervalw.

Figure 4.5 shows exampleBRs of two internal nodeBlzr andNs, and a trajectory
for a time intervalw. The MINMINDIST andMAXMAXDIST metrics betweel BRNg, w)

andT BR\Ns,w) are also shown in the figure.
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Since TBRs are defined over a time interVi| the definition ofT PD at an exact time
pointt is not well-defined. However, the lower and upper bounds®BD between TBRs
can be determined as follows:

TPD (TBRNg, W), TBRNs, W)) = MINMINDIS T(T BRNg, W), TBRNs, W)), and

TPD' (TBRNg, W), TBRNs, W)) = MAXMAXDIS T(T BRINg, W), TBRNs, W)) .

Next we proceed to present the JiST Dual Index Based Joimitlges, JiST TDJ and
JiST TKNNJ.

4.4.4.3 JiST TDJ Algorithm

As is presented in Algorithm 4.7, JiST TDJ between two JiSIekesl (the querying
index) andls (the target index) proceeds in two steps: first the overtagppme intervals
{w} of the two indexes and the query winddWare gathered, then for eashe {w}, the
underlying spatial indexeg(w) andls(w) are retrieved and Distance Join algorithms are
used to traverse the two indexes and proceed with the joiratipe based on distance
metrics onT BRs introduced in the previous section.

A variety of methods are applicable to the index traversabweler, previous
research [46, 49] has concluded thatadth-first incremental traversal methpdoves the
most dficient in Distance Join processing, therefore we will use thethod in our JiST
TDJ algorithm presented in Algorithm 4.7.

During the iterations of the Distance Join operation, a glgbiority queueQ is used
for ordering intermediate join entries. These entries g three fields: 1k, an
entry from indexig(w); 2) es, an entry from indexs(w); and 3)min_tpd, computed as
TPD (TBRe,w), TBRes, w)) The intermediate join entries are ordered by tmein_tpd
field insideQ and are pruned minin_tpd > Ad before they are enqueued@

Intermediate join entries iQ are expanded and processed ini-@irectionalfashion,
i.e., if both entriese, andes are internal nodes, they are both expanded and entrieswithi

them are processed in pairs recursively. If only one of tleggges is an internal node,
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Algorithm 4.7: JiST.TDJ(Ig, Is, W, Ad)

1 {w} & find_overlapw(lg, Is, W);

2 foreachw € {w} do

3 Q < new PriorityQueuf;

4 Q.ENQUEUHIg(w).root, Is(w).root);

5 while QEntry < Q.DEQUEUHK) do

6 if QEntry.e is OBJECT and QEntrgs is OBJECTthen
7 W < find_overlapw(e .V, es.VI, w);

8 W’} < solve TPOe, e, 1) < Ad for t;

9 Return resulté&, (es, {{(W’} nw'}));

10 else if QEntry.e is OBJECTthen

11 foreach € € es do

12 w < find_overlapw(e .V, e.VI, w);

13 if TPD (TBRe,wW), TBRey,W)) < Ad then
14 L Q.ENQUEUHe,€)

15 else

16 foreach € € g, € € esdo

17 w < find_overlapw(e.VI, eV, w);

18 if TPD(TBRe-, W), TBRey,W)) < Ad then
19 L QENQUEUHg¥, €)

then it is expanded and its child entries are paired up wetother entry and processed.
The steps described above are called the filtering stagediST TDJ algorithm.
When both entrieg, andes are objects, the inequality discussed in Section 4.4.2 is

solved and corresponding time intervals, if any, are regabtbgether with the pair of

objects as results. This constitutes the refinement stage.
4.4.4.4 JiST TKNNJ Join Algorithm

In Chapter 3 we have drawn the conclusion thatdépth-first bi-directionamethod yields
the best performance in evaluating theNN operation, attributed to its low memory
consumption and fast descent down both the querying andttengexes. We recognize
that the JiST KNNJ Join problem is essentially a complex time-paramegefdk NN
problem, so in our algorithms we adopt this method for trawgy the join indexes and

expanding intermediate entries during the filtering stage.
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Algorithm 4.8: JIST.TKNNUJIg, Is, W.K)

w} & find_overlapw(lg, Is, W);

foreachw € {w} do

foreach g € Ir(w).root do

TPQ < new TPQe);

foreach es € Is(w).root do
Find overlapping time interval/ between ;
w < find_overlapw(e .V, e VI, w);
updateTPQTPQ ., W, e, K);

| TPKNNTPQ,K);

o N o 0o b~ W N PP

©

Algorithm 4.9: TPKNNTPQ,, K)

e < TPQn.owner,
if & is OBJECTthen
while wpg= TPQ,.DEQUEUHK) do
if wpq contains all objectthen refineResult&, e, wpg);
else whilees = wpgDEQUEUK) do
w < find_overlapw(e V1, es.V1);
L updateT PQT PQn, w, €5, K);

~N o g~ W N P

Ise foreache € g do
TPQ' < new TPQ¢);
10 foreachwpqe TPQ, do

©
@D

11 foreach es € wpgdo

12 if e5is OBJECTthen

13 w & find_overlapw(e/.V1, es.V1);
14 updateTPQTPQ-,w, e, K);

15 else foreache] € es do

16 w < find_overlapw(e . V1, e V1),
17 updateT PQT PQ-, w, €, K);

18 | TPKNNTPQ,k);

Algorithm 4.8 presents the top-level JISKNNJ algorithm. The KNNJ algorithm
also makes use of the data structufd3Q andWPQ introduced in Section 4.4.3 for
intermediate filtering and result retrieval. Similar to th8T TDJ algorithm, the KNNJ
algorithm also proceeds in two phases. In the first phasewbeapping time intervals
betweenlr andls are gathered and organized in an ordered\sgt After that, the

second phase is lauched and the dual transformed indgx@sandis(w) are retrieved
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for eachw € {wj}, their root nodes are expandeddirectionally. At this stage,T PQs are
constructed for each entgy in the root node ofg(w) and are updated with entriesfrom
the root node ofs(w)

We show thel PKNN procedure in Algorithm 4.9. This is the filtering stage of the
JiST TKNNJ algorithmT PkNNrecursively traverses the indexggw) andls(w), expands
internal nodes from both indexes, constructs AeAQs for each newly expanded entry
from Ig(w), and updates these né@wP Qs with entries expanded fromg(w). The procedure
stops when all priority queue entries of WIP(s are objects frons(w) at which point the
refineResult$unction is invoked, which indicates the beginning of thénement stage
of the algorithm.

