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CHAPTER 1

INTRODUCTION

The need to accurately determine location has been a critical part of human exploration

endeavors since the early days of human history. The advent of satellite and atomic clock

technologies in the second half of the last century has led tothe development of satellite

based location detection techniques such as the GPS [36]. For a long time, the GPS

technology was only available for military applications, but since May of 2000 it has

become possible forcivilian GPS receivers to accurately identify the location of a GPS

receiver within a few meters. GPS technology is quickly enabling numerous new Location

Based Service (LBS) applications, including tracking fleets of vehicles, navigating ships

and aeroplanes, and tracking wildlife. Another popular application of this technology is

in cellular phones with embedded GPS sensors. In the United States, cellular phones are

now required to be E911 [30] enabled. E911 is a federally mandated requirement which

states that cellular phone companies must be able to locate the geographical location of

the cellular phone user with an accuracy of a few hundred meters in most cases. In case of

an emergency, E911 will provide better location information to the emergency workers.

The reverse use of the E911 service (Reverse 911) [1] can alsoenable prompt delivery of

automated warnings to civilians in case of a crisis. For example, Reverse 911 has been

successfully deployed and put to use in the 2007 San Diego wildfire [4] and has helped

over 500,000 families evacuate from the danger zone [5].

While GPS works well for location detection in the outdoors,determining location

when inside a building requires using different techniques. A popular technique for
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determining location indoors is using ultrasonic, or radiofrequencies, or a combination of

these two techniques [7, 45, 89, 110]. Location informationproduced by these techniques

can be very accurate; for example, the BAT system [45,110] can compute locations that is

usually accurate within 10 cm of the actual location. The availability of indoor location

information is also giving rise to a new class of applications, such as asset tracking

and context-aware applications that adapt to the user’s needs as a user moves around in

physical space. Rapid advances in semiconductor technologies have made it possible to

build such location-computing devices for a small price, making mass deployments of

such devices possible.

These location-computing techniques allow us to gather successive location updates

of an object, which can be either a user or a device, to producea sequence of locations

that collectively form thetrajectory for that object. (A trajectory segment for an object

moving in 2-D physical space is essentially a line in 3-D space, with time as one of the

dimensions.) In the last few years, we have seen a rapid increase in the deployment of

location-sensing devices and applications that make use ofthis information, and this trend

is likely to accelerate in the near future. As a result, we will soon be faced with the task of

managing large volumes of trajectory data. For example, if one were to continually collect

GPS sensor readings from a fleet of trucks, then in a short amount of time one would have

a large volume of trajectory data. Such trajectory data setscan be useful in safety research

such as analysis of factors that contribute to accidents, including car behavior such as

cruising speed, lane switching, following distance, etc.,especially when combined with

other data such as sensor readings from the braking system.

Spatio-temporal databases, also called moving object databases, are required to support

queries on large numbers of continuously moving objects. A key requirement for indexing

methods in this domain is to efficiently support both update and query operations. Previous

work on indexing such databases can be broadly classified into two categories: indexing

the past positions and indexing the future predicted positions. In Chapter 2 we focus on an
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efficient indexing method for indexing the future predicted positions of moving objects.

In Chapter 2 we propose an indexing method called STRIPES that indexes predicted

trajectories in a dual transformed space. Trajectories forobjects ind-dimensional space

are transformed into points in a 2d-dimensional space. This dual transformed space is then

indexed using a hierarchical grid decomposition index structure. STRIPES can evaluate a

range of queries including time-slice, window, and moving queries. We perform extensive

experimental evaluation comparing the performance of STRIPES with the leading existing

predicted trajectory index (the TPR*-tree), and show that our approach is significantly

faster than TPR*-tree for both updates and search queries.

The All Nearest Neighbor (ANN) operation is a commonly used primitive for analyzing

large multi-dimensional spatial datasets. Since computing ANN is very expensive, in

previous works R*-tree based methods have been proposed to speed up this computation.

These traditional index based methods use a pruning metric called MAXMAXDIST,

which allows the algorithms to prune nodes in the index that need not be examined during

the ANN computation. In Chapter 3 we introduce a new pruning metric called NXNDIST,

and show that this metric is far more effective than the traditional MAXMAXDIST metric.

In addition, we also explore a range of algorithms for computing ANN, which differ

in the way the spatial index is traversed and nodes are expanded. We show that one of

these methods, which uses a depth-first index traversal and bi-directional node expansion,

consistently outperforms all other methods. Furthermore,we show that our method can

also efficiently evaluate the more general All-k-Nearest-Neighbor(AkNN) operation.

In Chapter 3, we also challenge the common practice of using R*-tree index for

speeding up the ANN computation. We propose an enhanced bucket quadtree index

structure, called MBRQT, and using extensive experimentalevaluation show that the

MBRQT index offers better speedup in ANN computation than the commonly used

R*-tree index.

Traditional spatial and traditional temporal joins have been widely studied in the past,
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but there is very little work on the more complex problem of trajectory join operations,

which have many interesting emerging applications, privacy preservation in publishing

trajectory data being one of them. As another example application, during the Mad Cow

Disease epidemic, in the event where some animals are identified as having contracted the

disease, a decision needs to be made quickly regarding whichother animals have come

close to the infected animals within a certain period of timein the past. This computation

is essentially a trajectory join operation.

In Chapter 4 we present a general framework, calledJiST, that introduces a broad class

of trajectory join operations, includingTrajectory Distance Join (TDJ)andTrajectory

k Nearest Neighbors Join (TkNNJ). Within the JiST framework, we present a set of

algorithms to evaluate the join operations introduced in this chapter. We adapt the

STRIPES index structure presented in Chapter 2 and propose aunified index structure

that incorporates indexing both historical and future trajectories of moving objects. We

then introduce the notions ofTrajectory k-AnonymityandTrajectory Cloaking, and show

the application of the JiST operations in the context of privacy preservation. Finally, we

present results from detailed experiments that demonstrate the efficiency and scalability of

the JiST join algorithms. To the best of our knowledge, JiST is the first comprehensive

framework for complex trajectory join operations and pavesthe foundation for building a

complex querying platform for emerging trajectory based applications.

This thesis makes the following contributions: we propose an efficient access method

called STRIPES for indexing and querying predicted trajectories; we devise a new pruning

metric and develop a number of algorithms for processing complex ANN queries in spatial

databases, which can be employed in efficiently querying snapshots of spatio-temporal

databases; we extend the STRIPES index structure to unify the indexing techniques of

past, present, and future trajectories; we identify and propose algorithms for the set of

complex spatio-temporal join operations that span the entire timeline of the past, the

present and the future and form the foundation of the comprehensive JiST framework for
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processing trajectory joins; we also formulate the intriguing concept of trajectory privacy

and demonstrate the ease and flexibility with which the JiST framework can be applied to

solve a new class of problems.
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CHAPTER 2

EFFICIENT INDEXING OF PREDICTED
TRAJECTORIES WITH STRIPES

2.1 Introduction

Over the last decade, we have witnessed an increasing interest in techniques for managing

databases consisting of a large number of continuously moving objects. These research

interests have been fuelled by rapid advances in hardware technologies that allow for

cheap location-aware devices, which are often packaged in small physical devices.

These devices have found applications in a variety of civilian and military monitoring

applications. Many of these applications demand extremelyefficient techniques for

dealing with a large update rate triggered by object continuously updating their location

information. In addition, these application also require efficient techniques for querying

on the location information. Queries in these applicationscan be divided into two broad

classes: queries on the past positions of moving objects, and queries on predicted positions

of the moving objects. In this chapter, we focus on this laterclass of queries, which are

often referred to as predictive queries. While there are a number of proposals for modeling

the predicted positions of moving objects, the most widely-used model specifies the

predicted position as a current position and a velocity vector indicating the direction of the

future motion [43,59,72,81,85,86]. We also use this commonly-used model.

To efficiently answer queries on predicted position, it is intuitive to ask the question

if effective indexing methods can be built for these moving objectdata sets. Naturally,

a substantial amount of research has been undertaken in the recent past to answer

6



this question. Some of the early work in this area employs dual transformation

techniques [6, 59, 111]. These techniques typically represent the predicted position

of an object moving in ad-dimensional space as a point in a 2d-dimensional space.

Most of this body of work is largely theoretical in nature, and for most parts focuses

on objects moving in a one-dimensional space [59]. More recent work in this area has

focused primarily on practical implementations of indexing structures for predictive

queries [21,70,72,87,88,90,105]. Of these indexing methods, perhaps the most influential

indexing method is the TPR-tree [72]. This indexing structure uses the basic R*-tree

indexing structure [10], and expands the traditional definition of bounding boxes to include

time-parameterized bounding boxes. Essentially each bounding box now has an associated

velocity vector that captures the growth of the box as time progresses. The TPR-tree

has inspired a flurry of research aimed at improving the basicTPR-tree algorithms. A

recently proposed indexing structure, called the TPR*-tree [105] has been shown to vastly

outperform the basic TPR-tree index.

Surprisingly, in the more empirical research on predictivetrajectory indexing, the

early dual transformed methods have been largely dismissed. (The TPR-tree [72] employs

techniques that are inspired by the dual transformed methods, but doesn’t actually

experimentally compare the TPR-tree index with any dual transform based methods.)

Perhaps a reason for this dismissal is because a) the research in dual transform indexing

methods has largely focused on deriving asymptotic performance bounds, and b) these

researchers have suggested that the dual transformed spacebe indexed using methods

such as partitions trees [59], which are not as widely used asR-trees in practice. The

body of empirical research has largely dismissed these theoretical results arguing that the

asymptotic performance bounds, though interesting, don’tlead to practical structures since

these bounds have large constant factors [72,105].

In this chapter, we reexamine this issue and consider if a practical indexing structure

can be built using a dual transformation technique. The motivation for our interest in
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this approach stems from the observation that R-tree based indexing techniques are

known to rapidly degrade in performance as the dimensionality of the underlying space

increases [12]. All the TPR-tree based indexing structuresuse time-parameterized boxes,

which require representing a velocity value for each dimension. In effect, the underlying

indexing space can be viewed as a 2d-dimensional space for objects moving in ad-

dimensional space. The dual transform techniques also needto index in a 2d-dimensional

space. However, rather than indexing boxes the dual transform techniques only have to

index points, which is potentially easier to index efficiently. This key insight is at the heart

of the STRIPES indexing structure, which we propose in this chapter.

STRIPES is a Scalable Trajectory Index for Predicted Positions in Moving Object

Databases. The STRIPES index maps predicted positions to points in a dual transformed

space and indexes this space using a disjoint regular partitioning of space. This style of

partition is called quadtrees, and can be extremely efficient, especially for indexing point

data [93]. Even though the traditional quadtree leads to an unbalanced tree, it has proven to

be an effective disk based indexing structure in some cases [33, 47].STRIPES essentially

employs a disk based bucket PR quadtree structure [93]. STRIPES can evaluate the entire

range of predictive queries, which include time-slice, window, and moving queries [72].

In this chapter, we compare the performance of STRIPES with the currently best

known indexing structure, namely the TPR*-tree [105]. Using actual implementations

of these two indices on top of the SHORE storage manger [22], we demonstrate that

STRIPES outperforms the TPR*-tree for both updates and query operations.In most

cases, updates in STRIPES are more than an order of magnitudefaster that the

TPR*-tree, and queries are about 4x faster with STRIPES!

This chapter makes an important contribution which includes proposing a new indexing

structure that is extremely efficient for predictive queries. In addition, we have essentially

come to a full circle with this work, where we now show that theintuition behind the

earlier theoretical work on dual transform based techniques can indeed be leveraged to

8



produce a practical and efficient predicted trajectory indexing method.

The remainder of this chapter is organized as follows: In Section 2.2, we cover the

model used for representing predicted positions. Section 2.3 describes the TPR-tree and

the TPR*-tree indices. The STRIPES index is described in Section 2.4, with experimental

results in Section 2.5. Related work is reviewed in Section 2.6, and we present our

conclusions and plans for future work in Section 2.7.

2.2 Background and Model

Location data for moving objects is continuously changing between any two successive

updates of the location of the mobile object. This poses a problem in representing

the location of the object at all times because most conventional models for data

representations are static in nature. A commonly used modelfor representing trajectory

data approximates the motion of an object as a straight line segment between two

consecutive updates [43, 59, 72, 81, 85, 86]. The same linearmodel is used for predicting

future trajectories as well [72, 105]. The object is assumedto move with some specified

current velocity from the current position until a new update is explicitly issued. If the

current position and velocity of an object is represented as(p (t) , v (t)) at timet, then the

position at timet′(t′ > t) can be calculated usingp(t) = p(t′) + v (t) × (t − t′). When the

actual update arrives, which can be different from the predicted position, the velocity and

the current positions are updated in the index to reflect the new predicted trajectory.

As has been noted in previous studies, when indexing predicted trajectories an optimal

packing of a group of objects into a node in the index at timet is unlikely to be optimal at

a later timet′. Consequently, an index that is optimal for queries att will not be optimal

at timet′, and the index performance gradually deteriorates ast′ increases. To reduce the

dramatic performance degradation of an index built at a longtime in the past, the trajectory

indexing mechanisms often employ the notion of an index lifetime [72]. The lifetime is

the time interval for which the index is designed to give goodperformance. After this

9



time interval the performance of the index is likely to deteriorate. The index is rebuilt

periodically to avoid such rapid deterioration.

Another practical observation is that for an object moving in ad-dimensional space,

the predicted trajectory includes ad-dimensional current spatial coordinate, and a

d-dimensional velocity vector. Consequently indexing predicted trajectories requires

indexing these twod-dimensional entities, which essentially requires indexing entities

in 2d-dimensional space. The so called curse of dimensionality [11], and the related

challenges with query evaluation methods in high-dimensional space [12,14] quickly start

becoming performance issues in this domain. In addition, since the optimal node for a

new update can be different from the node containing the old representation for the object,

updating the predicted trajectory of an index will often result in traversing multiple paths

down an index.

2.2.1 Query Types

There are three classes of future queries that have been extensively used in the previous

research for querying on predicted trajectories [72]. These three classes are time-slice

query, window query, and moving query. For a one-dimensional space, Figure 2.1 shows

one example for each of these query types. In this figure thex-axis represents the time

dimension, and they-axis represents the single spatial dimension.

In Figure 2.1,Q1 is a time-slice query, which finds all objects at some specified future

time t in some spatial regionR. Q2 is a window query for finding all objects in time

window [t, t′] in regionR. Q3 is a moving query to find all objects in time window [t, t′] in

regionR that is moving with velocityv.
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Figure 2.1: Query Examples for
Objects Moving in a 1-d Space

Figure 2.2: Area Computation in
the TPR-Tree

Figure 2.3: Motivation for the
Insert Algorithm in TPR*-tree

2.3 TPR-Tree and TPR*-Tree Indices

In this section we review the two popular predicted indices,TPR-tree index [72] and the

TPR*-tree index [105].

2.3.1 TPR-Tree

The TPR-tree [72] is essentially a time parameterized R*-Tree. The index stores velocities

of the elements along with their positions in nodes. Since the elements are not static, the

corresponding MBRs are dynamic (see Figure 2.2).

The index structure as well as the algorithms for search, insert and delete used are

very similar to that of R*-tree [10]. The R*-tree uses a number of static parameters such

as the area, perimeter, distance from the centroid, and the intersection between the two

MBRs. The TPR-tree uses time parameterized metrics for these parameters. The time

parameterized metric is computed using the formulae
∫ T0+L

T0
M(t)dt, whereM(t) is some

metric that is used in the original R*-tree (for example the area), andL is thelifetime(see

Section 2.3) of the index. The lifetime of an index is the timefor which the index is used

and queried.

Figure 2.2 shows an example of the time-parameterized area metric for four objects

a, b, c, andd, moving in a two-dimensional space. In this figure, the actual data objects

are shown as shaded boxes. The MBR of the index node at timeT0 is labeled as A, and
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the MBR of the node at timeT0 + L is labeled as B. The size and the position of B are

calculated by extrapolating (position, velocity) of the entries with in the node. Then the

area metric used is the volume of the trapezoid that is formedby the moving MBR of the

node from timeT0 to T0 + L. All the other metrics are computed in a similar fashion.

The insert algorithm chooses a node such that the expansion in volume is the smallest

at non-leaf nodes and the expansion in integrated perimeteris the smallest at the leaf node

level. When such a node is full, it is split similar to R*-Tree. Now instead of just sorting

boundaries of elements, the velocity vectors are also sorted to choose the best distribution

of the elements.

The TPR-Tree inherits all the problems related to the R*-Tree, such as overlap and

dead space. Since the positions and the velocities are estimated and can change, the

optimal combination of elements can not be maintained at alltimes in the future.

2.3.2 TPR*-Tree

The recently proposed TPR*-tree [105] provides a number of optimization over the basic

TPR-tree algorithms. The key observation made by the authors is that during an insertion

operation making a choice based on a local optimization may lead to a poor performing

predicted trajectory index. To illustrate this key insight, consider the example shown in

Figure 2.3. This figure shows a number of MBRs in the TPR-tree at a given time for

objects moving in a two-dimensional space. In this example,the pointp is being inserted

into the index.

In an R-tree based insert algorithm, a least deterioration cost node is chosen for

inserting the pointp. In Figure 2.3, at the top level, the least deterioration cost is for

nodesA andD. The greedy algorithm in TPR-Tree will pick nodeA because it requires

the least area and perimeter expansion. And so at the level 2,nodeA2 will be picked for

inserting the pointp. However, the overall optimal node is for this insertion is nodeD1,

which is the descendant of nodeD. The insert algorithm of TPR*-tree recognizes that
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a local optimal solution at a level (nodeA in the example shown in Figure 2.3) can be

from a broken-tie resulting from two elements having the same deterioration, and that the

sub-elements (nodeA2 in this example) of that element may not be optimal. It proposes a

novelChoosePathalgorithm that determines the node at any level that has the least cost

of deterioration. It maintains a priority queue that is ordered by the cost of deterioration

for each node, and the node with the least cost is picked for traversal at each step of the

algorithm. The traversal continues until the bottom-most non-leaf node that has the least

cost is found. This node is then chosen as the candidate for insertion. The authors argue

that the extra cost incurred in traversing can be offset by the benefits of finding an optimal

node for insertion. This algorithm leads to a tighter packing of elements in nodes and thus

better query and insert performance.

The algorithm to deal with overflow nodes in TPR*-Tree is to first force reinsert and

then split the node. For objects moving in a two dimensional space, the nodes are first

sorted along all the eight(4× d) possible dimensions and the firstλ (= 30%) entries from

the best possible sort are chosen for reinsert. If during thereinsert, a node overflows then

the node is split. The authors propose a heuristic to reduce the number of sorts to just one,

by recognizing that the elements at leaf nodes can be assumedto be uniformly distributed,

and the largest extent of all the dimensions (positions and velocities) would give the best

benefit.

The TPR*-tree authors also propose a cost model, and a hypothetical optimal tree for

predictive indices using a TPR-tree style of indexing. Theyshow that the performance

of the TPR*-tree is very close to the optimal index.Consequently, one can conclude

that the TPR*-tree is currently the best known practical indexing technique for predicted

trajectories.
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Table 2.1: Table of Frequently Used Notations

Notation Description
d Number of dimensions in real space.
D Number of dimensions in dual transformed space(D = 2d).
L Index lifetime.
tre f Reference time, a.k.a. initialization time of an index.
vmaxi Maximum absolute velocity value ini th dimension.
vmax Vector of maximum velocities.
pmaxi Maximum position value of a moving object in thei th dimension. In thei th dimen-

sion the position of an object ranges between 0 andpmaxi.
pmax Vector defining the dimensions of the physical space.
pi Position of an object in the dimension in original space.
p Position vector of an object in original space.
vi Velocity of an object in the dimension of original space.
v Velocity vector of an object in original space.
pre fi Reference position of an object at timetre f in i th dimension of original space.
pre f Reference position vector of an object in original space at time tre f .
Pre fi Reference position of an object ini th plane of transformed dual space.
Pre f Reference position vector of an object in dual transformed space.
P Position vector of an object in dual transformed space.
V Velocity vector of an object in dual transformed space.
Pre fi Reference position of an object ini th plane of transformed dual space.
f Non-leaf node fanout,f = 2D.

2.4 STRIPES

In this section, we introduce the STRIPES index. To facilitate our discussion, we will use

the notations described in Table 2.1.

2.4.1 Dual Transform for Moving Objects

The STRIPES index represents the moving object in a dual transformed space. The basic

idea of a dual transform technique for predictive queries [6, 59] is to transform a linear

trajectory defined by equationp = pre f + v
(

t − tre f

)

in (d + 1)-dimensional space (t being

the additional dimension) into a point
(

V,Pre f

)

in 2d-dimensional dual space. Here,

V = (V1,V2, · · · ,Vd), andPre f =
(

Pre f1,Pre f2, · · · ,Pre fd

)

are the transformed velocity and

reference position vectors. We incorporate both negative and positive values for velocity
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by applying the following transform: Given(v, p), the velocity and position vectors of an

object, the corresponding transformed velocity and reference position vectors,
(

V,Pre f

)

are calculated as follows:

V = v+ vmax

Pre f = p−
(

V − vmax

) (

t − tre f

)

Thus the range forV is
[

0, 2vmax

]

, and the range forPre f is
[

−vmax×
(

t − tre f

)

, pmax+ vmax×
(

t − tre f

)]

.

Since time is monotonically increasing, the value ofPre fi is not bounded, which makes

building an index that extends into infinity impossible. To solve this problem, we use

the same technique that has been used in previous works [59, 72, 105], namely requiring

that objects periodically issue an update to maintain a valid entry in the index. This time

period is essentially the lifetimeL of the index. As in previous works [59,72,105], we also

employ a two-index strategy where we keep two distinct indexstructures in the system.

The first index covers the time range from 0 toL, and the second index covers the time

range fromL to 2L. The reference time of the first index istre f1 = 0 and the reference

time for the second index istre f2 = L. Since an update consists of the deletion of the old

entry and the insertion of the new entry, when an update with timestamp> 2L arrives, we

can simply delete the entries in the first index (either it is empty or the entries in that index

haveexpiredtheir lifetime [59, 72, 105]). At this point, we clear the first index structure

and update itstre f to 2L. New updates with timestamps in the range are now inserted into

this index. Using this strategy, we can observe that the range forPre f in each of the indexes

is
[−vmax× L, pmax+ vmax× L

]

. To simplify the computation of index entry coordinates,

we addvmax× L to pre f at transform time, and convert the range to
[

0, pmax+ 2× vmax× L
]

.

Thus, the transform equation becomes:

pre f = p− (v− vmax)
(

t − tre f

)

+ vmax× L

And, the linear motion equation becomes:

p = pre f + (v− vmax)
(

t − tre f

)

− vmax× L.
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2.4.2 Index Structure

The STRIPES index is essentially a disk based multidimensional PR bucket quadtree.

Each of thed dual planes,(V1,P1) , (V2,P2) , · · · , (Vd,Pd), are equally partitioned into four

quads. This partitioning results in a total of 4d = 22d partitions, which we callgrids. The

fanout of non-leaf nodesf is thus 22d.

A non-leaf node stores the following information:

1. level: indicating the level of the non-leaf node.

2. grid: which encodes information about the quadrant corresponding to this node, in

each of thed dual planes. In our implementation we simply indicate the quadrant by

the lower vertex of the quadrant (this increases storage cost, but reduces computation

time).

3. children pointer array: an array of 22d children pointers

4. isLeaf array: a vector of length 22d indicating whether each of the 22d children

pointers point to a leaf or a non-leaf node.

5. size: indicating total number of actual data entries stored in all the leaf nodes in the

subtree below this non-leaf node.

Leaf nodes store thelevel, grid, andsizeinformation, and the set of points that are being

stored in the leaf node.

