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ABSTRACT 

 

Guided-wave (GW) approaches have shown potential in various initial laboratory 

demonstrations as a solution to structural health monitoring (SHM) for damage 

prognosis. This thesis starts with an introduction to and a detailed survey of this field. 

Some critical areas where further research was required and those that were chosen to be 

addressed herein are highlighted. Those were modeling, design guidelines, signal 

processing and effects of elevated temperature. Three-dimensional elasticity-based 

models for GW excitation and sensing by finite dimensional surface-bonded piezoelectric 

wafer transducers and anisotropic piezocomposites are developed for various 

configurations in isotropic structures. The validity of these models is extensively 

examined in numerical simulations and experiments. These models and other ideas are 

then exploited to furnish a set of design guidelines for the excitation signal and 

transducers in GW SHM systems. A novel signal processing algorithm based on chirplet 

matching pursuits and mode identification for pulse-echo GW SHM is proposed. The 

potential of the algorithm to automatically resolve and identify overlapping, multimodal 

reflections is discussed and explored with numerical simulations and experiments. Next, 

the effects of elevated temperature as expected in internal spacecraft structures on GW 

transduction and propagation are explored based on data from the literature incorporated 

into the developed models. Results from the model are compared with experiments. The 

feasibility of damage characterization at elevated temperatures is also investigated. An 

extension of the modeling effort for GW excitation by finite-dimensional piezoelectric 

wafer transducers to composite plates is also proposed and verified by numerical 

simulations. At the end, future directions for research to make this technology more 

easily deployable in field applications are suggested. 
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CHAPTER  I 

 

INTRODUCTION AND LITERATURE REVIEW 

 

 This chapter offers an introduction to the field of guided-wave (GW) structural 

health monitoring (SHM), starting with some background and basic concepts. It then 

delves into the constitutive elements of GW SHM system and reviews efforts by various 

groups in each of those aspects. Some crucial gaps in the literature are pointed out and 

the scope of this thesis in addressing those is defined.  

 

I.1 Motivation and Background 

In recent years, there has been an increasing awareness of the importance of 

damage prognosis systems in aerospace, civil and mechanical structures. It is envisaged 

that a damage prognosis system in a structure would apprise the user of the structure’s 

health, inform the user about any incipient damage in real-time and provide an estimate 

of the remaining useful life of the structure. In the aerospace community, it is also 

referred to as integrated systems health management (ISHM, usually for spacecraft and 

space habitats) or integrated vehicle health management (IVHM, typically for aircraft) in 

the literature. The potential benefits that would accrue from such a technology are 

enormous. The maintenance procedures for structures with such systems could change 

from being schedule-driven to condition-based, thereby cutting down on the time period 

for which structures are offline and correspondingly resulting in cost-savings and 

reducing their labor requirements. Operators could also possibly establish leasing 

arrangements that charge by the amount of system life used during the lease instead of 
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charging simply by the time duration of the lease. And most significantly, the confidence 

levels in operating structures would increase sharply due to the new safeguards against 

unpredictable structural system degradation, particularly so for ageing structures. 

Moreover, most importantly, the safety of the users of the structure is better ensured. 

Such systems will also be important for NASA’s plans to return astronauts to the Moon, 

and eventually, longer-term missions to Mars. ISHM will help in transitioning from low-

earth orbit missions with continuous ground support to more autonomous long-term 

missions [1]. The ISHM system will manage all the critical spacecraft functions and 

systems. It will apprise astronauts on changes in vehicle systems’ integrity and 

functionality requiring action as well as provide the crew with the capability to forecast 

potential problems and schedule repairs.   

Another growing trend in aerospace structures is the increasing popularity of 

composites, particularly multilayered fiber-reinforced ones. The primary advantage of 

using composites is their higher stiffness-to-mass ratio compared to metals, which 

translates into significant fuel and operational-cost savings for aerospace vehicles. In 

addition, they have better corrosion resistance and can be tailored for preferentially 

bearing loads along specific directions. However, they are more susceptible to impact 

damage in the form of delaminations or cracks, which could reduce load-bearing 

capability and potentially lead to structural failure. The capability of damage prognosis 

could increase confidence in the use of composite structures by alerting operators about 

damage from unexpected impact events. 

SHM is a key component of damage prognosis systems. SHM is the component 

that examines the structure for damage and provides information about any damage that 

is detected. A SHM sub-system typically consists of an onboard network of sensors for 

data acquisition and some central processor to evaluate the structural health. It may 

utilize stored knowledge of structural materials, operational parameters, and health 

criteria. The schemes available for SHM can be broadly classified as active or passive 

depending on whether or not they involve the use of actuators, respectively. Examples of 

passive schemes are acoustic emission (AE) and strain/loads monitoring, which have 

been demonstrated with some success ([2]-[9]). However, they suffer from the drawback 
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of requiring high sensor densities on the structure. They are typically implemented using 

fiber optic sensors and, for environments that are relatively benign, foil strain gages.  

Unlike passive methods, in active schemes the structure can be excited in a 

prescribed, repeatable manner using actuators and it can be examined for damage 

quickly, where and when required. Guided-wave testing has emerged as a very prominent 

option among active schemes. It can offer an effective method to estimate the location, 

severity and type of damage, and it is a well-established practice in the Non-Destructive 

Evaluation and Testing (NDE/NDT) industry. There, GWs are excited and received in a 

structure using handheld transducers for scheduled maintenance. They have also 

demonstrated suitability for SHM applications having an onboard, preferably built-in, 

sensor and actuator network to assess the state of a structure during operation. The 

actuator-sensor pair in GW testing has a large coverage area, resulting in fewer units 

distributed over the structure.  

GWs can be defined as stress waves forced to follow a path defined by the 

material boundaries of the structure. For example, when a beam is excited at high 

frequency, stress waves travel in the beam along its axis away from the excitation source, 

i.e., the beam “guides” the waves along its axis. Similarly, in a plate, the two free 

surfaces of the plate “guide” the waves within its confines. In GW SHM, an actuator 

generating GWs is excited by some high frequency pulse signal (typically a modulated 

sinusoidal toneburst of some limited number of cycles). In general, when a GW field is 

incident on a structural discontinuity (which has a size comparable to the GW 

wavelength), it scatters GWs in all directions. The structural discontinuity could be 

damage in the structure such as a crack or delamination, a structural feature (such as a 

stiffener) or boundary. Therefore, to be able to distinguish between damage and structural 

features, one needs prior information about the structure in its undamaged state. This is 

typically in the form of a baseline signal obtained for the “healthy state” to use as 

reference for comparison with the test case. There are two approaches commonly used in 

GW SHM, pulse-echo and pitch-catch. In the former, after exciting the structure with a 

narrow bandwidth pulse, a sensor collocated with the actuator is used to sense echoes of 

the pulse coming from discontinuities. Since the boundaries and the wave speed for a 
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given center actuation frequency of the toneburst are known, the signals from the 

boundaries can be filtered out (or alternatively one could subtract the test signal from the 

baseline signal). One is then left with signals from damage sites (if present). From these 

signals, damage sites can be located using the wavespeed. In the pitch-catch approach, a 

pulse signal is sent across the specimen under interrogation and a sensor at the other end 

of the specimen receives the signal. From various characteristics of the received signal, 

such as delay in time of transit, amplitude, frequency content, etc., information about the 

damage can be inferred. Thus, the pitch-catch approach cannot be used to locate the 

damage site unless a dense network of transducers is used. In either approach, damage-

sensitive features are extracted from the signal using some signal-processing algorithm, 

and then a pattern recognition technique is required to classify the damage and estimate 

its severity. These steps involved in GW SHM are illustrated in Fig. 1. Another crucial 

point to note is that GW SHM always involves the use of some threshold value to decide 

whether damage is present in the structure or not. The choice of the threshold is usually 

application-dependent and typically relies on some false-positive probability estimation. 
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Fig. 1: The four essential steps in GW SHM 
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The critical elements of GW SHM are the transducers, the relevant theory, the 

signal processing methodology, the arrangement of the transducer network to scan the 

structure, and the overall SHM architecture (i.e., issues related to supporting electronics, 

robustness and packaging). In this chapter, each of these aspects is scrutinized and a 

review of the efforts by various researchers is presented. Some examples of field 

applications where GW SHM has been implemented are discussed. The compatibility of 

GW SHM with other schemes is then explored. The chapter concludes with a summary 

and a discussion on developments desirable in this area. However, before these elements 

are broached, it is useful to consider some background and basics of GWs. 

 

I.2 Fundamentals of Guided-waves 

I.2.A Early Developments 

There are several application areas for guided elastic waves in solids such as 

seismology, inspection, material characterization, delay lines, etc. and consequently they 

have been a subject of much study ([10]-[12]). A very important class among these is that 

of Lamb waves, which can propagate in a solid plate (or shell) with free surfaces. Due to 

the abundance of plate- and shell-like structural configurations, this class of GWs has 

been the subject of much scrutiny. Another class of GW modes is also possible in plates, 

i.e., the horizontally polarized shear or SH-modes. Other classes of GWs have also been 

examined in the literature. Among them is that of Rayleigh waves, which propagate close 

to the free surface of elastic solids. Other examples are Love [14], Stoneley [15] and 

Scholte [16] waves that travel at material interfaces. Lamb waves were first predicted 

mathematically and described by Horace Lamb [17] about a century ago. Gazis ([18], 

[19]) developed and analyzed the dispersion equations for GWs in cylinders. However, 

neither was able to produce GWs experimentally. This was first done by Worlton [20], 

who was probably also the first person to recognize the potential of GWs for NDE. 
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I.2.B Guided-wave Analysis 

To understand GW propagation in a structure, it is useful to briefly consider a 

simple configuration, i.e., an isotropic plate. Assume harmonic GW propagation along 

the plate x1-axis, shown in Fig. 2. Since the plate is 2-D, variations along the 3-axis 

(normal to the plane of the page) are ignored ( 3 0x∂ ∂ = ). Furthermore, displacements 

along the 3-axis are also assumed zero. The governing equation of motion is: 

( ) .λ µ µ ρ+ ∇∇ ∇2u + u = u  (1) 

where u is the displacement vector, and λ and µ are Lamé’s constants for the isotropic 

plate material, while  ρ is the material density. ∇ is the gradient operator and the . over a 

variable indicates the derivative with respect to time. Using Helmholtz’s decomposition:  

φ= ∇ + ∇ ×u Η      and     . 0∇ =Η , (2) 

splitting the displacement vector into the Helmholtz components, i.e., the scalar potential 

φ and vector potential Η. The equations of motion in terms of the Helmholtz components 

can be shown to be: 

2 2
3 32 2

1 1           and           
p sc c

φ φ∇ = ∇ Η = Η  (3) 
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Fig. 2: The 2-D plate for which dispersion relations are derived 
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The other Helmholtz vector components 1Η  and 2Η  turn out to be zero. Here 

( 2 )pc λ µ ρ= +  and sc µ ρ=  correspond to the bulk longitudinal (or “P,” with the 

characteristic of displacements along the wave propagation direction) and shear (or “S,” 

with the characteristic of displacements normal to the wave propagation direction) wave 

speeds, respectively. Since harmonic GW propagation along the x1-axis is considered, say 

at angular frequency ω, solutions will be of the form (assuming ξ is the wavenumber): 

1 1( ) ( )
2 3 3 2( )           and          ( )i x t i x tf x e h x eξ ω ξ ωφ − −= Η =  (4) 

This leads to the following differential equations for f and 3h : 

22
2 23

32 2
2 2

+ 0         and          + 0d hd f f h
dx dx

α β= =  (5) 

where: 

2 2
2 2 2 2

2 2         and           
p sc c

ω ωα ξ β ξ= − = −  (6) 

The solutions to these differential equations are: 

2 2 2 3 2 2 2( ) sin cos          and         ( ) sin cosf x A x B x h x C x D xα α β β= + = +  (7) 

where A, B, C and D are constants. Since the boundaries at 2x b= ±  are free, traction-free 

conditions must be imposed. Thus: 

22 21 20  at  x bσ σ= = = ±  (8) 

The tractions in terms of the Helmholtz components are: 

22
2 3

22 2
1 1 2

( 2 ) 2
x x x
φσ λ µ φ µ

⎛ ⎞∂ Η∂
= + ∇ − +⎜ ⎟∂ ∂ ∂⎝ ⎠

(9) 



8 
 

2 22
3 3

21 2 2
1 2 2 1

2
x x x x

φσ µ
⎛ ⎞∂ Η ∂ Η∂

= + −⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
 (10)

From Eqs. (4),(7) and (8)-(10), one obtains: 

2 2

2 2

2 2

2 2

0( ) cos 2 cos
02 sin ( )sin

0( )sin 2 sin
02 cos ( )cos

Bb i b
Ci b b

Ab i b
Di b b

ξ β α ξβ β
ξα α ξ β β

ξ β α ξβ β
ξα α ξ β β

⎡ ⎤− − ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − ⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤− − − ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥− ⎣ ⎦ ⎣ ⎦⎣ ⎦

 (11)

For these matrix equations to be true for nontrivial values of the constants, the 

determinants of the two matrices must vanish. These lead to the Rayleigh-Lamb 

equations for the plate, which are: 

12

2 2 2

tan 4
tan ( )

b
b

β αβξ
α ξ β

±
⎛ ⎞−

= ⎜ ⎟−⎝ ⎠
 (12)

where the positive exponent corresponds to the symmetric Lamb modes, while the 

negative one corresponds to the antisymmetric Lamb modes. The Rayleigh-Lamb 

equations yield relations between the excitation angular frequency ω and the phase 

velocity cph ( ω ξ= ) of the GW in the plate. This is called the phase velocity dispersion 

curve. It is plotted in Fig. 3a for an aluminum alloy plate. Thus, at any excitation 

frequency, there are at least two modes possible for this structure, viz., the fundamental 

symmetric (S0) and anti-symmetric (A0) modes. Then, as one moves higher up along the 

frequency axis, additional higher Lamb modes are possible. The equations for SH-waves 

in a plate can be derived by relaxing the constraint of zero displacements along the 3-

axis. Another important characteristic is the group velocity curve (see Fig. 3b). The group 

velocity (denoted cg) is defined as the derivative of the angular frequency with respect to 

the wavenumber ξ. For an isotropic medium, it gives a very good approximation to the 

speed of the peak of the modulation envelope of a narrow frequency bandwidth pulse. 

This approximation improves in accuracy as the pulse moves further away from the 

source or if the GW mode becomes less dispersive. The procedure above, although for a 
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simple structure, can be generalized to complex structures. Further details on the 

fundamentals of GW propagation can be found in texts such as Auld [10] and Graff [11].  

 

I.3 Transducer Technology 

GW testing is quite common in the NDE/NDT industry for material 

characterization and offline structural inspection. The most commonly used transducers 

are angled piezoelectric wedge transducers [21]-[22], comb transducers [23] and electro-

magnetic acoustic transducers (EMATs) [24]. These transducers can be used to excite 

specific GW modes by suitably designing them (e.g., in angled wedge transducers this is 

done by judicious selection of the wedge angle). Other options that have been explored in 

recent years for NDE are Hertzian contact transducers [25] and lasers [26]. However, 

while these types of transducers function well for maintenance checks when the structure 

is offline for service, they are not compact enough to be permanently onboard the 

structure during its operation as required for SHM. This is particularly true in aerospace 

structures, where the mass and space penalties associated with the additional transducers 

on the structure should be minimal. 

 

0

2

4

6

8

10

0 1 2 3

Frequency-plate half-thickness product (MHz-mm)

Ph
as

e 
ve

lo
ci

ty
 (x

 1
00

0 
m

/s
)

A0 mode S0 mode
A1 mode S1 mode

0

1

2

3

4

5

6

0 1 2 3
Frequency-plate half-thickness product (MHz-mm)

G
ro

up
 v

el
oc

ity
 (x

 1
00

0 
m

/s
)

A0 mode S0 mode

A1 mode S1 mode

(a) (b) 

Fig. 3: Dispersion curves for Lamb modes in an isotropic aluminum plate structure:       
(a) Phase velocity and (b) group velocity. 

 



10 
 

I.3.A Piezoelectric Transducers 

The most commonly used transducers for SHM are embedded or surface-bonded 

piezoelectric wafer transducers (hereafter referred to as “piezos”).  Piezos are inexpensive 

and are available in very fine thicknesses (0.1 mm for ceramics and 9 µm for polymer 

film), making them very unobtrusive and conducive for integration into structures. Piezos 

operate on the piezoelectric and inverse piezoelectric principles that couple the electrical 

and mechanical behavior of the material. An electric charge is collected on the surface of 

the piezoelectric material when it is strained. The converse effect also happens, that is, 

the generation of mechanical strain in response to an applied electric field. Hence, they 

can be used as both actuators and sensors. The most commonly available materials are 

lead zirconium titanate ceramics (known as PZT) and polyvinylidene fluoride (PVDF), 

which is a polymer film (see Fig. 4a). Both of these are usually poled through the 

thickness (normally designated the 3-direction), which is also the direction in which the 

voltage is applied or sensed. Uniformly poled piezos are typically used in the “1-3 

coupling” configuration, where the sensing/actuation effect is along the thickness or 3-

direction while the actuation/sensing effect is in the plane of the piezo, normal to the 

poling axis. When used as an actuator, the high frequency voltage signal causes waves to 

be excited in the structure. In the sensor configuration, the in-plane strain over the sensor 

area causes a voltage signal across the piezo. Piezoceramics are quite brittle and need to 

be handled with care. In contrast, polymer films are very flexible and easy to handle. 

Monkhouse et al. ([27], [28]) designed PVDF films with copper backing layers to 

improve its response characteristics. An interdigitated electrode pattern was deposited 

using printed circuit board (PCB) techniques for modal selectivity and the transducers 

were able to detect simulated defects. However, due to its weaker inverse piezoelectric 

properties and its high compliance, the performance of PVDF based transducers as 

actuators and sensors is poorer. In addition, PVDF films cannot be embedded into 

composite structures due to the loss of piezoelectric properties under typical composite 

curing conditions. Therefore, PZT is the more popular choice for the transducer material 

among GW SHM researchers (see for example, [29]-[33]). Some researchers have 

examined design of arrays of actuators to enable inspection of a structure from a central 

point. The idea is to have each sector scanned by the actuator within that sector. Wilcox 
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et al. [34] investigated the use of circular and linear arrays using piezoceramic-disc 

actuators and linear arrays using square shear piezoceramics for long-range GW SHM in 

isotropic plate structures. The field of vision for the linear arrays was restricted to about 

36o on either side of the array due to the interference of side lobes. Interestingly, the ratio 

of the area of the plate inspected to the area of the circular transducer array was about 

3000:1. This gives an indication of the long-range scanning capabilities achievable with 

actuator arrays. Wilcox [35] proposed the idea of a circular array of six PVDF curved 

finger interdigitated transducers (IDTs), so that each element would generate a divergent 

beam, which enables the inspection of a pie-slice shaped area of the plate. Thus, the six 

IDTs together would have a 360o field of vision about themselves. 

 

I.3.B Piezocomposite Transducers 

In order to overcome the disadvantage of PZT in terms of brittleness, and also to 

allow for easier surface conformability in curved shell structures, different types of 

piezocomposite transducers have been investigated. Badcock and Birt [36] used PZT 

powder incorporated into an epoxy resin (base material) to form poled film sheets, which 

were used as transducer elements for GW generation and sensing. These were shown to 

be much superior to PVDF piezo elements of same dimensions tested on the same host 

plate under similar conditions, but inferior to a pure PZT piezo element of same 

dimensions. Egusa and Iwasawa [37] developed a piezoelectric paint using PZT powder 

 

Fig. 4: Piezos (PZT and PVDF) of various shapes and sizes  
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as pigment and epoxy resin as binder. They successfully tested its ability to function as a 

vibration sensor up to 1 MHz. This makes it an attractive candidate as a structurally-

integrated GW sensor. Hayward et al. [38] designed IDTs with “1-3 coupling” 

piezocomposite layers, consisting of modified lead titanate ceramic platelets held 

together by a passive soft-set epoxy polymer, and sandwiched between two PCBs for 

wavenumber and modal selectivity. However, these too compared unfavorably to pure 

PZT piezos in tests. Culshaw et al. [39] developed an acoustic/ultrasonic based structural 

monitoring system for composite structures. A low profile acoustic transducer (LPAS) 

similar in construction to angled wedge ultrasonic transducers (used for offline NDT) was 

used in [39] to generate the GWs. An appreciable reduction in size was achieved over 

traditional ultrasonic transducers, raising the possibility of their use as on-board SHM 

transducers. The LPAS used a “1-3” actuation mode piezo-composite layer as the active 

phase and two flexible printed circuit boards (PCB) with interdigitated electrode patterns 

as the upper and lower electrodes. A key advantage in such an angled wedge 

configuration is modal selectivity, which can be achieved by judicious selection of the 

wedge angle. A similar low-profile wedge transducer (using an array of piezos) was 

developed by Gordon and Braunling [40] for on-line corrosion monitoring. Active fiber 

composite (AFC) transducers were developed by Bent and Hagood [41]. AFCs are 

constructed using extruded piezoceramic fibers or ribbons embedded in an epoxy matrix 

with interdigitated electrodes that are symmetric on the top and bottom surfaces of the 

matrix. Kapton sheets on the outer surfaces electrically insulate the sensor/actuator and 

make it rugged. The fibers are poled along their length, and the sensing/actuation effect is 

primarily along the same axis. The fine ceramic fibers provide increased specific strength 

over monolithic materials, allowing conformability to curved surfaces. Compositing the 

ceramic provides alternate load path redundancy, increasing robustness to damage. It was 

shown that these types of actuators have significantly higher energy densities than 

monolithic piezoceramics in planar actuation for quasi-static applications [41]. In AFCs, 

by using the mode of actuation along the fiber direction (unlike in the uniformly poled 

piezo), the actuation authority can be approximately three times higher than that of a 

monolithic wafer (since the 3-3 piezoelectric constant 33d  is typically three times larger 

than the 3-1 piezoelectric constant 31d ). In addition, when used as a sensor, the more 
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powerful converse effect causes its response to be stronger than that of a monolithic 

wafer (again, roughly by three times). Thus, MFCs provide the added advantage of being 

power efficient. Furthermore, due to the orientation of fibers along a particular direction, 

AFCs can be used to excite directionally focused GW fields in structures, as well as be 

insensitive to GWs incident normal to the fiber direction as sensors. Finally, by suitably 

tailoring their interdigitated electrode pattern, they can be tuned to excite particular 

wavelengths, and thereby achieve GW modal selectivity. AFCs have been investigated 

for use in GW based SHM applications by Schulz et al. [42]. Wilkie et al. [43] developed 

a similar piezoceramic fiber-matrix transducer, called the macro fiber composite (MFC, 

see Fig. 5). These use rectangular piezoceramic fibers, which are cut from piezoceramic 

wafers using a computer-controlled dicing saw, and hence significantly reducing the 

small-batch manufacturing costs compared to AFCs. However, few researchers have 

attempted using AFCs/MFCs for GW SHM and their potential as GW SHM transducers 

remains to be tapped.  

 

I.3.C Other Transducers 

Some non-piezoelectric transducers have also been explored for GW SHM. Fiber 

optic sensors have been explored for a wide variety of smart structures applications, GW 

SHM being included. The advantages of fiber optic sensors are their size (diameter as 

 

Fig. 5: The macro fiber composite (MFC) transducer [44] 
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fine as 0.2 mm), flexible structural integration (embedding/surface bonding), and the 

possibility of vast networks of multiplexed sensors. Culshaw et al. [39] used an 

embedded fiber optic sensor in the Mach Zehnder configuration to sense GWs with the 

characteristics of such fiber optic sensors compared to those of conventional piezo 

sensors. An important advantage highlighted by those authors was the higher bandwidth 

capability of fiber optic sensors (can go up to 25 MHz) due to the absence of mechanical 

resonances. Betz et al. [45] used fiber Bragg gratings in a strain rosette configuration to 

sense Lamb waves as well as to extract the direction from which they emanate. However, 

one major drawback with fiber optic sensors is the high cost involved in acquiring the 

associated support equipment.  

Another non-piezoelectric transducer that has been developed for GW SHM is a 

flat magnetostrictive sensor for surface bonding or embedding into structures by Kwun et 

al. [46]. The transducer consists of a thin nickel foil with a coil placed over it and can be 

permanently bonded to the surface of a structure. It is rugged and inexpensive, and can be 

used as both a GW sensor and actuator. However, little work has been done to 

characterize this new type of transducer. Developments in Micro Electro Mechanical 

Systems (MEMS) and nanotechnology have affected many engineering disciplines in 

today’s world, and GW SHM is no exception - some researchers have initiated involving 

these technologies for GW SHM transducer development. Varadan [47] developed 

MEMS technology based micro-IDTs for GW SHM, which were either micromachined, 

etched or printed on special cut piezoelectric wafers or on certain piezoelectric film 

deposited on silicon using standard microelectronics fabrication techniques and 

microstereolithography. Neumann et al. [48] fabricated capacitive and piezoresistive 

MEMS sensors for use as strain sensors for GW applications. Their performance was 

compared and it was concluded that piezoresistive sensors were far superior. The size of 

these transducers was of the order of 100 µm.  Schulz et al. [49] discussed the potential of 

nanotubes as GW transducers for SHM. A key advantage of using carbon and boron 

nanotubes for actuation is that they are also load bearing due to their property of 

superelasticity. In this sense, the use of nanotubes provides great potential for health 

monitoring of structures because the structure is also the sensor. However, various 
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problems, including high cost, must be solved before smart nanocomposites can become 

practical.  

 

I.4 Developments in Theory and Modeling 

I.4.A Developments Motivated by NDE/NDT 

The theory of free GW propagation in isotropic, anisotropic, and layered plates 

and shells is well-documented ([10], [11]). Lowe [50] has reviewed various techniques 

for obtaining dispersion curves in generic multilayered plates and cylinders. As pointed 

out in [50], the two major approaches for computing dispersion curves for multilayered 

structures are the transfer matrix and the global matrix. The former is computationally 

efficient, but suffers from precision problems at high frequencies.  On the other hand, the 

latter is robust even at high frequencies, but can be slower computationally. Several 

computationally efficient numerical routines have been implemented in Disperse [51], 

which is commercial software, to generate analytical dispersion curves (plots of 

wavespeed versus frequency) and mode shapes for various configurations with or without 

damping. More recently, Adamou and Craster [52] presented an interesting alternative to 

root finding of the dispersion equations obtained by solving the underlying differential 

equations. Their approach uses a numerical scheme based on spectral elements, which is 

computationally more efficient for complex structural configurations. However, while a 

large body of literature exists for plates and shells, relatively less work has addressed GW 

propagation in beam-like structures. This is because analytical solutions of the GW 

propagation problem using three-dimensional (3-D) elasticity in beams are very difficult, 

if not impossible. In fact, in the literature, 3-D elasticity solutions exist only for hollow 

cylindrical ([18], [19]) and rectangular [53] cross-sections. Wilcox et al. [54] used a finite 

element method (FEM)-based technique for computing the properties of GWs that can 

exist in an isotropic straight or curved beam of arbitrary cross-section. It uses a two-

dimensional finite element mesh to represent a cross section through the beam and cyclic 

axial symmetry conditions to prescribe the displacement field perpendicular to the mesh. 

Mukdadi et al. [55] used a similar semi-analytical approach (with FEM elements in the 
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cross-section and an analytical representation along the beam axis) to compute dispersion 

curves in multilayered beams with rectangular cross-section. Bartoli et al. [56] extended 

this approach for arbitrary cross-sectional waveguides to account for viscoelastic 

damping. 

Complications can arise in GW testing due to the dispersive nature of many 

classes of these waves. For example, in plate structures, at any given frequency, there are 

at least three GW modes. In composite structures, this is further complicated by the 

directional dependence of wavespeeds, due to the difference in elastic properties along 

different directions. Hence, a fundamental understanding of GW theory and modeling, 

and characterization of the nature of GWs generated and sensed by the transducers 

typically used are essential. This will be crucial in effectively designing transducers and 

algorithms for damage detection. Generation of GWs in plates and shells with 

conventional ultrasonic transducers used in NDE has been examined by several 

researchers. The work by Viktorov [57] was an early milestone in this field, covering 

models for excitation of Lamb and Rayleigh waves in isotropic plates by NDE 

transducers in various configurations. The book by Rose [58], for example, is a more 

recent work, which reviews various aspects of free and forced GW theory in different 

structural configurations for NDE. However, a majority of these works use the 

assumption that the structure and transducer are infinitely wide in one direction, making 

the problem two-dimensional. Santosa and Pao [59] solved the generic 3-D problem of 

GW excitation in an isotropic plate by an impulse point body force, also using the normal 

modes expansion technique. Wilcox [60] presented a 3-D elasticity model describing the 

harmonic GW field by generic surface point sources in isotropic plates, however the 

model was not rigorously developed, and some intuitive reasoning was used to extend 2-

D model results to 3-D. Mal [61] and Lih and Mal [62] developed a theoretical 

formulation to solve for the problem of forced GW excitation by finite-dimensional 

sources using a global matrix formulation in multilayered composite plates. The 2-D 

Fourier spatial integrals were inverted using a numerical scheme. Viscoelastic damping 

was addressed, and specifically, the cases of excitation by NDT transducers and acoustic 

emission were solved based on the developed formulation. 
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GW SHM researchers can also benefit from several mode sensitivity studies 

conducted for various damage types by NDE researchers to decide the mode and 

frequency for GW testing. The choice of the GW mode and operating frequency will 

depend on the type of damage to be detected. GWs are multimodal with each mode 

having unique through-plate-thickness stress profiles. This makes it possible to 

concentrate power close to the anticipated location of the specific damage of interest 

through the plate thickness. For example, by exciting a mode with a through thickness 

stress profile such that the maximum power is transmitted close to a particular interface 

in a composite plate, the plate can be scanned for damage along that interface, as 

suggested by Rose et al. [63]. They predicted through analysis of displacement and power 

profiles across the structural thickness, that in metallic plates, the S0 mode would be more 

sensitive to detect big cracks or cracks localized in the middle of the plate. On the other 

hand, the S1 mode would be better suited for finding smaller cracks or cracks closer to the 

surface. This idea was also proved experimentally. Kundu et al. [64] proposed the idea 

that often, the presence of a specific defect type at a certain location through the plate 

thickness reduces the ability of the plate to support a specific component of stress at that 

thickness location. In such cases, the GW mode with maximum level of that stress 

component at that through thickness location should be most sensitive to that defect. This 

concept can be used, for instance, to scan for broken fibers in a composite, since that 

reduces the normal stress carrying capacity along the fiber direction. Similarly, Guo and 

Cawley [65] proved that in composite plates, delaminations located at ply interfaces 

where the shear stress for a particular guided mode falls to zero could not be detected by 

that mode. Alleyne and Cawley [66] used similar ideas to propose procedures for notch 

characterization in steel plates. In applications where the structure is in a non-gaseous 

environment (e.g., fuel tanks), the mode selection depends on the level of GW attenuation 

due to leakage into the surrounding media [67]. There have also been several studies to 

investigate scattering and mode conversion of GWs from various defects (see for 

example [68]-[72]), which would be useful in identifying the defect type using GW 

signals.  
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I.4.B Models for SHM Transducers 

While the body of literature in NDE/NDT is significant, relatively few studies 

have addressed the issue of GW excitation for SHM. There is a crucial difference 

between GW excitation/sensing in SHM applications and in NDE applications: as 

mentioned in section I.3, SHM transducers are typically permanently mounted on the 

structure unlike in NDE. Therefore, it would be desirable to use coupled models 

involving dynamics of both the transducer and the underlying structure for excitation 

models in SHM. Such models, however, can be very complex and possibly intractable for 

analytical solution if no simplifying assumptions are employed. This is because no 

generic 3-D elasticity/piezoelectricity standing wave solutions for solids bounded in all 

dimensions (in this case, the actuator) exist. The majority of efforts have been initiated to 

examine GW excitation using SHM transducers address piezos bonded on plates. These 

efforts can be classified as semi-analytical/numerical and analytical approaches. 

i) Numerical and semi-analytical approaches 

Lee and Staszewski [74] have provided a good review of several numerical 

approaches to GW modeling. The examined methods were the finite element method 

(FEM), the finite difference method (FDM), the boundary element method (BEM), the 

finite strip element method (FSM), the spectral element method (SEM), and the mass 

spring lattice method (MSLM). The merits and demerits of each are discussed. It is 

pointed out that conventional approaches can be computationally intensive and are 

unsuitable for media with boundaries or discontinuities between different media, such as 

multi-ply composites. In response to these, a simulation and visualization tool, Local 

Interaction Simulation Approach (LISA), was developed and implemented to model GW 

propagation for damage detection applications in metallic structures. However, in that 

work, coupled models were not addressed, and it is assumed that the actuator causes 

uniform normal traction over its surface. Wilcox [35] developed a modeling software tool 

to predict the acoustic fields excited in isotropic plates by PVDF IDTs. Each electrode 

finger of the IDT was modeled as causing normal traction over its area. By using an 

axisymmetric 3-D elasticity solution for a single point normal traction force and 

superimposition of the individual solutions due to the point sources over the IDT, the 
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software then finds the GW field due to the IDT by numerically integrating over all 

sources. 