We note that attributed to the nature of the dual transfoohrigue the JiST TDJ and

TKNNJ algorithms are applicable to both historical and patide settings

4.5 Using Indices in JiIST

There currently exist several choices for the index stmectbat meet the requirements
outlined in Section 4.4.4.1: thBB*-index [65], STRIPES (Chapter 2), and the TPR*-
tree [105]. Although the adaptation to the JiST framewortaidy straightforward for
all the structures above, we chose STRIPES as the base imdex implementation, for
the following reasons: (1) In Chapter 2 we have shown thatIBER is more fficient
than TPR*-tree in both updates and query support; (2) BBeindex is built on top of the
B*-tree [54], which uses space-filling curves. This adds tadiffeculty of adapting the
dual transformMBR, (3) The STRIPES index combines the dual-transform tealegith
the multi-dimensional quadtree structure, which natyriaihds to the ease of adaptation
to the JiST framework.

Since the initial design of the STRIPES index structure veageted specifically
at predictive query processing, it fits perfectly into thedictive setting of the JiST

framework. However, in order for STRIPES to process histdrirajectory data, index
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entries in STRIPES need to be augmented with the VI inforonati

Furthermore, we observe that thad information in STRIPES does not provide the
tight bounds that are required by the JiST join algorithmisefbicient filtering, thus it is
necessary to add D-MBR information to STRIPES index entries

In the following we discuss the adaptation of STRIPES to t8& Jramework, which
consists of two aspects, the addition of the in-memory tealgwash structure, and the
augmentation and maintenance of index entries with D-MB&R\AN
Adding the Temporal Hash: In accordance with the index requirements in JiST
(Section 4.4.4.1, STRIPES forms the base indexes on therhatt the two-level JiST
index. On the top level, time is split into intervals of lendt, each corresponding to the
lifetime of the underlying STRIPES structure (Figure 4 Ah in-memory hash structure
is maintained for identifying the base indexes associatti tive hashed time intervals.
Given a specific time instandes [tefi, treri + L), denoting system initialization time &
the hash functiom(t) = L“‘—Ltf’)J - 1is used to identify the underlying STRIPES structure
corresponding to time interval,{si, treti + L). As is shown in Figure 4.4, the two-index
strategy in STRIPES is retained in JiST for curfpredictive base indexes.
Augmenting and Maintaining Index Entries: Augmenting index entries in STRIPES
is straightforward. For a leaf index entry in STRIPES, whigla point in the dual
transformed space, VI is simply the time interval it remamthin a leaf node, and
D-MBR is reduced to the point itself. On the other hand, thBIBR and VI of an internal
index entry in STRIPES follow their definitions in a straifgittvard fashion and represent
the union of the corresponding measure of all enclosed elnildes. Unlike the updates in
STRIPES which result in the deletion of old entries and itigerof new entries, an update
in JiST is executed as an update of the old entry (includiegibdate of D-MBR and V1)

followed by the insertion of the new entry.
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4.6 Trajectory Privacy Preservation

In this section we present the usage scenario of the JiSThtpes for trajectory privacy

preservation.

4.6.1 Trajectory k-Anonymity

A locationr(t) is k-Anonymous if and only if it is indistinguishable frokn— 1 other
locations [39]. Locatiork-Anonymity is also referred to aSpatial k-Anonymity37],

SO we use these terms interchangeably. The concept of Iska&t@onymity has been
commonly used as a main factor in specifying location psgvpelicies. However,
spatialk-Anonymity is applicable only to snapshots of user locaif8v], whereas a
trajectory is usually represented as a time-stamped sefrilesations. Consequently,
spatialk-Anonymity can be used as a building block towards the canetfrajectory
k-Anonymity, which must take into consideration théeet of constant location change of

mobile objects with the evolution of time, as is presenteDdfinition 4.9.

Definition 4.9 (Full Trajectory k-Anonymity)
A trajectory r is k-Anonymous if and only if, at any time pdiatthin the lifetime of r,

locationr (t) is k-Anonymous.

For simplicity, Figure 4.6(a) illustrates a one-dimensibexample of Full Trajectory
k-Anonymity. Four objects;...r, are shown in the figure. Objeats, r,, andr, start at
timet = 1, at locations1(1) = 2,r,(1) = 4, andry(1) = 6, with velocitiesv;1(1) = 0.5,
Vi = —0.5, andv,4 = —1.5, respectively. Objeat; enters the system at tinte= 2, at
locationr,(2) = 1, with velocityv,s = 2. The shaded regiomsb, ¢, andd are derived from
the self-TKNNJ result set for object and compose thie Anonymity region for trajectory
r; from time 1 to time 5. Details of deriving trajectokyAnonymity regions from the
TKNNJ result set is discussed in Subsection 4.6.3. Notenth&tAnonymity region is

shown forr; between time 5 and time 6, &sAnonymity is undefined for; during this
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(a) Without QoS Constraint (b) With QoS Constraint
Figure 4.6: Trajectork-Anonymity with TKNNJ

time period. As a result, as per the definition of Full Trapegtk-Anonymity , trajectory
r, in its entirety cannot be consideredkagnonymous.