We note that the grids consist of a series ofd quads from thed two-dimensional planes

(i.e. the planes(V1,P1), (V2,P2), · · · , (Vd,Pd)). Thus each grid is uniquely defined by the

tuple (V, Pre f , S LV, S LP), whereV
(

Pre f

)

is the vector of velocity (reference position)

coordinates of the leftmost (lowest) vertex of thed quads, andS LV

(

S LP

)

is the vector of

side lengths along the velocity (reference position) axis of thed quads.
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2.4.3 Insertion

Being a dynamic index structure, STRIPES allows the insertion of objects on the fly.

We first discuss the algorithm used to find the target leaf nodegiven an object to insert

into the index.

Given the tuple(v, p) of a moving object, we first obtain transformed
(

V,Pre f

)

tuple

using the transform algorithm discussed in section 2.4.1. Then starting from the root node,

we recursively identify the next level target node by calculating its array index in the

children pointer arrayusing the following formula:

array index =
∑d

D=1 22D−1
(⌈

Pre f D−P′re f D

S L′PD/2

⌉

− 1
)

+
∑d

D=1 22D−2
(⌈

VD−V′D
S L′VD/2

⌉

− 1
) (2.1)

whereV′D, P′re f D, S L′VD, andS L′PD are the velocity, reference position, velocity side length,

and reference position side length parameters of the current node in theDth dual plane.

The recursion terminates when either of the following two cases occurs: i) the target

leaf node is non-existent; ii) the target leaf node is found.Since for case ii) there are two

sub-cases considering whether the leaf node is full or not, we end up having to consider

the following three cases during an insert operation:

Case 1:the target leaf node is non-existent.

Case 2:the target leaf node is found and not full.

Case 3:the target leaf node is found and is full.

Next, we discuss each of these cases in turn. In case 1, a new leaf node is created, and

the new entry is inserted into this node. The grid parametersfor the new leaf node are

determined as follows:


























































S LV = S L
′
V/2

S LP = S L
′
P/2

PGre f =

(⌈

Pre f

S LP

⌉

− 1
)

× S LP

VG =

(⌈

V
S LV

⌉

− 1
)

× S LV
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(Note: Multiplications and divisions between vectors in the above equation imply

element-wise operations.)

In the above equations,
(

VG,PGre f,S LV,S LP

)

are the grid parameters of the newly

created leaf node; the vectors
(

V , Pre f

)

correspond to the new entry being inserted;S L
′
V

andS L
′
P are existing grid parameters of the current node.

In case 2, the object is directly inserted into the leaf node.

In case 3, a split operation is performed, where the target leaf node is promoted to a

non-leaf node, and new leaf nodes are created. For creating the new leaf nodes, we follow

the same process as defined in case 1, and reinsert data entries from the old leaf node in

the sub-tree below this new non-leaf node.

An important aspect of this indexing structure is that new nodes are created only when

necessary, which result in an efficient insert operation. The drawback of this approach is

that it results in an unbalanced tree. However the actual disk space used for the non-leaf

nodes is small, and often can stay resident in the buffer pool.

2.4.4 Deletion

When the motion parameters of an object are updated, the delete method is invoked to

remove the previous entry for the object. Objects send in updated motion parameters

together with the old parameters which are used to locate their old entries in the index.

The method for locating the old entry recursively applies Equation 1 (see Section 2.4.3) to

locate the leaf node that contains this object. (Recall fromthe discussion in section 2.4.1

that it is possible that this object may haveexpired. In this case the update is simply treated

as an insert for a new object.)

At deletion time, non-leaf nodes are checked for under-fill,which is defined as whether

the number of objects contained in the subtree below this node (indicate by the size

information stored in the non-leaf node) is less than or equal to the capacity of a leaf node.

The following two cases apply:

18



Case 1:The non-leaf node is not under-filled, in which case the target entry is directly

deleted.

Case 2:The non-leaf node is under-filled, in which case all the entries within this node

are first collected. Then, this node is converted to a leaf node, and the collected entries are

re-inserted into the new leaf node. Finally, the target entry is deleted.

2.4.5 Update

Updates issued by objects contain the tuple ((told , vold, pold

)

, (tnew, vnew, pnew

)

) and are

evaluated as a delete followed by an insert. Thetold andtnew reference times are used to

determine which of the two indexes the old and new entry belong to.

2.4.6 Queries

We consider three types of queries: time-slice query, window query, and moving query,

which were originally defined in [72].

For ease of reference, we modify the definition in [72] to better fit within our context.

Let pl < pu, p1l < p1u, andp2l < p2u be the vectors of lower bounds and upper bounds

in position, andt, tl, tu be three time instants not earlier than current time, such that t < tu,

andtl < tu. The three types of queries can now be defined as:

Time-slice query:Q =
(

pl , pu, t
)

specifies a hyper-rectangle bounded by
[

pl , pu

]

at

time t.

Window query:Q =
(

pl, pu, tl, tu
)

specifies a hyper-rectan-gle bounded by
[

pl , pu

]

that

covers the time interval [tl, tu], i.e., this query retrieves points with trajectories inp − t

space crossing the(d+ 1)-dimensional hyper-rectangle (
[

p1l , p1u
]

,
[

p2l , p2u
]

, · · · ,
[

pdl, pdu
]

,

[tl , tu]).

Moving query: Q =
(

[p1l , p1u], [p2l , p2u], tl, tu
)

specifies the(d + 1)-dimensional

trapezoid obtained by connecting the hyper-rectangle bounded by
[

p1l , p1u

]

at timetl and

the hyper-rectangle bounded by
[

p2l , p2u

]

at timetu.
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Figure 2.4: Transformed
One-dimensional Time-slice
Query: Q1 from Figure 2.1

Figure 2.5: Transformed
One-dimensional Window Query:
Q2 from Figure 2.1

Figure 2.6: Transformed
One-dimensional Moving Query:
Q3 from Figure 2.1

Figure 2.1 illustrates the three query types on objects moving in a native one-

dimensional space.

In Figure 2.1,Q1 is a time-slice query that returns objecto1, Q2 is a window query

that returns objectso2 ando3, andQ3 is a moving query that returns objectso4 ando5.

The most general query type is the moving query, which is of the form Q =
(

[p1l , p1u], [p2l , p2u], tl, tu
)

. Window queries are essentially moving queries withp1l = p2l,

andp1u = p2u, whereas time-slice queries are just window queries withtl = tu. In essence,

the general queryQ translates into the following set of inequalities:



























































Pre f +
(

V − vmax

) (

tl − tre f

)

− vmax× L ≥ p1l

Pre f +
(

V − vmax

) (

tl − tre f

)

− vmax× L ≤ p1u

Pre f +
(

V − vmax

) (

tu − tre f

)

− vmax× L ≥ p2l

Pre f +
(

V − vmax

) (

tu − tre f

)

− vmax× L ≤ p2u

(2.2)

2.4.6.1 Time-slice Queries

For time-slice queries,p1l = p2l, p1u = p2u, andtl = tu, Eqn. (2.2) effectively becomes:























Pre f +
(

V − vmax

) (

tl − tre f

)

− vmax× L ≥ pl

Pre f +
(

V − vmax

) (

tl − tre f

)

− vmax× L ≤ pu

(2.3)

The query region for the one-dimensional time-slice queryQ1 shown in Figure 2.1 is
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illustrated in Figure 2.4. Pointsa andb are obtained by pluggingV = 0 into Eqn. (2.3),

and pointsc andd are obtained by pluggingV = 2vmax into Eqn. (2.3).

2.4.6.2 Window Queries

For window queries,p1l = p2l, p1u = p2u, Eqn. (2.2) effectively becomes:



























































Pre f +
(

V − vmax

) (

tl − tre f

)

− vmax× L ≥ pl

Pre f +
(

V − vmax

) (

tl − tre f

)

− vmax× L ≤ pu

Pre f +
(

V − vmax

) (

tu − tre f

)

− vmax× L ≥ pl

Pre f +
(

V − vmax

) (

tu − tre f

)

− vmax× L ≤ pu

(2.4)

The query region for the one-dimensional window queryQ2 from Figure 2.1 is

illustrated in Figure 2.5. The values for the pointsa, b, c, andd are obtained by plugging

V = 0 into Eqn. (2.4), and the values for the pointsa′, b′, c′, andd′ are obtained by

pluggingV = 2vmax into Eqn. (2.4).

2.4.6.3 Moving Queries

Figure 2.6 illustrates the query region for a one-dimensional moving query, using query

Q3 from Figure 2.1 as an example.

In all cases, the query region for one-dimensional queries is a bounded polygon that

is confined within an upper bound and a lower bound. Note that the upper bound and the

lower bound are not necessarily straight lines (refer to Figures 2.5 and 2.6), since we take

into consideration the case where objects move in opposite directions. We thus define the

query region with six points,U1, U2, U3, L1, L2, andL3 in Figure 2.6, among which

the four marginal pointsU1, U3, L1, andL3 are obtained by calculating intersections of

the four query region boundary lines (which are produced by setting the comparison in

Eqn. (2.4) to equals), with the boundaries of the underlyingdual transformed space.
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L2 is obtained by calculating the intersection of the following set of lines:























Pre f +
(

V − vmax

) (

tl − tre f

)

− vmax× L = p1l

Pre f +
(

V − vmax

) (

tl − tre f

)

− vmax× L = p2l

(2.5)

U2 is obtained by calculating the intersection of the following set of lines:























Pre f +
(

V − vmax

) (

tl − tre f

)

− vmax× L = p1u

Pre f +
(

V − vmax

) (

tl − tre f

)

− vmax× L = p2u

(2.6)

In the case where either ofL2 orU2 is outside the boundaries, the end points are used.

Effectively, ad-dimensional query body consists ofd such distinctive query regions

corresponding to thed dual transformed planes.

2.4.6.4 STRIPES Search Algorithm

Queries are processed in STRIPES as follows: At levell, each of thef grids are tested

for relative position to the query body. This test is performed as a conjunction ofd

two-dimensional relative position tests between data regions and the corresponding query

region. Relative positions include INSIDE, OVERLAP, and DISJUNCT. A grid is INSIDE

a query body if and only if all the sub-queries return INSIDE;it is DISJUNCT as soon as

one of the sub-queries returns DISJUNCT; otherwise OVERLAPis returned. For all the

grids that return an INSIDE result, we immediately retrievethe entries within. DISJUNCT

results are discarded and OVERLAP results are further probed recursively. Figure 2.7

shows the algorithm for relative position test between a data region and a query region.

Figure 2.8 shows the relative positions between data regions and the query region. As

shown in Figure 2.8,R3 is DISJUNCT to the query region, whileR2 is INSIDE the query

region andR1 OVERLAPs the query region.

An additional optimization technique that we use is based onthe following observation.

The 2d-dimensional grid with each of itsd 2-dimensional planes partitions the data space
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Figure 2.7: Algorithm to Test the Relative Positions of Data
and Query Regions

Figure 2.8: Relative Positions of Data and
Query Regions for One-dimensional Points

into quads in each of the d planes. For any node, if any of thesequads is DISJUNCT from

the query region, then we can safely discard all nodes that are mapped to this disjunct

quad. Effectively, whenever such quads are determined, number of search nodes that

must be examined is reduced by 25%! This optimization technique quickly prunes away

unnecessary node accesses, making the search very efficient.

2.5 Experimental Evaluation

In this section, we present results comparing the performance of the STRIPES and the

TPR*-tree index.

2.5.1 Implementation Details and Experimental Platform

We implement both STRIPES and TPR*-tree [105] on top of the SHORE storage

manager [22]. We compiled the storage manager with a 4KB pagesize. In all our

experiments, we set the buffer pool size to 2048 pages; in making this choice for a

small buffer pool size, we are essentially following the same philosophy as in previous

studies [64, 72, 105] with the same goal of keeping the experiments manageable. SHORE

pointers are 16 bytes in size, and we use 4-byte floating points for all the coordinate

representation in the system (the TPR-tree code [72] also used floating point numbers).
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The TPR*-tree is implemented using the algorithms described in [105]. The insert

algorithm used in the TPR*-tree employs a priority queue that is implemented using

heapsort (used in theChoosePathalgorithm in [105]). The priority queue stores the cost

degradation for each node to insert the update. This queue isthen used to determine the

best node for inserting an update. ThePickWorstalgorithm of [105] is used to deal with

overflow nodes. The best possible entries are removed and then reinserted again. Any

possible overflow nodes are then split. The index is optimized for static point interval

query which is same as the one used in TPR*-Tree paper.

With the system settings used in our experimental platform using SHORE, the

maximum fanout of a TPR*-tree non-leaf node is 78.

For the STRIPES index, we simply create non-leaf nodes as (small) SHORE records.

Since all sibling non-leaf nodes for a given parent are created concurrently, these nodes

are usually stored sequentially on disk. This clustering property results in efficient disk

access for the non-leaf nodes. To implement the leaf node, weuse two leaf node sizes,

which in the following discussion are referred to as small and large. When a leaf node is

first created, its size is set to small, which is approximately half a disk page size. When a

small leaf node overflows, it is promoted to a large node. Large nodes occupy exactly one

disk page. We adopt this strategy since a split of a leaf node results in the creation of 16

new leaf nodes (for objects moving in two dimensions). In practice we have found that

many of these leaf nodes are empty, and we don’t create disk pages for these nodes during

the split. Nevertheless the leaf page occupancy is still lowat around 12%. Using the two

leaf node size allows us to nearly double this page occupancy. With this implementation

we find that the STRIPES index is about 2.4 times larger than the TPR*-tree index. In

the future, we plan on extending our current implementationto use more than two leaf

node sizes, which will increase the occupancy of the leaf-nodes further. However, based

on current experimental evaluation, we expect that this mayhave limited additional benefit

on the actual performance of the index as the index size is an issue only in very limited
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cases. The key to the performance of STRIPES comes from having a relatively small

disk footprint for the non-leaf nodes, which results in significant performance advantages

over the TPR*-tree index. As an example, for a data set with 500K users, the TPR*-tree

index has a height of four and the index occupies around 4,600disk pages; whereas, the

STRIPES index has a maximum height of seven and occupies around 11,200 pages. For

this data set the STRIPES index has only 1, 486 non-leaf nodes. Each non-leaf node uses

352 bytes for its disk representation, which allows for around 11 non-leaf nodes to fit on a

single disk page. Even as the index is updated over time, the non-leaf nodes are contained

within a few hundred pages.

The experimental platform used in these experiments is a 2 GHz Intel Xeon machine

with a 512KB L2 cache, a 40GB Western Digital 7200 RPM IDE HardDrive, running Red

Hat Linux 9.

2.5.2 Data Sets and Workload

We generated a number of workloads using the popular workload generator, which

is generously provided by the inventors of the original TPR-tree [72]. This workload

generator simulates objects moving in a two-dimensional space, and has a number of

different parameters which can be varied. Although we experimented with a wide range

of workloads with different combinations of parameter values, in the interest of space,

in this section we only present results from using a few representative workloads. These

workloads closely correspond to the default values used in the generator, which essentially

generates the key data sets used in [72]. In the following paragraphs, we describe the key

parameters of this workload generator, and also specify thevalues for these parameter that

we used for generating our workloads.

The workload generator of̌Saltenis et al. [72] allows generation of both uniform data

workloads, and skewed workloads. In skewed workloads, two-dimensional objects move

in a network of routes connecting a number of destinations,ND. As the value ofND
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decreases, the skew in the data increases. In our experiments, we generate skewed data

sets withND = 20, 40 and 60.

In our workloads, we vary the number of moving objects,N, from 100K to 900K. For

the 100K data set, the objects move around in a space with dimensions of 1000× 1000

kilometers. For larger data sets, we scale the dimensions tokeep the densities same across

all data sets (this strategy for generating scaled data setsis also recommended by [72]). For

the uniform workloads, the initial positions of objects areuniformly distributed in space.

The workload generator assigns initial positions for each moving object in the system, and

then generates a workload which is a mix of update and query operations. The ratio of the

number of update and query operations can be varied, and we present results using a mix

of 80− 20, 50− 50, 20− 80. For the 80− 20 case, 80% of the operations are updates and

20% are queries.

For updates, the directions of the velocity vectors are assigned randomly. The default

values for speeds are uniformly distributed between 0 and 3km/min. The rate of updates

is controlled by a parameter, called the update interval,UI . The time interval between

successive updates is uniformly distributed between 0 and 2UI . In the experiments

presented in this section, we setUI to the default value of 60. The workloads are generated

for the default 600 time units.

For the queries, the generator can generate any arbitrary mix of time-slice, window,

and moving queries. The default values for the query mix are 60%, 20% and 20%; all

workloads used in this chapter are generated using this default setting. The temporal range

of the queries is set to the default value of 40, and the spatial part of the queries is set to

the default value of 0.25% of the entire spatial extent.

2.5.3 Effect of Workload Mix

In this first experiment, we use a uniform data set with 500K moving objects. The first

experimental result for this data set is shown in Figure 2.9.In this figure, we plot the total
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Figure 2.9: 500K-Uniform: Continuous Performance
Measurement for Batch of 5K Operations

Figure 2.10: 500K-Uniform: I/O and CPU Costs for
50K Operations

execution time for the two index structures shown in batchesof 5K operations for the

first 50K operations. This experiment lets us determine if the performance of the indices

deteriorates as the updates operations change the underlying partition boundaries in the

indexing structures.

As can be seen from Figure 2.9, the TPR*-tree index has a fairly good steady state

behavior. This result is consistent with the results presented in the [72]. (In [72] the

researches also show that in contrast to the TPR*-tree, the performance of the original

TPR-tree rapidly degrades for a similar experiment.) The TPR*-tree has a good steady

state behavior since it uses a much more sophisticated update algorithm (theChoosePath

component), which prevents the R*-tree from getting into situations when increasing

amounts of dead space and overlap amongst the bounding boxeslead to a rapid drop in

performance.

From Figure 2.9 we observe that STRIPES also demonstrates good steady state

behavior. Furthermore, STRIPES is at least4x faster than the TPR*-tree index! The

reason for this efficiency is that the non-leaf nodes of the STRIPES index occupies only a

few hundred pages even as the indexing structure changes with new updates. These nodes

are typically resident in the buffer pool and I/Os are usually only needed for accessing the

leaf-pages. In contrast, during an insert operation in the TPR*-tree, multiple paths are

traversed down the tree in theChoosePathalgorithm, which results in a large number of

I/Os.
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Figure 2.11: 500K-Uniform: Average Single Update
Costs

Figure 2.12: 500K-Uniform: Average Single Query
Costs

We see these results more clearly in Figure 2.10, which breaks down the total costs

for the first 50K operations into the CPU and the I/O components. To produce this cost

breakup, we tracked the time spent in I/O operations, and used this measure to divide the

total execution time into the I/O and the CPU components1 Note that in this figure the

y-axis uses a log-scale. As shown in Figure 2.10, the I/O costs for TPR*-tree are very high

relative to the I/O cost for STRIPES. This is because the STRIPES index only requires

a handful of I/Os for every update operation. For this data set (with 500K objects), the

STRIPES non-leaf nodes are usually spread across a few hundred disk pages. These are

usually resident in the buffer pool, and I/Os are only needed for the leaf-level pages.

In contrast, the TPR*-tree index incurs a large number of I/Os. In this case, the index

occupies around 4, 600 disk pages and the index is of height 4. During the insert operation,

theChoosePathalgorithm has to find a good leaf node for the insertion. To accomplish this

task, it uses a priority queue based technique to traverses multiple paths to the leaf nodes

(see Section 2.3.2). This technique results in large numberof I/Os, and also leads to poor

reference locality as successive updates are likely to traverse different parts of the index!

For this workload, we also plot the average cost for a single update operation in

Figure 2.11, and the average cost for a single query in Figure2.12. As can be seen from

1To accomplish this task, we turned off asynchronous I/Os that are incurred by the SHORE background
cleaner thread, and used only one thread to carry out all the workload operations.
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these figures, the I/O cost for the TPR*-tree index is significantly higher than the I/O cost

incurred by STRIPES forboth the update and query operations. The difference is much

more dramatic for the update operation, which is extremely efficient in STRIPES (see

Figure 2.11). Update operations in both index structures require an insert operation. An

insertion in STRIPES only requires inserting a point object, which can be accomplished by

asinglepath traversal from the root (see Section 2.4.3). This operation is extremely fast in

quadtree based structures because of the non-overlapping regular decomposition strategy

used by the index structure. In contrast, multiple paths aretraversed by the TPR*-tree,

which results in a much higher I/O cost.

Figure 2.11 and Figure 2.12 also show that the CPU costs incurred by STRIPES is

much lower than the CPU costs for the TPR*-tree index. For updates, the reason for this

is once again the efficiency of the update operation in STRIPES, as compared to themuch

more expensive technique of multiple path traversals used by the TPR*-tree, which require

expensive overlap comparisons at each node. In addition, the CPU costs for the TPR*-tree

insert also includes the sort cost and reinsert algorithm(pickWorst) cost. Calculation of

the integrals needed for the TPR*-tree are also expensive and contribute to the high CPU

cost.

For queries, the techniques employed by STRIPES (descri-bed in Section 2.4.6.4) are

much more CPU efficient as compared to the overlap comparisons that are need inthe

TPR*-tree.

2.5.4 Scaling with Increasing Number of Moving Objects

In this experiment we explore the effect of increasing the number of moving objects from

100K to 900K users for the three workloads(80− 20, 50− 50, and 20− 80). In the

interest of space we only present results for the 50− 50 case for 100K and 900K data set

cardinalities. These results are shown in Figure 2.13 as perquery and update costs, broken

down by the CPU and I/O costs.
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Figure 2.13: Effect of Number of Moving Objects Figure 2.14: 500K-Skewed: Single Query Costs

For the 100K data set the TPR*-tree index fits in the buffer pool and incurs no I/O cost,

whereas STRIPES incurs I/Os, especially for the queries. For this case the smaller index

size of TPR*-tree works to its advantage, and the query performance of STRIPES is about

35% worse than the query performance of the TPR*-tree index.Aggressive disk space

optimization outlined in section 2.5.1, are may improve theperformance of STRIPES in

this case, and we plan on undertaking this effort as part of our future work.

Note that even in the case with the 100K data set, the update operation in STRIPES

is about5x faster as compared to the TPR*-tree. Again the reason for this performance

gap is the difference between the expensive insert operation in TPR*-treeand the highly

efficient insert operation in STRIPES.

For the 900K data set the performance gap between the two indices widens even

further from what we observed with the 500K data set in Section 2.5.4. The reasons for

this follow from the discussion in Section 2.5.4 as the STRIPES index keeps most of its

non-leaf nodes resident in memory even for this larger data set. The TPR*-tree’s insert

algorithm degrades even further because of the larger data set.
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2.5.5 Effect of Data Skew

In this final experiment, we evaluate the performance of the two indices for skewed

data sets. We experimented with theND parameter in the workload generator (see

Section 2.5.3) and generated data sets withND = 20, 40, and 60. In the interest of space

we only present the results forND = 20 (highly skewed) andND = 40 (small skew) data

set, for only the 50− 50 workload. Figure 2.14 plots the per update and per query costs for

this experiment. Comparing the update and query costs in this figure with the costs for the

50−50 workload in Figure 2.11 and Figure 2.12, we can observe that both index structures

handle skewed data sets well, andSTRIPES continues to outperform the TPR*-tree by over

an order of magnitude for updates, and by4x for queries.

2.5.6 Summary

In summary, we have shown through extensive experimental evaluation that STRIPES is

significantly faster than the TPR*-tree index. The update operation in STRIPES is often

more than an order of magnitude faster, and the query performance is around 4x faster as

compared to the TPR*-tree. The regular disjoint decomposition of space that is used by

STRIPES results in extremely efficient inserts. In addition, even with very large data sets

(relative to the available buffer pool size), the amount of space needed to hold the non-leaf

nodes of STRIPES is very small. Consequently, I/Os are rarely incurred for the non-leaf

nodes. In contrast the TPR*-tree suffers from having to traverse multiple paths down the

index, which is I/O intensive and results in a reference pattern that has poor cache locality.