Some researchers have worked around the intractability of coupled models by 

using semi-analytical approaches. In those works, a non-analytical model is used for the 

actuator dynamics in conjunction with an analytical model for the dynamics of the 

underlying structure. Liu et al. [75] developed an analytical-numerical approach based on 

dynamic piezoelectricity theory, a discrete layer thin plate theory and a multiple integral 

transform method to evaluate the input impedance characteristics of an IDT and the 

surface velocity response of the composite plate onto which the IDT is surface-bonded. 

Moulin et al. [76] used a plane-strain coupled finite element-normal modes expansion 

method to determine the amplitudes of the GW modes excited in a composite plate with 

surface-bonded/embedded piezos. FEM was used in the area of the plate near the piezo, 

enabling the computation of the mechanical excitation field caused by the transducer, 

which was then introduced as a forcing function into the normal modes equations. This 

technique, initially developed for harmonic excitation in non-lossy materials was 

extended to describe transient excitation in viscoelastic materials by Duquenne et al. [77]. 

Glushkov et al. [78] also examined the coupled 2-D problem of Lamb waves excited in 

an isotropic plate by piezoelectric actuators (wherein variations were neglected along one 

direction normal to the direction of wave propagation). A theory of elasticity solution for 

the isotropic plate was coupled with a reduced order model for the actuator (incorporating 

the piezoelectric effect). The resulting system of integral and differential equations were 

tackled by reducing the problem to an algebraic system and then solving it numerically. 

Veidt et al. [79], [80] used a hybrid theoretical-experimental approach for solving the 

excitation field due to surface-bonded rectangular and circular actuators. In the 

theoretical development, the piezo-actuator was modeled as causing normal surface 

stresses, and Mindlin plate theory was used for the underlying structure. The magnitude 

of the normal stress exerted for a certain frequency was estimated experimentally using a 

laser Doppler vibrometer, which was used to characterize the electromechanical transfer 

properties of the piezos. This hybrid approach was used to predict experimental surface 

out-of-plane velocity signals with limited success. 
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ii) Analytical approaches 

If the SHM transducer is compliant enough compared to the substrate structure 

(for example, if the transducer’s thickness and elastic modulus are small compared to the 

host structure), it might be reasonable to assume uncoupled dynamics between the 

transducer and substrate. This allows the possibility of purely analytical solutions. This 

approach has been explored by some researchers using reduced structural theories or 3-D 

elasticity models to model excitation and sensing by piezoelectric wafer transducers. Lin 

and Yuan [81] modeled the transient GWs in an infinite isotropic plate generated by a 

pair of surface-bonded circular actuators (on either free surface at the same surface 

location) excited out-of-phase with respect to each other. Mindlin plate theory 

incorporating transverse shear and rotary inertia effects was used and the actuators were 

modeled as causing bending moments along their edge. A simplified equation to describe 

the sensor response of a surface-bonded piezo-sensor was derived, also using an 

uncoupled dynamics model. This assumed that the sensor was small enough so that it 

could be assumed a single point. Some experimental verification for the model was 

provided. Rose and Wang [82] conducted a systematic theoretical study of source 

solutions in isotropic plates using Mindlin plate theory, deriving expressions for the 

response to a point moment, point vertical force and various doublet combinations. These 

solutions were used to generate equations describing the displacement field patterns for 

circular and narrow rectangular piezo actuators, which were modeled as causing bending 

moments and moment doublets, respectively, along their edges. However, the 

disadvantage of using Mindlin plate theory is that it can only approximately model the 

lowest antisymmetric (A0) Lamb-mode and it can only be used when the excitation 

frequency-plate thickness product is low enough so that higher antisymmetric modes are 

not excited. In addition, it cannot model symmetric GW modes. Giurgiutiu [83] studied 

the harmonic excitation of Lamb-waves in an isotropic plate to model the case of plane 

waves excited by infinitely wide surface-bonded piezos. These were treated as causing 

shear forces along their edges. The Fourier integral transform was applied to the 3-D 

linear elasticity based Lamb-wave equations, after they were simplified for the 2-D 

nature of this problem. The only analytical work that sought to address GW excitation by 

piezos in laminated composite plates again used 2-D models [84]. However, no works 
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have addressed the 3-D problem of GW excitation by finite-dimensional piezos based on 

the theory of elasticity in isotropic or composite structures. This is crucial to capture the 

true multimodal nature of GWs, capture the GW attenuation due to radiation from finite 

transducers and examine directivity patterns of different piezo shapes. Such models 

would also aid in effective transducer design for GW SHM. 

It should be noted that in modeling the effect of surface-bonded piezo actuators, 

there has been a difference of opinion among researchers. A few works have suggested 

that these act similar to NDE/NDT transducers and operate by “tapping” the structure, 

i.e., causing uniform normal traction over their contact area. However, the majority of the 

works reviewed suggest that piezos are more effectively modeled as “pinching” the 

structure, or causing shear traction at the edge of the actuator, normal to it. This idea was 

inspired by the work of Crawley and de Luis [85], who proposed such a model for quasi-

static induced strain actuation of piezo-actuators surface-bonded onto beams. For reduced 

structural models, this is equivalent to uniform bending moments along the actuator edge.   

 

I.5 Signal Processing and Pattern Recognition 

Signal processing is a crucial aspect in any GW-based SHM algorithm. The 

objective of this step is to extract information from the sensed signal to decide if damage 

has developed in the structure. Information about damage type and severity is also 

desirable from the signal for further prognosis. Therefore, a signal processing technique 

should be able to isolate from the sensed signal the time and frequency centers associated 

with scattered waves from the damage and identify their modes. The signal processing 

approach should also be robust to noise in the GW signals. One can borrow from work 

done on signal processing for GW based NDE testing and from other SHM algorithms, 

since many elements and goals of signal processing remain the same for most avenues of 

damage detection. There are however, a couple of differences between GW signal 

processing for NDE and for SHM. In the latter, the algorithm should be capable of 

running in near-real time or at frequent intervals, possibly during operation of the 

structure. Therefore, firstly, technician involvement should be minimal, and the process 
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should be automated. Secondly, it would be highly desirable to have a computationally 

efficient algorithm for SHM. Staszewski and Worden [86] have reviewed various signal 

processing approaches that can be exploited for damage detection algorithms. Signal 

processing approaches that have been used for GW testing can be grouped into data 

cleansing, feature extraction and selection, pattern recognition, and optimal excitation 

signal construction. 

 

I.5.A Data Cleansing 

Preprocessing or data cleansing may be needed to clean the signals, since any 

sensor, in general, is susceptible to noise from a variety of sources. This is particularly 

needed if the feature extraction mechanism (which is discussed next) is not robust to 

noise. This group includes normalization procedures, detrending, global averaging and 

outlier reduction, which are all standard statistical techniques. Yu et al. [87] used the 

techniques of statistical averaging to reduce global noise and discrete wavelet denoising 

using Daubechies wavelet to remove local high frequency disturbances. Rizzo and di 

Scalea [88] achieved denoising and compression of GW sensor signals by using a 

combined discrete wavelet transform and filtering process, wherein only a few wavelet 

coefficients representative of the signal were retained and the signal reconstructed with 

low-pass and high-pass frequency filters (see Fig. 6). Kercel et al. [89] used the Donoho 

principle to cleanse GW signals obtained from laser ultrasonics, wherein the biggest 

wavelet coefficients on decomposing with Daubechies wavelets (that contained 90% of 

the total signal energy) were retained and the rest of the coefficients were assumed as 

noise. A review of the various low pass filters available for data smoothing is presented 

in the work by Hamming [90]. 

 

I.5.B Feature Extraction and Selection 

Features are any parameters extracted from signal processing. Feature extraction 

and selection is necessary for improved damage characterization. Feature extraction can 
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be defined as the process of finding the best parameters representing different structural 

state conditions and feature selection is the process of selecting the inputs for damage 

identification by pattern recognition [91]. In GW testing, the features of interest are 

typically time-of-flight, frequency centers, energies, time-frequency spread, and modes of 

individual scattered waves. The different approaches to feature extraction can be further 

classified into time-frequency analysis approaches and sensor array-based approaches. 
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Fig. 6: Denoising using discrete wavelet transform: Raw GW signal reflected from a dent 
in a metallic plate averaged over 64 samples (left) and signal denoised using Daubechies 

wavelet  

 

i) Time-frequency and wavelet analysis 

In this group of signal processing, a number of techniques using time-frequency 

representations (TFRs) have been explored for GW signal analysis. While Fourier 

analysis gives a picture of the frequency spectrum of a signal, it does not provide 

visualization about what frequency component arrives at what instant of time in the 

signal. TFRs are designed to do exactly that, and yield an image in the time-frequency 

plane. They are well suited for analyzing non-stationary signals such as GW signals. 

Once the image is generated in the time-frequency plane, post-processing is done on 

these images to isolate individual reflections and identify their time-frequency centers. 

Their modes are identified using the time-frequency “ridges” (the loci of the frequency 
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centers for each time instant within each reflection). The short time Fourier transform, 

which is one of the easiest conventional TFRs to compute, was used by Prasad et al. [92] 

to extract a suitable parameter for tomographic image reconstruction mapping the 

structural defects. It was also used by Ihn and Chang [93] to process GW signals obtained 

from a network of piezoelectric wafer transducers mounted on a structure. Prosser et al. 

[94] used a pseudo Wigner Ville distribution to process GW signals for material 

characterization of composites. Niethammer et al. [95] reviewed four different TFRs to 

gauge their effectiveness in analyzing GW signals, viz., the reassigned spectrogram, the 

reassigned scalogram, the smoothed Wigner-Ville distribution and the Hilbert spectrum. 

Reassignment is a post-processing technique for improving resolution and decreasing 

spread in TFRs. While each technique was found to have its strengths and weaknesses, 

the reassigned spectrogram emerged as the best candidate for resolving multiple, closely 

spaced GW modes in terms of time and frequency. Furthermore, the strength of TFRs to 

facilitate the identification of arrival times of different modes was established. Kuttig et 

al. [96] and Hong et al. [97] used new TFRs based on different versions of the chirplet 

transform which has additional degrees of freedom (time shear and frequency shear) 

compared to the STFT. It enables superior resolution compared to conventional TFRs, 

but this comes at the cost of greater computational complexity. The above works were all 

mainly concerned with material characterization or offline NDT. Among works that have 

used TFRs for GW SHM, Oseguda et al. [98], Quek et al. [99] and Salvino et al. [100] 

used the Hilbert-Huang transform to process GW signals in plate structures. This 

technique allows for the separation of the GW signal into intrinsic mode functions (not to 

be confused with the GW modes) and a residue. This is followed by the Hilbert transform 

to determine the energy time signal of each mode, enabling the easy location and 

characterization of the notch. Kercel et al. [101] used Bayesian parameter estimates to 

separate the multiple modes in GW signals obtained from laser ultrasonics on a 

workpiece manufacturing assembly line. Once the dominant modes were separated by 

this method, the signals from flaws were isolated and could be easily characterized.  

The wavelet transform has emerged as a very important signal processing 

technique for denoising, feature extraction and feature selection in the last two decades. 

The wavelet technique decomposes a signal in terms of “waveform packets” directly 
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related to the basis used in the wavelet decomposition. The two types of wavelet 

transforms are the continuous and the discrete wavelet transforms. Staszewski [102] 

presented a summary of recent developments in wavelet-based data analysis, which 

provides for not only effective data storage and transmission, but also for feature 

selection. As pointed out in that work, continuous wavelet transforms are useful for TFR 

generation while discrete wavelet transforms are better suited for decomposition, 

compression and feature selection [86]. While a large number of wavelet bases are 

available in the literature ([103]-[105]), the Morlet (also referred to as “Gabor”) and 

Daubechies wavelets seem to be the most commonly used bases for decomposing GW 

responses. Paget et al. [106] constructed a new wavelet basis from a propagating GW 

signal. They proposed a new damage detection technique based on wavelet coefficients 

from the GW decomposition using the new basis. It was implemented for impact damage 

detection in cross ply laminates. Lefebvre and Lasaygues [107] used a wavelet basis with 

a Meyer-Jaffard mother wavelet on a fractional scale for crack detection under a stainless 

steel coating on a steel plate, and were successfully able to distinguish between cracked 

and undamaged interfaces. Sohn et al. [108] used the wavelet transform on GW signals 

obtained from a quasi-isotropic composite plate instrumented with a network of piezos. 

The Morlet wavelet was used as “mother” wavelet, and the component corresponding to 

the excitation frequency was extracted from the transform, and correlated with the same 

feature for pristine condition. Subsequently, extreme value statistics was used to decide 

whether the structure was damaged. Similarly, Lemistre and Balageas [109] used 

continuous wavelet transform methods with a Morlet mother wavelet for delamination 

detection in composite structures, while Sun et al. [110] used a similar methodology for 

notch characterization in pipes. Legendre et al. [111] employed the Coifman wavelet for 

a wavelet transform based signal-processing scheme to analyze ultrasonic signals excited 

and received by EMATs in isotropic plates for defect location.  

The matching pursuit approach to signal processing is a recent development 

introduced by Mallat and Zhang [112]. A similar algorithm was proposed independently 

by Qian and Chen [113]. This is a “greedy” algorithm that iteratively projects a signal 

onto a large and redundant dictionary of waveforms. At each step, it chooses the 

waveform from that dictionary that is best adapted to approximate part of the signal 
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analyzed. Furthermore, it is robust to noise. This can be used to advantage for GW signal 

processing, since unlike in conventional TFRs, no post-processing has to be done to 

extract the time-frequency centers of the scattered waves after they are isolated. In the 

original paper on matching pursuits [112], an efficient algorithm using a Gaussian-

modulated time-frequency atoms (which have stationary time-frequency behavior) 

dictionary is described. The matching pursuit algorithm with this dictionary has been 

explored for GW signal analysis by Zhang et al. [114] and Hong et al. [115]. However, 

the implicit assumption in those works is that the signals are unimodal and non-

dispersive. The atoms in the dictionary are ill-suited for analyzing dispersive signals, 

which have non-stationary time-frequency behavior. Furthermore, those atoms would not 

help in GW mode classification, since different modes with the same energy at the same 

time-frequency center would yield similar atoms. Thus, there is a need for a 

computationally efficient algorithm amenable to automation that would ideally be able to 

resolve and distinguish between overlapping, multimodal GW pulses scattered by 

structural damage. 

ii) Sensor array-based approaches 

Another distinct approach that has been adopted for processing GW signals is the 

use of sensor arrays in conjunction with a multi-dimensional Fourier transform along 

both spatial and time dimensions. Alleyne and Cawley [117] implemented a two-

dimensional Fourier transform method numerically, involving both spatial and time 

domain transforms for multi-element sensor arrays. The method allows for identifying 

individual GW modes and their respective amplitudes at any propagation distance even in 

the most dispersive regions. The idea was experimentally implemented for SHM to detect 

holes drilled in a metallic plate by El Youbi et al. [118]. It used a surface-bonded 32-

element piezo sensor array on an Aluminum plate to obtain the 2-D Fourier transform of 

the received Lamb signal and thereby decompose it into its component modes. Since 

different modes are sensitive to different defects, the logic is that such a sensor array 

would be flexible enough to monitor a variety of defects. Martinez et al. [119] used a new 

four-dimensional space-time/wavenumber-frequency representation for processing a two-

dimensional Lamb-wave space-time signal in a one-dimensional medium to characterize 
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transient aspects of wave generation and propagation in both space and time dimensions. 

This was used to investigate the generation, transmission and reflection of GWs in a 

cylindrical shell using a NDE transducer. 

Some researchers have proposed algorithms using linear arrays of sensors for 

“directional tuning.” With appropriate signal processing techniques, these can be used to 

extract information about the direction of the incoming wave, and thereby enable virtual 

“scanning” of the structure without moving the transducers. Such approaches enable 

power efficient coverage in structures and keep the area occupied by the transducers to a 

minimum. It should be noted that such approaches are distinct from the actuator arrays 

discussed in Section I.3.A. Lin and Yuan [120] presented an interesting approach to 

detect and image multiple damage sites in a plate-like structure. A migration technique 

(inspired by a similar technique in geophysical exploration) was adopted to interpret the 

backscattering wave field and to image flaws in the structure. The finite difference 

method was used to simulate the reflection waves and in implementing the prestack 

migration. This approach was proposed for a linear array of piezo-actuators/sensors. 

Sundararaman et al. [121] developed a signal processing technique based on 

beamforming of diagnostic waves for damage detection and location, also using piezo 

linear phased arrays. Beamforming is the process of spatio-temporal filtering of 

propagating waveforms, done by combining waves from various directions in a weighted 

and phase-shifted summation to obtain higher signal-to-noise ratios in the final signal.  

Damage in the form of a local perturbation in mass by the addition of a small bolt and 

artificial damage created by scoring the plate were successfully detected within certain 

confidence levels. Also, adaptive beamforming using the Frost constraint and one-mode 

pilot signal beamforming-based techniques using a least mean squares algorithm were 

implemented to produce better directivity patterns and reduce noise. Giurgiutiu and Bao 

[122] developed an “embedded ultrasonic structural radar” (EUSR) algorithm using a 9-

piezo element linear phased array. They were able to map artificially induced cracks in an 

Aluminum plate specimen, even in the case where the crack was not in the direct field of 

view of the array (i.e., an offside crack). This was integrated with a graphical user 

interface. Interestingly, the developed algorithm finds its roots in a similar procedure 

used in biomedical imaging for human health diagnostics. Similarly, Purekar and Pines 
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[123] presented a surface-scanning methodology using piezo linear phased arrays for 

damage detection in isotropic plate structures. After individually exciting the array 

elements with a pre-defined phase delay (which depends on the direction in which 

scanning is performed), the other array elements were used to listen for echoes from 

defects and the boundaries. Once these signals were collected, signal processing and 

directional filtering were used to analyze the signals. From those results, the damage 

areas (simulated using C-clamps) were located within 1 inch for a 1-inch diameter 

contact area of the clamps. Moulin et al. [124] discussed the conditions and limitations 

for the applicability and performance of linear phased arrays for angular steering of 

Lamb-waves on a plate structure using a simple scalar diffraction model. Phased arrays 

were used in a pitch-catch configuration to detect impact damage in Aluminum plates 

with sensors located close to the edge of the plate. 

 

I.5.C Pattern Recognition 

Different conditions of the features extracted and selected represent different 

classes of “patterns” and indicate the state of structural health. Pattern recognition relates 

to the process of distinguishing between different patterns. Among pattern recognition 

strategies, using artificial neural networks (ANN) is the most popular technique for GW 

based damage detection strategies. For fundamentals of ANN see, e.g., Haykin [125]. Su 

and Ye [126] extracted spectrographic features from Lamb wave signals in the time-

frequency domain to construct a Damage Parameters Database (DPD). The DPD was 

then used offline to train a multi-layer feed forward ANN under supervision of an error 

back propagation algorithm. The proposed methodology was validated online by 

identifying delaminations in quasi-isotropic composite laminates with a built-in piezo 

network for SHM. Challis et al. [127] applied ANNs to estimate the geometrical 

parameters of an adhered aluminum T-joint using ultrasonic Lamb waves. The frequency 

spectrum of received signals was applied as input to conventional feed-forward networks, 

which were trained using the delta rule with momentum. Legendre et al. [111] used a 

neural classifier to characterize ultrasonic Lamb wave signals to test metallic welds. This 

was based on a multilayered ANN, which was trained by selected feature sets chosen to 
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be representative signals for each weld class. Zhao et al. [128] used a new type of pattern 

classifier, viz., support vector machine (SVM), to classify defects such as porosity, 

surface notches, and subsurface cracks in metal matrix composite sheets. The SVM is a 

quadratic learning algorithm without overtraining problems, unlike ANNs and fuzzy 

logic.  

 

I.5.D Excitation Signal Tailoring 

In order to overcome the dispersive nature of GW propagation, special excitation 

signals have been explored. Among them, time reversal techniques have been used by 

some researchers. The idea here is to apply a simple toneburst excitation to one piezo 

transducer in pitch-catch arrangement, and record the signal at the receiving transducer.  

The newly recorded GW signal, which is distorted due to dispersion, is reversed in the 

time domain and applied to the original sensor (now acting as an actuator). The received 

signal at the original actuator (now acting as a sensor) will be very similar to the original 

simple excitation toneburst if the structure is undamaged (valid for linear homogeneous 

media). The presence of damage in the path between the transducers will induce changes 

to the signal that are non-reversible and easily identified. However, this approach does 

not differentiate between built-in structural features (e.g., rivets) and defects. Wang et al. 

[129] used this technique to achieve spatial and temporal focusing in their piezoelectric 

transducer network designed for GW SHM. Ing and Fink [130] used a similar strategy for 

a GW testing system using laser excitation and a multi-element sensor array. Sohn et al. 

[131] used a combination of a time reversal technique and a consecutive outlier analysis 

to identify delaminations in composite plates using a piezo transducer network without 

baseline signals (on the premise that there are no structural features such as rivets in the 

actuator-sensor path). Alleyne and Cawley [132] designed a signal, which, by 

superposition of its frequency components, recombined to form a signal with a simple 

shape (a pulse or tone burst) at the measurement position. Kehlenbach and Hanselka 

[133] used chirp signals combined with matched filtering to ease time-of-flight 

determination in Lamb-wave based SHM for composite plates.  
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I.6 GW SHM System Development 

For field deployment of GW-based SHM systems, several practical issues need to 

be addressed. The latest developments in this direction are covered in this section and are 

sub-divided as packaging, integrated solutions, and robustness issues. 

 

I.6.A Packaging 

Packaging of the transducers as well as ensuring reliable mechanical and 

electrical connections for them is an important element of the SHM system design. The 

packaging design should account for the demands of harsh environments, load conditions 

and cycling fatigue experienced by the structure.  Lin et al. [134] have developed the 

“SMART Layer,” which is a thin dielectric film with an embedded network of distributed 

piezoelectric actuators and sensors, and includes the wiring for the transducers. The layer 

can also incorporate other types of sensors, including fiber optic sensor networks, to 

monitor properties such as strain and moisture. The monitoring layer can be either 

surface-mounted on existing structures or integrated into composite structures during 

fabrication, thereby enabling GW SHM. Kessler et al. [135] have presented a list of SHM 

system design requirements based on a survey of aerospace corporations and government 

agencies. In response to these requirements, fabrication techniques and packaging 

strategies were developed [136] for surface-mounted piezo transducers to address 

electrode design, encapsulation, mounting schemes and connectors for wired transducers. 

Yang et al. [137] embedded rod-shaped piezo transducers in washer-like packages to use 

for SHM in reusable launch vehicle thermal panel bolts. These transducers were able to 

survive unscathed in simulated re-entry environment tests in an acoustic chamber. Piezos 

are also available in a variety of commercially available standard packaged forms such as 

Moonies [138], Rainbow [139], Crescent [140], Thunder [141], QuickPack and PowerAct 

[142] designed for various applications. Other packaging strategies include the AFC and 

MFC described in Section I.3.B. These packages improve their flexibility, reliability, 

resistance to harsh environments and/or mechanical and electrical connectivity 
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characteristics. An overview of various piezoelectric materials and architectures is 

provided in Niezrecki et al. [143]. 

 

I.6.B Integrated Solutions 

Some researchers have looked at efficient designs of the overall GW SHM 

system. This includes the packaged transducers, power source, wiring (for wired systems) 

and data logging/processing/transmission. These works are categorized as “integrated 

solutions” in this chapter. Among the wired systems, Acellent Technologies Inc. [134] 

developed a “SMART Suitcase” which essentially integrates the different GW SHM 

components - a high frequency signal generator, data acquisition, amplifier and 

processing software into a compact suitcase, which can be used for field applications 

involving wired sensors. It was designed to support their developed “SMART Layer” 

described above. Gorinevsky et al. [144] described how a GW SHM system based on the 

above “SMART Suitcase” would link to a Central Maintenance Computer (CMC, 

developed by Honeywell Aerospace) for integrated vehicle health management (IVHM) 

in aircraft. Kim and Lee [145] developed a hybrid coin-sized transducer that incorporates 

multi-layer piezoelectric disks and fiber optic sensors. A portable microprocessor-based 

data logger and server are integrated with the transducer and can be used as an excitation 

source for the piezo-actuator. Their system, called the “diagnostic network patch,” 

incorporates all signal processing, analysis and interpretation in these two modules, 

which can be done in real-time for up to 30-sensor channels.  

A desirable scenario for certain applications is a SHM system consisting of self-

contained transducer patches and networked to a central processor wirelessly. Such a 

self-contained patch would consist of the following elements: transducer, local power 

source, telemetry device, and some local data processing capability. The local power 

source and telemetry abilities are crucial to avoid wires being used to instrument an entire 

structure, then reducing the complexity of the SHM system. In addition, as pointed out in 

[146], wires are susceptible to breakage and vandalism, and they present reliability and 

maintenance issues. Connecting moving/oscillating and fixed sub-systems is another case 
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when hard wiring is difficult or sometimes impossible. The local computing capability is 

essential to limit the volume of raw data that needs to be transmitted to the central 

processor. As pointed out by Hay and Rose [147], interfacing active sensors with wireless 

technology for GW SHM has lagged behind passive sensor technology due mainly to the 

power requirements and the electronic accessories that must be added to the active 

sensors in order to actuate the device. The power required for passive sensors in 

comparison is much less (in the milliWatt range) and standard communication 

electronicstechnology suffices to interface with these. There are several impressive 

achievements made in passive (or very low power) wireless sensing, such as in the 

“Motes” program [148]. “Motes,” also called “Smart dust,” are devices that incorporate 

communications, processing, sensors, and power source into a package currently about 

two cubic inches in size. It has been tested for passive strain and loads monitoring based 

SHM with encouraging results. Ihlet et al. [149] presented a trade-off study of various 

wireless piezoelectric sensor network concepts, including a ranking of different 

possibilities for power supply, frequency selection, signal modulation and basic 

prerequisites for embedding of the sensor pad in a carbon fiber composite structure. Kim 

et al. [146] fabricated a wireless active piezo sensor with fingers etched to form an 

interdigitated pattern using MEMS technology and incorporated the required 

microelectronics and conformal antennas onboard chip-sized transducers. Small 

amplitude GWs were excited for health monitoring, using energy from radio frequency 

electromagnetic waves transmitted wirelessly to the transducer, thereby eliminating the 

need for a local power source. The data collected can be processed locally with the 

onboard chip to extract feature vectors, which can then be transmitted wirelessly to a 

central processor. To enable flush mounting onto structures with rain and erosion 

protection, the MEMS transducer was covered with a thin ultra-violet curable polymer 

coating. Lynch et al. [150] used commercially available components to design and 

fabricate a low-cost wireless sensing unit for deployment as the building block of 

wireless SHM systems for civil structures. The unit was about 10 cm × 10 cm × 3.3 cm in 

dimensions, had a transmitting range of about 150 m, and a power source that lasted 

about 50 hours. A GW based scheme with some time-series statistical pattern recognition 

algorithms incorporated into the onboard computing chip was tested in a bridge structure 
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with encouraging results. Lynch and Loh [151] have also presented an excellent review 

of various works examining wireless sensors (both passive and active) for SHM. Another 

avenue that has been explored for local power sources is power harvesting, which is the 

process of acquiring the energy from the surrounding environment and converting it into 

usable electrical energy. This captured energy could then be used to prolong the life of 

the power supply or in the ideal case provide endless energy for the transducer’s lifespan. 

Developments in this emerging technology have been reviewed by Sodano et al. [152], 

and as pointed out in that work, this field is not mature yet. Innovations in power storage 

such as the use of rechargeable batteries with piezoelectric materials must be discovered 

before power-harvesting technology will see widespread use. 

 

 I.6.C Robustness to Different Service Conditions  

In designing a SHM system for a real-world field application, ample consideration 

should be given to the robustness of the SHM transducer and algorithm to variable 

service conditions. The SHM system should be able to distinguish between signal 

changes due to damage events and changes in environmental conditions. It should also be 

able to compensate for these condition changes by the use of appropriate signal 

processing methods. Furthermore, the physical SHM system components should be 

robust enough to these anticipated changes. Kessler et al. [135] exposed their developed 

packaged piezo transducers, described in Section I.6.A, to various environmental 

conditions to test the protective ability of the package. In separate tests, the transducer 

was exposed to temperatures of 180oF and saturation humidity levels (for a period of one 

day each), and artificial electrical noise from a brush-style electric drill. They observed 

that the packaging sufficiently protected the transducers against these simulated 

environmental effects. Schulz et al. [153] studied the performance of PZT-5A patches as 

free vibration sensors bonded using various adhesives on aluminum beams up to 240oC.  