In reality, however, the lifetime requirement of Full Trefery k-Anonymity is often
overly stringent and usually impossible to achieve. Furttee, most of the time LBS
applications only require access to partial trajectoryadater certain time intervals. It is
therefore desirable to define trajectd®Anonymity over a temporal window, which is

presented in Definition 4.10

Definition 4.10(Window Trajectory k-Anonymity,)
A trajectory r is k-Anonymous with respect to time window anidl only if, at any time

point t e w, locationr(t) is k-Anonymous.

An example oiWindow Trajectory k-Anonymifg also shown in Figure 4.6(a), where
the temporal windowv is set between time 1 and time 5, within which ta&nonymity
region for trajectory; is well defined and is shown as the composite shaded regiars Th
r, is consideredk-Anonymous within time windowv. We will use the temporal window
w = [1,5) in all the examples for the rest of this section.

The concept oVindow Trajectory k-Anonymityallows piece-wise disclosure of

trajectory data with certain privacy guarantees withingenal windows in whichVindow
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Trajectory k-Anonymityis preserved.

4.6.2 Trajectory Privacy Policies

Similar to location privacy, there are two dimensions conirg) the specification of
trajectory privacy policies, namely trszopeof the policies and the tradédetween
privacy preservation and quality of service (QoS) of LBSlegapions. The scope of the
privacy policies refers to whether the privacy policies gpecified by individual users or
are applicable to the entire system. The trdtibetween privacy preservation and LBS
QoS is due to users’ intrinsic desire to receive as highliéiso information as possible
from the LBS without divulging too much of their own inforna.

Set in the context of trajectory data publication, we focuossgstem-wide privacy
policies and consider three constraints in the specifinaifdrajectory privacy policies:
(1) the time windoww within which the trajectory data is to be disclosed; (2) ttagetctory
k-Anonymity constraink; and (3) the maximum spatial cloaking region constraitht,,y,
which dictates that the maximum distance between the téngjettory and the rest of
trajectories in th&c-Anonymity region must not exceetd,.x at any time point within
time windoww.

The trajectoryk-Anonymity constraint parameté&rspecifies the level of privacy to be
provided by the policy. Generally speaking, larger valu& ofdicates more uncertainty
in pinpointing a specific trajectory, thus providing highevel of privacy. There are
exceptions, however, to this general rule of thumb, e.gemallk objects reside in exactly
the same location for a shared period of timetrajectoryk-Anonymity alone will fail
to prevent the identification of a specific trajectory wittime windoww. We provide
heuristics in presentingFAnonymous trajectories in Subsection 4.6.4 to allevihts t
problem.

On the other hand, the need to comply with the trajeckeAnonymity constraint

may result in overly larg&-Anonymity regions which indicates lower resolution of the
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trajectory information provided by the LBS applicationdaas a result, QoS of the LBS
applications will often sfier. In the past, this conflict has usually been addressed by
introducing spatial constraints in the form of rectanguégions [9, 73]. However, we
argue that in the context of trajectory privacy preservgtasingle distance constraint has

the following advantages over rectangular regions:

e Simplicity: from the point of view of the LBS providers andaus, a single distance

constraint is much simpler to represent than multi-dimemai rectangular regions;

e Specificity: the specification of a single distance constrai itself has multi-
dimensional implications, as it is usually a well-defineddtion of spatial and temporal

coordinates, which has been shown in Section 4.4;

e Practicality: intuitively it is more sensible and much sienfor mobile users to dictate
their privacy policies in terms of a circular region centea their current locations, e.g.,
“I would like to keep my location 10-Anonymous within 1 milémy current location.”,
as opposed to having to specify terms such as “1 mile nortrsanth to my current

location, and 1 mile east and west to my current location”.

In the rest of this section we use the three tuplgk( Adnay) to represent trajectory
privacy policy, wherev andk are mandatory and together they specify the time window
in which Window Trajectoryjk-Anonymity must hold. The distance constraiftt,,,,, On
the other hand, indicates the QoS guarantee level and is B LL when QoS is not a

concern.

4.6.3 Trajectory Cloaking with JiST

Trajectory Cloakingrefers to the process of determining the time-paramet:spatial
region(s) for a trajectory such that the requirements iraddsy a set of privacy policies
are fulfilled.

As opposed to location cloaking algorithms [9, 26, 34, 3539757, 73] that are
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designed to find the cloaking regions for single locationg@mapshot of user locations
at a specific time point, trajectory cloaking algorithmsahée take into consideration
both spatial and temporal domains and compute the trajectoaking regions (TCRS)
of trajectories. As we will show in later subsections, theREGare derived from sets of
trajectory segments that conform to the trajectory privaalcy with respect to a given
trajectoryr for certain periods of time. These sets of trajectory sedsare called the

Trajectory Cloaking Set (TCS) with respectrtaand is defined as follows.

Definition 4.11(Trajectory Cloaking Set)

The Trajectory Cloaking Set of a trajectory r within a timendow w, expressed as
TCS = {(w,{r’'},n)}, is defined as a set of time-ordered tuples each composedréa t
window W c w and a set of trajectory segmerits$} of cardinality n satisfying certain

trajectory privacy policy specification with respect to rthvn time window W

Next we show that the TKNNJ and TDJ operations provided bylitG& framework fit

naturally in the task of trajectory cloaking and require imuam post-processingi@rts.
4.6.3.1 TkNNJ Cloaking

Recall that in Section 4.3, the result set of the TKNNJ for di@alar trajectoryr is
presented as the tuple {(w, {s}}), which is essentially the TCS aof Therefore the
adaptation of the result set obtained from the TKNNJ opamatd achieve trajectory

k-Anonymity for a trajectory is straightforward.