These differences in the indexing approaches also manifest in the CPU costs as the

TPR*-tree has to carry out many expensive box overlap computations as it traverses

down the index. In contrast STRIPES employs a number of optimizations (refer to

Section 2.4.6.4) to keep CPU costs low.
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2.6 Related Work

Within the broader context of indexing trajectories for moving objects, there are two broad

classes of related works. The first class includes methods for indexing the historical and

the current positions. The second, and more closely connected class of research to our

work, is on indexing the predicted locations of moving objects. The methods for indexing

the past and the current locations are typically concerned with queries on exact trajectory

points, whereas methods for indexing on the future locations are concerned primarily

with indexing the parameters of the predicted trajectory representations, which typically

include a velocity vector and a start position vector. However, both these classes of indices

are concerned with efficient indexing mechanisms for supporting fast updates and queries

on spatial representations of the trajectories. In the nextparagraph we briefly review the

methods for indexing on the past trajectory locations, and then turn our attention to the

more closely related work in indexing predicted trajectories.

Most of the work on indexing the past locations of trajectories is based on variations

of the R-tree [44] and the R*-tree [10]. These methods include the 3-D R-trees [108]

which simply treats time as a third dimension. The MR-tree [113] and the HR-tree [76]

are also 3-D R-tree structures and maintain a separate R-tree for each time stamp.

The MV3R-tree [104] is a hybrid structure that uses a multi-version R-tree (MVR) for

time-stamp queries, and a small 3D R-tree for time-intervalqueries. This indexing

structure has been shown to outperform other historical trajectory indexing structures, such

as the popular TB-tree [85]. SEB [98] and SETI [23] are historical trajectory indexing

techniques that partition the spatial extents, and build indices on the temporal dimension.

A number of indexing methods have also focused on efficient methods for indexing the

current location of moving objects [61, 62, 75, 97]. All the methods described in this

paragraph are not concerned with indexing the predicted location, and index the native

space of the trajectories. In contrast, STRIPES indexes thepredicted locations in dual

transformed space.
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Two main approaches have been used for indexing thepredictedlocations of

trajectories. These two approaches are a) methods that index the predicted trajectories in

the original spatial and temporal dimensions, and b) methods that transform the predicted

trajectories into a dual transform space and index the dual transformed space.

One of the early works on indexing predicted trajectories isby Tayeb et al. [106]. In this

work, trajectories in ad-dimensional space are treated as lines in a(d + 1)-dimen-sional

space, with time as the additional dimension. The line is then indexed using a PMR

quadtree [93]. The drawbacks of this approach are that the index may have excessive dead

space and replication since it is indexing high dimensionallines. The work by Tayeb et

al., carried out within the context of the MOST [93] project,has strongly influenced and

stimulated interests in methods for querying moving objectdatabases.

The TPR-tree [72] is a popular indexing structure for indexing predicted trajectories.

This index structure uses the basic R-tree indexing structure and extends the notion of

bounding boxes to time-parameterized bounding boxes as described in Section 2.3.1.

The notion of time-parameterized bounding box has also beenused by other related

indexing structures [21,87]. One of the problems with the time-parameterized boxes is that

estimating it requires reasoning about the positions of theobjects enclosed by the box over

some period of time. The original TPR-tree paper [72] used a conservative bounding box,

but this has been improved in a number of different ways [70, 88, 90], often by exploiting

various additional parameters such as expiration times or the maximum speed. The TPR*-

tree is an index structure which improved the methods proposed in the original TPR-tree,

and has been shown to be significantly faster than the TPR-tree. In this paper we compare

STRIPES with the TPR*-tree, and show that STRIPES outperforms the TPR*-tree by very

significant margins. An extensive critique of the TPR*-treecan be found in [42]. Dual

transformation techniques have been successfully employed for querying static spatial

data [51]. Drawing inspiration from this success, dual transformation techniques have also

been proposed for indexing predicted trajectories [111]. These indexing methods include
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the Kinetic data structure [6], the R-tree based parameterized space indexing method [87],

and the SV-model [25]. Perhaps the most popular dual transformation approach for

predicted trajectories is the work by Kollios et al [59]. In this work, the authors derive nice

lower bounds on the cost of answering predictive queries using dual transformation. Most

of the paper is concerned with objects moving in one-dimensional space, and the paper

sketches extensions to higher-dimensional space. In addition, the paper only considers

window queries. The largely theoretical approach has served as the basis for some of the

choices made in the TPR-tree [72], but has largely been dismissed by recent work that use

a more systems-approach [72, 105]. The dual transformationmethod used in STRIPES

is based on the Hough-X transform used in [59]. STRIPES can handle the entire range

of predictive queries, including moving window queries, and we show that STRIPES

vastly outperforms the current best know method for indexing predicted trajectories.

Immediately following the STRIPES work, a B+-tree based dual transform indexing

technique called the Bx-tree [54] was also proposed for indexing predicted trajectories.

However, no performance comparison study has been done to evaluate the efficiency of

STRIPES against the Bx-tree yet.

In recent years, a few motion modeling approaches have also been proposed for

indexing historical (the PA-tree [77]) and predicted (the STP-tree [103]) trajectories.

Both the PA-tree and the STP-tree use complex polynomial approximations to model

trajectories and use existing index structures to index coefficients derived from the

polynomial approximations.

For a more detailed overview of related work in this area prior to STRIPES, the reader

is directed to a comprehensive review [74].

2.7 Conclusions

In this chapter we have presented a new indexing structure called STRIPES for indexing

and answering queries on predicted positions in moving object databases. This new
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indexing structure draws inspiration from earlier largelytheoretical work in this area,

advocating the use of dual transformation for indexing suchdata sets. The STRIPES index

leverages these dual transformation techniques and uses a disjoint regular partitioning

technique to efficiently index the points in the dual transformed space. The STRIPES

index can support all the types of commonly used predictive queries [72], which

include time-slice, window, and moving queries. We have compared the performance

of STRIPES with the most efficient predictive indexing structure, the TPR*-tree [105].

Our comprehensive experimental evaluations demonstrate that STRIPES outperforms the

TPR*-tree index for both updates and queries; updates are often more than an order of

magnitude faster using STRIPES, and queries are often faster by a factor of 4x. These

differences can be seen in both the I/O and the CPU costs. Consequently, STRIPES is an

extremely efficient and practical indexing structure for supporting predictive queries.
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CHAPTER 3

ALL NEAREST NEIGHBOR QUERY ALGORITHMS
AND METRICS

3.1 Introduction

The All Nearest Neighbor (ANN) operation takes as input two sets of multi-dimensional

data points and computes for each point in the first set the nearest neighbor in the second

set. The ANN operation has a number of applications in analyzing large multi-dimensional

datasets. For example, clustering is commonly used to analyze large multi-dimensional

datasets, and algorithms such as the popular single-linkage clustering method [52,56] uses

ANN as its first step. A related problem, called AkNN, which reports the kNN for each

data point, is directly used in the Jarvis-Patrick Clustering algorithm [53]. AkNN is also

used in a number of other clustering algorithms including the k-means clustering and the

k-medoid clustering algorithms [17].

The list of applications of ANN and AkNN is quite extensive and also includes

co-location pattern mining [114], graph based computational learning [58], pattern

recognition and classification [78], N-body simulations inastrophysical studies [31],

and particle physics [79].

ANN is a computationally expensive operation (O(n2) in the worst case), and its

cost increases rapidly with increasing dataset sizes. In many applications that use ANN,

especially large scientific applications, the datasets aregrowing rapidly and often the ANN

computation is one of the main computational bottlenecks. Recognizing this problem,

there has been a lot of interest in the database community in developing efficient external
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ANN algorithms [17, 18, 29, 46, 116]. All of these methods build R*-tree indices [10] on

one or both datasets, and evaluate the ANN by traversing the index. During the index

traversal, these methods keep track of nodes in the index that need to be considered, and

employ a priority queue (PQ) to determine the order of the index traversal. The efficiency

of these algorithms strongly depends on how many PQ entries are created and processed.

The most common and effective pruning method that has been developed so far employsa

pruning metric called MAXMAXDIST, which is roughly the maximum distance between

any points in two minimum bounding rectangles (MBR). This pruning metric can be used

to guarantee that certain subtrees in the index will not produce a nearest-neighbor (NN),

and hence can be pruned out from further consideration. In this chapter we introduce

a new distance metric, called the MINMAXMINDIST (abbreviated as NXNDIST), and

show that this new metric has a much more powerful pruning effect. Using extensive

experiments we show thatthis new distance metric often improves the performance of

ANN operation by more than an order of magnitude.

In this chapter we also explore the properties of NXNDIST anddevelop a fast

algorithm for computing this metric. This fast algorithm iscritical since for ANN queries

this distance computation is evaluated frequently.

In addition, we examine a family of index based ANN algorithms, which differ

in the way that the spatial indices are traversed, and the wayin which the PQ entries

are expanded. We explore four options corresponding to two forms of tree traversal –

breadth-first and depth-first, and two forms of PQ entry expansion – expand both index

nodes in the priority queue entry or expand only one node at a time. To the best of our

knowledge, no previous work has systematically explored these alternatives in the context

of ANN evaluation. A contribution of this chapter is the exploration of these alternatives.

More importantly, we show that of the four algorithms in thisdesign space,the depth-first

bi-directional expansion method is consistently the most efficient.

All of the previous index based ANN methods [17, 18, 29, 46, 116], have used the
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“ubiquitous” R*-tree index as the indexing structure. In this chapter, we show that for ANN

queries there is a much better choice for an index structure.This new indexing structure

is called the MBRQT index, and is essentially a disk based bucket PR quadtree [93], with

the addition of the MBR (minimum bounding rectangle) information for each internal

node. We show that the regular decomposition and non-overlapping nature of the quadtree

results in a much more effective pruning strategy for ANN computation. Our experimental

results show thatANN evaluation using MBRQT is around 3X faster than using R*-tree.

Besides comparing our methods with previous index based ANNmethods, we

also extensively compare our methods with the GORDER [112] ANN method. Unlike

other methods, GORDER doesn’t employ an index to speed up theANN computation.

Instead it first transforms the data using Principal Components Analysis and imposes a

grid structure on the transformed space. Then, it “joins” the two datasets using the grid

structure, carefully exploring only a limited number of grid cell pairs. The GORDER [112]

approach has not been compared with BNN [116], which is currently the best index based

ANN method, and in this chapter we compare our technique withboth these previous

methods. These comparisons show that our method significantly outperforms both these

previous methods.

We note that quadtree structures are not height-balanced, but methods using a disk

based structure for the quadtree have been shown to be effective [33, 47] for spatial

database applications. The method using MBRQT can be used incases where the database

system chooses to support quadtrees (for example, Oracle has support for traditional

quad-trees [60]), or in cases where ANN is run on datasets that do not have a prebuilt index

(such as when running ANN as part of a complex query in which a selection predicate

may have been applied on the base datasets).

The remainder of this chapter is organized as follows: Section 3.2 covers related

work. Section 3.3 outlines our new ANN approach. Section 3.4contains a comprehensive

experimental evaluation of our new approach, and compares it with previous methods.
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Finally, Section 3.5 contains our conclusions.

3.2 Related Work

The problem of Nearest-Neighbor (NN) to a query point has been well studied from a

database query processing perspective [46, 82, 92]. These methods use an R*-tree index

for evaluating NN. Essentially these methods develop various strategies for traversing the

index by using a priority queue (PQ) to record and order the index nodes that must be

traversed. Usually, methods for pruning the PQ entries are also used to discard portions

of the index that are guaranteed not to contain the NN. The earliest of these methods by

Roussopoulos et al. [92] introduces two key metrics betweena point and an MBR, called

MINDIST and MINMAXDIST, which are used in producing an efficient traversal. The

MINDIST is the minimum distance between the query point and an MBR entry of the

index, and the MINMAXDIST is the minimum value of the maximumdistance between

the query point and the points on the edges of an MBR. Essentially MINDIST is an

optimistic NN bound and MINMAXDIST is a pessimistic one. (These two key metrics

have also been often used in problems related to NN.) The method in [92] uses a depth-first

traversal, which was later shown to be suboptimal [82]. An I/O optimal algorithm for

NN search was later provided [46], which essentially employs a breadth-first (BF) search

technique to traverse the R*-tree index. Böhm et al. [15] give a comprehensive comparison

and coverage of different structures and techniques that address NN query processing.

Distance join algorithms are also related to ANN algorithms[46]. A distance join

operation works on two sets of spatial data, and computes allobject pairs, one from each

set, such that the distance between the two objects is less than a non-negative valued.

A distance semi-join is a related operation [46], which essentially produces one result

per entry of the outer relation. Incremental algorithms forthese operations are also

developed [46]. Later, Shin et al. [95] develop a more efficient algorithm for a related

problem of k-distance join, which uses a bi-directional expansion of entries in the PQ and
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a plane-sweep method.

With respect to how results are produced, Corral et al. [28, 29] propose both iterative

and recursive non-incremental distance join methods. These methods employ more

efficient pruning techniques and are thus more effective, while incremental algorithms are

more flexible and better suited for online query processing.

The closest body of related work is the collection of previously proposed external

memory ANN algorithms. A simple approach for computing ANN is to run a NN

algorithm on the inner datasetS for each object in the outer datasetR. For this approach,

optimization techniques have also been proposed to reduce CPU and I/O costs [19].

However, the assumption for such optimization is that the queries fit in main memory,

which makes it inefficient when the size ofR is larger than the main memory size.

Depending on whetherR and/or Sare indexed or not, existing techniques fall into two

categories: traversal of R*-tree indices using a Distance Join algorithm [29, 46], and hash

based algorithms using spatial partitions [38]. The work in[116] spans both categories.

Böhm and Krebs [18] also provide a solution to the more general problem ofNearest

Neighbor Join: namely find for each object inR, its k nearest neighbors inS, which

degenerates to ANN whenk = 1. However, a specialized index structure termedmultipage

indexis proposed for the solution provided, and thus the solutionin [18] does not apply to

general-purpose index structures such as R*-trees or quadtrees.

Incremental Distance Join algorithms have also been used toevaluate ANN

queries [29, 46]. However, in the case where some of the objects in R have nearest

neighbors with large distances, these algorithms incur significant overhead, as more entries

than necessary will have to be processed before the NNs for those objects are identified.

The more recent work on ANN by Zhang et al. [116] suggests two approaches to the

ANN problem when the datasetS is indexed:Multiple nearest neighbor search (MNN),

andBatched nearest neighbor search (BNN). MNN is essentially an index-nested-loops

join operation, where the locality of objects is maximized to minimize I/O. However, the
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CPU cost is still high because of the large number of distancecalculations for each NN

search. To reduce the CPU cost, BNN splits the points inR into n mutually exclusive but

overall exhaustive groups, and traverses indexSonly n times, greatly reducing the number

of distance calculations.

For the case where neither dataset has an index, Zhang et al. [116] also propose a hash

based method (HNN) using spatial hashing introduced in [84]. However, it was pointed

out that in many cases building an index and running BNN is faster than HNN, and HNN

is also susceptible to poor performance on skewed data distributions [116].

The recent GORDER [112] method also takes an approach similar to [116]. However,

GORDER employs a Principal Components Analysis (PCA) technique to transform the

union space of the two input datasets to a single principal component space, and then sorts

the transformed points using a superimposedGrid Order. The transformed datasets, often

more uniformly distributed, are written back to disk in sorted order. A Block Nested Loops

join algorithm is then used for solving the KNN join query.

The BNN and the GORDER approaches are currently regarded as highly efficient

ANN methods. To the best knowledge of the authors, previous work has not compared

these two methods directly. In this chapter we make this comparison, and also compare

these two methods with our new techniques.

Interestingly, previous research on ANN and related join methods (such as Distance

Join) has not considered the use of disk-resident quadtree indices. As we show in this

chapter, the regular decomposition and non-overlapping properties of the quadtree make it

a much more efficient indexing structure for ANN queries.

3.3 ANN Evaluation

In this section, we first introduce a new asymmetric distancemetric, MINMAXMINDIST

(abbreviated as NXNDIST), which has a higher pruning power for ANN computation

compared to the traditional MAXMAXDIST metric. We also present an efficient
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Table 3.1: Table of Frequently Used Notations

Notation Description
D Dimensionality of data space
R Query object dataset
S Target object dataset
IR Index on datasetR
IS Index on datasetS
M An MBR in index IR

N An MBR in index IS

r Point object in the datasetR
s Point object in the datasetS

algorithm for computing NXNDIST that has linear cost with respect to dimensionality.

Next, we explore the family of four ANN algorithms, namely: breadth-first search with

bi-directional node expansions (ANN-BFBI); breadth-firstsearch with uni-directional

node expansions (ANN-BFUNI); depth-first search with bi-directional node expansions

(ANN-DFBI); depth-first search with uni-directional node expansions (ANN-DFUNI),

together with the pruning heuristics that take advantage ofsome of the inherent properties

of the NXNDIST metric for more effective pruning.

We then present a generalization of our method for handling AkNN search problems.

Finally, we propose a new index structure, which is called the Minimum Bounding

Rectangle enhanced Quad-Tree (MBRQT), which has significant advantages over an

R*-tree for ANN computation as it maximizes data locality and avoids the overlapping

MBR issue that is inherent in an R*-tree index.

To facilitate our discussion, we will use the notations introduced in Table 3.1.

3.3.1 A New Pruning Distance Metric

As is common with current ANN algorithms, a certain distancemetric is required as the

upper bound for pruning entries fromIS that do not need to be explored. Traditionally

the MAXMAXDIST metric has been used as such an upper bound [28, 29]. The
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MAXMAXDIST between two MBRs is defined as the maximum possible distance

between any two points each falling within its own MBR [28, 29]. We observe that the

MAXMAXDIST metric is an overly conservative upper bound forANN searches. We

show that, for ANN queries a much tighter upper bound of the distance between points

within M and those withinN can be derived. This new upper bound guarantees the

enclosure of the nearest neighbor withinN for every point withinM. We call this new

metric the NXNDIST, and formally define it in the next section.

3.3.1.1 Definition and Properties of NXNDIST

For completeness and ease of comparison, first we provide brief descriptions of two

related distance metrics on MBRs that have been previously defined [28]. These metrics

are MINMINDIST and MINMAXDIST.

The MINMINDIST between two MBRs is the minimum possible distance between any

point in the first MBR and any point in the second MBR. This metric has been extensively

used in previously proposed ANN methods as the lower bound metric for pruning ANN

processing. We also employ this metric as a lower bound measure (NXNDIST, which we

define in this section, is our upper bound metric).

Another distance metric termed MINMAXDIST [28], is the upper bound of

the distance between at least one pair of points, one from each of the two MBRs.

MINMAXDIST has been frequently used as an upper bound pruning metric in various

distance join algorithms (for example, [28, 29]). However,we note that MINMAXDIST

was proposed to address a different class of distance join operations, and is not suitableas

a pruning metric for ANN computation as it does not provide a correct upper bound for

ANN.

In the following discussion, we define the NXNDIST metric in arbitrary dimensions

and explore its properties.

We represent a D-dimensional MBR with two vectors: a lower bound vector to record
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the lower bound in each of theD dimensions, and an upper bound vector to record the

upper bound in each of theD dimensions. For example, the lower bound vector for an

MBR M is expressed as< lM
1 , l

M
2 , ..., l

M
D >, and the upper bound vector forM is represented

as< uM
1 , u

M
2 , ..., u

M
D >.

On the other hand, a D-dimensional pointp is represented as the vector<

p1, p2, ..., pD >.

Next, we define a few auxiliary metrics, and then give the definition of the NXNDIST

metric.

Definition 3.1. Given two D-dimensional points, p and q, DIS Td(p, q) in dimension d is

defined as:

DIS Td(p, q) = |pd − qd|

Definition 3.2. Given two D-dimensional points, p and q, DIS T(p, q) is defined as:

DIS T(p, q) =
√

∑D
d=1 DIS T2

d(p, q)

Definition 3.2 essentially gives the definition of the Euclidean distance betweenp and

q.

Definition 3.3. Given two D-dimensional MBRs, M and N, for all points p enclosed in M

and all points q enclosed in N, MAXDIS Td(M,N) in dimension d is defined as:

MAXDIS Td(M,N) = max∀p∈M,∀q∈N DIS Td(p, q)

In other words,MAXDIS Td(M,N) gives the maximum distance between any

points within M and those withinN in dimensiond. The geometric meaning of

MAXDIS Td(M,N) is as follows: in dimensiond, starting at any point withinM, an

interval of extentMAXDIS Td(M,N) in either direction is guaranteed to cover all points

within N along this dimension.

Definition 3.4. Given two D-dimensional MBRs, M and N, and an arbitrary pointp

enclosed in M, MAXMINd(M,N) in dimension d is defined as:

MAXMINd(M,N) = max∀p∈M (min (|pd − lN
d |, |pd − uN

d ))
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We give the intuitive definition ofMAXMINd(M,N) as “the maximum of the minimum

distances in dimensiond from any point within the range [lM
d , u

M
d ] to at least one end point

lN
d or uN

d ”.

Definition 3.5. Given two D-dimensional MBRs, M and N, NXNDIS T(M,N) is defined

as:

NXNDIS T(M,N) =

√

√

√

√

√

√

S − max
d=1,...,D























MAXDIS T2
d (M,N)

−MAXMIN2
d (M,N)


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













, where

S =
∑D

d=1 MAXDIS T2
d (M,N) .

Figure 3.1 gives a geometric intuition ofNXNDIS T(M,N) in 2-D space. Two

non-overlaping MBRsM andN are shown, as well as an arbitrary point objectr ∈ M.

If an interval is constructed originating fromr, with extent along they axis equivalent

to MAXDIS Ty(M,N) in either direction, then it is guaranteed to encloseN completely

along they axis. Sweeping the interval along thex axis with extentMAXMINx(M,N) , a

rectangular search region is formed, which is the shaded region labeledα in the figure. As

is shown in the figure, this rectangular search region is guaranteed to enclose at least one

edge ofN. Sweeping along they axis in a similar fashion, a second search regionβ, which

is shown as the hatched rectangle in the figure, can be also formed. Of the two search

regionsα andβ, the shorter diagonal length is equivalent toNXNDIS T(M,N).

To generalize to D dimensions, the sweeping interval is replaced by a (D-1)
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dimensional hyperplane, and there are a total of D different ways in which the sweeping

can be performed.NXNDIS T(M,N) is then the minimum diagonal length among the D

search regions.

A 3-D example of NXNDIST is depicted in Figure 3.2.

Figure 3.3 gives an illustration of two MBRs and various distance metrics between

them.

Next, we prove the correctness of NXNDIST as an upper bound for ANN search as

well as derive several lemmas that reveal some important properties of the NXNDIST

metric.

Lemma3.1. Given two MBRs, M and N, and a point object r∈ M. Let NN(r,N) denote

r’s nearest neighbor within N, then DIS T(r,NN(r,N)) ≤ NXNDIS T(M,N).