A drop of 74% in strain response amplitude (relative to room temperature value) was 

observed at 150oC, and the response dropped to zero at 240oC. They also explored 

various piezoelectric materials for high temperature applications. Commercially available 

materials such as PZT-5A (a.k.a. DoD Type II) can be used to temperatures up to 175oC 
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(which is half of its Curie limit). There exist piezoelectric materials such as lithium 

niobate that retain their piezoelectric properties up to temperatures as high as 1200oC. 

However, their performance as piezoelectric materials is much poorer in comparison to 

that of more common ones (e.g., PZT-5A) at room temperature.  They identified 

nanotubes as a potential transducer material for future high temperature applications (up 

to 1000oC). Lee and Staszewski [154] studied the effect of temperature variation on the 

Lamb-wave response of a piezoceramic sensor in a pitch-catch configuration on a 

metallic plate from room temperature up to 70oC. They observed that the effect of 

temperature variation over this range was much more pronounced than the effect of 

damage (artificial hole), and explored signal processing options for retaining sensitivity 

to damage while eliminating sensitivity to temperature change. Lu and Michaels [155] 

and Konstantinidis, Drinkwater and Wilcox [156] examined GW SHM under mild 

thermal variations from 20oC to 40oC. Both addressed modeling the varying time-of-

flight in this temperature range due to changing substrate elastic modulus and thermal 

expansion, and good agreement with experiments in this temperature range was observed. 

Lu and Michaels [155] also suggested using a “bank” of baseline signals for various 

temperatures and picking a baseline signal which minimizes difference relative to the test 

signal for that particular temperature. Blaise and Chang [157] investigated the 

performance of piezoelectric transducers (in GW pitch-catch configuration) embedded 

into sandwich structures for cryogenic fuel tanks at low temperatures (up to -90oC). An 

empirical model (linear) was fitted to experimentally obtained data points for damage 

detection under varying temperature. Both the reduction in signal amplitude and time-of-

flight were compensated for. Reasonable agreement between the interpolated signals 

from the empirical model and experimental data for intermediate temperature values was 

obtained. Internal spacecraft structures, which are typically protected by thermal 

protection systems (TPS) from reentry temperatures, are usually designed for a maximum 

temperature of 1500C. Thus, these would be a potential application area for GW SHM 

using PZT-5A piezos. However, as discussed above, no researchers have examined GW 

SHM at temperatures greater than 70oC. 

Paget et al. [158] studied the performance of a piezo actuator embedded in a 

graphite/epoxy composite for GW SHM under static and fatigue load tests. The 
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embedded piezoceramic transducers revealed a large working range in the static tests at 

least up to 90% of the final failure and were insensitive to fatigue loading for generation 

of GWs. Changes only occurred after 50,000-100,000 of cycles at high stress levels (260 

MPa, corresponding to 0.3% strain). For lower stress levels (130 MPa, corresponding to 

0.15% strain), the piezoceramic transducer lasted more than 400,000 cycles. The changes 

were mainly associated with matrix cracks in the composite. Biemans et al. [159] 

conducted a preliminary study into the application of GW based SHM for fatigue crack 

monitoring in aluminum plates under static and dynamic load (6 Hz) conditions, and 

compared the results with the unloaded condition. Various options in signal processing 

were explored, and it was shown that, through appropriate choice of excitation signals 

and signal processing technique, satisfactory damage detection results could be obtained 

for all load conditions. Manson et al. [160] used the signal processing method of novelty 

detection to build an internal representation of the system’s normal condition for Lamb-

wave SHM in such a way that subsequent departures from this condition due to structural 

damage could be identified with confidence in a robust manner. The importance of 

obtaining a valid set of normal conditions, which could account for temperature and load 

variations, was highlighted. The effect of short-term and long-term temperature changes 

in a composite plate on the normal condition data was experimentally quantified, and 

similar tests were performed for environmental humidity changes [161]. Giurgiutiu et al. 

[162] and Blackshire et al. [163] studied the durability and survivability of commercially 

available piezos (PZT) under temperature cycling in an oven, weather exposure in 

outdoor environment (sun, rain, humidity, freeze-thaw, etc.), and exposure to water and 

maintenance fluids (hydraulic fluids and maintenance oils). The test results indicate that 

repeated thermal cycling and extended environmental conditions could potentially lead to 

piezo transducer failure. The importance of appropriate bonding agents for the sensor and 

protective coatings was highlighted. Doane and Giurgiutiu [164] studied the behavior of 

piezos under large strain and fatigue cycling. The high strain tests indicated that the 

piezos remain operational up to at least 3000 microstrain and fail beyond 6000 

microstrain. The fatigue tests, conducted up to millions of cycles, showed that the 

substrate always failed before the piezo. 
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I.7 Application Areas 

The gamut of structures where GW SHM can be employed for damage prognosis 

is vast and ranges from ground vehicles, ships and aerospace structures to bridges, 

pipelines and offshore platforms. This section presents some examples where GW SHM 

has been demonstrated in realistic structures. 

 

I.7.A Aerospace Structures 

Aerospace structures by themselves form a huge and very significant GW SHM 

application area. The Aloha Airlines fuselage separation [165] and the Columbia Space 

Shuttle tragedy [166] brought to the fore the critical need for effective SHM systems in 

aerospace structures. Derriso et al. [167] outlined the importance of SHM in military 

aerospace vehicles to reduce maintenance downtime and to ensure high levels of 

reliability and safety, while Huang [168] discussed the need for SHM in future reusable 

launch vehicles (RLVs) to achieve affordable and routine access to space with present 

day aviation-like operations. Dalton et al. [169] explored the potential of GW-based SHM 

for application in metallic aircraft fuselage structures. GW propagation was examined in 

a variety of typical structural configurations found in metallic monocoque fuselages, such 

as free skin, tapering skin, skin loaded with paint and sealant, stringer joints, etc. It was 

concluded that GW SHM is not the ideal candidate for complicated structural 

configurations or for skin coated with sealant due to damping. However, for the free and 

tapered skin configurations and lap joints, results were very promising, establishing it as 

an effective solution for these simpler configurations. Giurgiutiu et al. [170] examined 

the feasibility of using piezo-based GW SHM on realistic aircraft panel specimens with 

rivets and splice joints and were able to clearly distinguish between reflected signals from 

the structural discontinuities and simulated damage (cracks). Grondel et al. [171] 

instrumented a single cell box composite specimen with construction and loading similar 

to that found in an aircraft wing box using piezos to examine the ability of GW SHM. 

Their experimental results revealed a large sensitivity of GWs to disbond between the 

stiffener and composite skin and impact damage due to low velocity impact, major causes 
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of in-service damage of aircraft structures. Koh et al. [172] developed a simple algorithm 

based on GW power transmitted between two transducers in pitch-catch configuration to 

detect disbond initiation and monitor its growth in a composite repair patch for aircraft 

panels. Matt et al. [173] tested a piezo-based GW system for monitoring the integrity of 

the bond between the composite wing skin and supporting spar for unmanned aerial 

vehicles (UAVs). Blaise and Chang [174] demonstrated the feasibility of integrating 

piezo transducers within the cells of cores in honeycomb sandwich structures. The 

sensors were incorporated on the warmer side of the panels, which are similar to those in 

cryogenic fuel tank construction. The system showed good potential to detect damage in 

the form of disbond between the skin and the core.  Yang et al. [137] and Derriso et al. 

[175] have worked on the use of GW SHM for RLV thermal protection panels. Damage 

in the form of base bracket loosening, panel loosening and impact damage could be 

detected. Lin et al. [176] designed and manufactured special SMART layers (see Section 

I.6.A) for filament-wound composite bottles and embedded them during the filament 

winding process. A prototype of a filament-wound composite bottle with an embedded 

sensor network was fabricated and preliminary data analysis tools have been developed. 

This system exemplifies the application of GW SHM in rocket motor cases and fuel tanks 

for next-generation space vehicles. Lakshmanan and Pines [177] studied the applicability 

of GW SHM using piezos to detect damage in rotorcraft blades in the form of transverse 

cracks and delaminations with encouraging results.  

 

I.7.B Civil Structures 

As observed by Chong et al. [178], the civil infrastructure in any country is 

among its most expensive assets (e.g., an estimated $20 trillion in the USA). These 

systems are deteriorating at an alarming rate, creating the need for new tools to provide 

feedback on the structure’s health. Significant work has been done to investigate the use 

of embedded fiber optic sensor or strain gage networks in civil structures for SHM by 

strain monitoring and vibration mode testing (see, for example [179]-[182]). In 

comparison, relatively few activities have been done to develop GW-based SHM in civil 

infrastructure using in-situ transducers for remote diagnostics. This is partly because civil 
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structures are in general much thicker and bigger in size in comparison to aerospace 

structures, implying that an in-situ actuator would have to provide orders of magnitude 

higher actuation stresses to cover a reasonable area.  While stress wave propagation 

methods are popular for assessing the condition of concrete structures for NDE, the 

greatest success in the practical application of stress wave NDE methods for testing 

concrete has been using mechanical impact to generate the stress pulse. Impact results in 

a high-energy pulse and high penetration of the stress waves, which is suitable for large-

scale civil structures such as bridge decks and building walls. However, some 

applications for smaller scale civil structures have been tested for GW SHM with 

promising results. Rizzo and di Scalea [88] investigated GW SHM for multi-wire steel 

strands, used as pre-stressing tendons in pre-stressed concrete and as stay-cables in cable-

stayed and suspension bridges, with magnetostrictive transducers. Khazem et al. [183] 

tested the applicability of a similar methodology on a real bridge structure, and they were 

able to scan the entire length of a suspender rope (about 100m) for cable tension, cracks 

and corrosion damage. Wu and Chang [184] showed that an embedded pair of piezos 

could be used for debond detection using GWs in steel-reinforced concrete columns. 

However, the methodology was unsuitable for crack detection. Lovell and Pines [185] 

presented a simple GW propagation approach, which was capable of identifying 

characteristics of damage associated with loss of torque preload on a simple one-bolt lap 

joint. This was motivated by the idea of monitoring the dynamics of large buildings and 

bridges to assess the level of damage in bolted or riveted assemblies following a severe 

loading condition (e.g., earthquake).  

 

I.7.C Other Areas 

The capability of GW SHM has been examined in a variety of other mechanical 

systems as well. Lin et al. [186] have recently designed and fabricated custom SMART 

layers for automotive applications that conform to an automobile’s complex shape. Their 

SMART suitcase (described in Section 0.2) was specially configured to perform in-situ 

GW SHM in automobiles. Proof-of-concept tests were conducted using this system by 

the auto manufacturer BMW in carbon fiber samples for impact damage detection [187]. 
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Na and Kundu [188] designed a transducer holder device using commercially available 

NDT ultrasonic transducers for GW SHM in underwater pipelines. Encouraging 

laboratory demonstrations showed the potential of the transducer for on-line detection of 

damage in the form of dents and gouges. Some researchers have also examined the use of 

magnetostrictive transducers (Hegeon et al. [189], Park et al. [190]) and PVDF film 

transducers (Hay and Rose [191]) for GW-based pipeline condition monitoring. Wang 

[192] described the applications of GW-based damage detection in the petrochemical 

industry. Those include the testing of heater tubes, pipes, vessels, risers and heat 

exchanger tubing. Ghoshal et al. [193] conducted preliminary investigations into the 

applicability of GW SHM for wind turbine blades made of fiberglass, and were able to 

detect artificial damage in the form of an added mass. Jones et al. [194] illustrated the 

usefulness of GW SHM for crack detection and size estimation in dragline clusters used 

for the mining industry. 

 

I.8 Integration with Other SHM Approaches 

It is crucial to realize that while GW testing has several advantages, it may not be 

the best SHM solution in all scenarios. For example, in pulse-echo GW testing, a known 

shortcoming is the blind zone area close to the collocated actuator/sensor. This is due to 

the finite duration of the emitting pulse as it is being generated. During that time, all 

reflection signals are masked by the outgoing excitation pulse. In such scenarios, 

however, the same network of transducers can be used for a different SHM methodology 

by simply changing the data processing and/or excitation signal. Passive strain sensors 

such as fiber optics and foil strain gages, which can be used for GW sensing, can also be 

used for acoustic emission, strain and load monitoring, and for modal testing. Active 

transducers, such as piezos, magnetostrictive sensors and nanotubes, can be used for the 

above listed passive SHM approaches as well as other active SHM schemes such as 

electro-mechanical (E-M) impedance testing and active modal testing. This can be used 

to advantage, since other SHM algorithms may prove to be better solutions in certain 

scenarios. Thus, the overall SHM scheme could be designed to use a combination of two 

or more of these methods, capturing the benefits of each. For example, as proposed by 
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Kessler and Spearing [195], a passive system such as acoustic emission or strain 

monitoring could be used to monitor the structure in real-time, and if this system detects a 

structural anomaly, then a dormant GW system could be triggered to localize and 

characterize the defect. This would be beneficial to minimize the power requirements of 

the SHM system. Such an approach was used by Mal et al. [196], who implemented a 

combined vibration modal analysis method and GW-based method using a network of 

piezos. The idea was that the former be used for global damage detection, while the latter 

for localized damage characterization. Giurgiutiu et al. [197] discussed the 

complementary nature of the E-M impedance and GW approaches in plate-like structures. 

The E-M impedance method is suitable for damage detection in the near field, while the 

GW approach is better suited for far-field damage detection in the pulse-echo mode. 

Therefore, their simultaneous utilization will cover the structural area completely. The 

suitability of piezos for acoustic emission and impact wave detection was demonstrated 

by Osmont et al. [198]. The feasibility of using the same network of piezos as dual mode 

sensors for acoustic emission and GW SHM was also confirmed. Wait et al. [199] also 

used a combined E-M impedance and GW SHM strategy with a piezo wafer and MFC 

network in a metallic plate structure bolted to a base structure. GW testing was used to 

detect cracks in the plate and the E-M method, due to its high sensitivity to structural 

boundary conditions, was used to examine the torque level of the bolt connection to the 

base structure. Monnier et al. [200] proposed a combined E-M impedance and GW SHM 

strategy for comprehensive SHM in composites. The E-M impedance method was used 

for detection of degradation in the viscoelastic properties of the composite structure due 

to aging and the GW method was used for detecting damage such as delaminations and 

matrix cracks. Blanas and Das-Gupta [201] have reported on the capability of piezos for 

simultaneous use as GW transducers as well as load monitoring sensors for dynamic and 

impact loads in composite structures. The final architecture of any SHM system is 

determined by the type of application, structure and material combinations, and power 

available.  
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I.9 Summary and Scope of this Thesis 

The latest developments in the various aspects of GW SHM were reviewed in this 

chapter. This emerging field has its roots in GW NDE, which is a well-established 

industrial technology. The transducers for GW SHM, particularly for aerospace 

structures, are typically smaller and more compact compared to those used in NDE. In 

this respect, ceramic piezoelectric wafer transducers appear to be the most popular option 

used by SHM researchers. In order to overcome the disadvantage of brittleness in 

piezoceramics, several piezocomposite transducers and some non-piezoelectric 

alternatives have also been explored. While the relevant GW theory for NDE is fairly 

developed, the SHM counterpart has lagged behind. However, there have been some 

efforts in this direction and modeling tools and innovative numerical and semi-analytical 

approaches have been examined for SHM GW problems. Some reduced structural and 2-

D elasticity-based analytical models for isotropic structures in simple configurations have 

been developed. Several signal-processing techniques have been explored for GW 

testing, most of which are time-frequency representations. For pattern recognition, neural 

networks have emerged as the popular option. There have also been several research 

efforts on array configurations and the associated signal processing to allow for scanning 

a structure from a central location with a minimum number of transducers. Several 

packaged versions of piezoelectric transducers are now available commercially and some 

commercial entities are developing custom packaging and support electronics for GW 

SHM transducers (piezoelectric or hybrid). In terms of integrating the transducers with an 

onboard power source, computing chip and wireless telemetry, the major obstacle has 

been the high power requirements for exciting GWs with a reasonable scan range. In 

order to bring this technology closer to field deployment for commercial structures, a few 

works have examined the effect of environmental factors and noise on the transducers 

and their response characteristics. From the applications perspective, aerospace structures 

have been extensively examined. Their thin-walled constructions make them good 

candidates for this technology. However, there is no reason preventing their widespread 

applicability to other mechanical structures, and a lot of potential exists in this class of 

structures. For civil structures, the development of GW SHM has lagged, perhaps due to 

the higher power requirement for the actuators to excite relatively bulky structures. 
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Finally, while GW SHM has shown a lot of potential and has several advantages, other 

schemes may be more applicable in certain scenarios. Some researchers have looked at 

hybrid schemes involving GW testing and other methodologies for more comprehensive 

SHM solutions.  

 From this detailed survey, it is also evident that several issues remain to be 

addressed before this technology sees widespread field deployment. The following areas, 

which were highlighted in italics in the discussion in the previous sections, were judged 

to be critical and examined in this thesis: 

a) Modeling: Develop models that capture GW excitation and sensing based on the 

theory of elasticity for transduction using finite-dimensional piezos and 3-3 

anisotropic piezocomposite transducers (APTs, such as AFCs and MFCs) in isotropic 

and composite structures. 

b) Design guidelines: Provide recommendations for transducer and excitation signal 

design in GW SHM systems based on the developed models. 

c) Signal processing: Develop an algorithm amenable to automation for GW SHM that 

can resolve and identify overlapping, multimodal GW pulses scattered from damage. 

d) Effects of elevated temperature: Understand and compensate for the effects of 

elevated temperature as experienced in internal spacecraft structures. 

These four areas are individually addressed in the subsequent chapters of this thesis. At 

the end, the main contributions of this thesis are summarized and future possible 

directions of research are suggested. 
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CHAPTER II 

 

GUIDED-WAVE TRANSDUCTION BY PIEZOS IN ISOTROPIC STRUCTURES 

 

The motivation for the work in this chapter stems from the discussion in Section 

I.4.B in the introductory chapter. As mentioned there, previous attempts at analytical 

models to capture the GW field and transduction mechanisms by uniformly poled piezos 

and 3-3 APTs have used reduced structural models (such as Mindlin plate theory) or 2-D 

elasticity models, with limited experimental validation. The objective of this chapter is to 

develop 3-D elasticity-based models to capture the multimodal GW field excited and 

sensed by finite-dimensional piezos and APTs. The GW field excited by APTs in 

rectangular cross-sectional beams and hollow cylinders (for the axisymmetric case) are 

first examined. Both these configurations involve 2-D analysis due to the uniformity of 

the GW field along one of the three spatial dimensions. This is followed by an analysis 

for the GW field by arbitrarily shaped piezos bonded on isotropic plates. Specific 

expressions are presented for rectangular and ring-shaped piezos and rectangular APTs, 

which are most commonly used in GW SHM. Results from numerical simulations to 

verify the case of circular piezos are summarized. A general expression for the response 

of piezos used as GW sensors is derived. Experiments done to validate these models and 

the results from those are detailed next. Finally, the use of these models in optimizing 

transducer dimensions is discussed. 

 

II.1 Actuation Mechanisms of Piezos and APTs 

As mentioned in Section I.4.B, there is a small group of researchers who suggest 

that the actuation mechanism of surface-bonded piezos is similar to that of NDT 
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transducers. NDT transducers are not permanently bonded on the structure and usually 

some lubricant is applied to the surface of the transducer before it is pressed against the 

structure and operated to excite GWs. As a result, no shear forces are exerted and 

therefore the “tapping” (or normal traction) model works well for them. However, for 

surface-bonded piezos permanently on the structure, due to their one free surface parallel 

to the structure’s surface, the normal force transmitted to the underlying structure is 

minimal. Therefore, the “pinching” (or shear traction) model is expected to be a better 

approximation of its actuation mechanism. Therefore, in this work, the uniformly-poled 

piezo is modeled as causing in-plane shear traction of uniform magnitude (say 0τ  per unit 

length) along its perimeter, in the direction normal to the free edge on the plate surface x3 

= +b. In this model, the dynamics of the actuator are neglected and it is assumed that the 

plate dynamics are uncoupled from the actuator dynamics. This model was proposed by 

Crawley and de Luis [85] to describe the 2-D problem of quasi-static induced strain 

actuation by piezo-actuators surface-bonded onto beams. For that case, they proved that 

the model is a good approximation if the product of the actuator Young’s modulus and 

thickness is small compared to that of the substrate and the bond layer is thin and stiff. 

This is a practical assumption, since in the aerospace industry, plate-like structures used 

are typically between 2 and 5 mm thick, while piezo elements typically used are 0.2 to 

0.4 mm thick. This assumption will be examined in further detail when the experimental 

results are discussed. Another assumption made is that the piezoelectric properties of the 

piezo (specifically the piezoelectric constants 31 33 31 33/  and /d d g g ) are constant over the 

frequency range of interest, which is supported by the work of González and Alemany 

[202]. In addition, material damping is neglected. This assumption is based on the fact 

that, for metals, attenuation from finite excitation sources dominates amplitude decay of 

the GW. A similar approach can be used to model the action of 3-3 APTs. The key 

difference is that the 3-3 APT, when used as an actuator, is modeled as causing shear 

traction at the edges of the active area (the surface area occupied by piezoelectric fibers) 

along the fiber direction only. 
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II.2 Plane Lamb-wave Excitation by 3-3 APTs in Rectangular-sectional Beams 

The configuration for which a solution is sought in this section is shown in Fig. 7. 

The beam is infinitely long along the x1-direction and the other two dimensions are 2b 

and 2c respectively along the x2- and x3-directions. The 3-3 APT spans or nearly spans 

the width of the beam on one free surface. Its fibers are oriented along the beam axis (i.e., 

in the x1-direction). If the problem is defined rigorously (i.e., if traction free surface 

conditions are to be satisfied along all the four sides of the cross-section), in principle the 

solution consists of an infinite number of modes at any frequency and the problem is 

complex to solve analytically. More details on such an approach can be found in 

Kastrzhitskaya and Meleshko [53]. However, if 2c >> 2b, then the configuration can be 

approximated to be a 2-D plane wave problem along the beam axis, and the condition 

3 ( ) 0∂ ∂ =x  can be used to simplify the governing equations. The derivation by 

Giurgiutiu [83] for 2-D models describing Lamb-wave excitation by piezos is then 

applicable here. This simplification weakens at higher frequency-thickness products 

when higher GW modes are stronger, which may not be uniform across the beam width. 

As discussed above, the effect of the 3-3 APT is to cause shear tractions at (a, b) and (-a, 

b) as shown. Thus, one obtains the following surface condition (for harmonic excitation 

at angular frequency ω): 

 

x1

x2
x3

 ∞

 ∞

x1

x2
3-3 APT replaced by 
surface shear traction

2a
2b

τ0

2b

2c
 ∞  ∞

(a) (b) 

Fig. 7: (a) Configuration of 3-3 APT surface-bonded on an isotropic beam with  
rectangular cross-section and (b) modeled representation 
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21 2 0 1 1( ) [ ( ) ( )] i tx b x a x a e ωσ τ δ δ −= = − − +  (13)

 where 0τ  is the magnitude of the shear traction. Here, the actual value of 0τ  is not of 

relevance, since the theoretical and experimental frequency response curves are both 

normalized relative to their respective peak values over the frequency range considered. 

For uniformly poled piezos operating in the 3-1 mode, it can be shown that 0 31 ad V hτ ∝ , 

where V is the actuation voltage and ha is the actuator thickness [85]. To solve the 

boundary value problem, the 1-D spatial Fourier transform is applied along the x1-

direction and the surface conditions are applied along 2x b=  and 2x b= − . The analysis 

proceeds along the lines of the harmonic analysis for free 2-D Lamb waves described in 

Section I.2.A, with the exception that the surfaces are not stress-free. Residue calculus 

from complex analysis [203] is used for the Fourier spatial inversion (this is explained in 

detail in the following sub-sections for other configurations). The following expression is 

obtained for symmetric mode displacements along the 1x  -direction: 
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(15)

The superscript S corresponds to the symmetric Lamb modes and the superscript A 

corresponds to the anti-symmetric Lamb modes. The anti-symmetric mode displacements 

can be obtained by replacing the superscript S by A in Eq. (14). λ and µ are Lamé’s 
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constants for the plate material and ρ is the material density. The wavenumber ξ̂  of a 

specific mode for a given ω is obtained from the solutions of the Rayleigh-Lamb 

equation, derived earlier. While harmonic excitation is considered here and the 

subsequent sections, the response to any excitation signal can be obtained by taking the 

inverse Fourier transform over the excited frequency range. 

 

II.3 Axisymmetric GW Excitation by 3-3 APTs in Hollow Cylinders 

In this section, the problem of axisymmetric GW excitation by 3-3 APTs in solid 

or hollow cylinders (with ring-like cross sections) is discussed. Consider an infinitely 

long, isotropic hollow cylinder of outer radius co and inner radius ci (possibly zero). A 3-

3 APT actuator of length 2a is surface-bonded on the outer free surface so that it wraps 

around the outer circumference. The fibers are oriented along the cylinder axis. The 

cylindrical coordinate system is a natural choice for solving this problem, and the origin 

is chosen at the center of the mid-plane of the 3-3 APT, as shown in Fig. 8. The starting 

point of this analysis is the governing equations of motion from 3-D elasticity: 

2( ) .λ µ µ ρ+ ∇∇ + ∇ + =u u f u  (16)

where the gradient operator for cylindrical coordinates is: 

ˆˆ ˆr z
r r z

θ
θ

∂ ∂ ∂⎛ ⎞∇ ≡ + +⎜ ⎟∂ ∂ ∂⎝ ⎠
 (17)

In this case, the body force f = 0. Furthermore, the equations of motion can be 

decomposed into the Helmholtz components using the equations: 

0φ= ∇ + ∇× ∇ =u Η;   Η.  (18)

It can be shown using Eq. (18), that Eq. (16) is equivalent to the equations: 

2 2
2 2;     
p sc c

φφ∇ = ∇ =
Η

Η  (19)
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Fig. 8: (a) Configuration of 3-3 APT surface-bonded on a hollow cylinder and            (b) 
modeled representation 

 

In this problem, the conditions 0θ∂ ∂ =  and 0uθ =  hold. The non-zero displacement 

components are then given by: 

( )1;    r z

r
u u

r z z r r
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= − = +
∂ ∂ ∂ ∂

 (20)

Thus, only the Helmholtz components φ and Ηθ are required. As before, the response to 

harmonic excitation at angular frequency ω is considered. Thus, one obtains: 

2
2

2

( ) = - ( )
t

ω∂
∂

 (21) 

Applying the spatial Fourier transform along the z-direction yields the following 

equations: 

22
2 2

2 2 2

1 1 10;     0
r r r r r r r

θ θ
θ

φ φ α φ β∂ Η ∂Η∂ ∂ ⎛ ⎞+ + = + + − Η =⎜ ⎟∂ ∂ ∂ ∂ ⎝ ⎠
 (22) 

where ξ is the wavenumber along the z-direction. The ∼ symbol over a variable indicates 

the z-direction Fourier transform of that variable. The solutions to Eqs. (22) are: 
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( ) ( )1 0 2 0 3 1 4 1( ) ( ) ;      ( ) ( )i t i tD J r D Y r e D J r D Y r eω ω
θφ α α β β= + Η = +  (23)

where 0 1 and  J J are the Bessel functions of the first kind and of order 0 and 1 

respectively; 0 1 and  Y Y are the Bessel functions of the second kind and of order 0 and 1, 

respectively; and 1 2 3 4, , , and D D D D  are constants to be determined using the surface 

conditions at  and i or c r c= = . If the problem under consideration were that of a solid 

cylinder (i.e., 0ic = ), then 2 4 0D D= =  (to maintain finiteness of the solution at 0r = ) 

and the other two constants could be found using the surface conditions at or c= . The 

stresses are related to the displacements through the equations: 

( )2 ;               r z r z
rr r rz

u u u uu
r r z z r

λσ λ µ λ σ µ∂ ∂ ∂ ∂⎛ ⎞= + + + = +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
 (24)

Using, Eqs. (22) through (24) gives the stresses in terms of 1 4D D− . The externally 

applied stresses are:  

( )0( ) 0;      ( ) ( ) ( )
( ) 0;      ( ) 0                                

i t
rr o rz o

rr i rz i

r c r c e z a z a
r c r c

ωσ σ τ δ δ
σ σ

= = = = − − +

= = = =
 (25)

The Fourier transforms of the externally applied stresses are: 

0( ) 0;      ( ) 2 sin
( ) 0;      ( ) 0                                

i t
rr o rz o

rr i rz i

r c r c e i a
r c r c

ωσ σ τ ξ
σ σ

= = = =
= = = =

 (26)

From Eqs. (20), (23) and (24), the Fourier transforms of the same stress components in 

the cylinder are: 

( )
( )
( ) ( )

2 2
0 1 1

2 2
0 1 2

0 1 3 0 1 4

2 2
1 1 1 2 1 3

2 2
1 4

( ) ( ) 2 ( )

( ) ( ) 2 ( )

( ) ( ) ( ) ( )

2 ( ) 2 ( ) ( ) ( )

( ) ( )

i t
rr

i t
rz

r J r J r D

r Y r Y r D e

r J r J r D r Y r Y r D

i J r D i Y r D J r D
e

Y r D

ω

ω

β ξ α α α

σ β ξ α α α

β β β β β β

αξ α αξ α ξ β β
σ

ξ β β

⎡ ⎤− − +
⎢ ⎥
⎢ ⎥= + − − +
⎢ ⎥
⎢ ⎥+ − + + − +⎣ ⎦
⎡ ⎤+ + − +

= ⎢ ⎥
+ −⎢ ⎥⎣ ⎦

 (27)



50 
 

Equating the Fourier transforms of the externally applied stresses to the expressions in 

terms of 1 4D D−  yields (at the inner and outer radii of the hollow cylinder): 

11 12 13 14 1

21 22 23 24 2
0

31 32 33 34 3

41 42 43 44 4

0
1

 =2 sin
0
0

M M M M D
M M M M D

i a
M M M M D
M M M M D

τ ξ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦⎣ ⎦

 (28)

where: 

2 2 2 2
11 0 1 12 0 1

13 0 1 14 0 1

21 1 22 1

2 2 2 2
23 1 24 1

( ) ( ) 2 ( );     ( ) ( ) 2 ( )
( ) ( );     ( ) ( )

2 ( );    2 ( )

( ) ( );     ( ) ( )

o o o o o o

o o o o o o

o o

o o

M c J c J c M c Y c Y c
M c J c J c M c Y c Y c
M i J c M i Y c

M J c M Y c

β ξ α α α β ξ α α α
β β β β β β

αξ α αξ α

ξ β β ξ β β

= − − = − −

= − + = − +
= =

= − = −

 (29)

and the constants 3 4 and i iM M (i = 1 to 4) are obtained by replacing co by ci in 

1 2 and i iM M respectively. The constants Di  (i = 1 to 4) can be solved for using Cramer’s 

rule, yielding expressions of the form: 

( )
( )

i
i

dD ξ
ξ

=
∆

 (30)

where: 

12 13 14

22 23 24
1 0

32 33 34

42 43 44

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

0
1

( ) 2 sin det , etc
0
0

( )= det

M M M
M M M

d i a
M M M
M M M

M M M M
M M M M
M M M M
M M M M

ξ τ ξ

ξ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥∆
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (31)

The final expressions for radial and axial displacements are of the form: 
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1 1 2 1 ( )

3 1 4 1

1 0 2 0 ( )

3 0 4 0

( ) ( ) ( ) ( )1
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )1
( ) ( ) ( ) ( )( )

i z t
r

i z t
z

d J r d Y r
u e d

i d J r i d Y r

i d J r i d Y r
u e d

d J r d Y r

ξ ω

ξ ω

α ξ α α ξ α
ξ

ξ ξ β ξ ξ βξ

ξ ξ α ξ ξ α
ξ

β ξ β β ξ βξ

∞
− −

−∞

∞
− −

−∞

− − +⎡ ⎤
= ⎢ ⎥+ +∆ ⎣ ⎦

− − +⎡ ⎤
= ⎢ ⎥+ +∆ ⎣ ⎦

∫

∫
 (32)

The integral along the real ξ-axis can be found by considering a contour integral in the 

complex ξ-plane. The values of z will determine the shape of the contour. For example, if 

z a>  then contributions from negative wavenumbers are not allowed on physical 

grounds, hence the integral must only include the residues at positive wavenumbers, as 

shown in Fig. 9. The integrands in Eq. (32) are singular at the roots of the dispersion 

equation ( ) 0ξ∆ = , designated ξ̂ . These can be obtained from the dispersion curves for 

the cylinder under consideration. Using the residue theorem for the first integral in Eq. 