Assertion4.1. For trajectory r, its result set from the operation JISKNNJ(k, Ir, W, k)
automatically satisfiegvindow Trajectoryk-Anonymity with constraints specified by

privacy policy(w, k, NULL).

Proof. By the definition of TKNNJ, the result set forcontains, at any time poirte w,
a set ofk nearest neighbors for object includingr itself, due to the fact that the

JIST_TKNNJ(Ir, Ir, W, k) operation indicates a self-join of the index on trajectdayaR.
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Algorithm 4.10: Trim_Cloakingw(r, w, {r"}, Admay)

1Wew,
2 foreachr’ e {r’} do
3 L W’ < solve TPD(r, r’, t)< Admax for range oft;

4 wewNnw’;
5 Returnw’;

Thus, at any time poirtte w, locationk-Anonymity holds for (t), which by the definition
of Window Trajectory k-Anonymitguggests thatvindow Trajectory k-Anonymityvith

constraint parameters/(k) must hold forr. O

Assertion 4.1 implies that if the QoS constraifdax iS not required, i.e Admax =
NULL in the privacy policy, then the JiIST TKNNJ operation can breatly applied on a
trajectory data sdéR to produce TCS for all trajectories, from which trajecterpnonymity
regions can be easily derived. An example of TCRs on one+tiinaal trajectory data
derived directly from the result set of TKNNJ is shown in Figé.6(a). Following
Algorithm 4.8, one can obtain the result set fgrfrom operation JISTTKNNJ(Ig, Ig,
[1,5), 3). As can be observed from Figure 4.6(a), besidéiself, trajectories, andr,
remain in the result set from time 1 to 2, theyreplaces, from time 2 to slightly past
time 4, and is then disconnected from the system and replaceduntil time 5. Note that
TCRsa, b, ¢, andd shown in the figure correspond to time intervals in which #suit set
for r; remains un-changed, and the spatial boundaries are sirapiyed by connecting
the MBR of locations at the beginning and the end of the tinberual, which can be easily
obtained from the JiSTKNNJ result set.

When the privacy policy is augmented with the additional @o8straintAdqmay, i.€.
Admax # NULL, however, additional filtering method is required to enghag both
k-Anonymity and QoS constraints are satisfied. Since thdtrestiobtained from the
JiIST_-TKNNJ algorithm is by itself sliced into continuous sub-daws{w’} of w, within
each of whichwindow Trajectory k-Anonymiig ensured for, the filtering algorithm

needs only trim each of the sub-windows if necessary, to a smaller sub-windew, in
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Algorithm 4.11: TDJ_post procesér, {(r’, {w'})})

1 Trajectory Cloaking Sedts < 0;
2 foreach (r’, {w'}) € {(r’, {w'})} do
3 L foreachw’ € {w'} do ScanMergesS plit((w, r’), tc9);

4 Returntcs

which the TPD between all trajectoriesin the result setr(itself included) and is no
greater thahd,,,,. We call this procedur@rim_Cloakingw and show it in Algorithm 4.10.
Figure 4.6(b) shows the TCRs for after applying thelrim_Cloakingw algorithm with

the additional QoS constraint,,x = 2 to each of the sub-windows of the result set shown
in Figure 4.6(a). The cloaking regianfrom Figure 4.6(a) is filtered away, and TGR

from Figure 4.6(a) is reduced in window size and shown in Fegu6(b) ax’.
4.6.3.2 TDJ Cloaking

The TDJ operation fits naturally into Trajectory Cloakingcases where QoS constraint
must be considered, i.Admax # NULL in the three tuple trajectory privacy policy
(w, k, Admay), Since it retrieves all the trajectory segments from thggdatase$, for all
trajectorieg in the query datasd, given a distance constraint and a time windowwv.
Similar to TKNNJ, a TDJ operation can be performed on thettayy dataseR against
itself and the returned result set can be processed to suitebds of trajectory cloaking.
However, TDJ result set processing for the purpose of tr@jgcloaking difers slightly
from that of TKNNJ. We recall from Section 4.3 that the TDduteset for a trajectory is
presented as the tuple {(s, {w'})}), which returns the trajectory segments from the target
dataset that satisfy the distance constraint togethertivglset of time windows in which
the distance constraint is satisfied. Trajectory cloakargthe other hand, requires that
the TCRs be arranged in ascending order of the time windoaweach of which Window
Trajectoryk-Anonymity must hold. Consequently, the result set produneTDJ must be
processed to produce the TCS before it can be useful in atisgmMICRS.

The TDJ_postprocessprocedure shown in Algorithm 4.11 illustrates the post
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Algorithm 4.12: S canMerge S plit((w', r’), tc9

1 ew b ew

2 (W”,{r"”},n) < scanfirst(tcs);

3 if tb <w™then inserf((w,r’,1),tc9);

4 else

5 while w’* <t do (W’, {r”’}) & scannext(tcs);
6 t <ty

7 while W’ < t; do

8 if Wt > t’ then

9 insert(([t",w”"),r’, 1),tc9);

10 B t ew'r;

11 else

12 insert((fw”*,t"), {r’},n), tc9);

13 insert(([t", w’),{r”} U {r'},n+ 1),tc9);
14 B t ew'";

15 B (w”,{r""}) & scannext(tcs);

16 | inser((t’,tp), {r'}. 1).tcs);

17 Return;

processing phase discussed above. To produce the TCS feoiDth result set,

the TDJ_postprocessalgorithm performs a linear scan of the TDJ result set, neerge
overlapping time windows, and splits non-overlapping okesping track of the trajectory
segments within the newly produced time windows at the same {This sub-procedure
is called ScarMerge Split and is presented in Algorithm 4.12.