Proof. From the definition ofNXNDIS T(M,N) (Definition 3.5), leti be the dimension in

which

MAXDIS T2
i (M,N) − MAXMIN2

i (M,N)

= maxd=1,...,D

(

MAXDIS T2
d (M,N) − MAXMIN2

d(M,N)
)

Let p be a point enclosed inM. From the definition ofMAXMINi (M,N)

(Definition 3.4), letqN
i be the end point coordinate value ofN in thei th dimension such that

max∀p∈M |pi − qN
i | = max∀p∈M (min (|pi − lN

i |, |pi − uN
i |)). For N to be a minimum bounding

rectangle, there must exist withinN such a point objects that si = qN
i . Then from the

definition of nearest neighbor, the following inequality holds:

DIS T(r,NN(r,N)) ≤ DIS T(r, s) (3.1)

We observe the following inequalities from Definitions 3.3 and 3.4

DIS Ti(r, s) ≤ MAXMINi (M,N) (3.2)

∀D
d=1DIS Td(r, s) ≤ MAXDIS Td(M,N) (3.3)
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We can also re-write the definition ofNXNDIS T(M,N) as

NXNDIS T(M,N) =

√

√

√

√

√

√

√

∑d,i
d=1,...,D MAXDIS T2

d (M,N)

+MAXMIN2
i (M,N)

(3.4)

It then follows from inequalities 3.2, 3.3 and equation 3.4 that

DIS T(r, s) ≤ NXNDIS T(M,N) (3.5)

From inequalities 3.1 and 3.5 we obtainDIS T(r,NN(r,N)) ≤ NXNDIS T(M,N). �

Lemma 3.1 establishes the foundation for the pruning heuristics presented in

Sections 3.3.2.7 and 3.3.3.

Lemma3.2. The MAXMIN metric is not commutable, i.e., given two D-dimensional MBRs

M and N: MAXMINd(M,N) , MAXMINd(N,M).

Proof. Suppose that MAXMIN is commutable, that is:

MAXMINd(M,N) , MAXMINd(N,M).

We provide a counter-example in Figure 3.4 as a trivial proof. It can be observed in

Figure 3.4(a) thatMAXMINd(M,N) = lN
d − lM

d , andMAXMINd(N,M) = uN
d − uM

d .

It is then straightforward to see thatMAXMINd(M,N) , MAXMINd(N,M). �
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Lemma3.3. The NXNDIST metric is not commutable, i.e., given two D-dimensional MBRs

M and N: NXNDIS T(M,N) , NXNDIS T(M,N).

Proof. We observe that the derivation ofNXNDIS T(M,N) is dependent on

MAXMINi (M,N) for somei ∈ [0,D], and the derivation ofNXNDIS T(N,M) re-

lies onMAXMINj (N,M) for somej ∈ [0,D]. Following the conclusion in Lemma 3.2, it

is straightforward to see that NXNDIST is not commutable. �

Lemma3.4. Let m be a child MBR of M, i.e., m⊆ M then NXNDIS T(m,N) ≤

NXNDIS T(M,N).

Proof. Consider the following informal proof by contradiction:

SupposeNXNDIS T(m,N) > NXNDIS T(M,N). Then it follows that there exists

some pointr ∈ m for which the following inequality holds:

DIS T(r,NN(r,N)) > NXNDIS T(M,N) (3.6)

Sincer ∈ M, from Lemma 3.1, the following inequality holds:

DIS T(r,NN(r,N)) ≤ NXNDIS T(M,N) (3.7)

This produces a contradiction to inequality ( 3.6). �

Lemma 3.4 ensures the correctness of the traversal algorithms and pruning heuristics

presented in Section 3.3.2.

Lemma 3.5. Let m be a child MBR of M, and let n be a child MBR of N, then

MINMINDIS T(m, n) is not always smaller than NXNDIS T(M,N).

Proof. Suppose that the following inequality always holds:

MINMINDIS T(m, n) < NXNDIS T(M,N) (3.8)
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Algorithm 3.1: NXNDIS T(M,N)

MAXDIS T[D] ⇐ [0],MAXMIN[D] ⇐ [0];1

S⇐ 0,minS⇐ 0;2

for d = 1 to D do3

MAXDIS T[d] ⇐4

max(|M.L[d] − N.U[d]|, |M.L[d] − N.L[d]|, |M.U[d] − N.U[d]|, |M.U[d] − N.L[d]|);
S+ = MAXDIS T[d]2;5

minS⇐ S;6

for d = 1 to D do7

MAXMIN[d] ⇐ MAXMIN(M.L[d],M.U[d],N.L[d],N.U[d]);8

minS⇐ min(minS,S − MAXDIS T[d]2 + MAXMIN[d]2);9

return
√

minS;10

We construct a counter example in Figure 3.5 to contradict this claim. As

shown in the figure,m ⊂ M andn ⊂ N. Simple distance calculations show that

NXNDIS T(M,N) =
√

74 , andMINMINDIS T(m, n) =
√

89. This produces a

contradiction to inequality 3.8. �

Lemma 3.5 presents an important property of the NXNDIST thatmakes it a more

efficient upper bound for pruning than the MAXMAXDIST metric.

3.3.1.2 Computing NXNDIST

Since NXNDIST is computed frequently during the evaluationof ANN, it is crucial to

have an efficient algorithm for computing it. From Definition 3.5 we havedeveloped an

O(D) algorithm for computing NXNDIST, which is shown in Algorithm 3.1.

As is shown in Algorithm 3.1, the MBRsM andN are represented by two vectors, each

of sizeD, indicating the lower and upper bounds in each of theD dimensions. The lower

and upper bounds ofM in dimensiond are accessible viaM.L[d] andM.U[d] respectively.

The same also applies toN.

Algorithm 3.1 proceeds in two iterations: the first iteration accumulatesS =
∑D

d=1 MAXDIS T2[d] ; the second iteration computes theMAXMIN[d] value in each

dimensiond and obtains
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Algorithm 3.2: MAXMIN(lr , ur , ls, us)

MAXMIN⇐∞;1

di f fll ⇐ lr − ls, di f flu ⇐ lr − us;2

di f ful ⇐ ur − ls, di f fuu⇐ ur − us;3

lens⇐ us − ls, mids⇐ us+ls
2 ;4

if di f ful ≤ 0 then MAXMIN⇐ |di f fll | //r1;5

else if di f fll < 0&& ur ≤ mids then MAXMIN⇐ max(|di f fll |, |di f ful |) //r2;6

else if di f fll < 0&& di f fuu ≤ 0 then MAXMIN⇐ max(|di f fll |, lens
2 ) //r3;7

else if di f fll < 0&& di f fuu > 0 then MAXMIN⇐ max(lens
2 , |di f fll |, |di f fuu|) //r4;8

else if di f flu ≥ 0 then MAXMIN⇐ di f fuu //r8;9

else if di f fll ≥ 0&& di f fuu ≤ 0 then MAXMIN⇐ min( lens
2 , |di f flu |, |di f ful |) //r5;10

else if lr ≥ mids&& di f fuu > 0 then MAXMIN⇐ max(|di f flu |, |di f fuu|) //r7;11

else if di f fll ≥ 0&& di f fuu > 0 then MAXMIN⇐ max(lens
2 , |di f fuu|) //r6;12

return MAXMIN13

NXNDIS T(M,N) =
√

min
d=1,...,D

(

S − MAXDIS T2[d] + MAXMIN2[d]
)

=

√

S − max
d=1,...,D

(

MAXDIS T2[d] − MAXMIN2[d]
)

Figure 3.2 shows a 3-D example of Algorithm 3.1.

The MAXMIN procedure for producing the MAXMIN value in each dimension is

shown in Algorithm 3.2. Figure 3.6 enumerates the eight cases that must be considered

during the computation of MAXMIN value in dimensiond. In this algorithm,s indicates

the interval that is bounded by the lower and upper bounds of the projected interval ofN

in dimensiond, whereasr i(i = 1, 2, ..., 8) indicates the possible positions of the bounded

interval ofM’s projection in dimensiond relative to that ofN.

The MAXMIN algorithm takes four parameters, namely:lr , the lower bound of the

projectedM interval in dimensiond; ur , the upper bound of the projectedM interval in

dimensiond; ls, the lower bound of the projectedN interval in dimensiond; us, the upper

bound of the projectedN interval in dimensiond. Corresponding cases are indicated in the

comments of the procedure presented in Algorithm 3.2.
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3.3.2 The ANN Algorithms

3.3.2.1 Data Structures

Before presenting the actual ANN algorithms, we briefly describe two data structures that

are used by these algorithms.

The first data structure, which is crucial to the pruning heuristics, is the Local Priority

Queue (LPQ). During the ANN procedure, each entry withinIR becomes theownerof

exactly oneLPQ, in which a priority queue stores entries fromIS. Each entryewithin the

priority queue keeps a MIND and a MAXD field, accessible ase.MIND and e.MAXD,

respectively. These fields indicate the lower bound and upper bound of the distance from

theowner’s MBR to e’s MBR.

The entries in the priority queues inside theLPQs are ordered by their MIND field.

In addition, eachLPQ also keeps a MAXD field which records the minimum (for ANN

queries) or maximum (for AkNN queries) of alle.MAXD values in the priority queue, as

the upper bound for pruning unnecessary entries.

There are two reasons for usingLPQ: (i) By requiring theownerof each of the

LPQs to be unique, we avoid duplicate node expansions fromIR (thus improving beyond

the bitmap approach of [29, 46], since the bitmap approach only builds a bitmap for

the point data objects withinR, but not the intermediate node entries); (ii)LPQ gives

us the advantages of the Three-Stage pruning heuristics, which we discuss in detail in

Section 3.3.2.7.

The second data structure is simply a FIFO Queue, which serves as a container for the

LPQs during node expansions.

3.3.2.2 The Top Level ANN Procedure

The top level ANN procedure, which is common to all our ANN algorithms, is shown in

Algorithm 3.3. The key part of this algorithm is calling theExpandAndPrunemethod,

which performs a bi-directional expansion of the entries inthe root nodes ofIR and IS.
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Algorithm 3.3: ANN(IR, IS, algo,Result)

Qroot ⇐ NewFIFOQueue();1

LPQroot ⇐ NULL;2

LPQroot.owner⇐ IR.root;3

Distances(LPQroot.owner, IS.root);4

LPQroot.push(IS.root);5

ExpandAndPrune(BI, LPQroot,Qroot,Result);6

if algo=BFBI then ANN-BFBI(Qroot,Result);7

else if algo=BFUNI then ANN-BFUNI(Qroot,Result);8

else if algo=DFBI then9

while LPQnew⇐ dequeue(Qroot) do ANN-DFBI(LPQnew,Result);10

else if algo=DFUNI then11

while LPQnew⇐ dequeue(Qroot) do ANN-DFUNI(LPQnew,Result);12

For each entry inIR, a LPQ is constructed, which is populated by entries fromIS (and

the entry for the owner of theLPQ). The top level FIFO Queue essentially contains all

the LPQs that are built. (TheExpandAndPruneprocedure is described in more detail

in Section 3.3.2.7.) After this initialization, the searchalgorithm specified by thealgo

parameter is invoked. In the following sections we give brief descriptions on each of the

four ANN algorithms.

3.3.2.3 The ANN-BFBI Algorithm

Algorithm 3.4 outlines the ANN-BFBI algorithm which employs a Breadth-First traversal

of IR, with BI-directional node expansion. The procedureExpandAndPrune, detailed in

Algorithm 3.8, essentially expands an entry either in a uni-directional or a bi-directional

way (which is controlled by the first argument), and applies apruning technique to limit

the number of expanded entries that need to be considered further.

The ANN-BFBI algorithm traverses the index onIR iteratively. The traversal onIR is

achieved level by level, with a FIFO Queue (Qin andQout in Algorithm 3.4) constructed

and populated with theLPQs (LPQ in Algorithm 3.4)ownedby all entries fromIR on that

particular level. With bi-directional node expansion,IS is explored synchronously withIR.

Since entries at each level in bothIR andIS are visited only once, ANN-BFBI is very I/O
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Algorithm 3.4: ANN− BFBI(Qin,Result)

if Qin not emptythen Qout⇐ ∅;1

while Qin not emptydo2

LPQ⇐ dequeue(Qin);3

ExpandAndPrune(BI, LPQ,Qout,Result);4

ANN-BFBI(Qout, Result);5

Algorithm 3.5: ANN− BFUNI(Qin,Result)

if Qin not emptythen Qout⇐ ∅;1

while Qin not emptydo2

LPQ⇐ dequeue(Qin);3

ExpandAndPrune(UNI, LPQ,Qout,Result);4

ANN-BFUNI(Qout, Result);5

efficient.

3.3.2.4 The ANN-BFUNI Algorithm

The ANN-BFUNI algorithm (Breadth-First traversal ofIR, with UNI-directional node

expansion) is shown in Algorithm 3.5. Similar to ANN-BFBI,IR is traversed in a

level-by-level fashion, with one FIFO Queue for each level.Lower level FIFO Queues are

derived from higher level ones by dequeuingLPQs from them and expanding the entries

uni-directionally.

3.3.2.5 The ANN-DFBI Algorithm

Algorithm 3.6 shows the ANN-DFBI algorithm: Depth-First traversal ofIR, with

BI-directional node expansion. In this algorithm, the index IR is explored in a depth-first

fashion. As a result, the FIFO Queue (Qout in Algorithm 3.6) at each level will only

containLPQs (LPQchild in Algorithm 3.6) obtained by expanding both theownerentry of

the higher levelLPQ (LPQin in Algorithm 3.6) and the entries residing inside the priority

queue contained within thatLPQ. Consequently, memory consumption is dramatically

reduced compared to ANN-BFBI. In addition, because bi-directional node expansion

implies synchronous traversal of both indexes, data locality is also maximized, which
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Algorithm 3.6: ANN− DFBI(LPQin ,Result)

Qout⇐ ∅ ;1

ExpandAndPrune(BI, LPQin ,Qout,Result);2

while Qout not emptydo3

LPQchild ⇐ dequeue(Qout);4

ANN-DFBI(LPQchild, Result);5

Algorithm 3.7: ANN− DFUNI(LPQin ,Result)

Qout⇐ ∅;1

ExpandAndPrune(UNI, LPQin ,Qout,Result);2

while Qout not emptydo3

LPQchild ⇐ dequeue(Qout);4

ANN-DFUNI(LPQchild, Result);5

improves I/O efficiency.

3.3.2.6 The ANN-DFUNI Algorithm

Depth-First traversal ofIR, with UNI-directional node expansion, employs the same index

traversal technique as ANN-DFBI and is presented in Algorithm 3.7. The uni-directional

node expansion approach makes ANN-DFUNI essentially the same as the naive approach,

where a NN query onIS is issued for each point data object withinIR.

3.3.2.7 Pruning Heuristics

In this section, we discuss theExpandAndPrunealgorithm, which is presented in

Algorithm 3.8.

The basic heuristic for pruning is as follows: Let PM represent the chosen pruning

metric between two MBRsM andN (PM could be MAXMAXDIST or NXNDIST). The

pruning rule is that ifMINMINDIS T(M,N) > PM(M,N′) , for someN′, then the path

corresponding to (M,N) can be safely pruned.

TheLPQ owned by each unique entry onIR acts as the main filter, and enforces three

stages of pruning: Expand Stage, Filter Stage, and Gather Stage.

The Expand Stage refers to the stage whenowners of LPQs are internal nodes onIR
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Algorithm 3.8: ExpandAndPrune(dir,LPQin, Qout, Result)

if owner of LPQin is an OBJECTthen1

initialize LPQn and set itsownerto that ofLPQin;2

passMAXDof LPQin to LPQn;3

popped⇐ 0;4

while n⇐ LPQin.pop() do5

popped⇐ popped+ 1;6

if n is an OBJECT&& popped= 1 then7

Result.push(LPQ.owner, n);8

break;9

else10

forall e∈ n do11

Distances(LPQn.owner, e);12

if e.MIND ≤ LPQn.MAXD then LPQn.push(e);13

pushLPQn into Qout;14

else15

forall c ∈ LPQin.ownerdo16

initialize LPQc and set its owner toc;17

passMAXDof LPQin to LPQc;18

while n⇐ LPQin.pop() do19

if dir = BI then20

forall e∈ n do21

forall c ∈ LPQin.ownerdo22

Distances(LPQc.owner, e);23

if e.MIND ≤ LPQc.MAXD then LPQc.push(e);24

else ifdir = UNI then25

forall c ∈ LPQin.ownerdo26

Distances(LPQc.owner, n);27

if n.MIND ≤ LPQc.MAXD then LPQc.push(n);28

push all non-emptyLPQc into Qout;29

and are expanded, new lower levelLPQs (LPQc as shown in Algorithm 3.8) are created

for and owned by their child entries (c in Algorithm 3.8). At this time, the MAXD field

from the oldLPQ (LPQin parameter in Algorithm 3.8) is passed on to the newLPQs,

and is used as the initial pruning upper bound (Lines 2-3, 18-19 in Algorithm 3.8). As

entries (n in Algorithm 3.8) are popped out ofLPQin, their MIND field, which holds the

MINMINDIST value from the MBR ofn to that ofLPQin.owner is compared against
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LPQc.MAXD, and if it’s smaller,n is further processed. At this time, depending on the

value of thedir parameter, two cases apply.

Case 1 (dir = BI): In this case,n is expanded; its children are probed against all

LPQcs, their MIND and MAXD values are computed against the ownersof the LPQcs

(inside theDistancesfunction in Algorithm 3.8), and are compared against the MAXD

fields of theLPQcs. At this time, these child entries are either discarded or queued by the

LPQc’s, and if so, updating their MAXD fields, respectively (Lines 21-24). In this case

NXNDIST has additional pruning advantages over MAXMAXDISTdue to Lemma 3.5,

namely, early pruning becomes possible even when the MAXD field of theLPQcs has not

yet been updated, which is not possible when MAXMAXDIST is used.

Case 2 (dir = UNI): This is the uni-directional node expansion case.n is not

expanded, but instead, its MIND and MAXD are re-computed against the owners of the

LPQcs using theDistancesfunction, and is either discarded or queued by theLPQcs, and

if so, updating their MAXD fields, respectively (Lines 27-29).

Note in the Expand Stage, the pruning happens in three places: whenn is first popped

out of LPQin; when entries(eithern themselves, orn’s child entries) are probed against

theLPQcs; and when the MAXDs of theLPQcs are updated, i.e., reduced by previously

queued entries, then’s that come in later will see a much tighter upper bound.

The Filter Stage happens in thepushfunction in Algorithm 3.8. We observe that it is

possible that during the Expand Stage, the MAXD of a new incoming entry may become

smaller than the MIND of some entries that are already insidethe queue, just because those

entries were pushed into the queue earlier, when the MAXD field of the corresponding

LPQ was not yet updated. This may lead to serious performance degradation since more

nodes than necessary will be expanded/explored in the next iteration. To address this

problem, we activate the Filter Stage.

During the Filter Stage, as the new node is being pushed into the priority queue inside

a LPQ, its MAXD is compared against the MIND field of all the entriesthat it passes as
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it floats up to the top of the queue, searching for entries witha MIND that is larger than

its own MAXD. When such an entry is found, it is replaced by thenew entry, instead of

being swapped down to a lower level of the priority queue. During this stage, there may

be a tie on the MIND value. We break the tie by comparing the theMAXD fields of these

two entries, and swap the new entry with the old one if the new MAXD is less than the old

entry’s. In doing so, we are essentially optimizing the locality of pruning heuristics.

The Gather Stage refers to the stage when theownerof LPQin is an actual point

data object, then as entries are popped out ofLPQin, if the first out is also an actual data

object, then the search is over for this particular object (Lines 7-9). Otherwise, the entry is

expanded and processed, updating the MAXD field ofLPQn accordingly (Lines 11-16).

Note that the Three-Stage-Pruning strategy proposed here is a general-case

optimization technique for ANN processing and can be easilyadapted on any indices

where the upper bound is non-increasing during the search.

3.3.2.8 Effectiveness of NXNDIST

The Three-Stage-Pruning strategy discussed above becomesextremely effective when

NXNDIST is used as the upper bound for pruning, compared to MAXMAXDIST. The

reasons for this effect are as follows: (a) NXNDIST by itself is a much tighter upper bound

than MAXMAXDIST, so the chances of the NXNDIST of a new entry being less than the

MIND field of an existing entry in the priority queue become much higher. (b) As the

search descends down the indices, the reduction in the length of NXNDIST is higher than

that of MAXMAXDIST (see Lemma 3.5). As a result, better pruning is achieved with

NXNDIST as it discards non-leaf nodes that don’t need to be expanded – which drastically

reduces the number of the next level nodes to examine.

3.3.3 Extension to AkNN

The intuition behind the extension of our method to compute All-K-Nearest-Neighbor

(AkNN) is as follows: At any time, in order to guaranteek NN results for all point objects
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Algorithm 3.9: AkNN ExpandAndPrune(dir,LPQin, Qout, Result)

if owner of LPQin is an OBJECTthen1

initialize LPQn and set itsownerto that ofLPQin;2

pass MAXD ofLPQin to LPQn;3

popped⇐ 0;4

while n⇐ LPQin.pop() do5

if n is an OBJECTthen6

Result.push(LPQ.owner, n);7

if popped= k then break;8

elsepopped⇐ popped+ 1;9

else10

forall e∈ n do11

Distances(LPQn.owner, e);12

if e.MIND≤ LPQn.MAXD||LPQn.size< k then LPQn.push(e);13

pushLPQn into Qout;14

else15

forall c ∈ LPQin.ownerdo16

initialize LPQc and set its owner toc;17

pass MAXD ofLPQin to LPQc;18

while n⇐ LPQin.pop() do19

if dir = BI then20

forall e∈ n do21

forall c ∈ LPQin.ownerdo22

Distances(LPQc.owner, e);23

if e.MIND≤ LPQc.MAXD||LPQc.size< k then LPQc.push(e);24

else ifdir = UNI then25

forall c ∈ LPQin.ownerdo26

Distances(LPQc.owner, n);27

if n.MIND≤ LPQc.MAXD||LPQc.size< k then LPQc.push(n);28

push all non-emptyLPQc into Qout;29

within theownerof a LPQ, there must be at leastk entries fromIS in theLPQ. An entry

e from IS can only be pruned away when there are at leastk entries in theLPQ and the

MINMINDIST from the ownerMBR to that ofe is greater than the MAXD field of the

LPQ.

The extension of our methods to AkNN processing [18, 112] canbe realized through

slight modifications of theExpandAndPrunealgorithm (Algorithm 3.8), using NXNDIST
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and the parameterk as the pruning metric. The modifiedAkNN ExpandAndPrune

algorithm is shown in Algorithm 3.9. Notice the only parts that have changed from

Algorithm 3.8 are the termination condition (lines 7− 11), and the filtering conditions

(lines 15, 27, and 32). These changes incorporate the additional cardinality constraint

of the LPQs. The pruning heuristics discussed in Section 3.3.2.7 are still applicable to

AkNN, with fairly straight-forward modifications. (In the interest of space we omit these

extensions here.)

3.3.4 MBRQT

The ANN algorithms and NXNDIST metric proposed so far are both general purpose

and can be applied to various index structures that incorporate the notion of MBR and

Euclidean distance metrics. In a number of previous ANN works [28, 29, 46, 95, 116], the

R*-tree index has been used. This is understandable since R*-tree is the “ubiquitous”

spatial indexing structure. However it is natural to ask if other indexing structures have

an advantage over the R*-tree for ANN processing. Notice that the R*-tree family of

indices basically partition the underlying space based on the actual data distributions.

Consequently, the partition boundaries for two R*-trees ontwo different datasets will

be different. As a result when running ANN, the effectiveness of the pruning metrics

such as NXNDIST will be reduced, as the pruning heuristic relies on this metric being

smaller than some MINMINDIST. In contrast, an indexing method that imposes a regular

partitioning of the underlying space is likely to be much more amenable to the pruning

heuristic. A natural candidate for a regular decompositionmethod is the quadtree [93].

We do note that quadtrees are not a balanced data structure, but they can be mapped to

disk resident structures quite effectively [33, 47], and some commercial DBMSs already

support quadtrees [60]. The question that we raise, and answer, in this chapter is how

effective is a quadtree index compared to an R*-tree index for ANN processing.

Note that with a traditional quadtree, spatially neighboring nodes all border each
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other and the pairwise MINMINDIST value is zero. This may inevitably cause excessive

memory overhead due to large queue or stack size resulting from a low pruning rate. To fix

this this problem, we associate an explicit MBR with each internal node, which produces

a tighter approximation of the entries below that node (though at the cost of increasing

storage cost). Essentially, our proposal is to enhance a regular PR bucket quadtree with

MBRs. This enhanced indexing structure is called the MBR-quadtree, or simply MBRQT.