(32) yields in this case:  

( )Res I( )
C

Id Id i
ξ

ξ ξ π ξ
∞

−∞

+ = − ∑∫ ∫  (33) 

 

O

-ξ I

1ξ 2ξ

R → ∞

ξR

C

1ξ−2ξ−

 

Fig. 9: Contour integral in the complex ξ-plane to invert the displacement integrals 
using residue theory 
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where: 

[ ] ( )
1 1 2 1 3 1 4 1

1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

i z tI d J r d Y r i d J r i d Y r e ξ ωα ξ α α ξ α ξ ξ β ξ ξ β
ξ

− −= − − + +
∆

 
(34) 

C is the semi-circular contour in the lower half-plane while “Res” stands for the residue 

of the integrand at a singularity of I. The contribution from C vanishes as the radius of the 

surface R → ∞, as explained in Miklowitz [204] for a similar plane-wave excitation 

problem. Thus, the following expressions are obtained for displacement in the region 

z a> :  

ˆ( )
1 1 2 1

ˆ
3 1 4 1

ˆ( )
1 0 2 0

ˆ
3 0 4 0

ˆ ˆ( ) ( ) ( ) ( )
ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )
ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )

i z t

r

i z t

z

d J r d Y rieu
i d J r i d Y r

i d J r i d Y rieu
d J r d Y r

ξ ω

ξ

ξ ω

ξ

α ξ α α ξ απ
ξ ξ ξ β ξ ξ β

ξ ξ α ξ ξ απ
ξ β ξ β β ξ β

− −

− −

⎡ ⎤− − +−
= ⎢ ⎥

′∆ + +⎢ ⎥⎣ ⎦
⎡ ⎤− − +−

= ⎢ ⎥
′∆ + +⎢ ⎥⎣ ⎦

∑

∑
 (35) 

 

II.4 3-D GW Excitation in Plates 

The final configuration examined for the excited GW field is for an arbitrary 

shape (finite-dimensional) surface-bonded piezo actuator (or APT) on an infinite 

isotropic plate. This formulation is based on the 3-D elasticity equations of motion. 

Consider an infinite isotropic plate of thickness 2b with such an actuator bonded on the 

surface x3 = b, as illustrated in Fig. 10. The origin is located midway through the plate 

thickness and the x3-axis is normal to the plate surface. The choice of in-plane location of 

the origin and the orientation of the x1 and x2 axes at this point is arbitrary, but it is 

constrained later. The starting point is the equations of motion in terms of the Helmholtz 

components (i.e., the eqs. in (19)). In this case, since the plate is infinite along two axes, 

the 2-D spatial Fourier transform is used to ease solution of this problem. For a generic 

function of two spatial coordinates ϕ,  it is defined by: 
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1 1 2 2( )
1 2 1 2 1 2( , ) ( , ) i x xx x e dx dxξ ξϕ ξ ξ ϕ

∞ ∞
+

−∞ −∞

= ∫ ∫  (36) 

and the inverse is given by: 

1 1 2 2( )
1 2 1 2 1 22

1( , ) ( , )
4

i x xx x e d dξ ξϕ ϕ ξ ξ ξ ξ
π

∞ ∞
− +

−∞ −∞

= ∫ ∫  (37) 

Applying the 2-D spatial Fourier transform on Eqs. (19) and considering harmonic 

excitation as before, one obtains the following equations: 

2 2
2 2

1 2 2 2
3

( )
p

d
dx c

φ ωξ ξ φ φ− − + = −  (38) 

2 2
2 2

1 2 2 2
3

( )
s

d
dx c

ωξ ξ− − + = −
ΗΗ Η  (39) 

Let: 

2 2
2 2 2 2

1 2 1 22 2( )      ;       ( )
p sc c

ω ωξ ξ α ξ ξ β− − + − − +2 2= =  (40) 

The solutions of Eqs. (38) and (39) are of the form: 

( ) ( )
( ) ( )

1 3 2 3 1 3 3 4 3

2 5 3 6 3 3 7 3 8 3

sin cos ;       sin cos

sin cos ;       sin cos

i t i t

i t i t

C x C x e C x C x e

C x C x e C x C x e

ω ω

ω ω

φ α α β β

β β β β

= + Η = +

Η = + Η = +
 (41) 

Furthermore, by examining the through-thickness displacement patterns, it can be shown 

that the constants 2 3 5 8, , ,  and C C C C  are associated with symmetric modes and that the 

constants 1 4 6 7, , ,  and C C C C  are associated with antisymmetric modes. For the 

subsequent analysis, only the symmetric modes are considered. The contributions from 

antisymmetric modes can be derived analogously. The linear strain-displacement relation 

and the constitutive equations for linear elasticity yield: 
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Using Eqs. (18), (41) and (42), it can be shown that the transformed stresses at 3x b=  

are: 

2 2 2
33 2 1 2 3 2 5 1

2 2
2 2 3 2 5 1 2

32
8 1

2 2
2 1 3 1 2 5 1

31
8 2

( ) cos (2 )cos ( 2 )cos

(2 )sin ( )sin ( )sin
( )sin

(2 )sin ( )sin ( )sin
( )s

i t

i t

C b C i b C i b e

C i b C b C b
e

C i b

C i b C b C b
C i

ω

ω

σ µ ξ ξ β α µξ β β ξ β β

ξ α α ξ β β ξ ξ β
σ µ

ξ β β

αξ α ξ ξ β β ξ β
σ µ

ξ β

⎡ ⎤= + − + + −⎣ ⎦
⎡ ⎤+ − + − +

= ⎢ ⎥
+ −⎣ ⎦

+ + − +
=

+ in
i te

b
ω

β
⎡ ⎤
⎢ ⎥
⎣ ⎦

 
(43) 

Since the piezo-actuator is modeled as causing shear traction along its edge, the 

externally applied traction components yield the following expressions for stresses at the 

free surface x3 = +b and their double spatial Fourier transforms:  

33 33

32 2 1 2 32 0 2 1 20

31 0 1 1 2 31 0 1 1 2

0;     0       

( , ) ;     . ( , ).
. ( , ) ;     . ( , )

i t i t

i t i t

F x x e F e

F x x e F e

ω ω

ω ω

σ σ

σ σ τ ξ ξτ

σ τ σ τ ξ ξ

= =

= =

= =

 (44) 

Infinite 
isotropic 

plate

Arbitrary 
shape piezo 

actuator
∞

∞

∞

∞

x2
x1

2b

x3

Piezo 
sensor (1) (2)x2 x1

2a2
2a1

x3

(3)

x2

2a2 2a1

x3 x1

z

r
ai ao

Fig. 10: Infinite isotropic plate with arbitrary shape surface-bonded piezo actuator and 
piezo sensor and the three specific configurations considered: (1) Rectangular piezo (2) 

Rectangular MFC and (3) Ring-shaped piezo 

 

, ,
1 ( );     2
2ij i j j i ij kk ij iju uε σ λε δ µε= + = +  (42) 
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where 1F  and 2F  are arbitrary functions, that are zero everywhere except around the edge 

of the piezo actuator.  It would be prudent to choose the coordinate axes x1 and x2 as well 

as the origin’s in-plane location to ease the computation of 1F  and 2F . Equating Eqs. (43) 

and (44) would give three equations in four unknowns. The fourth equation results from 

the divergence condition on Η, and consequently, Η , given by: 

31 2

1 2 3

0
x x x

∂Η∂Η ∂Η
+ + =

∂ ∂ ∂
 (45)

Using Eqs. (41) in (45) and evaluating at 3x b=  gives: 

3 1 5 2 8( sin ) ( sin ) ( sin ) 0C i b C i b C bξ β ξ β β β− + − + − =  (46)

With four equations and four unknowns, the unknown constants C2, C3, C5 and C8 can be 

solved for from the matrix equation: 

2 2 2
21 2 2 1

2 2
32 2 1 2 1

2 2
51 1 2 1 2

81 2

( ) cos 2 cos 2 cos 0
2 sin ( )sin sin sin
2 sin sin ( )sin sin

0 sin sin sin

                 

Cb i b i b
Ci b b b i b
Ci b b b i b
Ci b i b b

ξ ξ β α ξ β β ξ β β
ξ α α ξ β β ξ ξ β ξ β β
ξ α α ξ ξ β β ξ β ξ β β

ξ β ξ β β β

⎡ ⎤+ − − ⎡ ⎤
⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥

− − −⎢ ⎥ ⎣ ⎦⎣ ⎦

2 1 20

1 1 2

0
( , )

                                                                                        
( , )

0

F
F

ξ ξτ
ξ ξµ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

(47)

Solving for the constants using Cramer’s rule and applying the inverse Fourier transform 

ultimately yields the following expressions for the displacement components on the free 

surface 3x b=  in the spatial domain (symmetric modes): 
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( )

1 1 2 2

2 2 2 2 2 2
2 1 2

1 1 2
2( )
20

1 2
2 2

1 2

2 1 2

1 2

( ) ( )

( , ) cos sin
4 sin coscos .

4 sin . ( ) ( 3 )
( , ) cos sin

4 sin cos

i x x t
S

S

F b b
b bb eu

b D

F b b
b b

ξ ξ ω

ξ β ξ ξ β

ξ ξ α β

αβξ α βτ β
µπ β β ξ ξ ξ ξ β

ξ ξ α β
αβξ ξ α β

− + −

⎧ ⎫⎡ ⎤− + + ×
⎪ ⎪⎢ ⎥
⎪ ⎪− × + +⎢ ⎥
⎪ ⎪⎢ ⎥+⎪ ⎪⎢ ⎥⎣ ⎦= ⎨ ⎬
⎪ ⎡ ⎤− ×
⎪ ⎢ ⎥+ × +⎪ ⎢ ⎥
⎪ ⎢ ⎥+⎣ ⎦⎩ ⎭

1 2d dξ ξ
∞ ∞

−∞ −∞ ⎪
⎪
⎪
⎪

∫ ∫  

(48) 

( )
1 1 2 2

2 2
1 2

1 1 2

( ) 1 2
0

2 2 2 2 2 2 22
1 2 1

2 1 2
2

1

( 3 )
( , ) cos sin

4 sin coscos .
( ) ( )4 sin . ( )

( , ) cos sin
4 sin cos

i x x t
S

S

F b b
b bb eu

b D

F b b
b b

ξ ξ ω

ξ ξ ξ β
ξ ξ α β

αβξ ξ α βτ β
ξ β ξ ξ βµπ β β ξ

ξ ξ α β

αβξ α β

− + −

⎧ ⎫⎡ ⎤− ×
⎪ ⎪⎢ ⎥× + +⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥+⎣ ⎦⎪ ⎪= ⎨ ⎬⎡ ⎤− + + ×⎪ ⎪⎢ ⎥⎪− × +⎢ ⎥⎪ ⎢ ⎥⎪ +⎢ ⎥⎣ ⎦⎩ ⎭

1 2d dξ ξ
∞ ∞

−∞ −∞

⎪
⎪
⎪

∫ ∫  

(49) 

1 1 2 2( )
1 1 1 20

3 1 22 2 2
2 2 1 2

2 sin cos ( , ).
4 ( ) ( )sin cos ( , )

i x x t
S

S

b b Fi eu d d
D b b F

ξ ξ ω αβ α β ξ ξ ξτ ξ ξ
µπ ξ ξ β β α ξ ξ ξ

∞ ∞ − + −

−∞ −∞

+ ⎛ ⎞+⎡ ⎤−
= ⎜ ⎟⎢ ⎥ ⎜ ⎟+ − +⎣ ⎦ ⎝ ⎠

∫ ∫  

 (50) 

where 2 2 2 2 2 2 2
1 2   and  ( ) ( ) cos sin 4 sin cosSD b b b bξ ξ ξ ξ ξ β α β ξ αβ α β= + = − + . These 

integrals could be singular at the points corresponding to the real roots of either 0SD =  

or sin 0bβ =  or both (depending on which term(s) survive after substituting 1F  and 2F ). 

The former correspond to the wavenumbers, Sξ , from the solutions of the Rayleigh-

Lamb equation for symmetric modes at frequency ω. The latter correspond to the 

wavenumbers of horizontally polarized symmetric mode shear (SH) waves, also at 

frequency ω.  In principle, one can also include the contributions from the imaginary and 

complex wavenumbers satisfying these equations. However, these are usually not of 
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interest, since they yield evanescent or standing waves that decay very rapidly away from 

the source. As in Section  

II.2, only symmetric modes were considered in the derivation above, but the contribution 

from anti-symmetric modes can be found analogously and the final solution would be a 

superposition of these two modal contributions. Next, the evaluation of these integrals is 

presented for three particular piezo shapes of interest. 

 

II.4.A Rectangular Piezo 

The configuration considered for rectangular piezos is illustrated in Fig. 10. The 

dimensions of the piezo are 1 22  and 2a a  along the 1 2- and x x - axes respectively. In this 

case, the functions 1F , 2F  and their respective Fourier transforms are: 

[ ][ ]

[ ][ ]

1 1 1 1 1 2 2 2 2

1 1 1 2 2 2

2 1 1 1 1 2 2 2 2

2 1 1 2 2 1

( ) ( ) ( ) ( )

4sin( )sin( ) /
( ) ( ) ( ) ( )

4sin( )sin( ) /

F x a x a He x a He x a

F a a i
F He x a He x a x a x a

F a a i

δ δ

ξ ξ ξ
δ δ

ξ ξ ξ

= − − + + − −

= −

= + − − − − +

= −

 (51)

Substituting Eqs. (51) in Eq. (48) ultimately gives the following expression for 

displacement along the 1-direction: 

1 1 2 2( )0 1 1 2 2
1 3 1 22

2

4 sin sin ( )( )
4 ( )

i t
i x xS S

S

a a Neu x b e d d
i D

ω
ξ ξτ ξ ξ ξ ξ ξ

π µξ ξ ξ

∞ ∞
− +

−∞ −∞

= = ∫ ∫  (52)

where 2 2( ) ( )cos cosSN b bξ ξβ ξ β α β= + . Observe that the sin bβ  term is absent in the 

denominator here, implying that only Lamb waves are excited in this case. Transforming 

into polar coordinates gives: 

1 2

2
( cos sin )0 1 2

1 3 2 2
0 0

( )sin( cos )sin( sin )( )
sin ( )

i t
i x xS S

S

e Na au x b e d d
i D

πω
ξ γ γτ ξξ γ ξ γ ξ γ ξ

π µ ξ γ ξ

∞
− += = ∫ ∫  (53)
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Here the Cartesian wavenumbers 1ξ  and 2ξ  have been replaced by the polar wavenumber 

coordinates ξ and γ. They are related by the following equations: 

( )2 2 -1
1 2 2 1;     tanξ ξ ξ γ ξ ξ= + =  (54)

To obtain the 2-D spatial inverse Fourier transform, residue calculus is used. For 

convenience, by expanding the sine functions as the difference of conjugate complex 

exponentials, the integral in Eq. (53) is rewritten thus: 

1 1 2 2

1 2

1 1 2 2

cos cos sin sin
2

0
1 3 2

0 0 ( cos sin )

2 (( )cos ( )sin )

0 0

0
1 3 2

( ) ( )( )
. ( ) sin( ) .

4

( )
. ( ) sin

 ( ) .
4

S

i a i a i a i a
S

S i t
S

i x x

i x a x a t
S

S

S i t

N e e e e
Du x b e

i
e d d

N e d d
D

u x b e
i

ξ γ ξ γ ξ γ ξ γ
π

ω

ξ γ γ

π ξ γ γ ω

ω

ξ
τ ξ ξ γ

π µ
γ ξ

ξ γ ξ
ξ ξ γ

τ
π µ

− −
∞

− +

∞ − − + − −

− −
−

= =

×

+

−
⇒ = =

∫ ∫

∫ ∫
1 1 2 2

1 1 2 2

1 1 2 2

2 (( )cos ( )sin )

0 0

2 (( )cos ( )sin )

0 0

2 (( )cos ( )sin )

0 0

( )
. ( ) sin

( )
. ( ) sin

( )
. ( ) sin

S

S

S

i x a x a t
S

S

i x a x a t
S

S

i x a x a t
S

S

N e d d
D

N e d d
D

N e d d
D

π ξ γ γ ω

π ξ γ γ ω

π ξ γ γ ω

ξ γ ξ
ξ ξ γ

ξ γ ξ
ξ ξ γ

ξ γ ξ
ξ ξ γ

∞ − − + + −

∞ − + + − −

∞ − + + + −

⎛ ⎞
⎜
⎜
⎜
⎜ − +
⎜
⎜
⎜

− +⎜
⎜
⎜
⎜ +⎜
⎝

∫ ∫

∫ ∫

∫ ∫

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟
⎠

 (55)

Consider the first of the four integrals in the second line of Eq. (55), say 1I . It is further 

rewritten as follows: 

( ) ( )( )

1
1 1

1

( cos( ) )2

1

2

2 21 2 2
1 1 1 1 2 2

1 1

( )
. ( ) sin

where tan   and  

i r t
S

S

N eI d d
D

x a r x a x a
x a

πγ ξ γ γ ω

πγ

ξ ξ γ
ξ ξ γ

γ

+ ∞ − − −

−∞−

−

=

⎛ ⎞−= = − + −⎜ ⎟−⎝ ⎠

∫ ∫
 (56)

This ensures that the coefficient of ξ in the exponent remains positive over the domain of 

integration. The inner integral along the real ξ-axis is solved by considering a contour 

integral in the lower half of the complex ξ-plane, the semi-circular portion C of which 
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has radius Rξ = → ∞ . Using the residue theorem for the inner integral in Eq. (56) yields 

in this case (assuming I is the integrand in 1I ):  

ˆ

ˆRes I( )
S

S

C
Id Id i

ξ
ξ ξ π ξ

∞

−∞

⎛ ⎞
⎜ ⎟
⎝ ⎠

+ = − ∑∫ ∫  (57)

where ˆSξ  are the roots of the Rayleigh-Lamb equation for symmetric modes ( 0SD = ). 

( ) ( )( ).S SN Dξ ξ ξ  for large ξ  is of order 1 ξ , and therefore tends to zero as ξ → ∞ . 

Furthermore, along C, if , where , 0,  thenR I R Iiξ ξ ξ ξ ξ= − > : 

1 1 1 1 1 1 1 1( cos( ) ) cos( ) cos( ) cos( ). .
R I Ii r t i r r ri te e e e eξ γ γ ω ξ γ γ ξ γ γ ξ γ γω− − − − − − − − −= ≤  (58)

Since 1r  and ( )1cos γ γ−  are both always positive or zero in the domain of integration, the 

term 1 1cos( )I re ξ γ γ− −  is finite and is bounded by zero as Iξ → ∞ . Therefore, by Jordan’s 

lemma [203], the contribution over the semi-circular portion C of the contour vanishes, as 

in the derivation for hollow cylinders. Therefore:  
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 (59)

where ( )′  indicates derivative with respect to ξ. Similar analysis can be used to solve the 

other three integrals in Eq. (55), to finally yield the expression for 1
Su . An approximate 

closed form solution can be obtained for the far field using the method of stationary 

phase. As explained in Graff [11], for large r: 

( )
2

0

1

( )( ) 4
0

0

2( ) ( )
( )

i rhirhf e d f e
rh

ψ
πψψ

ψ

πψ ψ ψ
ψ

+=
′′∫  (60)
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where 0( ) 0h ψ′ = , f( ) is an arbitrary function, and ψ1 and ψ2 are arbitrary end-points of 

the interval of integration, which contains ψ0. Hence, the following asymptotic 

expression holds for the particle displacement along the 1-direction in the far field: 

( )0 1 2 4
1 3

( ) sin( cos )sin( sin )2( )
( ) sin

S

S

S S S
i r tS S

S S S
S

N a au x b e
D r

πξ ω

ξ

τ ξ ξ θ ξ θπ
πµ ξ ξ ξ θ

− + −−
= =

′∑  (61)

where ( )1
2 1tan x xθ −=  and 2 2

1 2r x x= + . Here it is assumed that kγ θ≈  and ,kr r≈  

1 to 4k = . The corresponding far-field expressions for the other displacement 

components are: 
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( )0 1 2 4
3 3
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( ) sin cos

S

S

S S S
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S S S
S
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πξ ω

ξ
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− + −−
= =

′∑  (63)

where 2 2 2 2( ) ( )cos sin 2 cos sinST b b b bξ ξ β ξ α β αβξ β α= − − .  This indicates that the 

GW field tends to a spatially decaying circular crested field with angularly dependent 

amplitude at large distances from the actuator.  

 

II.4.B Rectangular APT 

In this case, again the dimensions of the piezo are 1 22  and 2a a  along the 

1 2- and x x - axes respectively. The fibers of the APT are oriented along the 2x -axis. In 

this case, the functions 1F , 2F  and their respective Fourier transforms are: 

[ ][ ]
1 1

2 1 1 1 1 2 2 2 2

2 1 1 2 2 1

0;     0
( ) ( ) ( ) ( )

4sin( )sin( ) /

F F
F He x a He x a x a x a

F a a i

δ δ

ξ ξ ξ

= =

= + − − − − +

= −

 (64)
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Substituting Eqs. (64) in Eqs. (48)-(50) ultimately gives the following expression for the 

displacement components (symmetric modes): 

1 2
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1 3
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where 

( )2 2 2

2 2 2 2
2 2

2 2 2 2 2

2 2 2 2

( ) cos 3 cos sin 4 sin cos

( cos )
( , ) cos sin 4 cos sin cos

sin ( cos )
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  (68)

These inverse Fourier integrals are evaluated along similar lines as in the previous 

section. In this case, SH-waves are also excited along with Lamb waves. It is interesting 

to note that the integrands in the Fourier inversion integrals for 1u and 2u  are singular at 

the roots of both the symmetric Rayleigh-Lamb equation as well as the equation for 

symmetric SH-waves ( sin 0bβ = ), whereas that for 3u  is singular only at the roots of the 

Rayleigh-Lamb equation. This is logical in hindsight, since SH-waves do not cause out-

of-plane displacements. 
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II.4.C Ring-shaped Piezo 

In this case, the functions 1F , 2F  and their respective Fourier transforms are: 

[ ] ( )
[ ] ( )

1 1 1 1 1

2 2 1 1 2

( ) ( ) cos ;    ( ) ( )
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= − − − = − −
 (69)

Using Eqs. (48) and (69), one can show that: 
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where ( )S
SN ξ  is as defined before. Observe that in this case too, only Lamb-waves are 

excited. As before, only the symmetric modes are being considered here. Transforming 

into polar coordinates yields: 
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 (71)

Without loss of generality due to axisymmetry, consider the point 1 2,  0x r x= = . The 

following formula for the Bessel function can then be used: 

cos
1

0

1( ) cosizJ z e d
i

π
γ γ γ

π
−−

= ∫  (72)

Using Eq. (72) in Eq. (71) yields: 
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 (73)

where (2) (1)
1 1( ) and ( )H H  are the complex Hankel functions of order 1 and the first and 

second types respectively, defined by: 
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(2)
1 1 1
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The following asymptotic expressions hold for the complex Hankel functions: 
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 (75)

From the far-field expressions, one can infer that the Hankel function of the first type 

corresponds to the inward propagating wave (assuming only the positive roots are 

retained in the contour for residue evaluation) while the Hankel function of the second 

type corresponds to the outward propagating wave. Therefore, on physical grounds, only 

the latter is retained. The integration contour in the complex ξ-plane used is also similar 

to the one in Fig. 9. The final expression for displacement along the 1-direction then 

becomes: 

( ) (2)0
1 3 1 1 1

( )( ) ( ) ( ) ( )
8 ( )S

S i t S
o o i i

S

i Nu x b e a J a a J a H r
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µ ξ
−

= = −
′∑  (76)

And since the point ( ,0)r  is generic, by axisymmetry, Eq. (76) also represents the radial 

displacement ru  at a point at distance r from the center. The expressions for the other 

displacement components are: 

2 1 2( , 0) 0Su x r x= = =  (77)

( ) (2)0
3 1 2 1 1 0

( )( , 0) . ( ) . ( ) . . ( )
8 ( )S

S
S i t S S SS

o o i i S
S

Tu x r x e a J a a J a H r
D

ω

ξ

τ ξξ ξ ξ
µ ξ

= = = −
′∑  (78)

Thus, the angular displacement is zero at all points. The solution for a circular actuator 

can be recovered simply by letting 0ia =  in the above equations. In practice, the Hankel 

function is very close to its asymptotic expression after the first four or five spatial 

wavelengths. Thus, the solution for a circular-crested Lamb-wave field tends to that of a 

spatially decaying plane Lamb-wave field after a few spatial oscillations.  
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The harmonic out-of-plane displacement patterns due to excitation of the A0 

Lamb mode at 100 kHz in a 1-mm Aluminum plate by rectangular, circular actuators are 

shown in Fig. 11. Fig. 11a illustrates how the GW field due to a rectangular actuator 

tends to a circular crested GW field with angularly dependent amplitude at some distance 

from the actuator. In the far-field, it looks similar to the GW field due to a circular 

actuator shown in Fig. 11 (b). In addition, one can appreciate the directionally focused 

nature of the GW field from 3-3 APTs in Fig. 11 (c). The waves propagate in a roughly 

collimated beam in a limited sector centered about the fiber direction. This directionality 

is expected to be refined even more if the electrode pattern of the transducer is designed 

in a comb-transducer like fashion, as shown in Fig. 11 (d). This can be achieved by 

designing the clusters of electrode fingers spaced at intervals equal to half the wavelength 

corresponding to the center frequency of the excited GW. Such a comb transducer also 

has much better modal selectivity being more tuned to excite a particular wavelength 

chosen by design.  

While in this analysis it was assumed that a single angular frequency ω was 

excited, it can be used to find the response to any frequency bandwidth-limited signal. 

This can be accomplished by taking the inverse Fourier transform of the integral of the 

product of the harmonic response multiplied by the Fourier transform of the excitation 

signal over the bandwidth. In practice in GW testing, a limited cycle sinusoidal toneburst 

is used, typically modulated by a Hanning window. If modulated by a Hanning window, 

the excitation signal is of the form:  

0
1 2( ) (1 cos )sin 2
2e

tV t f t
T
π π= −  (79)

where 0/(2 )T n f=  is the duration of the toneburst, which is in practice an integral 

multiple n of the half-period 01/(2 )f . The magnitude of the Fourier transform of this 

signal, which gives the frequency content of the signal, is: 
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Fig. 11: Harmonic radiation field  (normalized scales) for out-of-plane surface displacement 
(u3) in a 1-mm thick aluminum alloy (E = 70 GPa, υ = 0.33, ρ = 2700 kg/m3) plate at 100 kHz, 

A0 mode, by a pair of (a) 0.5-cm × 0.5-cm square piezos (uniformly poled, in gray, center);  
(b) 0.5-cm diameter circular actuators (in gray, center); (c) 0.5 cm × 0.5 cm square 3-3 APT 
(in grey stripes) with the fibers along the vertical direction and (d) 3-element comb array of 
0.5 cm × 0.5 cm square 3-3 APT (in grey stripes) with the fibers along the vertical direction, 

excited in phase 
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 (80)

where sinc( ) sin( )/( )≡ . The first two terms on the right-hand side in (80) correspond to 

the contribution of the unmodulated sinusoidal toneburst and the last four terms are due 

to the Hann window. The contribution of the first two terms alone and the contribution of 

all the terms together on the right-hand side of Eq.  (80) are plotted in Fig. 12. The effect 

of the Hann window modulation is to double the width of the principal lobe while 

significantly decreasing the side lobes and thus reducing the spread of the frequency 

spectrum of the toneburst, as shown in Fig. 12. As it can be seen, the peak value is 

0/(4 )n f , while the width of the principal lobe in the frequency domain of the modulated 

toneburst is 04 /f n . These relations can be used to control the frequency bandwidth of 

the excitation signal in order to reduce signal distortion due to dispersion1. This will 

depend on what point on the group-velocity dispersion curve one is operating, which is a 

function of the product of 0f  and the half-plate thickness b.  The response of any system 

to a finite frequency bandwidth signal can be obtained by taking the inverse Fourier 

transform of the system harmonic response to a forcing function of unit magnitude, Rh(f), 

multiplied by the Fourier transform of the excitation signal ( )eV f  over the frequency 

bandwidth. For the Hann window modulated sinusoidal toneburst, the frequency 

spectrum is concentrated mainly in the principal lobe, as seen in Fig. 12. This frequency 

bandwidth is denoted as f∆ . Thus:  

0

0

2
2

0

2

( ) ( ) ( )

ff

i ft
h e

ff

R f R f V f e dfπ

∆
+

∆
−

= ∫  (81)

                                                            
1 Dispersion is a phenomenon wherein the original signal is distorted as it travels in a medium due to the 
different wavespeeds of its component frequencies. 
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This relation is used to find the theoretical magnitude of the response to a modulated 

sinusoidal toneburst excitation signal employing the developed formulations for the 

harmonic response. 