We observe that the TCS for a trajectory obtained fromnibé postprocessalgorithm
automatically guarantees the satisfaction of the QoS wainstdue to the nature of the
TDJ operation. To fulfill the Trajector-Anonymity requirement, we simply need impose
an additional cardinality constraint on the trajectoryreegt sefr’} within each of the
time windows, such that > k, and filter out the time windows that do not meet this
requirement.

The construction of TCRs from the TCS obtained fromTie)_postprocesslgorithm
is exactly the same as that discussed in the previous sectmbwe omit the discussion to
avoid redundancy.

Figure 4.7 shows the example TCRs constructed from thetresubf the TDJ
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(a) Withoutk-Anonymity Constraint (b) Wittk-Anonymity Constraint
Figure 4.7: Trajectork-Anonymity with TDJ

operation. Figure 4.7(a) shows the TCRs with only the QoSitamtAdmnax = 2, in
which four TCRsa, b, ¢, andd are presented. In Figure 4.7(b), however,kienonymity
constraint is considered with= 3, and as a result TCRsandd are filtered out because

during these time windows the cardinality constraint onTk is not met.

4.6.4 Presentingk-Anonymous Trajectories

TCRs derived by the JiST cloaking procedures describedeimbiove subsections satisfy
theWindow Trajectory k-Anonymitgpecified by privacy policyw, k, Adnay). However,
several potential vulnerabilities exist. For example, igufe 4.6(a) where TCRs without
QoS constraint are shown, TCRsandb, ¢ andd are disconnected, which reveals the
exact locations of all the trajectories in the TCRs at timedew boundaries, as well as
the trajectory segments bounding the TCRs. This vulnetabilay be less pronounced
in two-dimensional trajectories, due to higher uncertaintroduced by two-dimensional
MBRs, but it poses a potential threat to the privacy of theldsed trajectories nontheless.
The second vulnerability is manifested at trajectory jiorcpoints, where all trajectory
segments in the TCRs intersect at one single point, as isrshofdigure 4.6(b) at time 3,
where the locations of all trajectory segments in T®R&dC’ are revealed.

To reduce these vulnerabilities, we introduce a two-phaseistic for further
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Figure 4.8: PresentingAnonymous Trajectories

processing of TCRs before disclosure: 8téchphase, and thEnlargephase.
Stitch: In the Stitch phase, we union the MBRs between time contigld&Rs, e.g., the
MBR of TCR a and the MBR of TCRb at time 2 in Figure 4.6(a), and form a larger MBR
shared between the two TCRs, and in doing so stitch the twosTiGgether. Figure 4.8(a)
shows the TCRs far, after the Stitch phase is applied to the TCRs shown in Figige 4
Enlarge: In the Enlarge phase we take the TCRs produced by the Sti$epidentify
time contiguous TCRs that share point MBRs, connect thé BHBR of the first TCR
and the end MBR of the second TCR by their correspondingoestiobtain intersection
points between the line segments connecting the MBR vertiod the plane where the
point MBR resides, and form a new MBR enclosing all interegcpoints and the point
MBR itself, thus enlarging the point MBR to the new MBR. Figut.8(b) shows the TCRs
for ry after the Enlarge phase is applied to the TCRs shown in Fig&(@).

We note that the Stitch and Enlarge heuristic does not resliCRs that violate the
privacy policy, because both Stitch and Enlarge phasesgenthe TCRs within the QoS

constraint. Proof of this is straightforward and is omitted
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Table 4.2: Experiment Parameters

Parameter Value

Page Size 4K

Buffer Pool 512K

Dataset 50K, 100K, 15K, 20K, 25K
Update Interval 60, 120, 180, 240

Index Lifetime 120

Horizon 240

Experiment Duration | 600

Query Window 40, 80,120, 160, 200
Number of NNs 10, 20,30, 40, 50

Spatial Extent 1000« units

Join Distance 10, 50,100 150, 200 units

4.7 Experimental Evaluations

In this section, we present results from a comprehensiverarpntal evaluation and

evaluate thefectiveness of the time-parameterized join algorithmsweahave.

4.7.1 Implementation Details

We implemented both the JiST index structure and the joiardtgms on top the SHORE
storage manager [22]. In the implementation of the JiSTxnde followed the methods
proposed in Chapter 2, with the extensions discussed inoBetb.

We show the experimental results in terms of execution timaé ¢onsists of/D time
and CPU time. Results for queries presented in this sectinsist of both filtering step
and refinement step, for both TDJ and TkNNJ query operatiéos.all the numbers
shown in this section, five measurements were taken and drage of the middle three
values is presented.

All experiments were conducted on a 2.0 GHz Intel Xeon duat@ssor workstation

with 1 GB physical memory.
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4.7.2 EXxperimental Settings

To keep the experiments manageable, we set the page size stoitage manager to
4K and the bfer pool to 128 pages. We have also experimented with a widgerah
buffer pool and page sizes, the results are consistent with gresented in the following
sections, and in the interest of space we have omitted tess#s.

Due to the lack of real world moving object data, we used thi-kveow GSTD
data generator [107] to produce synthetic moving data. data generator allows us to
systematically generate data with various parameters@egpiore the ffect of these
parameters on the performance of our algorithms. In mosteoékperiments we simulated
moving objects within a, 1000x 1, 000 space domain, traveling with maximum speeds of
0.75, 1, or 3 per minute. One can imagine the unit of the spatgta mile and the unit
speed of the moving objects being miles per minute. Injtialich object is randomlly
assigned a location, a speed within one of the three speeggrand a moving direction.
After that, the objects keep moving at the assigned speedthminext update, at which
time the location information is retained, but d&drent speed and direction are assigned
randomly.