As our experimental results show this index structure is significantly more effective than

R*-trees for ANN processing.

3.4 Experimental Evaluation

In this section, we present the results of our experimental evaluation. We first evaluate

the effectiveness of the various ANN algorithms proposed in Section 3.3, using both the

MBRQT index structure and the R*-tree index structure, withNXNDIST as the pruning

metric.

Then, we compare our ANN methods with previous ANN algorithms. Of all the

previously proposed ANN methods, the recent batch NN (BNN) [116] and GORDER [112]

methods are considered to be the most efficient. Consequently, in our empirical evaluations,

we only compare our method with these two methods.

We note that BNN and GORDER haven’t actually been compared toeach other in

previous work. A part of the contribution that we make via ourexperimental evaluation is

to also evaluate the relative performance of these two methods.

3.4.1 Implementation Details

We have implemented a persistent MBRQT and an R*-tree on top of the SHORE

storage manager [22]. We compiled the storage manager with 8KB page size, and set the

buffer pool size to 64 pages (512KB). The purpose of having a relatively small buffer

pool size is to to keep the experiments manageable, which also essentially follows the
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experimental design philosophy used in previous research [64, 71, 105, 116]. At these

smaller buffer pool sizes, even with small datasets, we can easily see thebreakdown of the

IO and the CPU costs.

We have also experimented with various buffer pool sizes, and the conclusions

presented in this section hold even for these larger buffer pool sizes. In the interest of

space, these additional experiments are suppressed in thispresentation. One exception to

this behavior, is the performance of GORDER, which is very sensitive to the buffer pool

size for high-dimensional dataset. To quantify this effect, we present one experiment with

varying buffer pool sizes (in Section 3.4.5).

For both MBRQT and the R*-tree the leaf node size is set to the storage manager

page size, and the non-leaf nodes in MBRQT are simply small objects. We do not employ

any specific packing strategy for the MBRQT non-leaf nodes, but simply use the default

clustering mechanism provided by the storage manager.

For the set of experiments that compare the MBRQT approach against previous

methods, we take advantage of the original source code generously provided by the authors

of [116] and the authors of [112]. For consistency, we modified the BNN implementation,

switched the default page size from 4KB to 8KB, and retained the LRU cache size of

512KB. The parameters used for the GORDER methods are chosenusing the suggested

optimal values in the experimental section of [112], andK is set to 1 for all of the

experiments comparing the ANN performance of these methods.

All experiments were run on a 1.2GHz Intel Pentium M processor, with 1GB of RAM,

running Red Hat Linux Fedora Core 2. For each measurement that we report, we actually

ran the experiment five times. We then took the average of the middle three numbers, and

report this number.
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Table 3.2: Table of Experimental Datasets

Dataset Cardinality Dimensions Description
100K2D 100K 2 2D 100K point data
500K2D 500K 2 2D 500K point data
500K4D 500K 4 4D 500K point data
500K6D 500K 6 6D 500K point data
TAC 700K 2 Twin Astrographic Catalog Data
FC 580K 10 Forest Cover Type data

3.4.2 Experimental Datasets and Workload

We perform experiments on both real and synthetic datasets.We use two real datasets: The

Twin Astrographic Catalog dataset (TAC) from the U.S. NavalObservatory site [3], and

the Forest Cover Type (FC) from the UCI KDD data repository [2]. The TAC data contains

high quality positions of around 700K stars. This dataset isa 2D dataset. The Forest Cover

dataset contains information about various 30 x 30 meter cells for the Rocky Mountain

Region (US Forest Service Region 2). Each tuple in this dataset has 54 attributes, of which

10 attributes are real numbers. The ANN operation is run on these 10 attributes (following

similar use of this dataset in previous ANN works, such as [112]).

We also modified the popular GSTD data generator [107] to produce medium-

to-large scale multi-dimensional synthetic datasets. We produced synthetic datasets by

varying the number of objects from 100K to 500K. Although we experimented with

various combinations of datasets with a wide range of sizes,in the interest of space,

we only present selected results from a few representative workloads. The synthetic

datasets that we use in this section are: 100K object points to represent relatively small

datasets, and 500K object points to represent large sized datasets. To test theeffect of

data dimensionality on the ANN methods, two more datasets ofcardinality 500K are also

generated, with dimensionality of 4 and 6, respectively. Table 3.2 summarizes the datasets

that we use in our experiments.
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Figure 3.7: Evaluating the ANN Algorithms

3.4.3 Evaluating the ANN Algorithms

In this experiment, we compare the performance of the familyof four ANN algorithms

presented in Section 3.3.2. In the interest of space, we onlypresent the results with the

synthetic datasets.

Figure 3.7 summarizes the results for the four ANN algorithms using the MBRQT

indexing method. All graphs in this figure show both the IO andthe CPU components in

the total query execution cost. All the y-axis in these graphs use a log scale. Further, the

number in the CPU portion of the bar shows the actual CPU times.

Effect of bi-directional v/s uni-directional expansion: From Figure 3.7, we observe

that with the traversal pattern fixed, the CPU cost for the bi-directional node expansion

technique is lower than that for the uni-directional technique by at least an order of

magnitude. This is because with bi-directional node expansion, new nodes are produced at

a quadratic rate, and if an efficient pruning metric such as NXNDIST is used, a lot of early

pruning occurs at the non-leaf node levels. This behavior further magnifies the effect of

pruning, resulting in much smaller number of distance calculations than if uni-directional

expansion technique is used. The reduction in number of nodes that have to be considered

(because of better pruning), also leads to a lower IO cost forthe bi-directional method.

Effect of depth-first v/s breadth-first traversal: From Figure 3.7, we observe that

with a fixed node expansion technique, the depth-first traversal technique outperforms

breadth-first traversal. The depth-first method has both lower IO and CPU costs. With
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a breadth-first traversal the index entries are expanded level-by-level, which results in

repeated accesses to index entries. Since these accesses are spread across the entire run of

the algorithm, it resulted many more random IOs.

The depth-first method also has lower CPU costs. This is because a depth-first

expansion will quickly result in examining index entries that are deeper down in the

tree. These entries have smaller MBRs and result in more accurate NXNDIST values.

Consequently, there is better pruning with the depth-first method, which results in a lower

CPU cost. In addition, the depth-first method has a much smaller memory footprint.

To summarize the results shown in Figure 3.7, we note that ANN-DFBI is the most

efficient of the four ANN algorithms with respect to both CPU and I/O performance. The

ANN-BFBI is the second best method, and the ANN-DFUNI algorithm has the lowest

performance.

We also repeated this same set of experiments using the R*-tree index. The results

we obtained were consistent with the conclusion that ANN-DFBI is consistently the

most efficient alternative. In the interest of space, these results are not shown here.

We also observed that MBRQT consistently outperforms the R*-tree method across all

four ANN methods. In the interest of space we omit these results here, but present the

comparison using the TAC dataset in Figure 3.8. In this figurethe bars corresponding to

“RBA NXNDIST” and “MBA NXNDIST” present a direct comparisonof the ANN-DBFI

method with the two index structures. As can be seen in this figure,simply switching the

indexing structure from R*-tree to MBRQT improves the overall performance of ANN

search by 3X, for reasons discussed in Section 3.3.4.

For the remainder of this section, we only consider the ANN-DFBI algorithm. For

simplicity, we refer to this ANN method asMBA (MBRQT BasedANN method) andRBA

(R*-tree BasedANN method) for the implementation with the MBRQT and the R*-tree

indexing methods respectively.
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3.4.4 Effectiveness of the NXNDIST Metric

In this experiment, we evaluate the effectiveness of the NXNDIST metric and compare

it with the traditional, looser pruning metric – MAXMAXDIST. For this experiment, we

use the TAC dataset. Since BNN [116] is currently the most efficient R*-tree based ANN

method, we compare both our MBA and RBA methods with BNN. The results of this

experiment are shown in Figure 3.8.

In Figure 3.8, results for, BNN, MBA, and RBA approaches are shown, with both

the MAXMAXDIST and the new NXNDIST pruning metric. (Similarresults are

also observed with the synthetic datasets, which we omit here in the interest of space.)

Note that the original BNN algorithm of [116] corresponds tothe bars labeled as “BNN

MAXMAXDIST”, and the BNN algorithm with NXNDIST as the pruning metric

corresponds to the bars labeled as “BNN NXNDIST”.

An informed reader may note that the original BNN algorithm has aglobaldist

parameter, which is set to someMAXREALthat is defined in the code. We replaced this

with MAXMAXDIST and have observed that it improves the performance slightly over

the original version. Similarly, setting theglobaldistparameter to NXNDIST gives us the

BNN NXNDIST algorithm.

From Figure 3.8, we notice that for all three methods, BNN, MBA, and RBA, the

use of NXNDIST metric dramatically improves the query performance.Observe the

order-of-magnitude improvement in execution time for the MBA method, and a 6X

performance gain for both the BNN and RBA methods, by simply switching to the new

NXNDIST metric.

The drastic improvement of NXNDIST over MAXMAXDIST is due toreasons

discussed in Section 3.3.2.8. Also, the slightly reduced effect of NXNDIST on BNN

and RBA can be attributed to the MBR overlapping problem inherent with R*-trees (see

Section 3.3.4), which reduces the effectiveness of the pruning metrics. For example, for a

certain MBR inIR, overlapping MBRs withinIS often have very similar lower and upper
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distance bounds, and thus become harder to prune.

3.4.5 Comparison of BNN, MBA, and GORDER

In Figures 3.8 and 3.9 we show the results comparing BNN, MBA,and GORDER using

the two real datasets.

BNN v/s MBA: For this comparison, consider Figure 3.8. Comparing BNN and

MBA in this figure, we observe that with the same pruning metric, MBA is superior to

the R*-tree BNN algorithm, both in terms of the CPU cost and the I/O cost. The superior

performance of MBA over BNN is a result of the underlying MBRQT index, which has

the advantages of the regular non-overlapping decomposition strategy employed by the

quadtree (see Section 3.3.4 for details).

GORDER v/s BNN: From Figure 3.8 we observe that in general theGORDER

algorithm is superior to the BNN method. There are two main reasons: (a) Both methods

employ techniques to group the datasets to maximize locality. However, BNN does

this only for the datasetR, while in GORDER the locality optimization is achieved by

partitioning both input datasets and by using a transformation to produce nearly uniform

datasets. (b) In BNN, an R*-tree index is built for datasetS. The inherent problem of

overlapping MBRs in an R*-tree results in both higher I/O and CPU costs during the index
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traversal. In GORDER, however, the two datasets are disjointly partitioned, which leads to

better CPU and I/O characteristics.

We also compared GORDER and BNN for the synthetic datasets, and found that

GORDER was faster than BNN in all cases (these results have been suppressed in the

interest of space). Since GORDER is faster than BNN, for the remainder of this section

we only present results comparing our MBA method with GORDER.

GORDER v/s MBA: The results in Figure 3.8 show thatMBA outperforms GORDER

by at least 2Xon the two-dimensional TAC dataset. The reasons for these performance

gains are three-fold: (a) GORDER requires repeated retrievals of the datasetS, while

MBA traverses the indicesIR andIS simultaneously. This synchronized traversal of the

indices results in better locality of access, which resultsin fewer buffer misses; (b) The

pruning metric employed in GORDER is similar to that in BNN, initially set to a certain

sentinel value (theMAXREALvalue, described in Section 3.4.4). Although this value is

updated as the algorithm proceeds, it is set using the MAXMAXDIST metric, which is

less effective than the NXNDIST (as discussed in Section 3.4.4); (c)The MBRQT index

structure of MBA has an advantage over the nested-loops joinalgorithm employed by

GORDER. With MBRQT, the pruning happens at multiple levels of the index structure,

where early non-leaf node level pruning will save a significant amount of computation.

GORDER, on the other hand, is essentially a block nested-loops join algorithm, with the

pruning happening only on the block and object levels, and thus incurring significantly

more distance computations.

Theperformance advantages of MBA over GORDER continue for higher dimensional

datasets. Figure 3.9 shows the execution time for these two algorithms on the 10-

dimensional FC dataset. We also use this experiment to illustrate the effect of buffer pool

size on the GORDER method when using high-dimensional datasets1. To quantify this

1We note that the performance of GORDER is sensitive to the buffer pool size only for high-dimensional
datasets. For low-dimensional datasets the buffer pool effects are very small. For example, with the TAC data
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effect, for this experiment, we vary the buffer pool size from 512KB to 8MB.

The first observation to make in Figure 3.9 is the performanceof GORDER improves

rapidly as the buffer pool size increases from 1MB to 4MB, after the 4MB point

the performance of GORDER is stable. The reason for this behavior with GORDER

is as follows: GORDER essentially executes a block nested loops join and is joining a

single block of the outer relationRwith a number of blocks of the inner relationS. Before

actually executing an in-memory join of the data in “matching” RandS blocks, GORDER

uses a distance based pruning criteria to safely discard pairs of blocks that are guaranteed

to not produce any matches. This distance pruning is more effective when there are larger

number ofS blocks to examine, which happens naturally at larger buffer pool sizes. Since

the pruning criteria is influenced by the number of neighborsof a grid cell (which grows

rapidly as the dimensionality increases), the effect of the smaller buffer pool size is more

pronounced at higher dimensions. On the other hand, as discussed in Section 3.3.2.5,

the MBA algorithm using MBRQT only keeps a small number of candidate entries from

IS, inside the LPQ for eachR index entry. Spatial locality is thus preserved and the

performance is not significantly affected by the size of the buffer pool.

The second observation to make in Figure 3.9 is that MBA is consistently faster than

GORDER for all buffer pool sizes. For larger buffer pool sizes MBA is 2X faster, and for

smaller buffer pool sizes it is 6X faster.

3.4.6 Effect of Dimensionality

In this section, we systematically increase the data dimensionality, and measure its effect

on the performance of MBA and GORDER.

For this experiment, we generated a number of synthetic datasets, with varying

cardinalities and dimensionalities. In the interest of space we show in Figure 3.10 results

for a representative workload, namely the 500K2D, 500K4D, and 500K6D datasets. (The

changing the buffer pool size from 512KB to 8MB only improved the performance of GORDER by 5%.
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Figure 3.10: Effect of Dimensionality

numbers in the bars in this graph show the actual CPU costs in seconds.)

As is shown in the figure,MBA consistently outperforms GORDER by approximately

3X for all 2D, 4D, and 6D datasets. As the dimensionality of the data increases, the CPU

time for both methods increases very gradually, and the I/O time also elegantly scales up

with the dimensionality of the datasets. This observation is consistent for both the TAC

and FC datasets in Figures 3.8 and 3.9.

As we have noted previously, ANN is a very computationally intensive operation,

and most of the execution time is spent on distance computation and comparisons. Thus,

having an efficient distance computation algorithm for high-dimensional data is crucial to

the performance of ANN methods. Looking at the CPU time for MBA (which uses the

NXNDIST metric) in Figure 3.10, we observe that the CPU cost is not shooting up sharply

as the dimensionality increases, which shows the effectiveness of theO(D) NXNDIST

computation algorithm (presented in Section 3.3.1.2).

3.4.7 Evaluating AkNN Performace

We use both real-world datasets, TAC and FC, for the experiment comparing AkNN

performance of MBA against GORDER. We follow the example in [112] and varyk value

from 10 to 50, with increment of 10. Figures 3.11 and 3.12 showthe results of this
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Figure 3.11: AkNN on TAC Data(2D) Figure 3.12: AkNN on FC Data(10D)

experiment.

As can be seen in these figures, on both the TAC and FC datasets,the execution time of

MBA and GORDER increases as thek value goes up. However,MBA is over an order of

magnitude faster than GORDER in all cases. The reasons for this performance advantage

for MBA over GORDER are similar to those described in Section3.4.5.

3.5 Conclusions

In this chapter we have presented a new metric, called NXNDIST, and have shown that

this metric is much more effective for pruning ANN computation than previously proposed

methods. We have also explored the properties of this metric, and have presented an

efficientO(D) algorithm for computing this metric, whereD is the data dimensionality.

We have also explored a family of index based methods for computing ANN queries. In

addition, for ANN computation, we have shown that traversing the index trees using a

depth-first paradigm, and using a bi-directional expansionof candidate search nodes is the

most efficient strategy. With the application of NXNDIST, we have also shown how to

extend our solution to efficiently answer the more general AkNN question.

Finally, we have shown that for ANN queries, using an quadtree index enhanced with

MBR keys for the internal nodes, is a much more efficient indexing structure than the

commonly used R*-tree index. Overall the methods that we have presented generally
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result in significant speed-up of at least 2X for ANN computation, and over an order of

magnitude for AkNN computation over the previous best algorithms (BNN [116] and

GORDER [112]), for both low and high-dimensional datasets.
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CHAPTER 4

TRAJECTORY JOINS WITH APPLICATION IN
PRIVACY PRESERVATION

4.1 Introduction

In Location Based Service (LBS) applications, large volumes of trajectory datasets

are collected, where each trajectory traces the movement ofa object in space and time

coordinates as it moves around in physical space. A large part of previous research on

trajectory processing has focused on efficient access methods for bothhistorical and

predictivetrajectories (where the prediction is based on past historyand follows certain

motion model). While both spatial join and temporal join operations have been widely

researched in the past (e.g. [18,28,29,32,68,84,94,109,112,115–117]), very limited work

has been done to address the more complex problem of trajectory join operations. We

presentJiST, a framework for trajectory join processing in spatio-temporal databases, and

develop scalable algorithms for these operations.

A trajectory join, also calledspatio-temporaljoin, is a join operation between two

trajectory data-sets. It is defined by a combination of spatial and temporal predicates.

Spatial predicates include the distance measure between trajectories (Trajectory Distance

Join, or TDJ), or the number of Nearest Neighbors of certain trajectories (Trajectoryk

Nearest Neighbors Join, or TkNNJ). Temporal predicates, onthe other hand, specify the

duration of the join, i.e., the time window, or the temporal placement of the join, be it in

the past or the future.

Figure 4.1 shows two examples of one-dimensional trajectory join operations.
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Figure 4.1: Trajectory Joins: A One-dimensional Example

Figure 4.1(a) depicts a trajectory distance join operation, and Figure 4.1(b) gives an

illustration of a TkNNJ operation. Thet axis in both figures denotes the time, and the

x axis shows the one-dimensional spatial extent. In both figures, there are two sets of

objects, namelyR andS. The objectssi (i = 1 to 4) belong to the setS. For simplicity, we

only show one objectr in the setR. Thin solid lines indicate the trajectories followed by

objectssi, and thick dashed lines depict the trajectory followed by object r.

Using Figure 4.1, consider a TDJ operation, which retrievesfor all objectsr ∈ R, all

objectss ∈ S, such that eachs object comes within∆d distance ofr at some time. For

objectr, this is translated into a region that is bounded by the two thin dotted lines along its

trajectory. As time progresses, any objectsi whose trajectory intersects with the bounded

region should be reported as part of the query result.

In Figure 4.1(b), a TkNNJ operation is shown fork = 3. This TkNNJ query retrieves

for all objectsr ∈ R, their respectivek nearest neighbors in datasetS, at any specified time

instance, or within a time window. In Figure 4.1(b) the points in time when the result set

changes for the query are marked on thet axis.

Trajectory join operations (TDJ or TkNNJ) have many important applications, an

example of which is privacy preservation of trajectory data. To date, a number of privacy

preservation techniques proposed for relational databases, such ask-Anonymity [101,102]

andl-Diversity [69], have been adapted for spatio-temporal databases [9, 34, 37, 39, 73],

among which locationk-Anonymity [39] has proven to be most popular and effective.
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However, past methods have mainly focused on protecting privacy on current snapshot

of location data, while oftentimes analysis needs to be donewith privacy preservation on

large amounts of historical trajectory data in repositories, on which no previous research

has been done. In this chapter, we introduce the concept ofTrajectory k-Anonymity, and

deviseTrajectory Cloakingtechniques based on the JiST operations to preserve trajectory

k-Anonymity.

Besides trajectory privacy preservation, there are numerous example applications on

which the JiST operations can be applied in a straightforward manner. We briefly describe

a few of these example applications in the following.

• During the Mad Cow Disease epidemic, in the event where some cows are identified

as having contracted the disease, a decision needs to be madequickly regarding which

other cows (in the same or a different herd) have come in close contact with the infected

units within a certain period of time in the past, depending on how long the infected units

have been sick.

• Consider a battlefield scenario where soldiers need to execute tasks in small groups at

night time when limited visibility can very likely cause some soldiers to go astray. To

help mitigate the damage that can potentially be caused by this problem, the central

database server may periodically issue a TkNNJ operation tokeep track of the nearest

neighbors of each soldier and send them a warning if some of them begin to deviate from

their group.

The rest of the chapter is organized as follows: Section 4.2 surveys the related work.

Section 4.3 presents the JiST operations. Section 4.4 and 4.5 describe the JiST algorithms.

The application of this framework on trajectory privacy preservation is presented in

Section 4.6. Experimental results are presented in Section4.7, and Section 4.8 contains

concluding remarks.
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4.2 Related Work

Related previous research work can be largely classified into two areas, Spatio-Temporal

Joins, and Location Privacy.

4.2.1 Spatio-Temporal Joins

There is a large body of research on both spatial join [16, 18,20, 24, 27–29, 46, 48, 49, 80,

95, 109, 112, 116, 117] and temporal join [32, 41, 63, 91, 94, 96, 99, 115, 118] operations,

respectively. However, there is very limited work on spatio-temporal Join operations that

comprehensively cover both the spatial and temporal aspects of the problem.

Iwerks et al. [50] proposed an algorithm for maintaining a dynamic view of the “spatial

semijoin” results as time progresses. The “join” operation, however, focuses on thepresent

time, which is essentially a time point.

Jeong et al. [55] experimentally evaluated the performanceof several previously

proposed join strategies in a spatio-temporal setting. However, the spatio-temporal join

operations addressed in this work considers spatial relationships such asintersects,

containsbetween stationary objects that evolve over time, which is an orthogonal problem

to the moving object trajectory join operations we study in this chapter.

Bakalov et al. [8] address theWindow Time-Parameterized Distance Joinproblem

using symbolic representation [66]. The query operation studied in [8] returns the pairs

of objects from two spatio-temporal datasets whose distance between each other remains

below a certain threshold valueǫ throughout a time window∆t. This is a very specific

instantiation of the broad class of query operations we willcover with the JiST framework,

including the Window Trajectory Distance Join operation which cannot be answered using

the techniques proposed in [8]. In addition, the techniquesproposed in [8] are applicable

specifically to historical data, on which a static symbolic representation can be built.

Sun et al. [100] present detailed discussion on selectivityestimation of spatio-temporal

join operations, but only focus on a specific operation, namely predictive time-stamp
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distance join.

The index structure we use in this chapter is a simple extension of the STRIPES

structure presented in Chapter 2, which employs the dual transformation techniques [6,59].

The basic idea is to transform a linear trajectory defined by the equation:P =

Pre f + V(t − tre f) in (D + 1)-dimensional space (t being the additional dimension)

into a point(V,Pre f ) in 2D-dimensional dual space. Here,V = (V1,V2, · · · ,VD), and

Pre f = (Pre f1,Pre f2, · · · ,Pre fD) are the transformed velocity and reference position vectors.

Since time is monotonically increasing, the value ofPre fi is not bounded, which makes

it impossible to build an index that extends into the infinitefuture. To address this problem,

previous works have employed a two-index strategy [54, 59, 71, 83, 105]. This strategy

keeps two temporally consecutive index structures in the system, both with lifetimeL. For

example, if the first index structure is effective within time interval [0, L), then the second

index structure will be effective in interval [L, 2L). Objects are required to issue an update

everyL time units to maintain a valid entry in the index.