 

II.5 Numerical Verification for Circular Piezos on Plates 

In order to verify the result of the formulation proposed for isotropic plates, FEM 

simulations were conducted using ABAQUS [205]. An infinite isotropic (aluminum 

alloy) plate with a 0.9-cm radius piezo-actuator placed at the origin of the coordinate 

system was modeled using a mesh of axisymmetric 4-noded continuum finite elements up 

to a boundary at the radial position r = 15 cm. These were radially followed by infinite 

axisymmetric elements placed at the boundary, which are used to minimize the reflected 

waves returning from the boundary towards the origin. The FEM model represented only 

half the plate thickness, and then a through-thickness symmetry or anti-symmetry 

condition was applied to the mid-thickness nodes to model symmetric or anti-symmetric 

modes, respectively. The actuator was modeled as causing a surface radial shear force at 
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Fig. 12: Frequency content of unmodulated and modulated (Hann window) sinusoidal 
tonebursts 
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= 0.9 cm, just as in the proposed formulation. A 3.5-cycle Hanning window modulated 

sinusoidal toneburst excitation signal applied to the actuator was modeled by specifying 

the corresponding waveform for the time variation of the shear force applied at r = 0.9 

cm in the input file. The amplitude of radial displacement at r = 5 cm was recorded for a 

range of values of the toneburst center frequency-plate thickness product.  The mesh 

density and the time step were chosen to be sufficiently small to resolve the smallest 

wavelength and capture the highest frequency response, respectively (about 20 spatial 

points per wavelength in the FEM mesh and 20 time steps per inverse frequency). Two 

sets of simulations were performed: for symmetric and for anti-symmetric modes. These 

were compared with the analytical predictions by the proposed formulation in Section 

II.4.C (while considering the frequency bandwidth excited). The results are shown in Fig. 

13. The FEM results compare very well with the theoretical predictions for both the S0 

and A0 modes, providing verification for the proposed analytical formulation. 

 

II.6 Piezo-sensor Response Derivation 

In this section, the response of a uniformly poled surface-bonded piezo-sensor operating 

in the 3-1 mode on a plate in a GW field and connected to a measuring device such as an 

oscilloscope is derived. The relation between the electric field Ei, displacement Di and 

internal stress in the piezoelectric element is [206]: 

i ikl kl ik kE g Dσσ β= − +  (82)

where iklg  is a matrix of piezoelectric constants for the piezoelectric material, and 

ik
σβ  are the impermittivity constants at constant stress of the piezoelectric material. Since 

the impedance of the oscilloscope is usually very high (~ 1 MΩ), it can be assumed that 

there is no electric current flowing between the sensor and the measurement device. 

Therefore, 3 0D = . Furthermore, if the sensor is thin enough, 33 0σ ≈ . Thus, one obtains: 
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( )
11

31
3 31 ( )

1
c

ii ii
c

g YE g σ ε
ν

−
= − =

−
 (83)

where 11
cY  is the in-plane Young’s modulus of the sensor material, cν  is the Poisson ratio 

of the piezoelectric material, and εii is the sum of the in-plane extensional surface strains. 

Note that the contracted notation has been used for the g-constant indices from Eq. (83) 

onwards. Here it is assumed that the twisting shear stresses are negligible. The voltage 

response of the piezo-sensor therefore is: 

( )
11

31
3

1 .
1

c c

c c
c c ii

c c cS S

Y g hV E h dS dS
S S

ε
ν

= − =
−∫ ∫  (84)

where Sc is the surface area of the sensor and hc is the sensor thickness. This assumes the 

electric field is uniform through the sensor thickness (satisfied for small thickness 

piezos). An important assumption made here is that the sensor is infinitely compliant and 

does not disturb the GW field. This is reasonably satisfied if the product of the sensor’s 

thickness and Young’s modulus is small compared to that of the plate onto which it is 

surface-bonded and it is of small size. For APTs used as sensors, a similar analysis holds, 
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Fig. 13: Comparison of theoretical and FEM simulation results for the normalized radial 
displacement at r = 5 cm at various frequencies for: (a) S0 mode and (b) A0 mode 
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except that they are only sensitive to extensional stress along their fiber direction. If the 

Poisson effect is ignored, they are consequently insensitive to strains normal to the fiber 

direction. 

 

II.6.A Piezo-sensor Response in GW Fields due to Circular Piezos 

Consider the response to harmonic excitation of a uniformly poled rectangular 

piezo-sensor of width 2sθ  in a GW field (excited by a circular piezo with 0ia =  and 

oa a= ) surface-bonded between r = rc and r = rc + 2sr. In this case, Eq. (84) becomes:  

11 11
31 31( ) ( )

(1 ) (1 )
c c

c c c c r r
c rr

c c c cS S

Y h g Y h g du uV rdrd rdrd
S S dr rθθε ε θ θ

ν ν
= + = +

− −∫∫ ∫∫  (85)

Suppose that the length of the piezo-sensor 2sr is small enough so that 2rd sθ
θ

θ ≈∫  over 

the radial length of the sensor. Using this and Eqs. (76) and (85), one obtains (for 

symmetric modes): 

211
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II.6.B Piezo-sensor Response in GW Fields due to Rectangular Piezos 

Next, consider the response to harmonic excitation of a uniformly poled 

rectangular piezo-sensor placed between the coordinates 1 2( , )c cx s y s− − and 

1 2( , )c cx s y s+ + with its edges along the 1 2- and -x x  axes in the GW field due to a 

rectangular piezo-actuator described in Section II.4.A. In this case, Eq. (84) becomes:  
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Using the asymptotic displacement expressions (from the method of stationary phase), 

this leads to the following expression for sensor response in the far-field: 
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This expression can be evaluated for 0θ =  using L’Hospital’s rule to give: 

( )
( )

11
( ) 40 31 2 1 1

1

sin( )sin( )2( 0)
(1 ) 4

S

S

S S S
SS i r tc c

c SS
c S

Ni Y h g a a sV e
s rD

ξ ω π

ξ

ξτ ξ ξπθ
µ ν ξξ

− − +−
= =

− ′∑  (89)

 

II.7 Setups for Experimental Validation and Results 

To examine the validity of the theoretical expressions for the formulations 

developed above, a series of experiments were done. Each of these involved aluminum 

alloy specimens with three surface-bonded transducers. Two of these were at the center 

on each surface of the structure and used as actuators while the third was at some distance 

from the center and used as a GW sensor. Experiments were conducted to examine the 

correlation between theoretical and experimental frequency response functions. The first 

transmitted pulse sensed by a surface-bonded MFC sensor at some distance from the 

center was monitored. Two sets of readings were taken. In the first set, the actuators were 

excited in phase to excite symmetric modes while in the second they were excited out of 

phase in order to excite the anti-symmetric modes. These actuators were powered with a 

3.5-cycle Hanning-windowed sinusoidal toneburst over a range of center frequencies. 

The highest excitation frequency was well below the cut-off frequency of the first 

symmetric Lamb mode in the first set. In the second set, it was well below the cut-off 

frequency of the first anti-symmetric Lamb mode and the first anti-symmetric SH-mode. 

Thus, the S0 mode was predominantly excited in the first set while the A0 mode was 

predominantly excited in the second set. Due to the piezo-actuator’s capacitive behavior, 
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its impedance varies with frequency, and so the actual voltage drop across it varies with 

frequency. To account for this, the voltage amplitude across the actuator terminals was 

also recorded for each reading and the sensor response amplitude and error estimate were 

compensated accordingly. To obtain the theoretical sensor response to a Hanning-

windowed toneburst at a given frequency, one needs to evaluate the inverse time domain 

Fourier transform over the excited frequency spectrum. The theoretical and experimental 

signal amplitudes, normalized by the peak amplitude over the tested frequency range, are 

compared over a range of frequencies for the S0 and A0 modes. 

 

II.7.A Beam Experiment for Frequency Response Function of MFCs 

A 1-mm thick aluminum alloy (Young’s modulus YAl = 70 GPa, Poisson’s ratio υ 

= 0.33, density ρ  = 2700 kg/m3) strip clamped at both ends was instrumented with three 

MFCs, each 0.2 mm thick, as illustrated in Fig. 14. The actuators were excited with a 5 V 

peak-to-peak signal and the average amplitude of the sensor response over 16 samples 

was noted to reduce the noise levels. To predict the theoretical sensor response trend 

versus frequency, one needs to use the value 2a = 3.2 cm (which is the length of the 

active area of the MFC) in the expressions for beams. Only the contributions from the S0 

mode were included for the first set. Similarly, only contributions of the A0
 mode were 

considered for the second set. The harmonic sensor response, found using Eq. (84) should 

also be integrated over the frequency bandwidth of excitation for calculating the response 

to a 3.5-cycle sinusoidal toneburst signal. The theoretical (also referred to as analytical) 

and experimental results are compared in Fig. 15. Both curves are normalized to the peak 

response amplitude over the considered frequency range.  

 

II.7.B Plate Experiments for Frequency Response Functions of Piezos and MFCs 

  A 600 mm × 600 mm × 3.1 mm thick aluminum alloy plate (Young’s modulus YAl 

= 70.28 GPa, Poisson’s ratio υ = 0.33, density ρ  = 2684 kg/m3) was instrumented with a 

pair of 6.5-mm radius, 0.23-mm thick PZT-5H circular piezo actuators at the center of the  
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plate on both free surfaces. A 10 mm (radial length) × 5 mm (width) × 0.3 mm 

(thickness) PZT-5A rectangular piezo-sensor was surface-bonded at a radial distance rc = 

50 mm from the center of the plate, as illustrated in Fig. 16 (a). Similar specimens were 

built with surface-bonded rectangular piezos (Fig. 16 (b)) and MFCs (Fig. 17). The setup 

was designed such that reflections from the boundaries would not interfere with the first 

transmitted pulse received by the sensor over the frequency range tested, i.e., the infinite 

plate assumption holds. As before, separate tests were done for symmetric and anti-

symmetric modes. These actuators were fed with a 3.5-cycle 9 V (peak-to-peak) Hanning 

windowed toneburst. For each reading, the excitation signal was repeated at a frequency 

1 mm

2 cm 1.5 cm

70 cm

3.2 cm

27 cm

35 cm

Aluminum strip MFC

0.2 mm

Fig. 14: Illustration of thin aluminum strip instrumented with MFCs 
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Fig. 15: Theoretical and experimental normalized sensor response over various 
frequencies in the beam experiment for: (a) S0 mode and (b) A0 mode 
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of 1 Hz (this was small enough so that there was no interference between successive 

repetitions) and the averaged signal over 64 samples was used to reduce the noise levels 

in the signal. The theoretical and experimental signal amplitudes, normalized by the peak 

amplitude over the tested frequency range, are compared over a range of frequencies for 

the S0 and A0 modes in Fig. 18. The error bars based on the standard deviation of the 

amplitudes over the 64 samples (capturing 99.73% of the data points), and normalized by 

the peak amplitude are also shown in Fig. 18. The time-domain experimental and 

theoretical signals, also normalized to their respective peak amplitudes over the 

frequency range, are compared in Fig. 19 for center frequency each in the S0 and A0 

modes. The normalized theoretical and experimental amplitudes along with their 

associated error bars are compared for the rectangular actuator experiment in Fig. 20 

while the comparison of the normalized time domain signals is shown in Fig. 21 for one 

center frequency in each mode. The corresponding frequency response curves for the 

rectangular MFC experiment are shown in Fig. 22 and two time domain signals from this 

experiment are shown in Fig. 23. The peak-to-peak excitation voltage for the MFC 

experiment was amplified using a Krohn-Hite 7500 amplifier to 60 V, since the sensor 

response was barely above the noise floor without using it, possibly due to the very small 

actuator sizes.  

 

II.7.C Laser Vibrometer Experiment 

  To test the theoretically-predicted focusing capability of the MFC along its fiber 

direction in plate structures, an experiment was conducted using a Polytec scanning laser 

vibrometer system that employed a Polytec OFV-303 sensor head and OFV-3001-S 

controller. A 1-mm thick aluminum plate specimen with a pair of MFC actuators at the 

center (of dimensions 2a1 = 1.5 cm, 2a2 = 2.8 cm) was used. The actuators were excited 

with a 18 V peak-to-peak 3.5-cycle Hanning windowed sinusoidal toneburst signal. 

However, for this experiment, the center frequency was kept fixed at 30 kHz and the 

actuators were excited out-of-phase to excite the A0 mode predominantly. The laser 

vibrometer measured out-of-plane surface velocity signals at a chosen point, and was  

equipped with a computer-controlled scanning head (Polytec OFV-040) so that the scan 

point could be swept with precision over the plate area. Signals were recorded over a grid 
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spanning a quarter section of the plate surface up to 20 cm from each symmetry axis, 

since the field is expected to be symmetrical about the two axes in the plane of the plate. 

The grid spacing was 0.6 cm along the fiber direction (which is a third of the A0 mode 

wavelength at 30 kHz). Along the other direction in the plane of the plate near the 
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Fig. 16: Experimental setups for frequency response validation of: (a) circular actuator 
model and (b) rectangular actuator model 

 

Al plate (500 mm 500 mm)

Clamped boundary

MFC actuator  
(8 mm 5 mm)

MFC sensor    
(8 mm 5 mm)

50 mm

0.2 mm

3.2 mm 250 mm
 

Fig. 17: Experimental setup for frequency response validation of model for surface-
bonded APTs on plates 
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Fig. 18: Comparison between experimental and theoretical sensor response amplitudes 
in the circular actuator experiment at different center frequencies for: (a) S0 mode and 

(b) A0 mode 
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Fig. 19: Comparison between experimental and theoretical sensor response time domain 
signals for the circular actuator experiment: (a) S0 mode for center frequency 300 kHz 

and (b) A0 mode for center frequency 50 kHz 
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Fig. 20: Comparison between experimental and theoretical sensor response amplitudes 
in the rectangular actuator experiment at different center frequencies for: (a) S0 mode 

and (b) A0 mode  
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Fig. 21: Comparison between experimental and theoretical sensor response time domain 
signals for the circular actuator experiment: (a) S0 mode for center frequency 150 kHz 

and (b) A0 mode for center frequency 50 kHz 
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actuator, the spacing was 0.5 cm for the first four columns of the grid starting from the 

symmetry axis. Beyond this region, the spacing was 1 cm. In addition, as in the previous 

section, the excitation signal was repeated 64 times for each point at a frequency of 1 Hz 

and the averaged signal was recorded. Furthermore, wavelet denoising using the discrete 
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Fig. 22: Comparison between experimental and theoretical sensor response amplitudes 
in the rectangular MFC experiment at different center frequencies for: (a) S0 mode and 

(b) A0 mode  
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Fig. 23: Comparison between experimental and theoretical sensor response time domain 
signals for the frequency response experiment with  rectangular MFCs: (a) S0 mode for 

center frequency 300 kHz and (b) A0 mode for center frequency 50 kHz 
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Meyer wavelet was employed to cleanse the signals. The experimentally obtained surface 

plots at three particular time instants over the quarter section of the plate are shown in 

Fig. 24 (normalized to the peak value of surface velocity over the plate in the time span 

up to 200 µs). The surface plots for the same GW fields obtained using the theoretical 

model developed in this thesis are shown adjacent to these in Fig. 24. These are also 

normalized to the theoretically predicted peak velocity over the plate area in the same 

time span. These plots were generated assuming pure A0 mode excitation. SH-modes 

were not considered since they do not cause out-of-plane displacements. 

 

 

II.8 Discussion and Sources of Error 

II.8.A Frequency Response Function Experiments 

  In the beam experiment, for the symmetric mode, the peak response frequency is 

well captured by the model. In addition, the qualitative trend of the sensor response with 

varying frequency is also captured. Similar conclusions hold for the anti-symmetric 

mode. In this case, however, the peak response frequency is the lowest frequency of 

testing. The qualitative prediction of the trend of the response is good, albeit with some 

marginal quantitative error in the location and relative magnitude of peaks. The 

frequency at which the second peak occurs is slightly over-estimated for both modes. 

This error is possibly attributable to the use of uncoupled transducer-substrate dynamics 

models in this thesis. Due to the relatively larger transducer to substrate thickness ratio 

(in this case 0.2 mm to 1 mm), in order to obtain better accuracy in theoretical 

predictions, models that account for the coupled dynamics will be needed. Some incipient 

efforts in this direction can be found in Refs.  [76] and [79]. 

  In the plate frequency response experiment, there is qualitative agreement in the 

trend between the theoretical and experimental results. There is some error observed in 

the prediction of the peak frequency for the theoretical results in the experiments, and 

they are particularly evident in the results for the rectangular piezo and MFC (for the 

nominal transducer dimensions). However, the experimental results are in good 

agreement with the theoretical curve for reduced transducer dimensions (by 20% for the 
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t = 100 µs

t = 150 µs
 

t = 150 µs

t = 200 µs
 

t = 200 µs

(a) (b) 

Fig. 24: Normalized surface plots showing out-of-plane velocity signals over a quarter 
section of the plate spanning 20 cm × 20 cm. The MFC is at the upper left corner (the 

striped rectangle), and its fibers along the vertical: (a) Experimental plots obtained using 
laser vibrometry and (b) theoretical plots obtained using the developed model for APTs 
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rectangular piezo and 13% along the fiber direction for the MFCs). This shift can be 

attributed to the shear lag phenomenon, which relates to the assumption made in the 

derivation pertaining to force transfer only along the free edges of the piezo. As 

mentioned earlier, this “pin-force” model was proposed by Crawley and de Luis [85] for 

the case of a pair of piezo-actuators surface bonded on opposite beam surfaces and 

actuated quasi-statically. Due to the finite stiffness of the actuator relative to the plate and 

imperfect bonding between the actuator and plate, the force transfer between the piezo 

and the plate occurs over a finite length close to the edge of the piezo. Therefore, the 

effective dimension in the models derived may be smaller than the actual physical 

dimension. The circular piezo was thinner (0.23 mm) and more flexible (E = 59 GPa) 

compared to the rectangular piezo (0.3 mm and 63 GPa), which possibly explains why 

this effect was less noticeable in the former experiment. While the MFC was even thinner 

(0.2 mm) and more flexible (E = 30.34 GPa), it is suspected that the presence of the 

kapton electrode layer may have caused the shear lag effect to be greater than expected. 

In addition, in the MFC experiment beyond about 375 kHz, the amplifier caused some 

noticeable signal distortion in the amplified excitation signal which may have caused 

some of the inconsistency at higher frequencies in the comparison between the theoretical 

and experimental results for that set of results. 

Another source of error comes from the impossibility of exciting a pure mode. 

While there were two actuators bonded on either free surface at the center of the plate, 

there would always be some mismatch in their piezoelectric properties due to 

manufacturing imperfections. In addition, due to the finite thickness of the sensor, when 

the wave packet is incident on it a small portion of the incident GW mode is converted to 

other modes due to scattering. Because of this, it was verified that some excitation of 

antisymmetric modes existed in the symmetric mode experiments and vice versa. An 

effort was made to ensure that the time window over which the peak was recorded (using 

the theoretical time-domain waveforms) was for the relevant mode of interest. In spite of 

this, the results were significantly affected by the overlapping of the two modes over 

certain frequency ranges, which were avoided.  
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  The theoretical models all assume infinite substrates. This is accounted for in the 

experiments by only examining the first transmitted pulse received by the sensor and 

ignoring boundary reflections. In the beam experiment, due to the proximity of the sensor 

to the boundary, some of the low frequency data for the first transmitted pulse is slightly 

compromised by reflections from the boundary. At lower frequencies, due to the larger 

time-spread of the excitation signal, the reflection tends to overlap with the first 

transmitted pulse. This is more significant for the S0 mode due to the higher wavespeeds 

at low frequency. These effects were significantly reduced in the plate experiments by 

bonding the sensor closer to the actuators. 

 

II.8.B Laser Vibrometer Experiment 

  The experimental surface out-of-plane velocity images obtained for the plate in 

Fig. 24 (a) are also in good agreement with their theoretical counterparts. The 

theoretically predicted focused nature of the GW field along the MFC fiber direction is 

well captured in the experiment. There is also qualitative agreement in the patterns of the 

weak radiation along the other directions. However, the amplitude for those is slightly 

stronger in the experimental plots. In addition, the tendency of the GW field towards a 

directionally dependent circular crested field in the far field, which was also predicted 

theoretically, is evident in the experiment. There is some noise in the experimental plots, 

despite the use of wavelet denoising. This is because the plate, in spite of lightly sanding 

its surface, was a poor diffuse reflector in some areas when the laser was incident at an 

angle. At such points, this was partially compensated by adjusting the focus of the laser’s 

lens. Another minor source of error in correlation is the presence of a MFC sensor of size 

0.9 × 0.5 cm2, 5 cm from the center. This may have caused weak scattering of the GW 

field due to the slight change in local stiffness and mass induced by it.  

 

Despite these sources of error, overall there is good correlation between the 

experimental and theoretical results, thus providing validation for the derived models 

describing GW excitation as well as the sensor response equation for surface-bonded 

piezo-sensors. 
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II.9 Optimal Transducer Dimensions 

This section discusses the use of the above analytical models for optimizing 

transducer dimensions in various configurations. 

 

II.9.A Circular Piezo-actuators on Plates 

To optimize the actuator size for maximum sensor response to harmonic 

excitation, everything in Eq. (86) is kept fixed except a. Then: 

1( )cV aJ aξ∝ (90)

The right-hand side of Eq. (90) is an oscillating function of a with a monotonically 

increasing amplitude envelope as seen in Fig. 25. The local maxima of cV  are attained at 

the corresponding local extrema of 1( )J aξ . Thus, there is no optimum value for 

maximizing sensor response as such, and by choosing higher values of a that yield local 

extrema, one can in principle keep increasing the magnitude of sensor response to 

harmonic excitation. Notice that between any two successive peaks of the response 

function there is a value for the actuator radius for which the response to harmonic 

excitation is zero. This corresponds to a zero of the Bessel function. Although these zero 

“nodes” caused by certain actuator radii are presented for simple harmonic excitation, 

they have also a direct impact on a toneburst signal. One may take a toneburst center 

frequency as responsible for most of the energy being delivered by the actuator. If the 

product of the actuator radius and the toneburst center frequency coincides with a node as 

shown in Fig. 25, then most of the signal will be attenuated.  

Since the piezo-actuator has some capacitance, the harmonic reactive power 

circulated every cycle r
aP  is: 

2 2
2 2022

a

r a a
a

a

fk a VP fC V a
h

π ε ππ= = ∝  (91)
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where Va is the actuation voltage supplied to the piezo-actuator, f is the frequency of 

harmonic excitation and the rest of the notation is analogous to that used for the piezo-

sensor. That is, the power circulation increases as the square of the actuator radius if all 

other parameters are constant. Note that the dependence of the capacitance on driving 

frequency and actuation voltage magnitude has not been considered (see [207], for 

example). However these only tend to further increase the capacitance, and thereby the 

reactive power circulation. This power being reactive is not dissipated, but is merely used 

for charging the piezo in the positive half-cycle and is gained back when the capacitor is 

discharged in the negative half-cycle. The power supply to drive the actuators will define 

how much of this energy can be recycled. 

In addition to this, the power source must supply the energy that is converted into 

acoustic energy in the excited GW field. This is given by the expression: 

( )ˆ.
a

o

d
i ij

S

P n u dSσ= ∫  (92)
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Fig. 25: Amplitude variation of sensor response and power drawn to excite the GW field 
due to change in actuator radius for a 1-mm thick Aluminum plate driven harmonically in 

the S0 mode at 100 kHz   
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where So is the cylindrical surface of thickness 2b and radius a centered at the origin, i.e., 

that encapsulates the region of the plate under the actuator. On substituting the 

expressions for plate displacement and stress and evaluating the integral, an intricate 

expression is obtained involving the plate material properties, plate thickness, the 

actuator radius, and the excitation frequency/wavenumber. Intuitively, however, one 

expects that this expression will also follow an oscillating trend with monotonically 

increasing amplitude envelope as a function of actuator radius. This is confirmed in Fig. 

25, where the peaks of the expression coincide with the peaks of the sensor response 

curve. Evidently, the increased sensor response by actuator size tailoring is at the cost of 

increased power consumption by the actuator. 

In summary, the choice of actuator length for the largest local maximum is limited 

by the power available to drive the actuator. Moreover, the area occupied by the actuator 

on the structure as well as the desired area covered by the actuator-sensor pair signal 

might be concerns that ultimately decide the actuator size.  

 

II.9.B Rectangular Actuators 

In the case of a surface-bonded rectangular piezo-actuator on a plate, due to the 

highly direction-dependent GW field, this will depend on the angular location of the 

piezo-sensor/region of interest for GW SHM on the plate relative to the piezo-actuator. 

For example, consider the case 0θ = . If all parameters except 1a  and 2a  are kept 

constant in Eq. (89), one obtains: 

2 1sin( )S S
cV a aξ∝  (93)

Thus, to maximize the harmonic sensor response of a piezo-sensor in the direction 0θ = , 

2a  should be as large as possible. For 1a , any of the lengths given by the relation: 

1
1 22 ( ) ,    0,1, 2,3,...
2 Sa n nπ

ξ
= + =  (94)

are equally optimal values in order to maximize sensor response. By an analysis similar 

to the one in Section  
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II.9.A, it can be shown that the power requirement increases for larger actuator 

dimensions. Thus, in order to minimize power consumption and the area occupied by the 

actuator on the structure, the value of 1a  is defined by Eq. (94) with 0n = . The choice of 

2a  will also be limited by similar concerns. A similar analysis holds for rectangular APTs 

bonded on beams and plates.  

 
II.9.C Piezo-sensors 

Two particular configurations are studied for optimizing piezo sensor dimensions. 

First, consider the Eq. (86) for the harmonic sensor response of a piezo in the GW field 

due to a circular piezo-actuator. Assuming all parameters (except the sensor length 2sr) to 

be constant: 

2 2(2) (2)
0( ) ( )

2 2

c r c r

c c

r s r s
o

c
r rr r

H r H rV dr dr
s s
ξ ξ+ +

∝ ≤∫ ∫  (95)

This inequality holds due to the oscillatory nature of the Hankel function. Since 
(2)
0 ( )H rξ  is a monotonically decreasing function of r:  

2 (2)
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0 0

( )( ( 2 )) ( )
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r s
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rr

H rH r s dr H r
s
ξξ ξ

+

+ ≤ ≤∫  (96)

where the equality holds only at the limit of 2sr → 0. Thus, the maximum sensor response 

is attained for 2sr = 0, and it decreases with increasing sr. This implies that the sensor 

should be as small as possible to maximize |Vc| in the case of a circular-crested GW field. 

A smaller sensor size would also interfere less with the GW field and is favorable from 

the point of view of SHM system design, since the transducers should ideally occupy 

minimum structural area. To validate this idea, the same setup as described in Section 

II.7.B was used. However this time, a 20 mm (radial length) × 5 mm (width) × 0.3 mm 

(thickness) sensor was surface-bonded at a distance of radius 50 mm from the plate center 

so that rc = 50 mm, as before. The sensor’s radial length 2sr was reduced in steps of 0.5 

cm by cutting the sensor on the plate with a diamond-point knife and examining the 

response of its remaining part. For each length, an experiment along the lines of the 
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earlier ones was conducted for the S0 mode, i.e., the sensor response amplitudes were 

measured over 64 samples for each center frequency over a range of center frequencies. 

The comparison between the theoretical and experimental results is shown in Fig. 26 

(both data sets are normalized to the peak value for the curve at 2sr = 2 cm). The 

theoretical curves were derived assuming uniform bond strength over all of the original 

piezo sensor’s area. As predicted by the theoretical model, the sensor response amplitude 

increases with decreasing sensor length. The comparison between the theory and 

experimental results is good again, although the experimental curve is slightly shifted 

ahead of the theoretical curve along the center frequency axis due to shear lag. The 

comparison between the relative amplitudes is quite accurate with the exception of the 

last set for 2sr = 0.5 cm, which can be possibly attributed to weaker bond strength closer 

to the edge of the piezo-sensor. 

Now consider Eq. (88) for the far-field harmonic sensor response of a piezo in the 

GW field due to a rectangular piezo-actuator. If all parameters except 1s  and 2s  are kept 

constant:  

1 2

1 2

sin( cos ) sin( sin )
( cos ) ( sin )

S S
S

c S S

s sV
s s

ξ γ ξ γ
ξ γ ξ γ

∝ ⋅  (97)

Since the function sin t
t

 is maximum at t = 0, and its subsequent peaks after t = 0 rapidly 

decay, one concludes that for maximum sensor response amplitude (|Vc|) in the far-field, 

the sensor dimensions, i.e., 2s1 and 2s2, should be as small as possible, preferably much 

smaller than the half-wavelength of the traveling wave. 

Similar analysis can be done for piezos/APTs bonded on beams/plates in the far 

GW field excited/scattered by an arbitrary source to conclude that the smaller the sensor 

size, the stronger its response. This is essentially due to the piezo-sensor’s mechanism to 

be sensitive to the average strain over its surface area. When sensing a spatially 

oscillating GW, this leads to a stronger response if the area over which the averaging is  

done is smaller. How small the piezo can be made will be limited by shear lag, as 

observed in the experiment above. Depending on the strength of the bonding mechanism, 
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Fig. 26: Comparison between experimental and theoretical sensor response amplitudes 
in the variable sensor length experiment 

 

beyond a point reducing sensor size will cause the GW signal to be completely lost in the 

bond layer. Another situation where this sensing mechanism can be exploited is when the 

sensed signal is multimodal and immunity to one of the GW modes is desired. In that 

case, if the sensor size is designed to be equal to the wavelength of that mode 

corresponding to the expected center frequency of the signal, the contribution from that 

mode will be negligible due to the sensor’s averaging mechanism. This can be exploited 

to reduce the demands on the signal processing algorithm, as explored in Chapter IV. 

 

  Thus, in summary, in this chapter, 3-D elasticity models were developed for GW 

transduction by piezos and these were validated by FEM and experiments. Some analysis 

was also presented for tailoring transducer dimensions to maximize GW field strength 

when used as actuators and also to maximize response amplitude as sensors. The next 

chapter uses these models along with other concepts to provide a set of design guidelines 

for transducers and the excitation signal in GW SHM systems. 
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CHAPTER III 

 

DESIGN GUIDELINES FOR THE EXCITATION SIGNAL AND PIEZO-
TRANSDUCERS IN ISOTROPIC STRUCTURES  

 

In this chapter, the models developed in the previous chapter along with other 

ideas are exploited to furnish a set of design guidelines for GW SHM systems, 

specifically for the excitation signal and the transducers in isotropic structures. Fig. 27 

shows a tree-diagram which lists the various parameters that need to be chosen for the 

excitation signal and transducers in GW SHM systems. The next two sub-sections 

prescribe the specific guidelines for excitation signal and transducer design. Each sub-

section in these begins with the guideline in italics, followed by the reasoning behind it. 
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Fig. 27: Tree diagram of parameters in GW SHM (numbers above/below the boxes 
indicate section numbers for the corresponding parameter)  
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III.1 Excitation Signal 

In GW SHM, the excitation signal is typically a high-frequency pulse signal. This 

feature distinguishes this approach from other vibration-based SHM schemes. If the 

excitation signal is too long in the time-domain, the response of the structure might be 

masked by multiple boundary reflections. Most commonly, a modulated sinusoidal 

toneburst signal spanning a few cycles is used. The following guidelines should aid in 

choosing the specifics of this signal. 