Using the GSTD data generator, we were able to adjust vapatemeter settings
for the experiments. We generated synthetic datasets imiugacardinalities and update
intervals, as shown in Table 4.2. Table 4.2 also gives a figuery parameters used
in the experiments. Parameter values shown in bold are efdues. Since previous
research [54] has studied thfext of thelndex Lifetimeparameter in the context of dual
transformed index structure, we fix the value of this paramat 120 time units to avoid
redundant evaluations. Time windows of both historical pretlictive join queries in the

experiments are also generated randomly.
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Figure 4.9: Comparing with Naive Algorithms: Historical

4.7.3 Comparing with Naive Algorithms

In the first set of experiments we compare the dual index bsedlgorithms with the
naive BNL and TPBNL algorithms presented in Section 4.4.3.

We performed the comparison on various combinations ofrpatar settings, for both
historical and predictive queries. In the interest of spaaeonly show in Figure 4.9 the
results for historical queries from running the experinsaattdefault settings. Other results
are consistent with those presented here.

As is expected, the dual index based algorithms outperfbein haive counterparts
by orders of magnitude, due to th&extiveness of synchronized index traversal and
intermediate filtering.

In the rest of this section we will focus mainly on the perfame evaluation of the

dual index based algorithms.

4.7.4 Evaluating Dual Index Based Algorithms

In this section we focus our discussion on the performandbefproposed dual index
based join algorithms. We make assessment on TDJ akdN®Palgorithms individually

on their distinct characteristics and jointly on their sithattributes.
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47.4.1 HfectofAdinTDJ

There are three key factors to the TDJ operation: the JoitabegAd, the Query Window
w, and workload mix. Since the temporal parametend the &ect of workload mix are
common to both the TDJ operation and the TKNNJ operation,eaed them to a joint
discussion in Sections 4.7.4.3 and 4.7.4.4,

To examine the féect of Ad on TDJ algorithm, we performed a series of experiments,
in which a set of TDJ queries were issued on two datasets edciO0K moving objects.
The TDJ parametekd was set to a fraction of the extent of the spatial domain, mame
1,000. We variedAd from 0.01, or 10 spatial units, to.D, or 200 spatial units. Both
historical and predictive queries were examined, and tleewdion time per query is
measured and shown on thaxis in Figure 4.10. A clear linear correlation between guer
execution time andd can be observed, for both historical and predictive quebeth in

terms of JO and CPU time.
4.7.4.2 Hfect ofk in TKNNJ

To assess thefiect ofk on the performance of TkNNJ algorithm, we conducted the
following experiments. Fixing the datasets at KQ@nd the query window at 120 time
units, we performed both historical and predictive TkKNN&iies, each withk value

varying at 10, 20, 30, 40, and 50. The results are depictedyuwr& 4.11, where thg axis
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Figure 4.11: TKNNJEffect ofk

shows the average execution time of a single query.

We draw two conclusions from Figure 4.11. For both histdraoad predictive
gueries, as the value &fincreases, so does the execution time of TKNNJ query, albeit
in a sub-linear fashion. This can be attributed fi@etiveness of the filtering step in
the updateT PQalgorithm (Algorithm 4.3). The second observation to be ened
that the sub-linear correlation between query executioe tand value ok is slightly
more pronounced in predictive queries, for reasons we waliubs in more detail in

Section 4.7.4.5.
4.7.4.3 Hfect of Query Window Size

Both TDJ and TKNNJ queries take a common parameter, i.equbgy window. In this
section we examine thefect of the query window size on query performance.

The default 108 dataset size is used in this experiment. We varied the quiergomw
size as shown in Table 4.2 for both TDJ and TKNNJ queries, gatthin consist of both
historical and predictive queries. The results are showngares 4.12 and 4.13.

As can be observed from these figures, larger query windowtseis longer query
execution time for both TDJ and TKNNJ queries, in both histdrand predictive settings.
The reason for this trend is intuitive: the larger the quemydew, the more objects are

likely to be active within that time window, and thus the moganputation is likely to be
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incurred by the queries.

Furthermore, one can also observe that the extension oy gvindow has a more
dramatic éfect on TKNNJ than on TDJ. This phenomenon can be attributduettact that
TKNNJ query filtering and refinement procedures are more tioaipd, as can be inferred
from the TKNNJ algorithms presented in Section 4.4. Theng&inig or expansion in query
window size inevitably induces the decrease or increadeeimtimber of WPQs that need
to be processed during the query process. This results irra pnofound &ect of query
window size on TKNNJ query than on TDJ query.

A third observation to be made here is the jump in executioe tihat corresponds

to the change in window size from 80 to 120 for both TDJ (FiguE2(a)) and TKNNJ
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Figure 4.14: Hect of Workload Mix: TDJ

(Figure 4.13(a)) query operations. This jump is specificisbdnical queries, and is due
to the fact that the lifetime of the base indexes in JiST ig®d20 time units, and the
randomly generated historical queries mostly have an uppend very close to the end
of an index lifetime. For this reason, queries with windoses40 or 80 time units span
only one single historical index structure most of the tinvbereas queries with window
size greater than 120 time units almost always straddleaex structures. This results
in approximately X increase in query execution time when going from a window siz
of 40 or 80 to a window size of 120 and above, as can be obsemedRigures 4.12(a)
and 4.13(a).

However, the ffect observed above is not applicable in the case of prediqtreries,

for reasons we will further discuss in Sub-section 4.7.4.5.
4.7.4.4 Hfect of Workload Mix

In this section we examine théfect of various workload mixes for both TDJ and TKNNJ
operations.