4.2.2 Location Privacy

Previous work on location privacy preservation methods have been classified into three

categories [67]: user-defined or system-provided policy specification [9, 13, 40], location

anonymization [9,26,34,37,39,73], and pseudonymity of user identities [13].

Existing methods for preserving locationk-Anonymity focus on processing current

locations, and are not applicable to trajectories. We definethe concept ofTrajectory

k-Anonymity, introduce a set of trajectory privacy policies, and adapt the JiST join

operations to provide a new class ofTrajectory Cloakingalgorithms.

4.3 Trajectory Join Operations

In this section we formally define the set of JiST operations.In addition, we also relate

these general definitions and previously defined spatio-temporal query operations. As a
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Table 4.1: Table of Frequently Used Notations

Notation Description
D Dimensionality of data space
R Query trajectory dataset
S Target trajectory dataset
r Trajectory object in datasetR
s Trajectory object in datasetS
r(t) D-dimensional position vector of trajectory objectr at timet
s(t) D-dimensional position vector of trajectory objectsat timet
Vr(t) D-dimensional velocity vector of trajectory objectr at timet
Vs(t) D-dimensional velocity vector of trajectory objectsat timet
w A half-open time interval, i.e., [t1, t2)
r(w) Segment of trajectoryr within intervalw
s(w) Segment of trajectoryswithin intervalw
DIST(r(t), s(t)) The Euclidean distance between trajectoriesr andsat timet
IR JiST index on datasetR
IS JiST index on datasetS
IR(t) Base index inIR with tre f = t
IS(t) Base index inIS with tre f = t
L Lifetime of dual transformed spatial indexes
IR(w) Base index inIR with [tre f , tre f + L) ∩ w , ∅
IS(w) Base index inIS with [tre f , tre f + L) ∩ w , ∅
NR A node entry in indexIR

NS A node entry in indexIS

consequence, we also show that the JiST operations are more powerful and general than

previous methods.

To facilitate the discussion, we use the notations described in Table 4.1. Also, for ease

of presentation, in the rest of our discussion, we use the terms “objects” and “trajectories”

interchangeably, since an object is uniquely associated with a trajectory and vice versa.

4.3.1 Trajectory Distance Join (TDJ)

Definition 4.1 (General Trajectory Distance Join (G-TDJ)).

Given two point trajectory datasets, the query datasetR and the target datasetS,

and a positive real number∆d, the G-TDJ operation finds, for each trajectory r∈ R, all

trajectories s∈ Ssuch that s is within distance∆d of r for some time intervals. The formal
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definition is:

R Z∆d S≡ {(r, {(s, {w})}) | r ∈ R ∧ s∈ S∧

∀t∈wDIS T(r(t), s(t)) ≤ ∆d ∧

¬∃w′⊃w∀t′∈w′DIS T(r(t′), s(t′)) ≤ ∆d}

Definition 4.1 gives the general case definition of the TDJ operation, which spans the

entire time horizon of both datasetsR andS. However, often we are only concerned with

a short time window, such as “five minutes from now”, or “yesterday between two 2 and 3

PM”. To address these types of questions, we impose a temporal restriction on G-TDJ and

introduce the Window Trajectory Distance Join (W-TDJ) operation in Definition 4.2.

Definition 4.2 (Window Trajectory Distance Join (W-TDJ)).

Given two point trajectory datasets, the query datasetR and the target datasetS, a

positive real number∆d, and a time window w, the W-TDJs operation finds, for each

trajectory r ∈ R, all trajectories s∈ Ssuch that each s is within distance∆d of r for some

duration within the time window w. It is formally defined below.

R Z∆d,w S≡ {(r, {(s, {w′})}) | r ∈ R ∧ s∈ S∧

w′ ⊆ w,∀t∈wDIS T(r(t), s(t)) ≤ ∆d∧

¬∃w′′⊃w′∀t′∈w′′DIS T(r(t′), s(t′)) ≤ ∆d}

In relational algebra, the relation between W-TDJs and G-TDJ is as follows:

R Z∆d,w S= π(r,s,w′∩w)

(

σw′∩w,φ(µ{w′}(µ{s}(R Z∆d S)))
)

In practice, the W-TDJ operation defined in Definition 4.2 is considered to be the more

commonly used operation as opposed to the G-TDJ operation, thus we provide detailed
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discussion and algorithms for W-TDJ in the rest of this chapter. For simplicity, in the rest

of our discussion we use the term TDJ to refer to the W-TDJ operation.

4.3.2 Trajectory kNN Join (TkNNJ)

Definition 4.3 (General Trajectory kNN Join (G-TkNNJ)).

Given two point trajectory datasets, the query datasetR and the target datasetS, and

a positive integer k, the G-TkNNJ operation finds, for all trajectories r∈ R, the sets of

their k Nearest Neighbors inS, and the time intervals in which the results remain valid.

Formally, this operation is defined as:

R Zk S ≡ {(r, {w, {s}})|r ∈ R ∧ {s} ⊆ S∧ ∪w =W∧ |{s}| = k∧

∀wi ,wj∈{w}wi ∩ w j = φ ∧

∀t∈w∀s∈{s}¬∃s′∈S−{s}DIS T(r(t), s′(t)) < DIS T(r(t), s(t)}

Definition 4.3 gives the general case definition of the TkNNJ operation. Similar to the

TDJ operation, the Window Trajectory kNN Join (W-TkNNJ) operation is more commonly

used and is formally presented in Definition 4.4. We refer to W-TkNNJ as TkNNJ in the

rest of this chapter.

Definition 4.4 (Window Trajectory kNN Join (W-TkNNJ)).

Given two point trajectory datasets, the query datasetR and the target datasetS, a

positive integer k, and a time window w, the W-TkNNJ operation finds, for all r∈ R, the

sets of their k Nearest Neighbors inS, and the time intervals in which the results remain

valid, throughout the time window w. The formal definition isgiven below.

R Zk,w S ≡ {(r, {w′, {s}})|r ∈ R ∧ {s} ⊆ S∧ ∪w′ = w∧

|{s}| = k∧ w′ ⊆ w∧

∀wi ,wj∈{w}wi ∩ w j = φ ∧

∀t∈w′∀s∈{s}¬∃s′∈S−{s}DIS T(r(t), s′(t)) < DIS T(r(t), s(t)}

79



In relational algebra, the relation between W-TkNNJ and G-TkNNJ is as follows:

R Zk,w S= π(r,w′∩w,s)(σw′∩w,φ(µ{w′}(µ{s}(R Zk S))))

4.3.3 Relaxations and Restrictions

There are two aspects to the relaxations and restrictions ofthe general JiST join operations:

the temporal domain and the cardinalities of the datasets inthe join operations. We provide

brief discussions for each of these aspects below.

4.3.3.1 Temporal Domain

In the temporal domain, there are two factors to consider: the extent of the query window,

i.e., the query window size|w|; and the placement of the query window, e.g, in the past or

sometime in the future.

In the case where|w| = 0, the JiST join operations become pure spatial join

operations on top of a snapshot of the spatio-temporal database. These operations include

Spatial Distance Join operations [20, 46, 49, 95] and Spatial k Nearest Neighbors Join

operations [18, 27, 112, 116]. If an additional cardinalityrestrictionk is imposed on the

result set of the join operations then the query operation isreduced to the Top-k Spatial

Join problem [117].

Depending on whether the query window refers to some time in the past or the future,

the JiST join operations evaluate historical or predictivequeries.

4.3.3.2 Data Cardinality

Consider the JiST join operations with|R| = 1, then these operations are reduced to

either time-parameterized range queries or kNN queries forsingle query points that are

applicable both in historical and predictive settings.
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4.4 JiST Join Algorithms

In this section we present the JiST join algorithms. We only discuss in detail the JiST

Window Trajectory Distance Join, which we call TDJ, and the JiST Window Trajectory

kNN Join algorithm, which is termed TkNNJ. The extension to the general join operations

defined in Sections 4.3.1 and 4.3.2 is straightforward and can be inferred by extending the

query window.

Before delving into the algorithms, we make a few assumptions about the data model

used in JiST to represent trajectories, and introduce the Time-Parameterized Distance

measure between trajectories.

4.4.1 Representing Trajectories in JiST

We make the following assumptions about object movement patterns in JiST.

Assumption 1. A moving objectr updates its motion parametersr(t) andVr(t) either

periodically or when the velocity vector change exceeds a certain threshold since last

update, together with the timestampt. The update information (Vr(t), r(t), t) is stored as a

tuple in a table or as an entry in an index.

Assumption 2. In between updates, objects move in a straight line with the same

velocity as reported in the most recent update.

Based on Assumption 1, a trajectoryr in JiST is represented as the time-ordered

sequence{(Vr(t1), r(t1), t1), (Vr(t2), r(t2), t2), · · · }.

As a result of Assumption 2, letw⊢ andw⊣ denote the lower and upper boundaries of

the time intervalw between updates, then a trajectory segmentr(w) that starts at timew⊢

and is updated at timew⊣ is represented in JiST asr(w) ≡
(

Vr(w), r(w⊢),w
)

.

Next we present the Time-Parameterized Distance measure between trajectories.
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4.4.2 Time-Parameterized Distance Between Trajectories

Definition 4.5. Using vector operations, the Time-Parameterized Distance(TPD) between

trajectories r and s at time t is defined as:

TPD(r, s, t) = DIS T
(

r(t), s(t)
)

=

√

(

r(t) − s(t)
)T
·
(

r(t) − s(t)
)

(4.1)

We observe thatTPD is not defined for two trajectories that do not have any temporal

overlap.

Next we provide measures to bound theTPD of trajectories.

Given timet, let r(w) be the segment on trajectoryr such thatt ∈ w, and lets(w′) be

the segment on trajectorys such thatt ∈ w′. We obtain the following representations of

r(t) ands(t) according to assumption 2.























r(t) ≡ r(w⊢) + Vr(w)t

s(t) ≡ s(w′⊢) + Vs(w′)t
(4.2)

Substituting 4.2 into 4.1 and re-organizing yields Equation 4.3,

TPD(r, s, t) =
√

αt2 + βt + γ (4.3)

where

α =

D
∑

d=1

(

Vr(w)d − Vs(w′)d

)2
t2

β = 2
D
∑

d=1

(

Vr(w)d − Vs(w′)d

) ((

r(w⊢)d − Vr(w)dw⊢
)

−
(

s(w′⊢)d − Vs(w′)dw′⊢
))

γ =

D
∑

d=1

((

r(w⊢)d − Vr(w)dw⊢
)

−
(

s(w′⊢)d − Vs(w′)dw′⊢
))2
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and the subscriptd indicates the dimension.

To solve for the minimum and maximum ofTPD2(r, s, t) three cases need to be

considered, which can also be observed in Figure 4.2:

(a)(Figure 4.2(a)) − β2α ∈ w′′ TPD⊢(r, s,w′′) = TPD
(

r, s,− β2α
)

,
TPD⊣(r, s,w′′) = max(TPD(r, s,w′′⊢),TPD(r, s,w′′⊣))

(b)(Figure 4.2(b)) − β2α < w′′⊢ TPD⊢(r, s,w′′) = TPD
(

r, s,w′′⊢
)

,
TPD⊣(r, s,w′′) = TPD(r, s,w′′⊣)

(c)(Figure 4.2(c)) − β2α > w′′⊣ TPD⊢(r, s,w′′) = TPD
(

r, s,w′′⊣
)

,
TPD⊣(r, s,w′′) = TPD(r, s,w′′⊢)

On the other hand, given a distance upper bound∆d, the set of time intervals{w} in

which two trajectoriesr ands are no farther than∆d from each other can be obtained by

solving ranges fort in the equation:TPD(r, s, t) ≤ ∆d.

4.4.3 Näıve Algorithms

In cases where there are no indices available on eitherR or S, we provide the Block Nested

Loops Join algorithms that employ sequential table scan andsorting techniques.

Block Nested Loops Distance Join (BNLDJ)

The Block Nested Loops Distance Join algorithm presented inAlgorithm 4.1 is fairly

straightforward. The algorithm proceeds in two stages: a scan and filter stage (lines 1 and

2), and a join stage.

The algorithm starts with a sequential scan on both tables and uses the query window
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Algorithm 4.1: BNL DJ(R,S,W,∆d)

RW ⇐ TableS can(R,W), SW ⇐ TableS can(S,W);1

MaterializeRW, SW ;2

foreach rW ⇐ TableS can(RW) do3

sW ⇐ TableS can(SW);4

foreach er ∈ rW do5

foreach es ∈ sW do6

w⇐ f ind overlap w(er .w, es.w,W);7

{w′} ⇐ solve TPD(er , es, t) ≤ ∆d for t;8

Return result (er , (es, {w∩ {w′}}));9

W as the filtering predicate. Qualifying trajectories are retrieved from the tables and

materialized as intermediate viewsRW andSW. During the join operation, trajectories are

scanned fromRW one at a time (line 4). For each trajectoryrW retrieved fromRW, another

sequential scan is performed onSW to retrieve trajectoriessW one at a time (line 5). The

trajectoriesrW andsW are then broken into segmentser andes with overlapping time

intervals, and line 8 directly applies the solution of inequality discussed in Section 4.4.2 to

obtain the results.

On the other hand, the Block Nested Loops kNN Join algorithm (BNL kJ), as is shown

in Algorithm 4.2, is slightly more involved, and we will discuss it in more details below.

Block Nested Loops kNN Join (BNL kJ)

Algorithm 4.2 presents the top level BNLkJ algorithm. The scan and filter stage on

lines 1 and 2 is exactly the same as that in BNLDJ. However, the join stage of BNLkJ

introduces two new data structures, the Temporal Priority Queue (TPQ) and the Window

Priority Queue (WPQ).

EachTPQ is “owned” by a trajectory segmenter in tableR. TheTPQ structure

consists of the following fields: 1) anowner, er , which is a trajectory segmenter in tableR

2) a priority queue that contains instances of theWPQstructure.

TheWPQstructure consists of the following fields: 1) a time interval w, of which the

lower bound serves as the key for ordering in theTPQ; 2) a priority queue; 3) amax tpd
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Algorithm 4.2: BNL kJ(R,S,W, k)

RW ⇐ TableS can(R,W), SW ⇐ TableS can(S,W);1

MaterializeRW, SW ;2

foreach rW ⇐ TableS can(RW) do3

sW ⇐ TableS can(SW);4

foreach er ∈ rW do5

TPQr ⇐ new TPQ(er );6

foreach es ∈ sW do7

w⇐ f ind overlap w(er .w, es.w,W);8

updateTPQ(TPQr ,w, es, k);9

while wpq⇐ TPQin.DEQUEUE() do re f ineResults(k, er ,wpq);10

Algorithm 4.3: updateTPQ(TPQin,w, es, k)

er ⇐ TPQin.owner;1

if notExist(wpq∈ TPQin such that Overlaps(wpq.w,w)) then2

wpq′ ⇐ new WPQ(w);3

min tpd⇐ TPD⊢(er , es,w),max tpd⇐ TPD⊣(er , es,w);4

wpq′.ENQUEUE(min tpd,max tpd, es);5

TPQin.ENQUEUE(wpq′);6

else foreachwpq∈ TPQin AND Overlaps(wpq.w,w) do7

w′[3] ⇐ {wpq.w− w,wpq.w∩ w,w− wpq.w};8

for i ⇐ 1 to 3 do9

wpq′[i] ⇐ new WPQ(w′[i]);10

for i ⇐ 2 to 3 do11

min tpd⇐ TPD⊢(er , es,w′[i]);12

max tpd⇐ TPD⊣(er , es,w′[i]);13

wpq′[i].ENQUEUE(min tpd,max tpd, es);14

while e′s⇐ wpq.DEQUEUE() do15

for i ⇐ 1 to 2 do16

min tpd⇐ TPD⊢(er , e′s,w
′[i]);17

max tpd⇐ TPD⊣(er , e′s,w
′[i]);18

if sizeo f(wpq′[i]) < k OR mintpd < wpq′[i].max tpd then19

wpq′[i].ENQUEUE(min tpd,max tpd, e′s);

for i ⇐ 1 to 3 do TPQin.ENQUEUE(wpq′[i]);20

field which serves as the pruning threshold.

Entries in the priority queue of aWPQcontain the following information: 1) trajectory

segmentes from tableS; 2) min tpd = TPD⊢(er , es,w); and 3)max tpd = TPD⊣(er , es,w). The

min tpd field is used as the sort key in the priority queue ofWPQ, and themax tpd
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Algorithm 4.4: re f ineResults(k, er,wpq)

if wpq follows Total Orderingthen Return result (er ,wpq);1

else2

TQ⇐ new PriorityQueue();3

foreach es ∈ wpqdo4

foreach e′s ∈ wpq AND e′s ≻ es do5

if e′s.min tpd > es.max tpd then break;6

else t ⇐ solve EquationTPD(es, e′s, t) = 0 for t;7

if t ∈ wpq.w then TQ.ENQUEUE(t);8

t⊢ ⇐ wpq.w⊢;9

while t ⇐ TQ.DEQUEUE() do10

wpq′ ⇐ new WPQ([t⊢, t));11

foreach es ∈ wpqdo12

min tpd⇐ TPD⊢(er , es, [t⊢, t));13

max tpd⇐ TPD⊣(er , es, [t⊢, t));14

if sizeo f(wpq′) < k OR mintpd < wpq′.max tpd then15

wpq′.ENQUEUE(min tpd,max tpd, es);16

re f ineResults(k, er ,wpq′);17

t⊢ ⇐ t ;18

field is used by theWPQto set the pruning threshold for result retrieval.

TheupdateTPQprocedure is presented in Algorithm 4.3. Intuitively,updateTPQ

proceeds in two stages: in the first stage, overlapping time intervals are identified between

the interval (w) of the incoming entryes and those (w′) of the the existingWPQs in aTPQ,

and new time intervals (w′ −w, w′ ∩w, andw−w′) together with correspondingWPQs are

generated; in the second stage, entries in the oldWPQare re-distributed among the new

WPQs with an overlapping time interval. During the re-distribution stage, themin tpd

andmax tpd fields of the entries are updated with respect to the new time intervals, and

un-qualified entries are pruned.

The re f ineResultsfunction shown in Algorithm 4.4 processes a singleWPQ, wpq.

It essentially identifies all the intersection points amongall segmentses, splits the time

intervalw of wpq into even smaller time intervals within which none of thees segments

intersect with each other, and thus follow aTotal Ordering. Finally newWPQs are

constructed for the smaller time intervals, entries inwpqare re-distributed into the new
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Figure 4.3: The JiST Time Partitioned Storage Model

WPQs and pruned at the same time.WPQs that follow the Total Ordering are then

reported together with the TPQowner er as results.

We note that based on the linear movement assumption in Section 4.4.1, the proposed

BNL DJ and BNLkJ algorithms are applicable to both historical and predictive settings,

which only differ in the algorithms in the range of query windowW to be examined.

4.4.3.1 Time Partitioned Block Nested Loops Join

The main drawback of the BNL algorithms is the sequential scanning and sorting of

large tables, which are both CPU and I/O inefficient. However, we observe that the most

common JiST join queries are window queries that only retrieve results within a time

window specified by the query. In this section we slightly modify the storage model in

JiST and introduce the more efficient Time Partitioned Block Nested Loops (TPBNL) join

algorithms.

To facilitate the TPBNL join algorithms, we introduce an in-memory hash structure

that splits time into intervals of lengthL, each corresponding to a table that stores

trajectories with time stamp falling within the interval. Figure 4.3 depicts the new data

storage model.

Using the new Time-Partitioned storage model, TPBNL algorithms are straightforward

extensions of the BNL algorithms.

The TPBNLDJ algorithm presented in Algorithm 4.5 simply identifies data tables

Rw andSw with time intervals overlapping query windowW and executes the BNLDJ
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Algorithm 4.5: TPBNLDJ(R,S,W,∆d)

{w} ⇐ f ind overlap w(R,S,W);1

foreach w ∈ {w} do BNL DJ(Rw,Sw);2

Algorithm 4.6: TPBNL kJ(R,S,W, k)

{w} ⇐ f ind overlap w(R,S,W);1

foreach w ∈ {w} do BNL kJ(Rw,Sw);2

algorithm on these tables.

Similar to TPBNL DJ, the TPBNLkJ algorithm in Algorithm 4.6 is a simple extension

of the BNL kJ algorithm, which executes the BNLkJ algorithm on partition tables ofR

andSwith overlapping time intervals.

4.4.4 Dual Index Based Algorithms

The naı̈ve algorithms presented in Section 4.4.3 are based on sequential table scan

techniques and do not make any assumptions about index structures. Often this is not

the case, since various efficient index structures have been proposed in the past to speed

up query processing on trajectory data ( [54, 65, 83, 104, 105]). In this section, we take

advantage of existing indexing techniques and propose the far more efficient JiST Dual

Index Based join algorithms.

Although the algorithms we present in this section do not rely on any specific index

structure, they do require that it provide certain features, which we discuss in the following

subsection.

4.4.4.1 Index Requirements in JiST

In order for the proposed algorithms in this section to work,we impose the following

requirements on the underlying index structure: (1) The underlying index uses a two-level

indexing scheme, with an in-memory temporal hash structureon the top level, that splits

time into intervals of lengthL, and a tree structure on the bottom level corresponding to

each time interval in the hash structure; (2) The bottom level index trees, termedbase
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Figure 4.4: The General JiST Index Structure

indexes, employ the dual transform technique [6, 59] to represent trajectories; (3) The

underlying index supports the concept of Dual-transformedMinimum Bounding Rectangle

(D-MBR) with Validity Interval (VI), which we define in the next section. Figure 4.4

depicts the general index structure assumed by the JiST framework.

The reasons for choosing a dual transform index structure are two-fold: 1) dual

transform technique enables the integration of predictiveand historical index structures

into one general indexing framework, and 2) dual transform technique enables processing

of both historical and predictive queries in a similar fashion.

4.4.4.2 Time-parameterized Bounding Regions and DistanceMetrics

In this section we first define the concept of Dual-transformed Minimum Bounding

Rectangle (D-MBR) with Validity Interval (VI) within the context of dual transformation,

then we proceed to introduce the notion of Time-parameterized Bounding Region and

the relevant distance metrics that will be used as pruning criteria in the index based join

algorithms.

Using dual transform technique, a linear trajectory segment r(w) can be represented as

a point in dual transform space coupled with the time interval w of the segment, namely,
(

Vr , r(tre f ),w
)

, wherew is called theValidity Interval (VI)of this trajectory segment.

Definition 4.6. Let {r(w)} ≡
{(

Vr , r(tre f ),w
)}

represent a set of dual transformed trajectory

segments that share the same reference time tre f . The Dual-transformed Minimum

Bounding Rectangle (D-MBR) of{r(w)} is defined asM
(

V⊢,V⊣,R(tre f )⊢,R(tre f )⊣
)

, where
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Figure 4.5: TBR Construction and Distance Metrics

V⊢ = min{Vr}, V⊣ = max{Vr}, R(tre f )⊢ = min{r(tre f )}, R(tre f )⊣ = max{r(tre f )} . And the VI of M is

defined asVI =
⋃{w}.

With the D-MBR and VI information stored in the index structure, we are able to infer

the Time-parameterized Bounding Region (T BR) for an index entry. We start with the

internal index nodes.

Let MR

(

V⊢,V⊣,R(tre f )⊢,R(tre f )⊣
)

denote the D-MBR of an internal nodeNR in dual

transformed indexIR(tre f ), and letW denote the VI ofMR, the Time-parameterized

Bounding RegionT BR(NR,W) can be inferred in the following set of equations:























R(t)⊢ = R(tre f )⊢ + V⊢(W⊢ − tre f )

R(t)⊣ = R(tre f )⊣ + V⊣(W⊣ − tre f )
(4.4)

In Equation Set 4.4 theD dimensional vectorR(t)⊢ denotes the lower bounds of

T BR(NR,W) for all t ∈W. Similarly, the vectorR(t)⊣ denotes the upper bounds.