 

III.1.A Center Frequency/GW mode 

The center frequency and GW mode should be decided based on the damage types(s) of 

interest, using relevant information of GW sensitivity studies for each damage type.  

The center frequency of the excitation signal is a crucial parameter. Along with 

the GW mode, it decides the wavelength, which in turns defines the minimum size of the 

least sensitive of the different damage types which are hoped to be detected using the 

GW SHM system. The wavelengths of the GWs are found from the dispersion curves. 

Mode sensitivity to a damage can be found using FEM-based damage sensitivity studies 

or from theoretical models that describe the GW-scattered field from the damage as 

discussed in Section I.4.A. For example, by exciting a mode with a through-thickness 

stress profile such that the maximum power is transmitted close to a particular interface 

through the plate thickness, the plate can be scanned for damage along that interface.  

Rose et al. [63] predicted through analysis of displacement and power profiles across the 

structural thickness that in metallic plates the S0 mode would be more sensitive to detect 

large cracks or cracks localized in the middle of the plate. On the other hand, the S1 mode 

would be better suited for finding smaller cracks or cracks closer to the surface. Alleyne 

and Cawley [66] found from FEM-based sensitivity studies that notches of depth of the 

order of 1/40 times the wavelength could be detected by Lamb waves in a plate. They 

also found that the sensitivity was independent of the size of the notch in the plane of the 

plate, as long as the was small compared to the wavelength. Furthermore, it might be 

useful to test at more than one frequency, since defects of some particular dimensions can 

be insensitive to a given wavelength (see, e.g., Fromme et al. [73]). 
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The following types of structural damage/defects have been detected using GWs 

in the literature: delaminations in composites [65], notches [66], impact damage (usually 

in the form of an indentation or hole [73], structural cracks (which could be fatigue-

induced, e.g., [72], loss of material due to corrosion [208], cracks in welds [209], bolt 

torsion in clamps/fasteners supporting structures [175], disbonds between skin and the 

honeycomb core in sandwich structures [157], and disbonds at adhesive joints [173]. 

 

III.1.B Number of Cycles 

Decide on the number of cycles in the toneburst based on a tradeoff study between blind-

zone area and dispersiveness. 

There is always a small blind-zone area surrounding the transducers used in GW 

SHM, where damage cannot be detected. The blind-zone area results because small 

amplitude scattered GWs from damage sites going to the sensor cannot be easily 

separated from the large amplitude first transmitted GW pulse from the actuator (or the 

excitation signal if the actuator itself is being used as sensor) or from the GW reflections 

from the boundary (which are also usually significantly larger compared to reflections 

from damage sites). Therefore, from this standpoint, a smaller number of cycles will 

decrease the blind zone area. On the other hand, a larger number of cycles will reduce the 

frequency bandwidth, and thereby, decreases “dispersion.” Dispersion is a phenomenon 

wherein the original signal is distorted as it travels in a medium due to the different 

wavespeeds of its component frequencies. Therefore, the number of sinusoidal cycles in 

the excitation signal has to compromise between these two factors. The former is 

proportional to the square of the number of cycles for a given excitation frequency while 

the latter reduces with increasing number of cycles due to the reduction of the main lobe 

width in the frequency spectrum. Thus, if one is operating in a relatively non-dispersive 

region of the dispersion curve, one could afford to use a fewer number of cycles. 

 

III.1.C Modulation Window 

Choose a Kaiser window for modulating the excitation signal. 

To minimize the problem of dispersion created by using a finite time-duration 

signal, it should be modulated by a window which minimizes the spread of the signal in 
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the frequency domain. The effect of truncating a harmonic signal is to smear its signal 

energy in the frequency domain in a main lobe centered about the original frequency, 

along with weaker side lobes. Modulation typically widens the main lobe and makes the 

side lobes smaller. The Kaiser window approximates the prolate spheroidal window, for 

which the ratio of the main-lobe energy to the side-lobe energy is maximized in the 

frequency domain (Papoulis [210]). It is given by the expression: 

2
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where 0 ( )I  is the modified Bessel function of the first kind of order 0, τ is the duration 

of the window (fixed by the number of cycles) and β is a parameter that controls the main 

lobe width in the frequency domain. Let ∆ml be the chosen main lobe width defined by 

the distance between the central zero-crossings in the plot of the magnitude of the Fourier 

transform (see Fig. 28). Then the amplitude attenuation factor in dB of the main lobe to 

the largest side lobe is: 
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The window parameter β is chosen to be: 
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That is, for 13.26slA ≤ , the Kaiser window reduces to the rectangular window. 

 

III.1.D Consideration for Comb Array Configurations 

When using a comb transducer, ensure that the main lobe in the frequency spectrum is 

narrow enough so that higher harmonics of the primary wavenumber of interest are not 

excited. 
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Fig. 28: The Kaiser window and its Fourier transform 
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Fig. 29: Illustration of comb configurations: (a) using ring elements and (b) using 
rectangular elements 

 

 A comb configuration (Fig. 29) is an array of transducers that is equally tuned to 

a particular wavelength of interest and its integer multiples (illustrated in Fig. 30). 

Therefore, when using such a configuration, ensure that the excitation signal is such that 

its frequency bandwidth does not include any higher harmonics of the wavelength of 

interest. A more detailed description of comb transducers can be found in Section III.2. 
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III.2 Piezo-Transducers 

III.2.A Configuration/Shape Selection 

Choose the configuration of the transducer(s) and the individual transducer 

shape(s)/type(s) to suit the application:  

• For large area scanning from a central point on the structure, use multi-element 

arrays. 

• For small area scanning, use a few elements in pulse-echo or pitch-catch mode. 

• For uniform radiation in all directions, use circular actuators. 

• For focused radiation, use an appropriately designed rectangular piezo actuator. 

• For unidirectional sensing, use an anisotropic piezocomposite transducer. 

• For modal selectivity, use comb configurations. 
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Fig. 30: Comparison of harmonic induced strain in A0 mode between an 8-array piezo 
comb transducer and that of a single piezo-actuator (power is kept constant). 

 

The configuration and shape are highly dependent on the application area. For 

example, if large area scanning from a central point of a structure without structural 

obstacles (such as a reinforcement or joint) is desired, a linear phased or circular array 

may be preferable. Phased arrays operate by scanning individual sector angles by 

applying appropriate delays and scaling factors to the excitation signals to the individual 

array transducer elements (see e.g., Purekar and Pines [123]).  If however, a smaller area 

is to be monitored, a simpler solution is to use a few transducers operating in the pulse-
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echo configuration. A minimum of three transducers are needed for triangulation in a 

plate or shell-like structure (this is further discussed in a subsequent chapter on signal 

processing in this thesis). The pitch-catch configuration requires a denser network of 

transducers in order to allow for triangulation. For beam-like structures, two transducers 

in the pulse-echo configuration suffice to locate the damage. Note that the notion of 

“small” and “large” areas depends on the material damping characteristics as well as the 

power available per actuator. The relative spacing between sets of transducers on the 

structure should be based on a calibration experiment to get an estimate of the range 

capability of the chosen actuator/sensor configuration for the structure of interest and 

actuation voltage levels. 

The radiation patterns of a particular actuator depend on its shape. To ensure 

uniform radiation in all directions in the plane of the plate, use circular actuators. This is 

crucial in linear phased arrays, for example. If it is desired to monitor one or more 

particular area(s) of the structure selectively, focused actuator shapes such as rectangular 

ones are preferable. An APT may also be useful in this regard due to its preferential 

direction of radiation along its fibers. However, care should be taken in their design since 

these also excite horizontally polarized shear (SH-) modes along with Lamb modes, as 

seen in the previous chapter. They are also advantageous to use in certain applications 

due to their unidirectional sensing capability along the fiber direction. To achieve modal 

selectivity and thereby easier signal interpretation, a comb configuration would be much 

preferable.  

 

III.2.B Actuator Size 

Determine the optimal size of the actuator based on the theoretical model corresponding 

to the particular chosen shape.  

The formulas in this sub-section are based on theoretical models in the previous 

chapter and assume the circulation power formula for harmonic excitation with capacitive 

loads (in this case, the piezo-actuators), i.e., 22P fCVπ= . In practice, for modulated 

sinusoidal tonebursts, the peak power drawn is close to this value. For more accuracy, a 

correction factor can be used depending on the modulation window. It should be noted 

that, since capacitive loads are reactive, this power is used in the positive half-cycle for 
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charging the capacitance and is gained back in the negative half-cycle when the 

capacitance is discharged. The power dissipated in exciting the GW field in the structure 

is neglected, since that is typically orders of magnitude smaller than the reactive power. 

In addition, the nonlinear dependence of the capacitance of piezoelectric elements on 

driving voltage and frequency is neglected (see e.g., Jordan et al. [207]). This should be 

accounted for at high driving voltages (> 30 V). Sizing guidelines for circular and 

rectangular uniformly poled piezos, rectangular APTs and ring-shaped/rectangular comb 

actuators are presented in this sub-section. The objective of the design process here is to 

maximize the GW field strength while remaining within the power, voltage and 

maximum actuator size constraints of the system. The different parameters needed in the 

formulas below are: 

 

System constraints: 

Vmax   =  Maximum actuation voltage that can be applied by the power source 

P        =  Maximum power that can be supplied by the power source 

amax =  Maximum allowable actuator dimension 

Actuator properties: 

k    =  Dielectric ratio of the actuator material 

ha    =  Thickness of actuator along the direction of polarization 

Structural (substrate) properties: 

E         =  Young’s modulus of the isotropic plate structure 

υ         =  Poisson’s ratio of the isotropic plate structure 

ρ         =  Material density of the isotropic plate structure 

2b       =  Thickness of the plate structure 

Other constants/parameters: 

ε0      =  Permittivity of free space 

f      =  Center frequency of excitation 

ξ         = Wavenumber of the chosen GW mode at the operating center frequency  
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i) Circular actuator uniformly poled through thickness: 

 Let a be the variable corresponding to the radius of the circular actuator. Also, 

consider the parameter 0a  such that: 

0
max 0

1
2

aPha
V k fπ ε

=  
(10

1)

Fig. 31 illustrates the design space and the geometric locations of a0 and other parameters 

that will be discussed for the circular actuator. Thus, 0a  is the value of a at the 

intersection of the power constraint curve and the line V = Vmax.  If 0a  < amax, which is 

the maximum radius of an actuator permissible by the designer, then: 

1. If 0a a=  corresponds to an extremum of 1( )J aξ , then choose this value as actuator 

radius.  

2. If 0a a=  does not correspond to an extremum of 1( )J aξ , let 2a  correspond to the 

first extremum of 1( )J aξ , such that 0 2 maxa a a< ≤ , if it exists (else choose 2 maxa a= )  

and let 1a  correspond to the maximum value of 1. ( )a J aξ  for 00 a a< ≤ . If: 

1 1 1 max 1 2 2
0

. ( ). ( ).
2

aPha J a V J a
k f

ξ ξ
π ε

>  
(10

2) 

then choose 1a a= . Otherwise, choose 2a a= . If 0 maxa a> , then choose the largest 

maxima of 1. ( )a J aξ  with max0 a a< ≤ , if such a maximum exists, else choose a to be 

maxa . 

 The suggestions for circular actuator sizing are derived from the relation between the 

GW strain or displacement field and actuator size/actuation voltage. As shown in the 

previous chapter, if one is within the limits of the power supply, the GW strain field 

strength for circular actuators is linearly proportional to 1. ( )Va J aξ  (the linear 

proportionality to V results from the linear dependence of 0τ  on the actuation voltage V). 

However, along the power constraint curve (defined by ( )2
02 .aVa fk h Pπ ε= ), since 

Va  is fixed, the field strength for circular actuators is linearly proportional to 1( )J aξ . 
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ii) Rectangular actuator uniformly poled through thickness 

  In this case, the dimensions depend on the direction(s) in the plane of the structure 

where radiation is to be maximized. If, for example, it is desired to maximize radiation 

along a particular direction while minimizing radiation perpendicular to it, then the  

rectangular actuator should be oriented such that one of its two axes of symmetry is along 

the direction of interest, say the 1x -axis. Let the dimensions of the actuator be 12a  along 

1x  and 22a  perpendicular to it, with 1 2a a< . Again, the formulas for the far-field GW 

strain field are used in conjunction with the constraints to derive these recommendations. 

  Consider 2amax to be the maximum allowable actuator dimension. As shown in 

Fig. 33, choose 2oa  (the optimal value for 2a ) to be the largest zero of 2sin aξ  such that 

2 max0 a a< ≤ , if it exists. If no such zero exists then choose 2 maxa a= . 

Let: 

0 2
2 0 max8

aPha
a k fVπ ε

≡  
(10

3) 

If this value of 0a  is larger than or equal to maxa , reset 0a  to be maxa . If there exists a  

corresponding to an extremum of 1sin aξ  such that 00 a a< ≤ , then choose the smallest 

value of ã for 1a . If such an extremum does not exist, and 0a  was reset to amax, then 

choose 1 maxa a= . 
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Fig. 31: Parameters and design space for circular actuator dimension optimization 
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  If such an extremum does not exist, and 0 maxa a< , then let ta  be the first 

extremum of 1 1(sin )a aξ  such that 0 maxta a a< ≤ . If such ta  does not exist, choose 

maxta a= . If: 

0 max
2 0

sin( ). sin( ).
8

a
t

t

Pha V a
a a k f

ξ ξ
π ε

>  (104) 

then the optimal value of 1a  is 1 0oa a= , else choose 1o ta a= . The locations of these 

parameters in the design space are shown in Fig. 34. 
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Fig. 33: Choice of 2a  for rectangular 
actuator 

 

iii) Ring-shaped comb actuator uniformly poled through thickness 

  The possibility of using this configuration arises only if maxa , which is the 

maximum allowable actuator radius, is larger than the value of a corresponding to the 

second extremum of 1. ( )a J aξ . A comb configuration can be achieved by using 

individual ring-shaped actuators or by using a large circular actuator with the necessary 

electrode pattern etched on it. A comb configuration is much more preferable compared 

to a circular actuator for axisymmetric GW excitation due to its modal selectivity. In 

designing this, the maximum number of ring shaped actuators that can be used is 1n − , 

where n is the number of extrema of 1. ( )a J aξ  for maxa a≤ . If n is odd and greater than 1, 

there can be one circular actuator and 2n −  ring-shaped actuators. If 1n = , only one 
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circular actuator can be used. The internal and external radii of the rings are the values of 

a corresponding to the extrema of 1. ( )a J aξ . In choosing the number of ring actuators n, 

the only issue preventing one from using the maximum possible number of elements 

within the allowable actuator size is the drop in amplitude due to increase in capacitance 

as more rings are used (which may cause reduced actuation voltage due to the finite 

power supply of the system). Hence, the choice of n should be made after a careful 

tradeoff study between tolerable dispersiveness and signal amplitude for each possible n. 
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iv) Comb actuator with rectangular uniformly-poled piezos 

  Just as for the ring-shaped comb configuration, a rectangular comb-shaped 

configuration (Fig. 29 (b)) is always preferable over a single rectangular actuator (if 

maximizing radiation along one direction is desired). The possibility of using this 

configuration arises if max
3
2

a π
ξ

≥ . The individual rectangular actuator elements can be 

designed using the guideline (ii) (note that the total power is equally split among the 

elements of the comb array). If n is the number of extrema of sin aξ  in the range 

max maxa a a− ≤ ≤  (which is the number of half-wavelengths of the GW), then / 2n  

identical rectangular actuators need to be used and placed between the same 2x -locations 

( 2 2x a=  and 2 2x a= − ), with their edges along the x1-locations being the odd multiples of 

the half-wavelengths (see Fig. 29 (b)). 
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v) Rectangular APT actuators 

  For rectangular APTs used as actuators (which would be used for more strongly 

focused GW fields than the corresponding uniformly poled rectangular piezo), the design 

considerations are analogous to that for a rectangular uniformly poled piezo-actuator, 

with 1a  along the fiber direction. 

 

III.2.C Sensor Size 

Choose the sensor dimensions in the plane of the plate to be minimal, preferably much 

smaller than the half-wavelength of the GW. If the signal processing algorithm cannot 

handle multiple modes, design the sensor to be immune to the GW mode that is less 

sensitive to the damage type(s) of interest. 

  As seen in the previous chapter, the sensor response keeps increasing as the 

sensor dimensions in the plane of the plate are reduced, assuming the sensor is in the far-

field relative to the source (a distance of five to ten wavelengths). The only constraint on 

decreasing sensor size is the phenomenon of shear lag wherein all the strain is taken by 

the bond layer and nothing is transmitted to the sensor. However, with a reliable bond 

layer, this limit can be stretched to a considerable extent. The exact smallest value 

beyond which shear lag dominates may have to be determined experimentally for a 

particular bonding mechanism2.  

  However, in making the sensor dimensions small, one should take care that the 

signal processing algorithm in use can resolve and identify multiple GW modes. If this is 

not possible, then the excitation frequency can be kept low enough so that only two GW 

modes exist and the piezo-sensor can be designed to be immune to one of the GW modes. 

This is done by choosing its size to be equal to the wavelength corresponding to the 

center frequency for that mode. As discussed in Chapter II, due to the strain averaging 

mechanism of piezo-sensors, this will almost nullify the contribution of that GW mode. 

However, some mild contribution from that mode corresponding to the side bands of the 

excited frequency bandwidth may still be present in the signal. 

                                                            
2In the author’s experience, using a two-part overnight setting epoxy (Epotek-301 from Epoxy Technology) 
with piezos of thickness 0.3 mm on a 3.2-mm aluminum plate, beyond an in-plane size of 0.5 cm, sensor 
size reduction does not yield any advantage. 
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  Thus, it is evident that the optimal dimensions for sensors and actuators are quite 

different. This implies that ideally separate actuators and sensors should be used for 

improved signal performance. However, the final decision should be made in view of the 

system architecture under consideration. 

 

III.2.D Transducer Material 

Choose the actuator material with the highest value for the product of in-plane Young’s 

modulus and piezoelectric constant (the relevant d-constant) divided by the dielectric 

constant. Use a sensor material with the highest value for the piezoelectric constant (the 

relevant g-constant) and minimum material density. 

The actuation authority of the piezo increases linearly with increasing values of 

piezoelectric constant ( 31d  or 33d  depending on whether a piezo with isotropic poling or 

an APT is used) and in-plane Young’s modulus ( 11
aY  or 33

aY ). The reactive circulation 

power increases linearly with increasing dielectric constant k. Thus to maximize the 

actuation capability per unit power drawn, the material with maximum value for the ratio 
11

31aY d k  (or 33
33aY d k , as appropriate) should be chosen.  

  The sensor response strength is directly proportional to the product of the in-plane 

Young’s modulus, the piezoelectric constant and sensor thickness. However, it is not 

advisable to increase sensor thickness or Young’s modulus beyond a point. This may 

cause the sensor to significantly disturb the guided wave field being sensed, and the 

measured output will not be representative of the incident GW field. This is directly 

related to the relative thickness and relative Young’s modulus of the sensor to the 

substrate. Thus, for minimum interference with the GW field, PVDF sensor elements 

would be more suitable due to their finer thickness and low in-plane Young’s modulus, 

however their response strength is usually weak and often piezoceramics are preferred. 

This relates to the classical problem of the science of measurements, wherein one has to 

compromise between sensor readability and fidelity. However, an increase in the g-

constant does not perturb the field and at the same time increases sensor response. The 

higher the material density, the greater the mass of the sensor, thereby perturbing the GW 
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field without any increase in the sensor response. Hence, the sensor material with 

minimum material density is preferable.  

 

The actuation signal and transducers, for which detailed recommendations were 

provided in this chapter, are just two of the many pieces in GW SHM systems. There are 

several other critical design issues involved in an effective GW SHM system. For 

example, the bond layer should be thin, stiff (at the frequency of interest), uniform, and 

robust to environmental conditions to ensure good transmission of strain between the 

transducer and substrate. There are decisions concerning the electrical architecture, such 

as whether wireless connections are needed. If wires are used, the connections should be 

able to withstand electromagnetic interference and electrical noise (e.g., by using co-axial 

cables). Several other such issues exist in other areas of GW SHM such as signal 

processing, pattern recognition, actuation hardware, system reliability, transducer 

diagnostics, etc. In many of these, because GW SHM is still evolving, it might not be 

possible to obtain clear-cut design guidelines at this point. Some insights and 

recommendations for the signal processing algorithm and the effects of elevated 

temperature are presented in the following chapters. 
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CHAPTER IV 

 

A NOVEL SIGNAL PROCESSING ALGORITHM USING CHIRPLET 
MATCHING PURSUITS AND MODE IDENTIFICATION 

 

As alluded to in the introductory chapter, the objective of signal processing in 

GW SHM is to extract information from the sensed signal to decide if damage has 

developed in the structure, and if so, characterize it in terms of location. Information 

about damage type and severity is also desirable from the signal for further prognosis. 

However, classifying and quantifying damage usually requires some pattern recognition 

algorithm which uses the output from the signal processing. This chapter addresses signal 

processing by suggesting a new algorithm using chirplet matching pursuits and mode 

identification.  Problems associated with conventional approaches are described and the 

potential to overcome those and automatically resolve and identify multimodal, 

overlapping reflections is discussed. The algorithm, designed for pulse-echo based 

methodologies, is tested using FEM simulations and experiments. Finally, the issue of in-

plane triangulation in isotropic plates is discussed. 

 

IV.1 Issues in GW Signal Processing 

 To assess the issues involved in signal processing for GW SHM, results from a 

couple of illustrative FEM simulations are presented. Consider a 2-D aluminum plate 

structure, modeled using a finite element mesh of 2-D plane strain elements as shown in 

Fig. 35(a) (the structure is infinitely wide normal to the plane of the paper). In the first 

simulation, a notch is present. It is 0.5 mm deep and 0.25 mm across, at a distance of 7.5 

cm from the plate center. There are surface-bonded thin piezoelectric wafer actuators on 
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Fig. 35: From top-left, clockwise: (a) 2-D plate structure with one notch; (b) 2-D plate 
structure with two notches; (c) surface axial strain waveform at the center for structure in 

(b) and (d) surface axial strain at the center for structure in (a) 
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Fig. 36: The Lamb-wave dispersion curves with circles marking the excitation center 
frequency for the FEM simulations: (a) phase velocity and (b) group velocity 
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each free surface at the center. The piezo-actuators are modeled as causing shear traction 

along their free edges, which was shown to be effective in Chapter II. The actuators are 

excited symmetrically with a 2.5-cycle Hanning-windowed sinusoidal toneburst with 

center frequency of 275 kHz. This frequency is highlighted in Fig. 36. Even though only 

the S0 mode is excited in this case, when it interacts with “damage,” all possible modes 

are scattered. At 275 kHz, three GW modes (the Lamb modes highlighted in Fig. 36 and 

the SH-modes) are possible in a 1-mm thick Aluminum plate. Due to the 2-D nature of 

the simulation, SH-modes are not possible, and are therefore not considered. Thus, the 

two possible modes that can be reflected and transmitted from the notches are the A0 and 

S0 Lamb modes. The surface axial strain wave at the center of the plate from the FEM 

analysis, done using ABAQUS [205], is shown in Fig. 35(d). The first wave packet is the 

actuation pulse, which is followed by the S0 mode reflection from the notch. 

Subsequently, the slower A0 mode reflection from the notch is received and finally the S0 

reflection from the boundary reaches the center of the structure.  In this case, the presence 

and location of the notch was known beforehand, but in SHM, one has to estimate this 

information given the signal. The signal-processing algorithm must decide what mode 

each reflected wave packet corresponds to, what the center frequency of the packet is 

(though the center frequency of excitation is known, the damage site may be sensitive to 

higher or lower frequencies and therefore the center frequency of the reflection can 

change), and what the precise time-of-arrival is. Once the mode and the time-frequency 

center of the wave packet are known, the location of the damage site can be estimated, 

knowing the group velocity for that mode. Now consider a similar structure as before, 

shown in Fig. 35(b), with the main difference being that there are two notches. In this 

case, as before, in the surface strain waveform at the center, shown in Fig. 35(c), one can 

see the actuation pulse, followed by the S0 mode reflection from the notch closer to the 

center, and the S0 mode boundary reflection. However, in this case, the A0 mode 

reflection from the notch closer to the center overlaps with the S0 mode reflection from 

the notch closer to the free end. Therefore, the signal-processing algorithm should also be 

able to separate overlapping multimodal reflections. In addition, for SHM, since the 

signals are to be processed continuously in near real-time, it is desirable to have a 

computationally efficient algorithm. Finally, the algorithm must be robust to noise.  
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Before the proposed algorithm is discussed, conventional solutions to the problem of GW 

signal processing for SHM are first described and their shortcomings are highlighted.  

 

IV.2 Conventional Approaches to GW Signal Processing 

Conventional solutions to the problem of GW signal processing adapted from 

NDT are usually in the form of some time-frequency representation (TFR). Unlike the 

well-known Fourier transform, which provides “global” information about the frequency 

content and is thereby suited for signals with stationary frequency content (meaning their 

frequency content does not change with time), TFRs yield the “local” frequency content 

and are better suited for non-stationary-frequency signals.  The simplest example of a 

TFR is the short time Fourier transform (STFT), in which the signal is divided into a 

number of small overlapping pieces in the time domain, each piece is multiplied in time 

using a fixed modulation window and the Fourier transform is used on the resulting 

signal. Thus, the STFT, ( , )S t ω , of a signal, ( )s t , and the corresponding time-frequency 

energy distribution, ( , )E t ω , obtained from it (called the spectrogram) are [211]:  

21( , ) ( ) ( )                  ( , ) ( , )
2

iS t s h t e d E t S tωτω τ τ τ ω ω
π

∞
−

−∞

= − =∫  (105)

where h(t) is the modulation window. Thus, an image is obtained for each point of the 

time-frequency plane ( , )t ω . This TFR can be implemented quickly using the fast Fourier 

transform (FFT) for digital signals. Another important TFR is the Wigner-Ville 

distribution (WVD), which is defined as [211]: 

*1( , )
2 2 2

iW t s t s t e dωττ τω τ
π

∞
−

−∞

⎛ ⎞ ⎛ ⎞= + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫  (106)

where * indicates the complex conjugate. An advantage of the WVD is that it can exactly 

localize sinusoids, Dirac impulses and linear chirps. However, for other signals it always 

has additional interference terms. Fig. 37 illustrates this point using the WVD of a signal 

composed of two Gaussian modulated linear chirps. The interference terms can be 
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reduced by using a smoothing filter ( , )f t ω  in the time-frequency plane. This yields the 

generic smoothed WVD [211]: 

( , ) ( , ) ( , )SW t f t W d dω τ ω ϖ τ ϖ τ ϖ
∞ ∞

−∞ −∞

= − −∫ ∫  (107)

In fact, it can be shown that the spectrogram and energy distribution from all commonly 

used TFRs such as the scalogram (which derives from the wavelet transform), the Hilbert 

Huang spectrum, and others can be represented in the form of Eq. (107). The 

disadvantage of smoothed WVDs is that they no longer can exactly localize linear chirps, 

sinusoids and Dirac impulses. One always compromises between the interference terms 

and time-frequency resolution. Further discussion on TFRs can be found in the books by 

Cohen [211] and Mallat [212]. For GW signal processing, researchers typically use some 

smoothed WVD followed by post-processing on the images. This isolates GW packets 

and locates their time-frequency centers, spread in the time-frequency plane and total 

energy. Finally, their modes are classified using the time-frequency “ridges” of the 

reflections (these are the loci of the frequency centers for each time instant within each 

reflection). Attempts by various researchers have tried this approach are reviewed in 

Section I.5.B of Chapter I. 

As an illustrative example, the spectrogram for the signal in Fig. 35b over the 

excited bandwidth is shown in Fig. 38 (the modulation window used was identical to that 

for the excitation signal). The spectrogram is plotted on a decibel scale (logarithmic) with 

the peak value over the image as reference. For this simple example, the spectrogram 

seems capable of isolating the individual reflections, identifying their time-frequency 

centers and classifying their modes using the time-frequency ridges, which are 

highlighted with white lines in each reflection. However, as it is shown in Section IV.5, 

these are, in general, incapable of resolving overlapping multimodal reflections. Superior 

TFRs that might be capable of resolving such overlapped signals typically have a high 

computational cost associated with them. Another drawback of smoothed WVDs is 

difficult automated post-processing. In addition, these are more suited for broadband 

signals while in GW SHM, usually narrow-band signals are used, in order to minimize 

signal spreading due to dispersion. 
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Another approach that has been tried for GW signal processing is the use of multi-

element sensor arrays. Some of these works are also reviewed in section I.5.B. In this 

approach, the information about the spatial variation of the data over the sensing area of 

the array is used to decide the mode of each reflection. That is, a multi-dimensional 

Fourier transform is applied to the signals involving both time and spatial 

transformations. However, a large number of closely spaced transducers to avoid aliasing 

and sophisticated multi-channel data capture and processing hardware are needed to 

implement this approach for GW SHM.   

 

IV.3 Chirplet Matching Pursuits 

The matching pursuits approach has already been introduced in section I.5.B. To 

understand this algorithm, consider a complex valued signal 1( )f t  that belongs to the 

Hilbert space 2 ( )L R , where R is the set of real numbers. Suppose this space is an inner 

product space with the inner product <.,.>. Then, the following hold: 

2 *
1 1 1 2 1 2( )             , ( ) ( )f f t dt f f f t f t dt

∞ ∞

−∞ −∞

= < ∞ =∫ ∫  (108)

where 2 ( )f t  also belongs to 2 ( )L R . The property of finiteness of the 2-norm, defined by 

the first expression in Eq. (108), also holds for 2 ( )f t . A dictionary D of all possible 

expected wave structures, or “atoms,” is used, i.e., { }iD k= , where 2 ( )ik L R∈  and 

1ik = . The 2-norm is also used as a metric of signal energy in this work. Then, the 

 matching pursuit algorithm decomposes a signal 2( ) ( )f t L R∈  into m atoms in the 

following iterative way (with 0R f f= ): 

(a)   Choose the best atom in D: 

1arg max ,
m

i

m
i i

k D
k R f k−

∈
=  (109)
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(b) Compute the new residual after subtracting the component along the best atom 

chosen in (a):  

1 1 ,
m m

m m m
i iR f R f R f k k− −= −  (110) 

Thus, it decomposes the signal into a linear expansion of waveforms chosen to match 

best the signal structure. Noise, in general, is uniformly distributed over the time-

frequency plane. Since the matching pursuit algorithm looks for concentrated energy 

chunks in the time-frequency plane, it is inherently robust to noise. Due to this approach, 

which is distinct from conventional TFRs, the time-frequency centers, the spread in the 

time-frequency plane and the energy of the individual reflections are readily known, and 

no post-processing needs to be done on the output. It becomes much easier to automate 

this process in comparison to algorithms using conventional time-frequency 

representations. In those solutions, to automate the process, image processing algorithms 

would have to be used subsequent to the generation of the time-frequency plot to isolate 

the individual reflections. 