We conducted two sets of experiments where we graduallgaser the size of both
the outer relatiorR and the inner relatios. However, in the first set of experiments

we keep the size of the inner relation to be either the samieeagtiter relation (for the
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default 10K dataset), or slightly larger. In the second set of experises reverse the
trend and keep the size of the inner relation to be slightlgllen We experimented with
a wide range of dataset sizes and obtained consistentgebuthe interest of space, we
presents the results for the mix of four dataset cardieatitb, 100K, 150K, and 20K
in Figures 4.14 and 4.15.

We observe from Figures 4.14 and 4.15 that, for both TDJ adNIkoperations, as
the size of the outer relation increases, both CPU Addiines for the operation increase
in a linear fashion (observe the bars on the<5100, 100x 100, and 15 100 markers).
Note that in Figures 4.14 and 4.15 the numbers on the top ohtrkers indicate the sizes
of the outer relations. Similar trend also holds for the sizéhe inner relation (the bars on
the 100x 50, 100x 100, and 100 150 markers). This is so because for both TDJ and
TKkNNJ operations, the time required for distance comparedind result retrieval for both
filtering and refinement stages is positively correlatedlie cardinality of both inner
and outer relations.

We would also like to point out that, from the results showikigure 4.14, for TDJ
gueries, the change in the size of the outer relation has a pronounced impact on
the execution time than that of the inner relation. Complaegbars corresponding to the
50 x 100 markers against those corresponding to thexLB0 markers in Figure 4.14,
as well as those corresponding to 20250 against 15& 100, and 156 200 against
200x 150. Observe that in all these cases, despite the decresige of the inner relation,
TDJ query execution time increases with the size of the getation. However, one may
also notice that the query time increase is mainly due tortheease in CPU time. This
can be attributed to the fact that the refinement stage in ERkquery algorithm is largely
affected by the number of trajectories in the outer relatiod,sance this stage is executed
in memory, only CPU time isféected.

On the other hand, corresponding bars in Figure 4.15 shownpletely diferent

trend for TKNNJ queries. Due to the asymmetric nature of TENjNeries, the size of the
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Figure 4.15: Hect of Workload Mix: TKNNJ

inner relation plays a much more important role in tifie&iveness of the query, both

in terms of CPU and/D time. One can infer from the TKNNJ algorithms presented in
Section 4.4 that both CPU antD costs are linearly correlated with the sizes of the inner
and outer relations during the filtering stage. Howeverimduthe refinement stage, the
split operations on the WPQs are again linearly correlatid tive number of candidates
in the candidate sets, which is in turn linearly correlatéithwhe size of the inner relation.

This results in a near-quadratiffect, which is manifested in Figure 4.15 to some extent.
4.7.4.5 Historical vs. Predictive Queries

Comparing all figures in this section presenting historgpary performance and those
presenting predictive query performance, we make theviatig observation with respect
to the performance of historical and predictive TDJ quern@scessing predictive TDJ
gueries requires significantly less time Q.5X) than their historical counterparts, given
exactly the same query parameters.

The rationale for this observation is straightforward.tblical data contains complete
information about the past trajectories of moving objeats| as such, Validity Intervals of
individual objects are very likely to be segmented and ofterch shorter than the lifetime

of one single index structure, depending on the length otigdate interval. This results
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in a significant number of PD computations. On the other hand, future positions of
moving objects can only be inferred based on their curresitipo and velocity, and thus
follow the pattern of a straight line. Consequently, a 2AglPD function is applicable for
the entire query duration, therefore incurring much lessatation overhead.

The above mentionedtect holds for CPU cost of TKNNJ queries, as can be observed
from all historical TKNNJ query performance figures preednh this section. The reason
for this is similar to that discussed above. However, spetfifkNNJ queries, we observe
that almost in all cases thgl cost of predictive queries turns out to be higher than that o
their historical counterparts. This is due to the dimingh@ectiveness of the filtering step
because of the expansion of TBRs over a long period of timprdoessing the predictive
queries, the computation of TPD is based on the predictedsTBRich expand rapidly
as times progresses, inducing increased overlappingdtates theféectiveness of the
pruning during the filtering stage. This results in an insegAnumber of node expansions

that in turn incur more disk/Os.

4.8 Conclusions and Future Work

In this chapter we have introduced JiST, a general framev@rKrajectory Join
operations including Trajectory Distance Joins (TDJ) arajéctoryk Nearest Neighbors
Joins (TKNNJ). In addition, we have presented a set of tatde based algorithms as
well as index based algorithms that take advantage of darastormed index structures
in evaluating the join operations introduced in this chapte have applied the JiST
framework operations to develop novel techniques for ¢ttajg privacy preservation.
Finally, we have evaluated the performance of the propasgelctory join algorithms
through exhaustive experiments and demonstratedieetieeness of these methods.
To the best of our knowledge, JiST is the first comprehensamméwork for complex
spatio-temporal join operations between moving objegtttaries, and its application in

trajectory privacy preservation is unprecedented. JiSlTserve as the basis for many
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future researchfeorts, including design of ad hoc query operations, complexy)
evaluation, query size estimation, and optimization mashfor emerging location-based
applications, among which location privacy preservat®a promising direction. For
simplicity, we will use the terni.ocation Privacyto incorporate the meanings of both
location privacy and trajectory privacy.

Location privacy is a rapidly growing research area thidre numerous exciting
opportunities. Overall, there are two main factors to cdeisivhen developing location
privacy preservation techniques, i.e., thfeagency and &ectiveness of the technique,
and the quality of service of the LBS applications using #hhique. We provide some
insight on how we can exploit the comprehensiveness anétlégsprovided by the
JiST framework to explore these opportunities both in dgvelg eficient and &ective
techniques and in preserving quality of service.