The geometric intuition ofT BR(NR,W) is that it covers the spatial region that all

objects enclosed inNR may traverse during time intervalW. Figure 4.5(a) illustrates the

inference of a one-dimensionalT BR. As is shown, the top portion of the figure indicates

the bounding regions in dual-space, while the bottom portion of the figure shows the
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inferredT BRregions as a dark thick line segments on theR(t) axis.

Another observation that we make from Figure 4.5(a) is that since the one-dimensional

T BR is a continuous spatial interval,T BRs in multi-dimensional space take the shape of

hyper-rectangle regions. TraditionalMBR distance metrics such asMINMINDIST and

MAXMAXDIST are also applicable onT BRs.

Definition 4.7. Let T BR(NR,W) and T BR(NS,W) be two inferred time-parameterized

bounding regions across a time interval W for index nodes NR and NS, then the metric

MINMINDIST(T BR(NR,W), T BR(NS,W)) is defined as the minimum distance between any

point withinT BR(NR,W) and any point withinT BR(NS,W) over time interval W.

TheMINMINDIST metric betweenT BRs gives the lower bound of the distance between

any object withinNR and any object withinNS, during time intervalW.

Definition 4.8. Let T BR(NR,W) and T BR(NS,W) be two inferred time-parametereized

bounding regions across a time intervalW for index nodes NR and NS, then the metric

MAXMAXDIST(T BR(NR,W), T BR(NS,W)) is defined as the maximum distance between any

point withinT BR(NR,W) and any point withinT BR(NS,W)

The MAXMAXDIST metric betweenT BRs gives the upper bound of the distance

between any object withinNR and any object withinNS, during time intervalW

The computation of theMINMINDIST andMAXMAXDIST metrics betweenT BRs is

exactly the same as that between traditionalMBRs( [28]), which we will omit to avoid

repetition.

For a trajectory segmentr(w), T BR(r,w) is simply theMBR that bounds the trajectory

within time intervalw.

Figure 4.5 shows exampleT BRs of two internal nodesNR andNS, and a trajectoryr

for a time intervalw. TheMINMINDIST andMAXMAXDIST metrics betweenT BR(NR,w)

andT BR(NS,w) are also shown in the figure.
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Since TBRs are defined over a time intervalW, the definition ofTPD at an exact time

point t is not well-defined. However, the lower and upper bounds ofTPD between TBRs

can be determined as follows:

TPD⊢ (T BR(NR,W),T BR(NS,W)) = MINMINDIS T (T BR(NR,W),T BR(NS,W)), and

TPD⊣ (T BR(NR,W),T BR(NS,W)) = MAXMAXDIS T(T BR(NR,W),T BR(NS,W)) .

Next we proceed to present the JiST Dual Index Based Join algorithms, JiST TDJ and

JiST TkNNJ.

4.4.4.3 JiST TDJ Algorithm

As is presented in Algorithm 4.7, JiST TDJ between two JiST indexesIR (the querying

index) andIS (the target index) proceeds in two steps: first the overlapping time intervals

{w} of the two indexes and the query windowW are gathered, then for eachw ∈ {w}, the

underlying spatial indexesIR(w) andIS(w) are retrieved and Distance Join algorithms are

used to traverse the two indexes and proceed with the join operation based on distance

metrics onT BRs introduced in the previous section.

A variety of methods are applicable to the index traversal. However, previous

research [46,49] has concluded thatbreadth-first incremental traversal methodproves the

most efficient in Distance Join processing, therefore we will use this method in our JiST

TDJ algorithm presented in Algorithm 4.7.

During the iterations of the Distance Join operation, a global priority queueQ is used

for ordering intermediate join entries. These entries consist of three fields: 1)er , an

entry from indexIR(w); 2) es, an entry from indexIS(w); and 3)min tpd, computed as

TPD⊢ (T BR(er ,w),T BR(es,w)) The intermediate join entries are ordered by theirmin tpd

field insideQ and are pruned ifmin tpd > ∆d before they are enqueued inQ.

Intermediate join entries inQ are expanded and processed in abi-directional fashion,

i.e., if both entrieser andes are internal nodes, they are both expanded and entries within

them are processed in pairs recursively. If only one of theseentries is an internal node,
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Algorithm 4.7: JiS T TDJ(IR, IS,W,∆d)

{w} ⇐ f ind overlap w(IR, IS,W);1

foreach w ∈ {w} do2

Q⇐ new PriorityQueue();3

Q.ENQUEUE(IR(w).root, IS(w).root);4

while QEntry⇐ Q.DEQUEUE() do5

if QEntry.er is OBJECT and QEntry.es is OBJECTthen6

w′ ⇐ f ind overlap w(er .VI, es.VI,w);7

{w′′} ⇐ solve TPD(er , es, t) ≤ ∆d for t;8

Return result (er , (es, {{w′′} ∩w′}));9

else if QEntry.er is OBJECTthen10

foreach e′s ∈ es do11

w′ ⇐ f ind overlap w(er .VI, e′s.VI,w);12

if TPD⊢(T BR(er ,w′),T BR(es′ ,w′)) ≤ ∆d then13

Q.ENQUEUE(er , e′s)14

else15

foreach e′r ∈ er , e′s ∈ es do16

w′ ⇐ f ind overlap w(e′r .VI, e′s.VI,w);17

if TPD⊢(T BR(er ′ ,w′),T BR(es′ ,w′)) ≤ ∆d then18

Q.ENQUEUE(e′r , e
′
s)19

then it is expanded and its child entries are paired up with the other entry and processed.

The steps described above are called the filtering stage of the JiST TDJ algorithm.

When both entrieser andes are objects, the inequality discussed in Section 4.4.2 is

solved and corresponding time intervals, if any, are reported together with the pair of

objects as results. This constitutes the refinement stage.

4.4.4.4 JiST TkNNJ Join Algorithm

In Chapter 3 we have drawn the conclusion that thedepth-first bi-directionalmethod yields

the best performance in evaluating theAkNN operation, attributed to its low memory

consumption and fast descent down both the querying and target indexes. We recognize

that the JiST TkNNJ Join problem is essentially a complex time-parameterized AkNN

problem, so in our algorithms we adopt this method for traversing the join indexes and

expanding intermediate entries during the filtering stage.
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Algorithm 4.8: JiS T TkNNJ(IR, IS,W, k)

{w} ⇐ f ind overlap w(IR, IS,W);1

foreach w ∈ {w} do2

foreach er ∈ IR(w).root do3

TPQr ⇐ new TPQ(er );4

foreach es ∈ IS(w).root do5

Find overlapping time intervalw′ between ;6

w′ ⇐ f ind overlap w(er .VI, es.VI,w);7

updateTPQ(TPQr ,w′, es, k);8

TPkNN(TPQr , k);9

Algorithm 4.9: TPkNN(TPQin , k)

er ⇐ TPQin.owner;1

if er is OBJECTthen2

while wpq= TPQin.DEQUEUE() do3

if wpq contains all objectsthen re f ineResults(k, er ,wpq);4

else whilees = wpq.DEQUEUE() do5

w⇐ f ind overlap w(er .VI, es.VI);6

updateTPQ(TPQin ,w, es, k);7

else foreache′r ∈ er do8

TPQr ′ ⇐ new TPQ(e′r );9

foreach wpq∈ TPQin do10

foreach es ∈ wpqdo11

if es is OBJECTthen12

w⇐ f ind overlap w(e′r .VI, es.VI);13

updateTPQ(TPQr ′ ,w, es, k);14

else foreache′s ∈ es do15

w⇐ f ind overlap w(e′r .VI, e′s.VI);16

updateTPQ(TPQr ′ ,w, e′s, k);17

TPkNN(TPQr ′ , k);18

Algorithm 4.8 presents the top-level JiST TkNNJ algorithm. The TkNNJ algorithm

also makes use of the data structuresTPQ andWPQ introduced in Section 4.4.3 for

intermediate filtering and result retrieval. Similar to theJiST TDJ algorithm, the TkNNJ

algorithm also proceeds in two phases. In the first phase the overlapping time intervals

betweenIR and IS are gathered and organized in an ordered set{w}. After that, the

second phase is lauched and the dual transformed indexesIR(w) and IS(w) are retrieved
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for eachw ∈ {w}, their root nodes are expandedbi-directionally. At this stage,TPQs are

constructed for each entryer in the root node ofIR(w) and are updated with entrieses from

the root node ofIS(w)

We show theTPkNNprocedure in Algorithm 4.9. This is the filtering stage of the

JiST TkNNJ algorithm.TPkNNrecursively traverses the indexesIR(w) andIS(w), expands

internal nodes from both indexes, constructs newTPQs for each newly expanded entry

from IR(w), and updates these newTPQs with entries expanded fromIS(w). The procedure

stops when all priority queue entries of allWPQs are objects fromIS(w) at which point the

re f ineResultsfunction is invoked, which indicates the beginning of the refinement stage

of the algorithm.

We note that attributed to the nature of the dual transform technique,the JiST TDJ and

TkNNJ algorithms are applicable to both historical and predictive settings.

4.5 Using Indices in JiST

There currently exist several choices for the index structure that meet the requirements

outlined in Section 4.4.4.1: theBBx-index [65], STRIPES (Chapter 2), and the TPR*-

tree [105]. Although the adaptation to the JiST framework isfairly straightforward for

all the structures above, we chose STRIPES as the base index in our implementation, for

the following reasons: (1) In Chapter 2 we have shown that STRIPES is more efficient

than TPR*-tree in both updates and query support; (2) TheBBx-index is built on top of the

Bx-tree [54], which uses space-filling curves. This adds to thedifficulty of adapting the

dual transformMBR; (3) The STRIPES index combines the dual-transform technique with

the multi-dimensional quadtree structure, which naturally lends to the ease of adaptation

to the JiST framework.

Since the initial design of the STRIPES index structure was targeted specifically

at predictive query processing, it fits perfectly into the predictive setting of the JiST

framework. However, in order for STRIPES to process historical trajectory data, index
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entries in STRIPES need to be augmented with the VI information.

Furthermore, we observe that thegrid information in STRIPES does not provide the

tight bounds that are required by the JiST join algorithms for efficient filtering, thus it is

necessary to add D-MBR information to STRIPES index entries.

In the following we discuss the adaptation of STRIPES to the JiST framework, which

consists of two aspects, the addition of the in-memory temporal hash structure, and the

augmentation and maintenance of index entries with D-MBR and VI.

Adding the Temporal Hash: In accordance with the index requirements in JiST

(Section 4.4.4.1, STRIPES forms the base indexes on the bottom of the two-level JiST

index. On the top level, time is split into intervals of length L, each corresponding to the

lifetime of the underlying STRIPES structure (Figure 4.4).An in-memory hash structure

is maintained for identifying the base indexes associated with the hashed time intervals.

Given a specific time instancet ∈ [tre f i, tre f i + L), denoting system initialization time ast0,

the hash functionH(t) = ⌊ (t−t0)
L ⌋ − 1 is used to identify the underlying STRIPES structure

corresponding to time interval [tre f i, tre f i + L). As is shown in Figure 4.4, the two-index

strategy in STRIPES is retained in JiST for current/predictive base indexes.

Augmenting and Maintaining Index Entries: Augmenting index entries in STRIPES

is straightforward. For a leaf index entry in STRIPES, whichis a point in the dual

transformed space, VI is simply the time interval it remainswithin a leaf node, and

D-MBR is reduced to the point itself. On the other hand, the D-MBR and VI of an internal

index entry in STRIPES follow their definitions in a straightforward fashion and represent

the union of the corresponding measure of all enclosed childentries. Unlike the updates in

STRIPES which result in the deletion of old entries and insertion of new entries, an update

in JiST is executed as an update of the old entry (including the update of D-MBR and VI)

followed by the insertion of the new entry.
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4.6 Trajectory Privacy Preservation

In this section we present the usage scenario of the JiST operations for trajectory privacy

preservation.

4.6.1 Trajectory k-Anonymity

A location r(t) is k-Anonymous if and only if it is indistinguishable fromk − 1 other

locations [39]. Locationk-Anonymity is also referred to asSpatial k-Anonymity[37],

so we use these terms interchangeably. The concept of spatial k-Anonymity has been

commonly used as a main factor in specifying location privacy policies. However,

spatialk-Anonymity is applicable only to snapshots of user locations [37], whereas a

trajectory is usually represented as a time-stamped seriesof locations. Consequently,

spatialk-Anonymity can be used as a building block towards the concept of trajectory

k-Anonymity, which must take into consideration the effect of constant location change of

mobile objects with the evolution of time, as is presented inDefinition 4.9.

Definition 4.9 (Full Trajectory k-Anonymity).

A trajectory r is k-Anonymous if and only if, at any time pointt within the lifetime of r,

locationr(t) is k-Anonymous.

For simplicity, Figure 4.6(a) illustrates a one-dimensional example of Full Trajectory

k-Anonymity. Four objectsr1...r4 are shown in the figure. Objectsr1, r2, andr4 start at

time t = 1, at locationsr1(1) = 2, r2(1) = 4, andr4(1) = 6, with velocitiesvr1(1) = 0.5,

vr2 = −0.5, andvr4 = −1.5, respectively. Objectr3 enters the system at timet = 2, at

locationr2(2) = 1, with velocityvr3 = 2. The shaded regionsa, b, c, andd are derived from

the self-TkNNJ result set for objectr1 and compose thek-Anonymity region for trajectory

r1 from time 1 to time 5. Details of deriving trajectoryk-Anonymity regions from the

TkNNJ result set is discussed in Subsection 4.6.3. Note thatno k-Anonymity region is

shown forr1 between time 5 and time 6, ask-Anonymity is undefined forr1 during this
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Figure 4.6: Trajectoryk-Anonymity with TkNNJ

time period. As a result, as per the definition of Full Trajectory k-Anonymity , trajectory

r1 in its entirety cannot be considered ask-Anonymous.

In reality, however, the lifetime requirement of Full Trajectory k-Anonymity is often

overly stringent and usually impossible to achieve. Furthermore, most of the time LBS

applications only require access to partial trajectory data over certain time intervals. It is

therefore desirable to define trajectoryk-Anonymity over a temporal window, which is

presented in Definition 4.10

Definition 4.10(Window Trajectory k-Anonymity).

A trajectory r is k-Anonymous with respect to time window w ifand only if, at any time

point t ∈ w, locationr(t) is k-Anonymous.

An example ofWindow Trajectory k-Anonymityis also shown in Figure 4.6(a), where

the temporal windoww is set between time 1 and time 5, within which thek-Anonymity

region for trajectoryr1 is well defined and is shown as the composite shaded region. Thus

r1 is consideredk-Anonymous within time windoww. We will use the temporal window

w = [1, 5) in all the examples for the rest of this section.

The concept ofWindow Trajectory k-Anonymityallows piece-wise disclosure of

trajectory data with certain privacy guarantees within temporal windows in whichWindow
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Trajectory k-Anonymityis preserved.

4.6.2 Trajectory Privacy Policies

Similar to location privacy, there are two dimensions concerning the specification of

trajectory privacy policies, namely thescopeof the policies and the tradeoff between

privacy preservation and quality of service (QoS) of LBS applications. The scope of the

privacy policies refers to whether the privacy policies arespecified by individual users or

are applicable to the entire system. The tradeoff between privacy preservation and LBS

QoS is due to users’ intrinsic desire to receive as high-resolution information as possible

from the LBS without divulging too much of their own information.

Set in the context of trajectory data publication, we focus on system-wide privacy

policies and consider three constraints in the specification of trajectory privacy policies:

(1) the time windoww within which the trajectory data is to be disclosed; (2) the trajectory

k-Anonymity constraintk; and (3) the maximum spatial cloaking region constraint∆dmax,

which dictates that the maximum distance between the targettrajectory and the rest of

trajectories in thek-Anonymity region must not exceed∆dmax at any time point within

time windoww.

The trajectoryk-Anonymity constraint parameterk specifies the level of privacy to be

provided by the policy. Generally speaking, larger value ofk indicates more uncertainty

in pinpointing a specific trajectory, thus providing higherlevel of privacy. There are

exceptions, however, to this general rule of thumb, e.g., when allk objects reside in exactly

the same location for a shared period of timew, trajectoryk-Anonymity alone will fail

to prevent the identification of a specific trajectory withintime windoww. We provide

heuristics in presentingk-Anonymous trajectories in Subsection 4.6.4 to alleviate this

problem.

On the other hand, the need to comply with the trajectoryk-Anonymity constraint

may result in overly largek-Anonymity regions which indicates lower resolution of the
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trajectory information provided by the LBS application, and as a result, QoS of the LBS

applications will often suffer. In the past, this conflict has usually been addressed by

introducing spatial constraints in the form of rectangularregions [9, 73]. However, we

argue that in the context of trajectory privacy preservation, a single distance constraint has

the following advantages over rectangular regions:

• Simplicity: from the point of view of the LBS providers and users, a single distance

constraint is much simpler to represent than multi-dimensional rectangular regions;

• Specificity: the specification of a single distance constraint in itself has multi-

dimensional implications, as it is usually a well-defined function of spatial and temporal

coordinates, which has been shown in Section 4.4;

• Practicality: intuitively it is more sensible and much simpler for mobile users to dictate

their privacy policies in terms of a circular region centered at their current locations, e.g.,

“I would like to keep my location 10-Anonymous within 1 mile of my current location.”,

as opposed to having to specify terms such as “1 mile north andsouth to my current

location, and 1 mile east and west to my current location”.

In the rest of this section we use the three tuple (w, k,∆dmax) to represent trajectory

privacy policy, wherew andk are mandatory and together they specify the time window

in which Window Trajectoryk-Anonymity must hold. The distance constraint∆dmax, on

the other hand, indicates the QoS guarantee level and is set to NULL when QoS is not a

concern.

4.6.3 Trajectory Cloaking with JiST

Trajectory Cloakingrefers to the process of determining the time-parameterized spatial

region(s) for a trajectory such that the requirements imposed by a set of privacy policies

are fulfilled.

As opposed to location cloaking algorithms [9, 26, 34, 35, 37, 39, 57, 73] that are
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designed to find the cloaking regions for single locations ona snapshot of user locations

at a specific time point, trajectory cloaking algorithms need to take into consideration

both spatial and temporal domains and compute the trajectory cloaking regions (TCRs)

of trajectories. As we will show in later subsections, the TCRs are derived from sets of

trajectory segments that conform to the trajectory privacypolicy with respect to a given

trajectoryr for certain periods of time. These sets of trajectory segments are called the

Trajectory Cloaking Set (TCS) with respect tor, and is defined as follows.

Definition 4.11(Trajectory Cloaking Set).

The Trajectory Cloaking Set of a trajectory r within a time window w, expressed as

TCSr = {(w′, {r ′}, n)}, is defined as a set of time-ordered tuples each composed of a time

window w′ ⊂ w and a set of trajectory segments{r ′} of cardinality n satisfying certain

trajectory privacy policy specification with respect to r within time window w′.

Next we show that the TkNNJ and TDJ operations provided by theJiST framework fit

naturally in the task of trajectory cloaking and require minimum post-processing efforts.

4.6.3.1 TkNNJ Cloaking

Recall that in Section 4.3, the result set of the TkNNJ for a particular trajectoryr is

presented as the tuple (r, {w′, {s}}), which is essentially the TCS ofr. Therefore the

adaptation of the result set obtained from the TkNNJ operation to achieve trajectory

k-Anonymity for a trajectoryr is straightforward.

Assertion4.1. For trajectory r, its result set from the operation JiSTTkNNJ(IR, IR,w, k)

automatically satisfiesWindow Trajectoryk-Anonymity with constraints specified by

privacy policy(w, k,NULL).

Proof. By the definition of TkNNJ, the result set forr contains, at any time pointt ∈ w,

a set ofk nearest neighbors for objectr, includingr itself, due to the fact that the

JiST TkNNJ(IR, IR,w, k) operation indicates a self-join of the index on trajectorydataR.
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Algorithm 4.10: Trim Cloaking w(r,w, {r ′},∆dmax)

w′ ⇐ w;1

foreach r′ ∈ {r′} do2

w′′ ⇐ solve TPD(r, r’, t)≤ ∆dmax for range oft;3

w′ ⇐ w′ ∩ w′′;4

Returnw′;5

Thus, at any time pointt ∈ w, locationk-Anonymity holds forr(t), which by the definition

of Window Trajectory k-Anonymity, suggests thatWindow Trajectory k-Anonymitywith

constraint parameters (w, k) must hold forr. �

Assertion 4.1 implies that if the QoS constraint∆dmax is not required, i.e.∆dmax =

NULL in the privacy policy, then the JiST TkNNJ operation can be directly applied on a

trajectory data setR to produce TCS for all trajectories, from which trajectoryk-Anonymity

regions can be easily derived. An example of TCRs on one-dimensional trajectory data

derived directly from the result set of TkNNJ is shown in Figure 4.6(a). Following

Algorithm 4.8, one can obtain the result set forr1 from operation JiSTTkNNJ(IR, IR,

[1, 5), 3). As can be observed from Figure 4.6(a), besidesr1 itself, trajectoriesr2 andr4

remain in the result set from time 1 to 2, thenr3 replacesr4 from time 2 to slightly past

time 4, and is then disconnected from the system and replacedby r4 until time 5. Note that

TCRsa, b, c, andd shown in the figure correspond to time intervals in which the result set

for r1 remains un-changed, and the spatial boundaries are simply derived by connecting

the MBR of locations at the beginning and the end of the time interval, which can be easily

obtained from the JiSTTkNNJ result set.

When the privacy policy is augmented with the additional QoSconstraint∆dmax, i.e.

∆dmax , NULL, however, additional filtering method is required to ensurethat both

k-Anonymity and QoS constraints are satisfied. Since the result set obtained from the

JiST TkNNJ algorithm is by itself sliced into continuous sub-windows{w′} of w, within

each of whichWindow Trajectory k-Anonymityis ensured forr, the filtering algorithm

needs only trim each of the sub-windowsw′, if necessary, to a smaller sub-windoww′′, in
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Algorithm 4.11: TDJ post process(r, {(r ′, {w′})})
Trajectory Cloaking Settcs⇐ ∅;1

foreach (r′, {w′}) ∈ {(r′, {w′})} do2

foreach w′ ∈ {w′} do S canMergeS plit((w′, r′), tcs);3

Returntcs;4

which the TPD between all trajectoriesr ′ in the result set (r itself included) andr is no

greater than∆dmax. We call this procedureTrim Cloaking w and show it in Algorithm 4.10.

Figure 4.6(b) shows the TCRs forr1 after applying theTrim Cloakingw algorithm with

the additional QoS constraint∆dmax= 2 to each of the sub-windows of the result set shown

in Figure 4.6(a). The cloaking regiona from Figure 4.6(a) is filtered away, and TCRc

from Figure 4.6(a) is reduced in window size and shown in Figure 4.6(b) asc′.

4.6.3.2 TDJ Cloaking

The TDJ operation fits naturally into Trajectory Cloaking incases where QoS constraint

must be considered, i.e.∆dmax , NULL in the three tuple trajectory privacy policy

(w, k,∆dmax), since it retrieves all the trajectory segments from the target datasetS, for all

trajectoriesr in the query datasetR, given a distance constraint∆d and a time windoww.

Similar to TkNNJ, a TDJ operation can be performed on the trajectory datasetR against

itself and the returned result set can be processed to suit the needs of trajectory cloaking.

However, TDJ result set processing for the purpose of trajectory cloaking differs slightly

from that of TkNNJ. We recall from Section 4.3 that the TDJ result set for a trajectoryr is

presented as the tuple (r, {(s, {w′})}), which returns the trajectory segments from the target

dataset that satisfy the distance constraint together withthe set of time windows in which

the distance constraint is satisfied. Trajectory cloaking,on the other hand, requires that

the TCRs be arranged in ascending order of the time windows, in each of which Window

Trajectoryk-Anonymity must hold. Consequently, the result set produced by TDJ must be

processed to produce the TCS before it can be useful in assembling TCRs.