In the original paper on matching pursuits [112], an efficient algorithm using a 

Gaussian modulated time-frequency atoms dictionary is described. This dictionary 

consists of the atoms: 
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( )( ) ( )1 4 2
( , , )

1( ) exp       with      ( ) 2 expl u
t uk t g i t u g t t

llω ω π−⎛ ⎞= − = −⎜ ⎟
⎝ ⎠

 (111) 

where u is the time center of the atom and ω is the angular frequency center of the atom. 

Also, l is the scale of the atom, which is a metric representing the dilation along the time 

axis of the Gaussian window ( )g t . It is indicative of the atom’s time-frequency spread. 

These have stationary time-frequency behavior, i.e. the frequency at which the peak 

energy occurs for each time instant does not change with time, as would be seen in a 

WVD plot (see Fig. 39). Once the decomposition is done, it is possible to construct a 

time-frequency plot of the constituent atoms without the interference terms obtained 

using the conventional WVD. Thus, the resolution possible from such an approach is 

always superior to that from conventional smoothed WVDs. In addition, the use of 

Gaussian windows ensures that the atoms are optimal in terms of having minimal product 

for the root-mean squared (RMS) pulse time-width and RMS frequency bandwidth [213]. 

The matching pursuit algorithm with this dictionary has been explored by some 

researchers for GW signal analysis [114], [115]. However, the implicit assumption in 

these works is that the signals are unimodal and non-dispersive. The atoms in this 

dictionary are ill-suited for analyzing dispersive signals, which have non-stationary time-

frequency behavior. Furthermore, these atoms would not help in GW mode classification, 

since different modes with the same energy at the same-time frequency center would 

yield similar atoms.  

Gribonval [116] proposed an algorithm for matching pursuits using a dictionary 

consisting of Gaussian modulated chirplet atoms. That is, the dictionary comprises of 

atoms of the form: 

( ) ( )2
( , , , )

1( ) exp
2l u c

t u ck t g i t u t u
llω ω− ⎡ ⎤⎛ ⎞ ⎛ ⎞= − + −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 (112)

where c is the chirp-rate of the atom. These have linear time-frequency behavior (see Fig. 

40). Once the GW signal is decomposed into chirplets, the additional parameter, i.e., the 

chirp-rate, can be used to identify the modes of the individual reflections. This algorithm 

is even more computationally efficient than the spectrogram. The computational time to 
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decompose an N-point signal into M atoms is O (MN), whereas the complexity involved 

in generating the signal’s spectrogram, not including post-processing, is O (N2log2N). 

Thus, the chirplet matching pursuit seems an attractive option for GW signal processing. 

In the next section, a detailed outline of the overall algorithm proposed using the chirplet 

matching pursuits approach is presented. 

 

 

IV.4 Proposed Algorithm for Isotropic Plate Structures 

IV.4.A Database Creation 

This algorithm is designed for GW SHM in isotropic plate structures using the 

pulse-echo method. That is, the structure has a central actuator excited with a high 

frequency pulse and a collocated sensor receiving the GW echo pulses from the damage 

sites, if any, and the boundaries. This presumes that a set of baseline signals is available 

corresponding to the pristine condition for the structure. For this algorithm, initially a 

database of the chirplet chirp-rates for the possible modes over the range of feasible time-

frequency centers must be generated. The frequency centers are limited to the bandwidth 

excited in the structure, while the time centers are limited to the period between the end 

of the excitation signal and the time taken for the slowest mode from the boundary to 

reach the sensor. For this, it suffices to calculate these values for each mode at discrete 
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Fig. 39: A stationary Gaussian atom and its 
WVD 

Fig. 40: A Gaussian chirplet and its WVD 
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points in the feasible region of the time-frequency plane. Then, use bilinear interpolation 

if values for other points are needed. It should be mentioned that in this work the scale l 

of the chirplet atoms in the dictionary was kept fixed. The chosen value of l, say 0l , was 

such that the spread of the atom in the time-domain was slightly larger than that of the 

excitation signal (20-30% larger by rule of thumb; however, for very dispersive signals, 

this might need to be further increased). To generate the database, waveforms for each 

mode at the discrete time-frequency points are generated assuming the defect is a point-

scatterer emitting circular-crested waves. These waveforms represent the expected 

response of the piezoelectric wafer sensor collocated with the actuator. As discussed in 

Chapter II, the response of a surface-bonded piezoelectric wafer is proportional to the 

average in-plane extensional strain over its surface area (this assumes that the sensor is 

thin and compliant enough to not affect the GW incident on it). For the FEM simulations, 

the waveforms represent the surface displacement along the plate thickness direction at 

the center of the plate. To do this, for each mode, the radial distance of the damage site 

needs to be calculated. The phase velocity and group velocity curves for the isotropic 

plate structure are assumed known. Suppose the S0 mode was excited predominantly (or 

purely) and the excitation frequency is low enough so that the higher Lamb modes are not 

possible. Since a narrow bandwidth pulse is used, the group velocity can be used as the 

speed of pulse propagation to get damage site location estimates. Therefore, the radial 

distance estimates for the possible modes at the time-angular frequency center 0 0( , )t ω  

are: 

 
( )

0 0 0

0 0

0 0

0 0 0 0 0

0 0

( / 2). ( ) ( / 2). ( ). ( )
;         

2 ( ) ( )
S S A

S A

e g e g g
S A

g g

t t c t t c c
r r

c c

ω ω ω

ω ω

− −
= =

+
 (113)

where et  is the time-span of the excitation signal and 0( )gc ω  is the group velocity of a 

particular mode at angular frequency 0ω . Furthermore, a minor correction term equal to 

half the actuator size along the direction of propagation is added to these estimates. This 

is because, as seen in Chapter II, for surface-bonded piezoelectric actuators, the GWs 

originate from the edge of the transducer, and not its center. Next, the wavenumbers for 

each mode are calculated over the excited angular frequency range: 
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0 0

0 0

( ) ;     ( )
( ) ( )

S A

S A
ph phc c

ω ωξ ω ξ ω
ω ω

= =  (114) 

It is assumed that after the GW excited by the actuator hits the damage site, it becomes a 

point-source emitting circular crested waves axisymmetrically. The spatial variation of 

the piezoelectric sensor response is therefore described by the Hankel function of order 

zero (as seen for circular actuators in Chapter II). Since this wave is reflected from the 

damage site back towards the collocated actuator/sensor, it is an incoming wave. 

Therefore, if time dependence is of the form i te ω , then the Hankel function of the first 

kind represents the incoming wave. For the case of symmetric mode reflection, the entire 

distance 2 0Sr  is traversed as symmetric mode (since it was assumed that the S0  mode was 

predominantly excited). For the case of anti-symmetric mode reflection, half the total 

distance 2 0Ar  (from the actuator to the damage site) was traveled as S0 mode, whereas the 

second half was traveled as the A0 mode. Therefore, the harmonic surface strain response 

waveforms ( )Y ω  for the two cases are (ignoring constants of proportionality, since only 

the shape is of interest): 

 
0 0

(1) (1) (1) (1)
0 0 0 0 0 0 0 00 0 0 0( ) ( . ). ( . );      ( ) ( . ). ( . )S S S S S A S A A AY H r H r Y H r H rω ξ ξ ω ξ ξ= =  (115) 

Here the effect of the piezo sensor response being proportional to the average strain over 

its surface area is neglected for simplicity. For the 2-D FEM simulations, the incoming 

wave is given by the complex exponential function with positive exponent: 

0 0 0 0 0 0 0 0 0 0

0 0

( 2 ) ( ). ;     S S S S S S S A A Ai r i r i r i r r
S AY e e e Y eξ ξ ξ ξ ξ+= = =  (116) 

The chirplet matching pursuit scheme uses a database of Gaussian atoms. Therefore, to 

recover the time domain waveform ( )y t  for a band-limited burst considering the 

frequency bandwidth and Gaussian modulation, the following equations are used: 

( ) ( )
0

0

0

2 2(1)
0 0 0 0 0

2

( ) ( ) . ( )  i t
S S Sy t g l H r e d

ωω
ω

ωω

ω ω ξ ω
∆+

∆−

= −∫  (117)
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( )
0

0

0

2
(1) (1)

0 0 0 0 0 0 0 0

2

( ) ( ) . ( ). ( ) i t
A S A A Ay t g l H r H r e d

ωω
ω

ωω

ω ω ξ ξ ω
∆+

∆−

= −∫  (118)

where ∆ω is the angular frequency bandwidth and g(  ) is the Gaussian window vector 

centered at angular frequency ω and with the chosen scale 0l . A similar equation holds 

for the 2-D FEM simulations. Of course, in practice, this is implemented in the discrete 

(digital) domain. The inverse fast Fourier transform can be used for efficient 

computation.  

It should be noted that in this work, SH-modes were not considered for the 

following reasons: 

a) In the FEM simulations, the elements were 2-D, i.e., out-of-plane displacements 

are not possible by design. Thus, SH-modes are not possible. 

b) In the performed experiments, surface-bonded piezoelectric wafer transducers are 

used as sensors, which are almost entirely insensitive to shear waves. This is 

because they only sense the average in-plane surface extensional strain and not 

shear strain, as mentioned before. 

Once these waveforms are generated, the chirplet matching algorithm is applied to 

them (restricting the scale of the dictionary chirplets to 0l ) and the chirp-rates 

corresponding to each mode at each point of the time-frequency grid are obtained. The 

chirplet matching pursuit was implemented using LastWave 2.0 [215], which is freeware. 

Thus, one has the database required to use the proposed algorithm for GW signal 

processing, which is described next. 

 

IV.4.B Processing the Signal for Damage Detection and Characterization 

The signal-processing procedure consists of the following steps: 

i) The chirplet matching pursuit algorithm is applied to the difference between the test 

signal and the signal for the undamaged state. A dictionary of chirplets with fixed 
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scale 0l  as discussed in Section IV.4.A is used. Thus, the dictionary consists of 

signals of the form: 

( ) ( )2
( , , )

00

1( ) exp
2u c

t u ck t g i t u t u
llω ω

⎛ ⎞− ⎡ ⎤⎛ ⎞= − + −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎝ ⎠
 (119)

where the time center u is between the end of the first transmitted pulse received by 

the sensor collocated with the actuator and the start of the boundary reflection while 

the angular frequency center ω is within the excited angular frequency bandwidth. 

This yields the time-frequency centers 0 0( , )t f , the chirp-rates 0( )c  and the signal 

energies of the constituent atoms (note that 0 02 fω π= ). 

ii) The algorithm is run until the last atom extracted has energy above a certain 

percentage of the first and most energetic extracted atom. In this work, this 

percentage was chosen to be 10%. In the author’s experience, atoms below this 

threshold tend to correspond to approximation errors.  

iii) The most energetic atom in the time-span not corresponding to the excitation signal 

or boundary reflections is examined. If it has energy above a certain threshold, the 

structure is judged damaged. There is no hard and fast rule to decide the value of 

this threshold, which is a critical parameter. The decision is dependent on the 

energy in the signal difference corresponding to the excitation time interval. In 

practice, no signal generator will be able to reproduce an excitation signal with 

100% accuracy, and there is always some difference in the excitation signal as seen 

by the collocated sensor3. In this work, the threshold was set to be 50% of the 

energy in the excitation signal difference. This might need to be lowered for 

structures with stronger damping characteristics. In addition, for the final SHM 

system, this threshold must also take into account false positive/false negative 

probabilities and risk assessment, which are highly application dependent.   

iv) Next, mode identification is done using the atom’s chirp-rate. It is compared with 

that of the possible modes for the same time-frequency center in the database. The 

                                                            
3 Due to the impossibility of perfect reproduction of the excitation signal, there is a small blind zone in the 
vicinity of the collocated actuator-sensor pair. This is associated with the sensor being unable to distinguish 
the small amplitude GW reflections from damage sites that might be very close to the actuator from the 
strong first transmitted pulse from the actuator. 
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mode is identified as the one that minimizes the absolute value of the difference 

between the atom’s chirp-rate and the chirp-rate for each mode at the same time-

frequency center. 

v) Knowing the mode and time-frequency center of each atom, the damage site’s 

radial location relative to the transducer is known. Although damage-type 

classification was not addressed in this work, the damage can then be characterized 

by using the frequency center, the energy in the reflection from the damage site, and 

the relative modal contributions from the damage site. This information can be used 

to infer what the damage type is in conjunction with an artificial neural network 

trained using prior experimental data or some modeling studies. 

 

The proposed algorithm is summarized in the flowchart depicted in Fig. 41. 

 

IV.5 Demonstration of the Algorithm's Capabilities  

IV.5.A FEM Simulations 

In Section IV.2, it was seen that the spectrogram was capable of isolating the 

individual reflections and identifying their modes for the simple case of the GW signal in 

Fig. 35 (d). Now consider the more complex signal in Fig. 35 (c), with overlapping 

multimodal reflections. The portion of the signal between the end of the excitation signal 

and the start of the boundary reflection, after artificial corruption with white Gaussian 

noise (of amplitude 5% of the peak value in the signal), is shown in Fig. 42 (a). The 

spectrogram for this signal (again, using a modulation window identical to that in the 

excitation signal) is shown in Fig. 42 (b), on a decibel scale relative to the peak value in 

the image. The spectrogram cannot separate the overlapping multimodal reflections from 

the two notches, which are smeared together in the spectrogram. The time-frequency plot 

from the chirplet decomposition using the matching pursuit algorithm is shown in Fig. 42 

(c), also on a decibel scale. The power of this approach is evident from this figure, where 

clearly the individual overlapping reflections from the two notches are resolved. In 

addition, as highlighted in Table 1, the modes of the individual reflections are correctly 

identified and the axial locations of the notches are identified with a maximum deviation 
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of 0.6 cm, or 6% of the distance from the transducer. For the two reflections that the 

spectrogram could isolate, the errors for radial estimates are greater than that from the 

proposed algorithm. Thus, the proposed algorithm shows superior resolution compared to 

the spectrogram. 
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Fig. 41: Flowchart of proposed signal processing algorithm 
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IV.5.B Experimental Results 

In order to verify the proposed algorithm’s potential capabilities, experiments 

were conducted with a 1-mm thick Aluminum plate structure, the schematic of which is 

shown in Fig. 43 (a). The 1-mm thick aircraft-grade Aluminum alloy plate was supported 

on two support struts on two edges and the other two edges were free. Surface-bonded 

PZT-5A piezoceramic transducers were used. The actuators were excited symmetrically 

with a 2.5-cycle Hanning-windowed sinusoidal toneburst of center frequency 175 kHz, 
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Fig. 42: (a) Portion of signal in Fig. 35 (c) with overlapping multimodal reflections and 
corrupted with artificial noise; (b) Spectrogram of the signal in (a); (c) Interference-free 

WVD of constituent chirplet atoms for the signal in (a) 
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thereby predominantly exciting the S0 mode. After baseline signals were recorded for the 

pristine condition, artificial “damage” sites in the form of C-clamps were introduced, 

seen in Fig. 43 (b). The C-clamps act as local scatterers of GWs incident on it over their 

contact area, causing incident GWs to be scattered from them. Damage in the structure, 

such as cracks, dents or impact damage would also have a similar effect on GWs incident 

on it. The difference signal between the pristine and “damaged” cases is shown in Fig. 44 

(a). Again, in this case, the spectrogram, shown in Fig. 44 (b), is incapable of resolving 

the overlapping S0 mode reflections from the two clamps. On the other hand, the 

proposed algorithm showed its superior resolution in this case too. The chirplet matching 

pursuit step was able to resolve the overlapping S0 mode reflections as well as the S0 and 

A0 mode reflections from the boundary, as seen in shown in Fig. 44 (c). The second step 

correctly identified the modes, thereby allowing accurate radial location estimates of the 

clamps, as seen in Table 2 (Errors in location: C1 - 0.3 cm; C2 - 0.9 cm). The 

spectrogram’s estimated location (for the reflection from the clamp that it could localize) 

has the same error as the proposed algorithm. When using the relative modal 

contributions to characterize the damage site, one must bear in mind that a finite-

dimensional piezoceramic sensor has different sensitivities to different wavelengths of 

the GW sensed. As a first-order approximation, it might suffice to normalize the energy  

 

Chi-
rplet 

# 

t0 
(µs) 

fo  
(kHz) 

c      
(kHz 
/µs) 

Signal 
energy     

(2-norm) 

cA0    
(kHz 
/µs) 

cS0   
(kHz 
/µs) 

Mode r 
actual 
(cm) 

r from 
new algo. 

(cm) 

r from 
spect. 
(cm) 

1 41.6 245.9 -13 1.4× 10-14 -12.5 0.6 A0  6.0 6.4 6.5 

2 38.4 319.6 34 3.7× 10-15 -10.2 0.5 S0   10.0 9.4 -NA- 

3 25.6 280.8 7.4 1.8× 10-15 -7.9 0.3 S0 6.0 5.9 6.3 

 

Table 1: Simulated notch damage in FEM simulation (Key: cA0 ≡ chirp-rate from 
database assuming A0 mode reflection;   cS0 ≡ chirp-rate from database assuming S0 mode 
reflection; Mode ≡ identified mode; r actual ≡ actual radial location of notch; r from new 

algo.≡ estimate of radial location of notch from proposed algorithm; r from spect. ≡ 
estimate of radial location of notch from spectrogram) 
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of each reflection to the sensitivity of the sensor to the wavelength corresponding to the 

center frequency for the GW mode of the reflection (which can be obtained using the 

theoretical model for piezo-sensor response in Chapter II). 

It should be noted that the best accuracy in radial location estimation was in the 

FEM simulation with the S0 mode reflection from N1 (error: 0.1 cm).  There are two 

reasons for this: (i) the reflection was isolated (i.e., not overlapping with another 

reflection) and (ii) the notch was very thin axially (0.025 cm), and hence the “point-

scatterer” damage site model was realistic. In the experiment, the clamp had a contact 

diameter of 1 cm, weakening this assumption, as reflected in the location errors. 

Furthermore, the error tends to be worse for the weaker reflection in overlapping 

reflections, as one would naturally expect. Another error source is the uncertainty in 

material properties, which affects wavespeeds. Despite these errors, which are minor, the 

advantages of the new algorithm over conventional approaches to GW signal processing 

can be clearly seen with these results. However, it should be pointed out that testing was 

restricted to the fundamental GW modes in this work. At higher frequencies, in the 

presence of higher GW modes, the use of linear chirplets may not suffice. Quadratic or 

higher order chirplets might need to be employed, such as in the work by Hong et al. 
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Fig. 43: (a) Schematic of experimental setup and (b) Photograph of experimental setup 
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[214]. In that work, the matching pursuit approach was used with quadratic chirp 

functions for GW signal processing. However, in that work, sensing was restricted to one 

mode there (by controlling the number of coil turns in the magnetostrictive GW sensor 

used) and mode classification was not addressed. It should be noted that in this work, the 

two modes had different dispersion characteristics over the excited frequency bandwidth. 

If the two modes are similar to each other in terms of variation of wavespeed with 

frequency, the chirp-rates for the two modes may be very close to each other. The 

algorithm presented here may not be able to distinguish the modes. Until this point, only 

radial location of damage sites relative to a transducer pair has been discussed. In the next 

section, triangulation using multiple transducers in isotropic plates is discussed.  

 

Chi-
rplet 

# 

t0  
(µs) 

fo  
(kHz) 

c     
(kHz 
/µs) 

Signal 
energy    

(2-norm)

cA0     
(kHz 
/µs) 

cS0     
(kHz 
/µs) 

Mode r 
actual 
(cm) 

r from 
new algo. 

(cm) 

r from 
spect. 
(cm) 

1 67.2 221.5 7.8 7.3 × 10-3 -5.11 0.14 S0 bndry bndry bndry 

2 38.4 190.9 1.7 2.9 × 10-3 -4.55 0.07 S0 8.2 8.5 8.5 

3 14.4 234.2 7.7 1.9 × 10-3 -1.79 0.01 Exctn    

4 62.4 208.3 0.0 1.8 × 10-3 -5.17 0.13 S0 bndry bndry Bndry

5 100.8 166.1 -7.6 9.4 × 10-4 -4.63 0.33 A0 bndry bndry Bndry

6 48.0 208.3 0.0 9.2 × 10-4 -4.76 0.09 S0 10.2 11.1 -NA- 

 

Table 2: Experimental results of isotropic plate with simulated damage (Key: cA0 ≡ chirp-
rate from database assuming A0 mode reflection; cS0 ≡ chirp-rate from database assuming 
S0 mode reflection; Mode ≡ identified mode;  r actual ≡ actual radial location of clamp; r 

from new algo.≡ estimate of radial location of clamp from proposed algorithm; r from 
spect. ≡ estimate of radial location of clamp from spectrogram; bndry  ≡ boundary 

reflection;  Exctn ≡ difference in excitation signal) 
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IV.6 Triangulation in Isotropic Plate Structures  

In order to pinpoint the in-plane location of a damage site in an isotropic plate 

structure and characterize it, one needs the radial locations of the damage site relative to 

at least three pairs of central collocated piezoelectric transducers. It is highly desirable to 

use circular or ring-shaped transducer wafers, so that there is no directional selectivity or 

preference. In addition, care must be taken to use as thin piezoelectric wafers as possible 

to minimize the extraneous reflections caused by the increased local stiffness of the 
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Fig. 44: (a)  Difference signal between pristine and “damaged” states; (b) Spectrogram of 
the signal in (a) and (c) Interference-free WVD of constituent chirplet atoms for the 

signal in (a) 
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structure where the transducer is bonded. The proposed algorithm needs to be repeated 

for the signals obtained using each collocated actuator/sensor pair. If there are multiple 

mode reflections observed from the damage site, the average radial location obtained 

from the modes can be used. One can then draw three circles of radii equal to the radial 

locations thus found, about the centers of the corresponding actuator/sensor pairs. The 

intersection of the three circles would yield the location of the damage site. This is 

illustrated in Fig. 45 (a). In addition, as before, the relative modal contributions, the 

frequency center and individual modal energies can be as input parameters for a pattern 

recognition algorithm used to classify the damage and quantify its severity.  

If however, one is mainly interested in locating damage and not in characterizing 

it, an easier approach can be adopted. Instead of using three collocated piezoelectric 

actuator/sensor pairs, it suffices to use three circular piezoelectric wafer transducers, and 

while one is excited, the others can be used as sensors. However, in this approach, one 

must ensure that the elements are sensitive only to one mode when used as sensors. Then, 

the chirplet matching pursuit step is used to find the time-of-flight from the actuator to 

the damage site and back to one of the sensors as well as the frequency center of the 

pulse. This yields the distance traveled by the pulse, say d (since only one group velocity 

is possible). The locus of all possible locations of the damage site is an ellipse with the 

actuator and the sensor as its foci and d as the major axis. By exciting each actuator in 

turn and using the others as sensors, three such ellipses can be drawn and the damage site 

is located at their intersection. This concept was proven experimentally using a 3.15-mm 

thick Aluminum 5052 alloy plate instrumented with three surface-bonded piezoelectric 

discs of diameter 1.3 cm each and thickness 0.23 mm each. The excitation signal used 

was a 2.5-cycle Hanning windowed sinusoidal toneburst with center frequency 210 kHz. 

At this frequency and in its vicinity, the A0 mode wavelength nearly equals the transducer 

diameter. Therefore, as mentioned in Section II.9.C, the transducers are insensitive to A0 

modes when used as sensors, and only the S0 mode needs to be considered. The results 

from this experiment are shown in Fig. 45 (b). A through-hole of diameter 5 mm was 

drilled into the plate as shown to check if its location could be found using this approach. 

While one expects the three ellipses to intersect at one point, due to experimental 

imperfections, they come close to intersecting each other at a single point but don’t quite 
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do so, resulting in a triangular error box. This gives a crude estimate of the damaged area. 

The center of the error box was 0.5 cm away from the center of the drilled hole. It should 

be noted that in this simplified approach, it is crucial to restrict the sensing to one mode. 

If more than one mode is possible, the locus of all points of the damage site given the 

time-of-flight and center frequency from one transducer to another is not necessarily an 

ellipse. Since one cannot be sure about how much of the time was spent traveling as one 

mode and how much as another, the locus would, in general, be an intricate shape and 

this shape would need to be recalculated for different times-of-flight, thereby making the 

algorithm computationally intensive. This ellipse triangulation technique has been 

discussed in the open literature (e.g., Kehlenbach and Das [32]), but the case of 

multimodal signals has not received much attention. 

 

In summary, this chapter presented a novel signal processing algorithm for GW 

signal processing (for pulse-echo approaches) using chirplet matching pursuits. Its 

theoretical advantages over conventional algorithms for GW SHM were discussed: better 

resolution and lack of interference terms (enables it to separate overlapping multimodal 

reflections), robustness to noise, and ease-to-automate post-processing as needed for 

Isotropic plate

1

2 3

Collocated piezo 
actuator/sensor 
pair

Defect

Circle 
about 
transducer 
pair 2

 

12

3

Ellipse with piezos 
1 and 3 as foci

Error box

True hole 
location          
(0.5 cm 
diameter)

1.3 cm 
diameter 
piezo 
disc

50 cm × 50 cm 
Aluminum plate

4  
cm

6.85 
cm

4  
cm

6.85 
cm

(a) (b) 

Fig. 45: (a)   Approach for locating and characterizing damage sites in the plane of plate 
structures using multimodal signals and (b) Experimental results for in-plane damage 

location in plate structures using unimodal GW signals 

 



126 
 

SHM. The implementation of the chirplet matching pursuit algorithm used here has 

computational efficiency that is better than that of spectrograms. In some initial FEM and 

experimental tests, the proposed algorithm was able to separate overlapping, multimodal 

reflections and estimate radial locations of artificially introduced damage with good 

accuracy. The resolution of the algorithm was shown to be superior or equal to that using 

a spectrogram. In tests done to examine in-plane triangulation using multiple transducers, 

a 0.5 cm diameter thru-hole was triangulated within 0.5 cm of its actual location (or with 

an error of 4% for damage located at 12.5 cm from the plate center). This damage size 

and location accuracy satisfy the performance metrics decided a priori for the project that 

funded this research in coordination with the collaborators and sponsors [216]. However, 

these tests were done at room temperature and do not necessarily simulate environmental 

conditions expected in field applications. For spacecraft environments in particular, as 

mentioned earlier, temperature changes can be significant. The next chapter explores the 

effects of elevated temperature on GW SHM. 
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CHAPTER V 

 

EFFECTS OF ELEVATED TEMPERATURE 

 

It is evident from the literature reviewed in Section I.6.A that the issues of 

compensation for and damage characterization under thermal variations expected in GW 

SHM for internal spacecraft structures (above room temperature) have not received much 

attention. This chapter aims to contribute in these aspects. First, the temperature variation 

in the application area where this is hoped to be applied, i.e., internal spacecraft structures 

is examined. Then, studies done to find a suitable bonding agent (for GW SHM using 

piezoceramics on aluminum plates) that does not degrade in the expected temperature 

range for this application are reported. With a suitable bonding agent chosen, controlled 

experiments are done to examine changes in GW propagation and transduction using 

PZT-5A piezos under quasi-statically varying temperature in the same range. All 

parameters changing with temperature are identified and quantified based on data from 

the literature. This data is used in the models developed in Chapter II to try and explain 

the experimental results. Finally, these results are used to explore detection and location 

of damage (indentations/holes) using the pulse-echo GW testing approach in the same 

temperature range. 

 

V.1 Temperature Variation in Internal Spacecraft Structures 

The work in this chapter is motivated by the potential application of GW SHM to 

NASA’s spacecraft structures, specifically the planned crew exploration vehicle (CEV) 

for returning astronauts to the Moon and eventually to Mars. As outlined in [217], the  
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CEV, called “Orion,” is expected to have an aluminum alloy internal structure in the 

shape of a blunt body capsule protected by bulk insulation, composite skin panels, and a 

thermal protection system (TPS). Spacecraft structures in particular present a challenging 

application due to the harsh environment of outer space as well as the tremendous heat 

flux and high temperatures attained during re-entry into a planet’s atmosphere. The 

internal spacecraft structures, however, are somewhat insulated by the TPS. The TPS is 

typically designed to keep temperatures below 150oC in internal structures, particularly in 

manned missions [218]. Apart from the re-entry phase, even in the course of the flight, 

the temperature of spacecraft structures varies significantly, with temperatures up to 70oC 

(Larson and Wertz [219]) depending on whether they face towards or away from the Sun. 

For solar arrays, this fluctuation is even greater (up to 100oC, see [219]). Another source 

of temperature variation in internal spacecraft structures is the heat radiated by cabin 

electronics, which is difficult to reject into space, and is therefore controlled by active 

cooling. Commercial piezos are functional without loss in properties up to half their 

Curie temperature. For PZT-5A, one of the more commonly used piezoceramics, half the 

Curie limit is about 175oC. Thus, internal spacecraft structures become a potential 

application area for GW SHM using PZT-5A piezos. However, the GW SHM algorithm 

must account for temperature changes to minimize false damage indications and reduce 

errors in damage characterization. This chapter explores this issue in the temperature 

range 20oC to 150oC. 

 

V.2 Bonding Agent Selection 

After an initial pre-screening, three different two-part epoxies were evaluated for 

the temperature range of interest. These were 10-3004 (from Epoxies, Etc. [220]), and 

Epotek 301 and 353ND (from Epoxy Technology [221]). Epotek 301 and 353ND, both 

low-viscosity agents, are rated for continuous operation up to 200oC and 250oC, 

respectively. 10-3004 is relatively viscous, and is rated for continuous operation up to 

125oC, although the manufacturer clarified that it should work up to 150oC for short-term 

use (hours). In addition, it was confirmed from the manufacturers that each epoxy would 

be suitable for surface-bonding piezoceramics (with metallic electrodes) on aluminum 
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plates. While 10-3004 and 301 can be cured overnight at room temperature, 353ND 

needs to be cured in an oven at 80oC for 25 minutes. Standard surface preparation 

procedures were followed with each, i.e., the plate surface was made rough by light 

sanding and both the plate and piezos were cleaned thoroughly using acetone to get rid of 

grease and dust. After uniformly applying a thin-layer film of epoxy to both surfaces and 

cleaning the excess, light pressure was applied using 2 lb. weights to the interface to help 

the bond set.  