In the time domain, since the JiST index structure spansntieedifetime of all
trajectory data, it is capable of accommodating anonymoasss to historical, current,
and predicted future trajectory data, both at precise tioistp and within a time duration.
The collection of spatio-temporal query operations that loa derived from the JiST
framework provide a rich choice offecient query processing primitives for developing
privacy preservation techniques. In this chapter we haseudsed methods for preserving
privacy on historical trajectories during a given time womdin the past. We note that the
extension of the proposed algorithms to current and prediiftiture trajectories can be
easily derived, due to the dual transform nature of the uyiderJiST index structure, as
we discussed in Section 4.4. It is also straightforward tin&tthe time window in the
proposed algorithms to achieve location privacy presemdbr a single time point, be it
in the past, the present, or the near future.

In the spatial domain, we consider both tliEeetiveness aspect and the QoS aspect of
the location privacy preservation techniques.

The dfectiveness of a privacy preservation technique refersdatifength of privacy
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provided by the technique, namely, howvfdiult it is to infer the exact location information
of objects given the information provided by the technigHere we extend the notion
of Reciprocityproposed by Ghinita et. al. [37] in the context of locatleAnonymity
preservation. Thé&-Anonymity reciprocity property dictates that all objeetghin

a k-anonymous region share exactly the sd@aonymous region. In other words,

the k-anonymous regions satisfying the reciprocity propertyndboverlap, which is
essentially a form of space partitioning. Since locatiamgmy preservation techniques
are not only limited tdk-Anonymity, we generalize the notion of the reciprocity pecty
and define it as the property thalt objects within a privacy preserving region with
respect to certain privacy policy, share exactly the sameagy preserving region, and
no other We call techniques that observe this propesttypng privacy techniquesnd

call those that do not observe this propestgak privacy techniqued\Ve note that the
methods we have provided in this chapter are weak privatyntgqaes since they address
the privacy preservation of individual trajectories, ahig inighly likely that the TCRs of
two trajectories will have incomplete overlap. However,avgue that the JiST framework
provides natural mechanisms for developing strong privaciiniques. The rationale is
that the JiST index is built on top of STRIPES, which is essdigta space partitioning
index structure. Furthermore, an important property of SA&IPES index structure is
that objects with similar movement patterns in physicatspso tend to be close to each
other on the index, which inherentlyfers the opportunities of object clustering and space
partitioning techniques.

In this chapter we have provided a distance constraibt,, as the QoS criterion in
trajectory privacy policy specification. However, we obsethat the JiST framework is
also capable of addressing the more commonly adopted mrdtararea constraints, which
are essentially in the form of time-parameterized rangeigsi@nd have been discussed in
detail in Chapter 2 under the setting of predictive querycpssing. Since the JiST index

consists of slightly modified STRIPES structures, the esttamof the STRIPES query
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algorithms to the JiST index is fairly straightforward.
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CHAPTER 5

CONCLUSIONS

In this thesis we have developed a comprehensive and unifieteivork for éicient
access methods and query operations in spatio-tempoeddakss.

In Chapter 2 we have presented a new indexing structuredc8IldRIPES for
indexing and answering queries on predicted positions ikimgoobject databases.
This new indexing structure draws inspiration from eardagely theoretical work in
this area, advocating the use of dual transformation foexinty such data sets. The
STRIPES index leverages these dual transformation teabaignd uses a disjoint regular
partitioning technique tof&ciently index the points in the dual transformed space. The
STRIPES index can support all the types of commonly usedgireel queries [72], which
include time-slice, window, and moving queries. We have garad the performance
of STRIPES with the mostfgcient predictive indexing structure, the TPR*-tree [105].
Our comprehensive experimental evaluations demonstratéSTRIPES outperforms the
leading competitive index method, namely the TPR*-treeeiydor both updates and
gueries; updates are often more than an order of magnitstlr fasing STRIPES, and
gueries are often faster by a factor of 4x. Thestedences can be seen in both the and
the CPU costs. Consequently, STRIPES is an extrenfelyent and practical indexing
structure for evaluating predictive queries.

In Chapter 3 we have presented a new metric, called NXNDIBd feave shown that
this metric is much morefiective for pruning ANN computation than previously propse

methods. We have also explored the properties of this metnd have presented an
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efficient O(D) algorithm for computing this metric, whei# is the data dimensionality.
We have also explored a family of index based methods for coimgp ANN queries. In
addition, for ANN computation, we have shown that travegdime index trees using a
depth-first paradigm, and using a bi-directional expanefarandidate search nodes is the
most dficient strategy. With the application of NXNDIST, we havecashown how to
extend our solution tof@ciently evaluate the more general AKNN operation.

In Chapter 3 we have also shown that for ANN queries, usingaalijee index
enhanced with MBR keys for the internal nodes, is a mdieient indexing structure than
the commonly used R*-tree index. Overall the methods thalhawe presented generally
result in significant speed-up of at least 2X for ANN compiotatand over an order of
magnitude for AKNN computation over the previous best atgors (BNN [116] and
GORDER [112]), for both low and high-dimensional datasets.

In Chapter 4 we have introduced JiST, a general frameworK fajectory Join
operations including Trajectory Distance Joins (TDJ) arajéctoryk Nearest Neighbors
Joins (TKNNJ). In addition, we have presented a set of tatde based algorithms as
well as index based algorithms that take advantage of darastormed index structures
in evaluating the join operations introduced in this chapt#e have applied the JiST
framework operations to develop novel techniques for ttajy privacy preservation.
Finally, we have evaluated the performance of the propasgekctory join algorithms
through exhaustive experiments and demonstratedieetieeness of these methods.

To the best of our knowledge, JiST is the first comprehensamméwork for complex
spatio-temporal join operations between moving objegtttaries, and its application in
trajectory privacy preservation is unprecedented. JiSTserve as the basis for many
future researchféorts, including designing of ad hoc query operations, cexpjuery
evaluation, query size estimation, and optimization mashfor emerging location based

applications.
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