The TDJ postprocessprocedure shown in Algorithm 4.11 illustrates the post
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Algorithm 4.12: S canMergeS plit((w′, r ′), tcs)

t1⇐ w′⊢; t2⇐ w′⊣;1

(w′′, {r′′}, n)⇐ scanfirst(tcs);2

if t2 < w′⊣ then insert((w′, r′, 1), tcs);3

else4

while w′′⊣ < t1 do (w′′, {r′′})⇐ scannext(tcs);5

t′ ⇐ t1;6

while w′′⊢ < t2 do7

if w′′⊢ > t′ then8

insert(([t′ ,w′′⊢), r′, 1), tcs);9

t′ ⇐ w′′⊢;10

else11

insert(([w′′⊢, t′), {r′′}, n), tcs);12

insert(([t′ ,w′′⊣), {r′′} ∪ {r′}, n+ 1), tcs);13

t′ ⇐ w′′⊣;14

(w′′, {r′′})⇐ scannext(tcs);15

insert(([t′, t2), {r′}, 1), tcs);16

Return;17

processing phase discussed above. To produce the TCS from the TDJ result set,

the TDJ postprocessalgorithm performs a linear scan of the TDJ result set, merges

overlapping time windows, and splits non-overlapping ones, keeping track of the trajectory

segments within the newly produced time windows at the same time. This sub-procedure

is called ScanMergeSplit and is presented in Algorithm 4.12.

We observe that the TCS for a trajectory obtained from theTDJ postprocessalgorithm

automatically guarantees the satisfaction of the QoS constraint, due to the nature of the

TDJ operation. To fulfill the Trajectoryk-Anonymity requirement, we simply need impose

an additional cardinality constraint on the trajectory segment set{r ′} within each of the

time windows, such thatn ≥ k, and filter out the time windows that do not meet this

requirement.

The construction of TCRs from the TCS obtained from theTDJ postprocessalgorithm

is exactly the same as that discussed in the previous sectionand we omit the discussion to

avoid redundancy.

Figure 4.7 shows the example TCRs constructed from the result set of the TDJ
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Figure 4.7: Trajectoryk-Anonymity with TDJ

operation. Figure 4.7(a) shows the TCRs with only the QoS constraint∆dmax = 2, in

which four TCRs,a, b, c, andd are presented. In Figure 4.7(b), however, thek-Anonymity

constraint is considered withk = 3, and as a result TCRsa andd are filtered out because

during these time windows the cardinality constraint on theTCS is not met.

4.6.4 Presentingk-Anonymous Trajectories

TCRs derived by the JiST cloaking procedures described in the above subsections satisfy

theWindow Trajectory k-Anonymityspecified by privacy policy (w, k,∆dmax). However,

several potential vulnerabilities exist. For example, in Figure 4.6(a) where TCRs without

QoS constraint are shown, TCRsa andb, c andd are disconnected, which reveals the

exact locations of all the trajectories in the TCRs at time window boundaries, as well as

the trajectory segments bounding the TCRs. This vulnerability may be less pronounced

in two-dimensional trajectories, due to higher uncertainty introduced by two-dimensional

MBRs, but it poses a potential threat to the privacy of the disclosed trajectories nontheless.

The second vulnerability is manifested at trajectory junction points, where all trajectory

segments in the TCRs intersect at one single point, as is shown in Figure 4.6(b) at time 3,

where the locations of all trajectory segments in TCRsb andc′ are revealed.

To reduce these vulnerabilities, we introduce a two-phase heuristic for further
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Figure 4.8: Presentingk-Anonymous Trajectories

processing of TCRs before disclosure: theStitchphase, and theEnlargephase.

Stitch: In the Stitch phase, we union the MBRs between time contiguous TCRs, e.g., the

MBR of TCR a and the MBR of TCRb at time 2 in Figure 4.6(a), and form a larger MBR

shared between the two TCRs, and in doing so stitch the two TCRs together. Figure 4.8(a)

shows the TCRs forr1 after the Stitch phase is applied to the TCRs shown in Figure 4.6.

Enlarge: In the Enlarge phase we take the TCRs produced by the Stitch phase, identify

time contiguous TCRs that share point MBRs, connect the start MBR of the first TCR

and the end MBR of the second TCR by their corresponding vertices, obtain intersection

points between the line segments connecting the MBR vertices and the plane where the

point MBR resides, and form a new MBR enclosing all intersection points and the point

MBR itself, thus enlarging the point MBR to the new MBR. Figure 4.8(b) shows the TCRs

for r1 after the Enlarge phase is applied to the TCRs shown in Figure4.8(a).

We note that the Stitch and Enlarge heuristic does not resultin TCRs that violate the

privacy policy, because both Stitch and Enlarge phases enlarge the TCRs within the QoS

constraint. Proof of this is straightforward and is omitted.
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Table 4.2: Experiment Parameters

Parameter Value
Page Size 4K
Buffer Pool 512K
Dataset 50K, 100K, 150K, 200K, 250K
Update Interval 60, 120, 180, 240
Index Lifetime 120
Horizon 240
Experiment Duration 600
Query Window 40, 80,120, 160, 200
Number of NNs 10, 20,30, 40, 50
Spatial Extent 1000× units
Join Distance 10, 50,100, 150, 200 units

4.7 Experimental Evaluations

In this section, we present results from a comprehensive experimental evaluation and

evaluate the effectiveness of the time-parameterized join algorithms thatwe have.

4.7.1 Implementation Details

We implemented both the JiST index structure and the join algorithms on top the SHORE

storage manager [22]. In the implementation of the JiST index, we followed the methods

proposed in Chapter 2, with the extensions discussed in Section 4.5.

We show the experimental results in terms of execution time that consists of I/O time

and CPU time. Results for queries presented in this section consist of both filtering step

and refinement step, for both TDJ and TkNNJ query operations.For all the numbers

shown in this section, five measurements were taken and the average of the middle three

values is presented.

All experiments were conducted on a 2.0 GHz Intel Xeon dual processor workstation

with 1 GB physical memory.
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4.7.2 Experimental Settings

To keep the experiments manageable, we set the page size of the storage manager to

4K and the buffer pool to 128 pages. We have also experimented with a wide range of

buffer pool and page sizes, the results are consistent with thosepresented in the following

sections, and in the interest of space we have omitted these results.

Due to the lack of real world moving object data, we used the well-know GSTD

data generator [107] to produce synthetic moving data. Thisdata generator allows us to

systematically generate data with various parameters and to explore the effect of these

parameters on the performance of our algorithms. In most of the experiments we simulated

moving objects within a 1, 000× 1, 000 space domain, traveling with maximum speeds of

0.75, 1, or 3 per minute. One can imagine the unit of the space being a mile and the unit

speed of the moving objects being miles per minute. Initially each object is randomlly

assigned a location, a speed within one of the three speed groups, and a moving direction.

After that, the objects keep moving at the assigned speed until the next update, at which

time the location information is retained, but a different speed and direction are assigned

randomly.

Using the GSTD data generator, we were able to adjust variousparameter settings

for the experiments. We generated synthetic datasets of various cardinalities and update

intervals, as shown in Table 4.2. Table 4.2 also gives a list of query parameters used

in the experiments. Parameter values shown in bold are default values. Since previous

research [54] has studied the effect of theIndex Lifetimeparameter in the context of dual

transformed index structure, we fix the value of this parameter at 120 time units to avoid

redundant evaluations. Time windows of both historical andpredictive join queries in the

experiments are also generated randomly.
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Figure 4.9: Comparing with Naı̈ve Algorithms: Historical

4.7.3 Comparing with Näıve Algorithms

In the first set of experiments we compare the dual index basedjoin algorithms with the

naı̈ve BNL and TPBNL algorithms presented in Section 4.4.3.

We performed the comparison on various combinations of parameter settings, for both

historical and predictive queries. In the interest of space, we only show in Figure 4.9 the

results for historical queries from running the experiments at default settings. Other results

are consistent with those presented here.

As is expected, the dual index based algorithms outperform their naı̈ve counterparts

by orders of magnitude, due to the effectiveness of synchronized index traversal and

intermediate filtering.

In the rest of this section we will focus mainly on the performance evaluation of the

dual index based algorithms.

4.7.4 Evaluating Dual Index Based Algorithms

In this section we focus our discussion on the performance ofthe proposed dual index

based join algorithms. We make assessment on TDJ and TPkNNJ algorithms individually

on their distinct characteristics and jointly on their shared attributes.
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Figure 4.10: TDJ−Effect of Join Distance∆d

4.7.4.1 Effect of∆d in TDJ

There are three key factors to the TDJ operation: the Join Distance∆d, the Query Window

w, and workload mix. Since the temporal parameterw and the effect of workload mix are

common to both the TDJ operation and the TkNNJ operation, we leave them to a joint

discussion in Sections 4.7.4.3 and 4.7.4.4.

To examine the effect of∆d on TDJ algorithm, we performed a series of experiments,

in which a set of TDJ queries were issued on two datasets each with 100K moving objects.

The TDJ parameter∆d was set to a fraction of the extent of the spatial domain, namely

1, 000. We varied∆d from 0.01, or 10 spatial units, to 0.2, or 200 spatial units. Both

historical and predictive queries were examined, and the execution time per query is

measured and shown on they axis in Figure 4.10. A clear linear correlation between query

execution time and∆d can be observed, for both historical and predictive queries, both in

terms of I/O and CPU time.

4.7.4.2 Effect ofk in TkNNJ

To assess the effect of k on the performance of TkNNJ algorithm, we conducted the

following experiments. Fixing the datasets at 100K, and the query window at 120 time

units, we performed both historical and predictive TkNNJ queries, each withk value

varying at 10, 20, 30, 40, and 50. The results are depicted in Figure 4.11, where they axis
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Figure 4.11: TkNNJ−Effect ofk

shows the average execution time of a single query.

We draw two conclusions from Figure 4.11. For both historical and predictive

queries, as the value ofk increases, so does the execution time of TkNNJ query, albeit

in a sub-linear fashion. This can be attributed to effectiveness of the filtering step in

the updateTPQalgorithm (Algorithm 4.3). The second observation to be made is

that the sub-linear correlation between query execution time and value ofk is slightly

more pronounced in predictive queries, for reasons we will discuss in more detail in

Section 4.7.4.5.

4.7.4.3 Effect of Query Window Size

Both TDJ and TkNNJ queries take a common parameter, i.e., thequery window. In this

section we examine the effect of the query window size on query performance.

The default 100K dataset size is used in this experiment. We varied the query window

size as shown in Table 4.2 for both TDJ and TkNNJ queries, eachin turn consist of both

historical and predictive queries. The results are shown inFigures 4.12 and 4.13.

As can be observed from these figures, larger query window results in longer query

execution time for both TDJ and TkNNJ queries, in both historical and predictive settings.

The reason for this trend is intuitive: the larger the query window, the more objects are

likely to be active within that time window, and thus the morecomputation is likely to be
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Figure 4.13: Effect of Query Window Sizew: TkNNJ

incurred by the queries.

Furthermore, one can also observe that the extension of the query window has a more

dramatic effect on TkNNJ than on TDJ. This phenomenon can be attributed tothe fact that

TkNNJ query filtering and refinement procedures are more complicated, as can be inferred

from the TkNNJ algorithms presented in Section 4.4. The shrinking or expansion in query

window size inevitably induces the decrease or increase in the number of WPQs that need

to be processed during the query process. This results in a more profound effect of query

window size on TkNNJ query than on TDJ query.

A third observation to be made here is the jump in execution time that corresponds

to the change in window size from 80 to 120 for both TDJ (Figure4.12(a)) and TkNNJ
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Figure 4.14: Effect of Workload Mix: TDJ

(Figure 4.13(a)) query operations. This jump is specific to historical queries, and is due

to the fact that the lifetime of the base indexes in JiST is setto 120 time units, and the

randomly generated historical queries mostly have an upperbound very close to the end

of an index lifetime. For this reason, queries with window size 40 or 80 time units span

only one single historical index structure most of the time,whereas queries with window

size greater than 120 time units almost always straddle two index structures. This results

in approximately 2X increase in query execution time when going from a window size

of 40 or 80 to a window size of 120 and above, as can be observed from Figures 4.12(a)

and 4.13(a).

However, the effect observed above is not applicable in the case of predictive queries,

for reasons we will further discuss in Sub-section 4.7.4.5.

4.7.4.4 Effect of Workload Mix

In this section we examine the effect of various workload mixes for both TDJ and TkNNJ

operations.

We conducted two sets of experiments where we gradually increase the size of both

the outer relationR and the inner relationS. However, in the first set of experiments

we keep the size of the inner relation to be either the same as the outer relation (for the

113



default 100K dataset), or slightly larger. In the second set of experiments we reverse the

trend and keep the size of the inner relation to be slightly smaller. We experimented with

a wide range of dataset sizes and obtained consistent results. In the interest of space, we

presents the results for the mix of four dataset cardinalities: 50K, 100K, 150K, and 200K

in Figures 4.14 and 4.15.

We observe from Figures 4.14 and 4.15 that, for both TDJ and TkNNJ operations, as

the size of the outer relation increases, both CPU and I/O times for the operation increase

in a linear fashion (observe the bars on the 50× 100, 100× 100, and 150× 100 markers).

Note that in Figures 4.14 and 4.15 the numbers on the top of themarkers indicate the sizes

of the outer relations. Similar trend also holds for the sizeof the inner relation (the bars on

the 100× 50, 100× 100, and 100× 150 markers). This is so because for both TDJ and

TkNNJ operations, the time required for distance computation and result retrieval for both

filtering and refinement stages is positively correlated with the cardinality of both inner

and outer relations.

We would also like to point out that, from the results shown inFigure 4.14, for TDJ

queries, the change in the size of the outer relation has a more pronounced impact on

the execution time than that of the inner relation. Compare the bars corresponding to the

50× 100 markers against those corresponding to the 100× 50 markers in Figure 4.14,

as well as those corresponding to 100× 150 against 150× 100, and 150× 200 against

200× 150. Observe that in all these cases, despite the decrease insize of the inner relation,

TDJ query execution time increases with the size of the outerrelation. However, one may

also notice that the query time increase is mainly due to the increase in CPU time. This

can be attributed to the fact that the refinement stage in the TDJ query algorithm is largely

affected by the number of trajectories in the outer relation, and since this stage is executed

in memory, only CPU time is affected.

On the other hand, corresponding bars in Figure 4.15 show a completely different

trend for TkNNJ queries. Due to the asymmetric nature of TkNNJ queries, the size of the
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Figure 4.15: Effect of Workload Mix: TkNNJ

inner relation plays a much more important role in the effectiveness of the query, both

in terms of CPU and I/O time. One can infer from the TkNNJ algorithms presented in

Section 4.4 that both CPU and I/O costs are linearly correlated with the sizes of the inner

and outer relations during the filtering stage. However, during the refinement stage, the

split operations on the WPQs are again linearly correlated with the number of candidates

in the candidate sets, which is in turn linearly correlated with the size of the inner relation.

This results in a near-quadratic effect, which is manifested in Figure 4.15 to some extent.

4.7.4.5 Historical vs. Predictive Queries

Comparing all figures in this section presenting historicalquery performance and those

presenting predictive query performance, we make the following observation with respect

to the performance of historical and predictive TDJ queries: processing predictive TDJ

queries requires significantly less time (< 0.5X) than their historical counterparts, given

exactly the same query parameters.

The rationale for this observation is straightforward. Historical data contains complete

information about the past trajectories of moving objects,and as such, Validity Intervals of

individual objects are very likely to be segmented and oftenmuch shorter than the lifetime

of one single index structure, depending on the length of theupdate interval. This results
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in a significant number ofTPD computations. On the other hand, future positions of

moving objects can only be inferred based on their current position and velocity, and thus

follow the pattern of a straight line. Consequently, a singleTPD function is applicable for

the entire query duration, therefore incurring much less computation overhead.

The above mentioned effect holds for CPU cost of TkNNJ queries, as can be observed

from all historical TkNNJ query performance figures presented in this section. The reason

for this is similar to that discussed above. However, specific to TkNNJ queries, we observe

that almost in all cases the I/O cost of predictive queries turns out to be higher than that of

their historical counterparts. This is due to the diminished effectiveness of the filtering step

because of the expansion of TBRs over a long period of time. Inprocessing the predictive

queries, the computation of TPD is based on the predicted TBRs, which expand rapidly

as times progresses, inducing increased overlapping that reduces the effectiveness of the

pruning during the filtering stage. This results in an increased number of node expansions

that in turn incur more disk I/Os.

4.8 Conclusions and Future Work

In this chapter we have introduced JiST, a general frameworkfor Trajectory Join

operations including Trajectory Distance Joins (TDJ) and Trajectoryk Nearest Neighbors

Joins (TkNNJ). In addition, we have presented a set of table scan based algorithms as

well as index based algorithms that take advantage of dual transformed index structures

in evaluating the join operations introduced in this chapter. We have applied the JiST

framework operations to develop novel techniques for trajectory privacy preservation.

Finally, we have evaluated the performance of the proposed trajectory join algorithms

through exhaustive experiments and demonstrated the effectiveness of these methods.

To the best of our knowledge, JiST is the first comprehensive framework for complex

spatio-temporal join operations between moving object trajectories, and its application in

trajectory privacy preservation is unprecedented. JiST will serve as the basis for many
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future research efforts, including design of ad hoc query operations, complex query

evaluation, query size estimation, and optimization methods for emerging location-based

applications, among which location privacy preservation is a promising direction. For

simplicity, we will use the termLocation Privacyto incorporate the meanings of both

location privacy and trajectory privacy.

Location privacy is a rapidly growing research area that offers numerous exciting

opportunities. Overall, there are two main factors to consider when developing location

privacy preservation techniques, i.e., the efficiency and effectiveness of the technique,

and the quality of service of the LBS applications using the technique. We provide some

insight on how we can exploit the comprehensiveness and versatility provided by the

JiST framework to explore these opportunities both in developing efficient and effective

techniques and in preserving quality of service.

In the time domain, since the JiST index structure spans the entire lifetime of all

trajectory data, it is capable of accommodating anonymous access to historical, current,

and predicted future trajectory data, both at precise time points and within a time duration.

The collection of spatio-temporal query operations that can be derived from the JiST

framework provide a rich choice of efficient query processing primitives for developing

privacy preservation techniques. In this chapter we have discussed methods for preserving

privacy on historical trajectories during a given time window in the past. We note that the

extension of the proposed algorithms to current and predicted future trajectories can be

easily derived, due to the dual transform nature of the underlying JiST index structure, as

we discussed in Section 4.4. It is also straightforward to shrink the time window in the

proposed algorithms to achieve location privacy preservation for a single time point, be it

in the past, the present, or the near future.

In the spatial domain, we consider both the effectiveness aspect and the QoS aspect of

the location privacy preservation techniques.

The effectiveness of a privacy preservation technique refers to the strength of privacy
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provided by the technique, namely, how difficult it is to infer the exact location information

of objects given the information provided by the technique.Here we extend the notion

of Reciprocityproposed by Ghinita et. al. [37] in the context of locationk-Anonymity

preservation. Thek-Anonymity reciprocity property dictates that all objectswithin

a k-anonymous region share exactly the samek-anonymous region. In other words,

the k-anonymous regions satisfying the reciprocity property donot overlap, which is

essentially a form of space partitioning. Since location privacy preservation techniques

are not only limited tok-Anonymity, we generalize the notion of the reciprocity property

and define it as the property thatall objects within a privacy preserving region with

respect to certain privacy policy, share exactly the same privacy preserving region, and

no other. We call techniques that observe this propertystrong privacy techniques, and

call those that do not observe this propertyweak privacy techniques. We note that the

methods we have provided in this chapter are weak privacy techniques since they address

the privacy preservation of individual trajectories, and it is highly likely that the TCRs of

two trajectories will have incomplete overlap. However, weargue that the JiST framework

provides natural mechanisms for developing strong privacytechniques. The rationale is

that the JiST index is built on top of STRIPES, which is essentially a space partitioning

index structure. Furthermore, an important property of theSTRIPES index structure is

that objects with similar movement patterns in physical space also tend to be close to each

other on the index, which inherently offers the opportunities of object clustering and space

partitioning techniques.

In this chapter we have provided a distance constraint∆dmax as the QoS criterion in

trajectory privacy policy specification. However, we observe that the JiST framework is

also capable of addressing the more commonly adopted rectangular area constraints, which

are essentially in the form of time-parameterized range queries and have been discussed in

detail in Chapter 2 under the setting of predictive query processing. Since the JiST index

consists of slightly modified STRIPES structures, the extension of the STRIPES query
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algorithms to the JiST index is fairly straightforward.
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CHAPTER 5

CONCLUSIONS

In this thesis we have developed a comprehensive and unified framework for efficient

access methods and query operations in spatio-temporal databases.

In Chapter 2 we have presented a new indexing structure called STRIPES for

indexing and answering queries on predicted positions in moving object databases.

This new indexing structure draws inspiration from earlierlargely theoretical work in

this area, advocating the use of dual transformation for indexing such data sets. The

STRIPES index leverages these dual transformation techniques and uses a disjoint regular

partitioning technique to efficiently index the points in the dual transformed space. The

STRIPES index can support all the types of commonly used predictive queries [72], which

include time-slice, window, and moving queries. We have compared the performance

of STRIPES with the most efficient predictive indexing structure, the TPR*-tree [105].

Our comprehensive experimental evaluations demonstrate that STRIPES outperforms the

leading competitive index method, namely the TPR*-tree index, for both updates and

queries; updates are often more than an order of magnitude faster using STRIPES, and

queries are often faster by a factor of 4x. These differences can be seen in both the I/O and

the CPU costs. Consequently, STRIPES is an extremely efficient and practical indexing

structure for evaluating predictive queries.

In Chapter 3 we have presented a new metric, called NXNDIST, and have shown that

this metric is much more effective for pruning ANN computation than previously proposed

methods. We have also explored the properties of this metric, and have presented an
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efficientO(D) algorithm for computing this metric, whereD is the data dimensionality.

We have also explored a family of index based methods for computing ANN queries. In

addition, for ANN computation, we have shown that traversing the index trees using a

depth-first paradigm, and using a bi-directional expansionof candidate search nodes is the

most efficient strategy. With the application of NXNDIST, we have also shown how to

extend our solution to efficiently evaluate the more general AkNN operation.

In Chapter 3 we have also shown that for ANN queries, using a quadtree index

enhanced with MBR keys for the internal nodes, is a more efficient indexing structure than

the commonly used R*-tree index. Overall the methods that wehave presented generally

result in significant speed-up of at least 2X for ANN computation, and over an order of

magnitude for AkNN computation over the previous best algorithms (BNN [116] and

GORDER [112]), for both low and high-dimensional datasets.

In Chapter 4 we have introduced JiST, a general framework forTrajectory Join

operations including Trajectory Distance Joins (TDJ) and Trajectoryk Nearest Neighbors

Joins (TkNNJ). In addition, we have presented a set of table scan based algorithms as

well as index based algorithms that take advantage of dual transformed index structures

in evaluating the join operations introduced in this chapter. We have applied the JiST

framework operations to develop novel techniques for trajectory privacy preservation.

Finally, we have evaluated the performance of the proposed trajectory join algorithms

through exhaustive experiments and demonstrated the effectiveness of these methods.

To the best of our knowledge, JiST is the first comprehensive framework for complex

spatio-temporal join operations between moving object trajectories, and its application in

trajectory privacy preservation is unprecedented. JiST will serve as the basis for many

future research efforts, including designing of ad hoc query operations, complex query

evaluation, query size estimation, and optimization methods for emerging location based

applications.
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