The first aluminum alloy (5005) plate specimen (shown in Fig. 46) tested had four 

PZT-5A piezos (0.3 mm thick) that were surface-bonded using Epotek 301. Two piezos 

were used as actuators (at the center, on either surface), and two as sensors. One of the 

sensors (sensor 1) was collocated with the actuator, and the other (sensor 2) was 10 cm 

away from the plate center. This specimen was thermally cycled from 20oC to 150oC in 

an industrial oven and then cooled back to room temperature over three cycles. A 

Labview-based automated thermal test setup was developed for these experiments. After 

turning the oven on, at every 10oC intervals (read by a type-K thermocouple with ± 1oC 

accuracy attached to one side of the plate specimen), the Labview program triggered an 

Agilent 33220A function generator to send a 3.5-cycle Hanning-windowed toneburst, 

with center frequency 210 kHz to the actuators (excited symmetrically), 16 times each at 

1-second intervals. A Hewlett Packard 54831B Infiniium oscilloscope recorded the 

sensor response signals, which were sampled at 10 MHz and averaged over the 16 

readings at each temperature. In these tests, it was observed that the sensor response 

signal of sensor 2 decreased monotonically in peak-to-peak amplitude with increasing 

temperature (Fig. 47). The error bars shown are based on the standard deviation over the 

16 readings at each temperature. Furthermore, sensor 2’s response signal amplitude at 

room temperature decreased at the end of each cycle, and the shape of the signal also 

changed significantly, as shown in Fig. 48. It should be noted that the sensor response 

was compensated for varying actuation signal magnitude (which dropped due to the 

increasing capacitance of the actuators with temperature). While some amount of 

irrecoverable loss in response strength is expected after the first few cycles, due to 

thermal pre-stabilization of piezos [222], the signal shape is not expected to change. 

Despite the actuators being excited symmetrically, and thereby only supposedly exciting 
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the S0 mode, experimental imperfections cause weak A0 mode excitation. To counter this, 

the sensor was originally designed to be very weakly sensitive to the A0 mode (as 

discussed in Chapter II, the sensor size equaled the A0 mode wavelength at 210 kHz). 

However, after each cycle, the strength of the slower A0 mode contribution in the sensor 

2 signal increased. This suggested that the sensor’s effective area kept decreasing after 

each cycle. Based on these factors, it was concluded that the Epotek 301 bond line was 

indeed degrading as a result of the thermal cycling. An analogous test was done with 

PZT-5A transducers bonded using 10-3004 on an Aluminum alloy (5005) plate. In this 

case, the results were even more drastic and the sensor response dropped gradually to the 

noise floor at 100oC while heating in the very first cycle, and never recovered (Fig. 49). 

Finally, tests were done with Epotek 353ND. The specimen tested was similar to 

the ones tested above. The schematic of this is shown in Fig. 50. The specimen was 

thermally cycled in the same temperature range seven times in the oven. In this case, the 

sensor response amplitude and shape did not change (within negligible error margins, see 

Fig. 51) when the signals before and after each thermal cycle are compared. The very 

first cycle was an exception, being the thermal pre-stabilization cycle discussed before,  
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which caused a 17% drop in sensor 2 and 3 response amplitude. Thus, this epoxy proved 

to be suitable for the purposes of this study. Thereafter, more controlled tests were 

conducted with this same specimen to study signal changes and to explore damage 

characterization at different temperatures, which is discussed in the following sections. 
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V.3 Modeling the Effects of Temperature Change 

In designing the specimen for tests with Epotek 353ND, sensor 1 was collocated 

with the actuators with the intention of using it for damage detection using pulse-echo 

tests. Sensors 2 and 3 were for tracking changes in the GW transmitted signal with 

temperature (in undamaged state). In addition, sensors 2 and 3 also act as mild GW 

scatterers, due to the increased local stiffness and mass caused by their presence. This 

simulates the effect of some structural features (e.g., rivets) which could act as GW 

scatterers in more complex structures. While the specimen was tested in the industrial 

oven initially to check for bond degradation, the oven’s heating/cooling rate could not be 

tightly controlled, and was very rapid (up to 10oC/minute) at times. This fast heating rate 

led to non-repeatable signals for sensor 1, which could potentially be interpreted as false 

positives. This is discussed in the next section. More controlled tests were subsequently 

done in a computer-controlled autoclave (Fig. 52), where both the heating and cooling 

rates were set to 1oC/minute. A five-minute dwell period at 150oC was also included in 

the thermal cycle between the heating and cooling phases (Fig. 53). The data at 90oC and 

100oC while cooling was not used, since in this temperature range, the autoclave switches 

from exclusively air cooling to a combination of air and water cooling, leading to 

oscillations in the cooling rate over this range. For these tests, the center frequency was 

reduced to 120 kHz. This was to minimize actuation signal distortion effects at higher 

frequencies caused by increasing actuator capacitance at higher temperatures. While a 

Krohn-Hite 7500 wideband amplifier was tried for a couple of thermal cycles in the oven, 

it was unable to amplify without significant signal distortion and ripple at higher 

temperatures. Therefore, no amplifier was used for the controlled tests in the autoclave. 

The actuation signal was still a 3.5-cycle Hanning windowed toneburst of 18 V peak-to-

peak amplitude at 20oC, with the two actuators on either surface excited symmetrically. 

Samples were averaged over 30 points at all temperatures to reduce noise further. Data 

was collected for two thermal cycles for the pristine, undamaged condition. As mentioned 

before, there is a drop in actuation amplitude from 18 V to around 13 V (but negligible 

shape distortion) as temperature increases due to increasing actuator capacitance. All data 

presented for higher temperatures in this chapter have been scaled for 18-V actuation 

level. Fig. 54 and Fig. 55 show the GW signal read by sensor 2 at various temperatures 
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while heating and cooling respectively. Evidently, there is a decrease in GW speed of the 

first transmitted GW pulse as temperature increases. In addition, the signal amplitude 

seems to increase with increasing temperature up to a certain point (around 90oC) and 

then decreases with increasing temperature. Hysteresis effects are negligible here, unlike 

in the oven tests, where significant hysteresis was observed between the heating and 

cooling phases due to very different temperature change rates in the two phases. 
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autoclave for controlled thermal experiments 
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In order to explain these effects, an effort was made to identify all parameters in 

the experiment that change with temperature. The following list was compiled and data 

for their thermal variation was found from various sources in the literature: 

a) Young’s moduli of structural substrate and PZT-5A: The substrate elastic modulus is 

a very important parameter in modeling the effect of temperature for GW SHM. 

There is a significant decrease in the elastic modulus of aluminum with increasing 

temperature. This causes a reduction in GW speeds, as reflected in the change in 

dispersion curves. Furthermore, in quantifying thermal variations of elastic modulus, 

two different data sets were found: one, for the variation in static elastic modulus 

[223], and the other for dynamic elastic modulus (Lord and Orkney [224]). This data 

is shown in Fig. 58. The former was obtained from standard stress-strain tests 

conducted under varying temperature for aluminum alloy 7075, while the latter was 

found from measuring changes in natural frequency of aluminum beam (alloy 5052) 

flexural vibrations with temperature. No data was found for aluminum 5005, the 

material used in the tests here. However it is similar in composition to the two alloys 

for which data was found. The variation in elastic modulus of PZT-5A is relatively 

small [225]. No data was obtained for dynamic elastic modulus variation of PZT-5A. 

b) Piezoelectric properties of PZT-5A: It is well-known that the piezoelectric constants 

(d31 and g31) vary significantly with temperature (Berlincourt, Krueger and Near, 

[222]). For GW SHM, the variation in the product d31.g31 is of relevance (the d31 

constant is associated with actuation shear stress induced, while the g31 constant is 

associated with the piezo-sensor sensitivity), and this can vary by as much as 7%, as 

shown in Fig. 59. In addition, the dielectric constant of PZT-5A increases linearly 

with temperature, which causes the load seen by the function generator to increase. 

This however, does not affect sensor response by itself. 

c) Thermal expansion: This is a relatively mild effect, and causes the plate thickness, 

piezo dimensions and distances travelled by the GWs in the plate to increase and 

density to decrease. Since the thermal expansion coefficients of aluminum and PZT-

5A are known (average values over 20oC to 150oC are α = 25.5  µm/m-oC for 

aluminum obtained from Matweb [226]; α1 = 2.5 µm/m-oC for PZT-5A, see 

Williams, Inman and Wilkie, [225]), these effects can be accounted for. The effect of 
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changing (static) elastic modulus, plate thickness and density were used to compute 

Lamb-wave phase velocity dispersion curves at different temperatures (Fig. 58). 

 

 

 

d) Damping and pyroelectric effects (not considered): Another parameter that changes 

with increasing temperature is damping in the structural substrate. The best reference 

found in this regard (Hilton and Vail [227]) estimated an increase by a factor of 4 in 

the loss modulus (representative of damping) at 100 Hz in aluminum alloy 2024. This 
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still ensures that the loss modulus is orders of magnitude lower than the elastic 

modulus. The effect of damping can then be effectively ignored, as seen in the 

comparison of the theoretical model (without damping considered) and experimental 

results at room temperature described in Chapter II. Therefore, damping was ignored 

at higher temperatures too. Finally, due to the pyroelectric effect, temperature 

changes cause a static voltage to appear across a piezo’s electrodes. Since the 

experimental signals were acquired with a 2 Hz high-pass filter built into the 

oscilloscope, this effect was not considered either. 

Effects (a)-(c) were incorporated into the theoretical models developed in Chapter 

II. With that, it was examined whether the experimentally observed increase in time-of-

flight (calculated by peak extraction from spectrograms) of the GW S0 mode wave-packet 

received by sensor 2 and the change in sensor response amplitude could be captured. 

Reduced transducer dimensions (20% less than nominal values) were used to generate the 

theoretical plots. This is to account for shear lag, as explained in Chapter II. In addition, 

variations in the traction magnitude exerted by the piezo due to changing elastic moduli 

and dimensions were accounted for using the equation for static actuation by piezos in 

Chaudhry and Rogers [228]. The comparison between theory and experiment is shown in 

Fig. 59 for time-of-flight and in Fig. 60 for sensor response amplitude (peak-to-peak). To 

get an estimate of the error in time-of-flight, the raw un-averaged 30 signals were 

collected for two points per cycle (100oC while heating and 70oC while cooling). The 

data from sensor 3 is very similar. The theoretical estimates for time-of-flight are in 

agreement with the experimental data (within error margins) and the agreement seems 

better for the theoretical data set generated assuming static elastic modulus variation. The 

center frequency of the sensed S0 mode pulse remained constant at 133 kHz (calculated 

with a resolution of 3 kHz) for both the theoretical and experimental data-sets at different 

temperatures. For the sensor amplitude prediction, there is clearly a significant gap 

between the theoretical estimate and experimental data. The experimentally observed 

increase of up to 33% while heating to 90oC in the response amplitude of sensor 2 is not 

captured by the theoretical model, but the decrease of 18% at 150oC is predicted within 

the error margin. One possible explanation for this is changing bond layer properties with 

temperature (the model used here assumed perfect bonding). Data was unavailable for 



137 
 

variation of bond layer elastic modulus with temperature and therefore it could not be 

quantified. However, the static modulus variation and thermal expansion data can give a 

good approximation to account for the slowing down of wave-speeds with increasing 

temperature, and is used in the subsequent section to generate damage location estimates. 

An empirical compensation approach is used for varying response amplitude. 

 From these experiments, it is clear that temperature can cause significant changes 

in the amplitude and time-of-flight for the first transmitted pulse received by the sensor. 

Even with the instantaneous temperature known, this causes greater error margins in the 

amplitude and time-of-flight measurement under slightly varying temperature. In the 

pitch-catch approach, changes in these very features are used to conclude whether 

damage is present in the actuator-sensor path or not. Therefore, the pitch-catch method is 

inherently more sensitive to false positives in damage detection under varying 

temperature. On the other hand, the pulse-echo approach relies on the absence or 

presence of reflections between the actuation pulse and the boundary reflection. If 

damage is present, regardless of temperature increase, there will always be some GW 

reflection towards the actuator, and a collocated sensor should be able to pick this up 

(assuming the damage is sensitive to the mode and frequency of the incident GW). 

Therefore, in principle, the only modification to make for GW pulse-echo based damage 

characterization under varying temperature would be to account for varying GW speeds 

and scale the reflection amplitude according to the changed sensor sensitivity at that 

particular temperature. However, a complication arises for pulse-echo methods in 

structures with features such as rivets in trying to detect and locate “mild” damage which 

is roughly at the same distance (within a few cm) from the actuator as the rivet. In this 

context, damage is called “mild” if the amplitude of the reflected GW by it is comparable 

to that of the reflection from the rivet/structural discontinuity. This is explored 

experimentally in the next section. 

 

V.4 Damage Characterization at Elevated Temperatures 

As mentioned in the previous section, before any damage was introduced two 

data-sets were obtained for the baseline, pristine condition of the specimen (which had 
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transducers bonded with Epotek 353ND). This was to get a sense of the repeatability of 

the baseline condition at different temperatures. The baseline signal read by sensor 1 

(collocated with the actuator) is shown in Fig. 61. There is some non-zero signal between 

the actuation pulse and the boundary reflection due to mild A0 mode excitation and some 

reflection from sensors 2 and 3. At 20oC, the A0 mode reflection from sensors 2 and 3 is 

discernible, while the S0 mode reflection is negligible. However, at higher temperatures, 

the S0 mode reflection from sensors 2 and 3 becomes stronger (e.g., see Fig. 61). 

Furthermore, there is some error in the amplitudes of these mild reflections received at 

sensor 1 when data from the two cycles are compared. Fig. 62 shows one of the worse 

scenarios in this regard, while Fig. 63 is an example of better repeatability observed 

among the readings. This error in repeatability arises from the variation in time-of-flight 

and sensor response amplitude under changing temperature. With large temperature-

change rates, this problem is further exacerbated. This explains why poor signal 

repeatability was observed in the initial experiments in the oven. The variation between 

the two baseline cycles defines the threshold values for the subsequent damage detection 

experiments. In practice it would be advisable to get some more data for the variability in 

baseline condition at various temperatures, particularly in less homogeneous structural 

layouts with rivets, stiffeners, etc. In addition, while data was collected here at 10oC 

intervals, it can also be used for baseline interpolation at intermediate temperatures. This 

can be done by simple weighted averaging of the two signals taken at the multiples of 

10oC within which the intermediate temperature lies.  

Thus, in implementing GW SHM with compensation for temperature, a processor 

will need to store a database of baseline signals for different temperatures. Subsequently, 

during operation, depending on the temperature (read using thermocouple(s) attached to 

the structure) at which the test signal was obtained, the baseline signal for the relevant 

temperature should be used. If the baseline signal for that temperature is not stored in the 

database, the processor needs to interpolate this baseline signal from the other available 

signals. 

Once the baselines were obtained and threshold levels were defined, damage was 

introduced artificially in the plate by drilling. As alluded to at the end of Section V.3, the 
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case of “mild” damage was first explored. To ensure that the reflections were not too 

strong, damage was introduced along the axis of weaker actuation of the rectangular 

actuators. Theoretical models developed in Chapter II predicted a 30% weaker GW strain 

field along this direction. Experiments were first done for a triangular cross-sectional 

indentation of maximum diameter 5 mm and depth 1.7 mm, shown in Fig. 64 (a). The 

damage center is 8 cm away from the plate center and its location is shown in Fig. 50. 

The signal obtained from sensor 1 at room temperature after introducing this damage is 

shown in Fig. 65 (a), along with the pristine condition signal and the difference between 

the two. There is a clear signal above the threshold defined for 20oC. The two distinct 

reflections in the signal are the S0- and A0- mode reflections from the indentation. As 

explained in Chapter IV, even though the S0 mode is predominantly excited, mode 

conversion is possible at a damage site. From their time-of-flight and using the group 

velocities at 20oC, the radial location estimates of the indentation are 7.2 cm and 8.2 cm 

from the plate center based on the S0 and A0 mode reflections respectively. The analysis 

in this chapter was done using spectrograms by manually tracking the reflections. In 

principle, the chirplet matching pursuit algorithm used in Chapter IV should allow 

automated tracking and better resolution for real-time processing. However, its 

implementation in LastWave 2.0 [215] makes approximations to reduce computational 

cost which do not capture the increase in time-of-flight with temperature in Fig. 59. 
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The indented specimen was thermally cycled in the autoclave to check whether 

the signal difference remained above the pre-defined threshold level at each temperature 

point.  Some of the signals read by sensor 1 during this experiment are shown in Fig. 65 

(a)-(d). The results are also summarized in Table 3. The A0 and S0 mode reflections from 

the indentation had peak energy (from the spectrogram, in the excited frequency band) 

well above the threshold up to 80oC while heating. Some of the S0 mode reflections (from 

50o-80oC) mixed with the excitation signal difference, due to which the S0 mode 

reflection underestimated the damage location, as shown in Fig. 65 (b). Beyond 80oC, the 

A0 mode reflection was still above the threshold, but had peak energy that was 

comparable to the threshold. The weaker S0 mode reflection had peak energy lower than 

the threshold at some points after 90oC while heating. In addition, as illustrated in Fig. 65 

(c), at some points over 100oC, there is a reflection that arrives approximately where the 

S0 mode was seen at lower temperatures, but can be wrongly identified as A0 mode by its 

time-frequency characteristics. Subsequently, while cooling below 80oC, again both 

reflections were well above the threshold, and gave reasonable location estimates. 
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(a) (b) 

Fig. 64: Photographs of damage introduced: (a) indentation and (b) through-hole. 
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  Following this, a through hole of diameter 7.5 mm was drilled at the same 

location, seen in Fig. 64 (b). The response of sensor 1 recorded after drilling through at 

20oC is shown in Fig. 66 (a). The S0 mode reflection is now much stronger, while the A0 

mode reflection appears much weaker (but still well above the threshold at 20oC). The 

radial location estimates are 8.6 cm and 8.3 cm based on the S0 and A0 mode reflections 

respectively at 20oC. The results from thermally cycling the specimen with the through-

hole are shown in Fig. 66 (a)-(d), and tabulated in Table 4. In this case, the S0 mode 

reflection is reasonably above the threshold at all temperatures. There is an error of 1.9 

cm in the estimate (based on the S0 mode) at 150oC, where the signal is the weakest. At a 

couple of points, the radial location of the damage is overestimated by more than 1 cm 

(100oC while heating and 50oC while cooling), which is possibly due to the mixing of the 

S0 mode with the difference in the reflection from sensors 2 and 3. At other temperatures, 

the radial location estimates based on the S0 mode are within 1 cm. The A0 mode 

reflection, which was weak at 20oC to begin with, is discernible up to 70oC while heating, 

but beyond that is indistinguishable from the difference in boundary reflection until the 

specimen cools back to room temperature.  

  Thus, for “mild” damage up to 80oC, detection was not problematic, but there was 

a slightly increased error in location as temperature increased. However, beyond that 

temperature, there is a definite decrease in sensitivity, as reflected in the poorer 

detection/characterization capability in the indentation experiment. This can be attributed 

to the higher sensitivity of the substrate elastic modulus to temperature at higher 

temperatures (Fig. 56), causing greater variation in the mild reflections from sensors 2 

and 3, and consequently, poorer repeatability of the baseline signals. In addition, the 

sensor sensitivity (in terms of signal amplitude) drops below the value at 20oC beyond 

130oC. For the thru-hole, which can be termed “moderate” damage, detection was clearly 

possible at all temperatures, but at a few points (3 of a total of 29 cases), there was 

inaccuracy in the location estimate (by up to 2.2 cm for damage located at 8 cm), partly 

due to interference with the difference in reflection from sensors 2 and 3 (simulating 

structural features in field applications). One way to reduce the error in location is to use 

higher center frequencies and/or fewer number of cycles (which increases frequency 

bandwidth) in the actuation signal. However, that was not feasible in the present setup 
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(which did not use amplifiers), since significant distortion was observed for such 

actuation signals at higher temperatures due to increasing actuator capacitance. In 

addition, in the present experimental setup, the scaling of the signals to compensate for 

changing actuation level increased the signal-to-noise ratio at higher temperatures. This 

indicates the need for reliable actuation signal amplification for GW SHM at elevated 

temperatures. 

 

Temp. 
(oC) 

S0 
ToF 
(µs) 

S0 
energy

(V2) 

Thres. 
energy 

(V2) 

S0 
over 

thres.?

S0 
loc. 
(cm) 

A0 
ToF 
(µs) 

A0 
energy 

(V2) 

A0 
over 

thres.?

A0 
loc. 
(cm) 

20 (h) 28.10 0.0631 0.0142 Yes 7.2 50.65 0.2883 Yes 8.2 

40 (h) 28.00 0.1229 0.0025 Yes 7.2 51.20 0.3695 Yes 8.6 

70 (h) 18.60 0.0739 0.0154 Yes 4.7 54.60 0.5895 Yes 9.1 

110 (h) 31.20 0.1808 0.1850 NO 7.9 56.00 0.1959 Yes  9.2 

130 (h) 18.60 0.066 0.0517 Yes 4.5 34.10 0.0886 Yes 4.9 

150  − − 0.0275 − − 25.50 0.0839 Yes 4.0 

120 (c) − − 0.0375 − − 28.60 0.1363 Yes 4.1 

80 (c) 25.50 0.2688 0.0525 Yes 6.5 56.80 0.1502 Yes 9.5 

50 (c) 27.50 0.0681 0.0033 Yes 7.1 55.82 0.2240 Yes 9.4 

20 (c) 30.35 0.0483 0.0023 Yes 7.8 53.95 0.4228 Yes 8.8 

 

Table 3: Summary of results showing trends in thermal experiment for damage 
characterization with indented specimen (Key: Temp. ≡ Temperature; (h) ≡ heating 

phase; (c) ≡ cooling phase ; S0 ToF ≡ time-of-flight for S0 mode reflection from 
indentation; Thres. ≡ Threshold; S0 loc. ≡ radial location estimate (relative to plate center) 

of damage based on S0 mode reflection). 
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 To conclude, this chapter examined the issue of GW SHM using piezos under 

elevated temperature conditions as expected in spacecraft internal structures. Experiments 

were done to determine a bonding agent (for piezos on aluminum plates) that did not 

degrade at temperatures from 20oC to 150oC. Using this bonding agent (Epotek 353ND), 

results from controlled experiments done to examine changes in GW propagation and 

transduction using PZT-5A piezos under quasi-statically varying temperature (also from 

20oC to 150oC) were presented. Thermally sensitive variables in the experiments were  
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Fig. 66: Sensor 1 response for pristine and thru-hole specimens, along with the signal 
difference at: (a) 20oC (before thermal cycle) ; (b) 70oC while heating; (c) 150oC while 

heating and (d) 50oC while cooling 
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Temp. 
(oC) 

S0 
ToF 
(µs) 

S0 
energy 

(V2) 

Thres. 
energy 

(V2) 

S0 
over 

thres.?

S0 
loc. 
(cm) 

A0 
ToF 
(µs) 

A0 
energy 

(V2) 

A0 
over 

thres.?

A0 
loc. 
(cm) 

20 (h) 33.45 0.2198 0.0142 Yes 8.6 49.75 0.0763 Yes 8.3 

40 (h) 34.30 0.2972 0.0025 Yes 8.8 55.20 0.1119 Yes 9.0 

70 (h) 32.50 0.2463 0.0154 Yes 8.3 56.70 0.2128 Yes 9.0 

110 (h) 40.60 0.2578 0.1850 Yes 10.2 Bndry − − − 

130 (h) 33.40 0.3105 0.0517 Yes 8.2 Bndry − − − 

150 25.60 0.1073 0.0275 Yes 6.1 Bndry − − − 

120 (c) 31.00 0.1997 0.0375 Yes 7.6 Bndry − − − 

80 (c) 28.00 0.2985 0.0525 Yes 7.0 Bndry − − − 

50 (c) 36.20 0.3393 0.0033 Yes 9.3 Bndry − − − 

20 (c) 33.80 0.2018 0.0023 Yes 8.7 53.60 0.0623 Yes 8.8 

 

Table 4: Summary of results showing trends in thermal experiment for damage 
characterization using specimen with thru-hole (Key: Temp. ≡ Temperature; (h) ≡ 

heating phase; (c) ≡ cooling phase; S0 ToF ≡ time-of-flight for S0 mode reflection from 
thru-hole; Thres. ≡ Threshold; S0 loc. ≡ radial location estimate (relative to plate center) 

of damage based on S0 mode reflection; Bndry ≡ A0 mode reflection peak within 
boundary reflection). 

 

identified and quantified to model the experimentally observed changes under 

temperature variation. The increase in time-of-flight of GW pulses with increasing 

temperature was captured by the model (within the error margins). However, there was a 

significant gap in the prediction of the large increase in sensor response amplitude up to 

100oC. The stronger vulnerability of pitch-catch approaches to false positives under 

changing temperature was then explained. Finally, detection and location of damage (by 

drilling) using the pulse-echo approach in the presence of mild structural GW scatterers 

(to simulate rivets) was explored in the same temperature range. Damage characterization 
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of a half-plate thickness indentation at 8 cm from the actuators was not significantly 

affected up to 80oC, but beyond that temperature, detection/characterization was difficult. 

The problems beyond 80oC can be traced to increased sensitivity of substrate elastic 

modulus to temperature and weaker sensor sensitivity beyond 130oC. For a through-hole, 

damage detection and characterization was possible at all temperatures and except at a 

few temperatures (3 out of 29), damage was located within 1 cm for a nominal location of 

8 cm and hole diameter 0.75 cm. Suggested approaches for improving sensitivity at 

higher temperatures include testing at higher frequencies and/or with shorter time-span 

excitation pulses, with reliable actuation amplifiers. 
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CHAPTER VI 

 

GUIDED-WAVE EXCITATION BY PIEZOS IN                                    

COMPOSITE LAMINATED PLATES 

 

The studies till this point in the thesis have focused on isotropic structures. With 

composite materials becoming increasingly common in aerospace structures as explained 

in Section I.1, there is a need to extend that work to composite structures as well. The 

present chapter seeks to extend the modeling work in Chapter II for GW excitation by 

finite-dimensional piezos to multilayered, laminated fiber-reinforced composite plates. 

Details of the implementation of the formulation and verification of the models using 

numerical simulations are also presented.  

 

VI. 1  Theoretical Formulation 

As in Chapter II, first a general expression for the GW field excited by an 

arbitrary shape piezo-actuator surface-bonded on a multilayered composite plate is 

derived. Consider an infinite N-layered composite plate of total thickness H, with such an 

actuator bonded on one free surface, as illustrated in Fig. 67. The origin is located on the 

free surface with the actuator and the X3-axis is normal to the plate surface. The 

individual layers are assumed to have unidirectional fibers in a matrix and are modeled as 

being transversely isotropic with uniform density. This is a reasonable assumption if the 

GW wavelength is large compared to the inter-fiber spacing and the fiber diameter [62]. 

The solution procedure consists of the following four components (illustrated in Fig. 68):  
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(a) First, one sets up the 3-D governing equations of motion for the bulk composite 

medium. The 2-D Fourier transform is applied (or equivalently, plane waves 

propagating at a given angle in the plane of the fibers are assumed). This yields the 

free-wave solution in terms of the eigenvectors and possible wavenumbers through 

the thickness of the fibers. 

(b) Then, one imposes the free-surface conditions of the plate along with the continuity 

conditions across interfaces (using the global matrix formulation). This also gives the 

allowable in-plane wavenumbers for the possible GW modes. 

(c) Next, the forcing function due to the presence of the surface-bonded piezo-actuators 

is imposed (assuming they exert shear traction along their free edges as explained in 

Chapter II). This gives the solution in terms of a 2-D Fourier integral in the 

wavenumber domain. 

(d) Finally, the 2-D wavenumber-domain Fourier integral is inverted (semi-analytically) 

to yield the GW field due to harmonic excitation by the piezo-actuator. The response 

to an arbitrary excitation waveform can then be obtained by integrating the individual 

harmonic components of the time-domain signal (i.e., inverting the frequency-domain 

Fourier integral). 
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composite 

plate
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Fig. 67: Infinite multilayered composite plate with arbitrary shape surface-bonded 

piezo actuator 
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Among these, parts (a) and (b) are adapted from Auld [10] and Lih and Mal [62]. Parts 

(c) and (d) are based on the work in Chapter II. The details of the solution procedure are 

explained in the following sub-sections. 

 

VI. 1.A Bulk Waves in Fiber-reinforced Composites 

First, consider the general solution for bulk waves in a transversely isotropic 

medium. The equations of motion for the bulk medium in each layer are: 

T ρ=c u u∇ ∇  (120)

where u  is the “local” displacement vector (later the “global” displacement vector u will 

be introduced for the laminate), c is the stiffness matrix, the ⋅ over a variable indicates 

derivative with respect to time, ρ is the material density, and the operator ∇  is defined 

as: 

∞

∞

∞

∞
∞∞

∞

∞ ∞

∞

O
1K̂ 2K̂

K → ∞

C

1K̂−2K̂− RK

IK

(a)   Plane wave solution for infinite 
bulk composite [10]

(b)   Free GW solution for infinite multi-
layered composite plate [61]

(c)   Forcing function due to surface-bonded 
piezo (shear traction along edge)

(d)   Wavenumber Fourier integral 
inversion (residue calculus)

x1

x3

x2

X1

X3

X2

Fig. 68: Illustration of solution procedure 
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1 3 2

2 3 1

3 2 1

0 0 0

0 0 0

0 0 0

x x x

x x x

x x x

⎡ ⎤∂ ∂ ∂
⎢ ⎥∂ ∂ ∂⎢ ⎥
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= ⎢ ⎥∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂
⎢ ⎥

∂ ∂ ∂⎣ ⎦

∇  (121)

If the fibers are oriented along the 1-direction in the local coordinate system (x1, x2, x3) of 

the material, the stress-strain relation and the stiffness matrix c for a transversely 

isotropic material are: 

1,1 11 12 1211

2,2 12 22 2322

3,3 12 23 2233
44

2,3 3,2 4423

1,3 3,1 5531

2,1 1,2 5512

0 0 0
0 0 0
0 0 0

;     ,   with 
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

u c c c
u c c c
u c c c cc

u u c
u u c
u u c

σ
σ
σ
σ
σ
σ

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥

= = =⎢ ⎥ ⎢ ⎥⎢ ⎥ +⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ +
⎢ ⎥ ⎢ ⎥⎢ ⎥

+⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

c c 22 23

2
c−  (122)

Here ijσ , with i and j taking integer values from 1 to 3, are the local stress components. 

Next, constants are introduced that correspond to the squares of the bulk wave speeds 

along the principal directions: 

1 22

2 11

3 12 55

4 22 23 44

/   (dilatational wave normal to the fiber direction)
/   (dilatational wave along the fiber direction)

( ) /  (shear wave in the plane of isotropy) 
( ) / 2 /   (shear wav

a c
a c
a c c
a c c c

ρ
ρ

ρ
ρ ρ

=
=
= +
= − =

5 55

e along the fiber direction) 
/   (shear wave in the plane of isotropy)a c ρ=

 (123)

Viscoelastic damping can be modeled by the use of complex stiffness constants. Suppose 

the wavenumber components are ξ1, ξ2 and ζ  along the 1-, 2- and 3- local directions, 

respectively. Furthermore, without loss of generality, consider harmonic excitation at 

angular frequency ω. Then the wave field is of the form:  

( )1 1 2 2 3i x x x te ξ ξ ζ ω− + + −=u  Ω  (124)
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where the vector Ω  is a linear superposition of the possible eigenvectors. To solve for 

these eigenvectors, from Eqs. (120)-(124), one obtains the Christoffel equation:  

2 2 2
11 1 55 2 12 55 1 2 12 55 1 1 1

2 2 2 2
12 55 1 2 55 1 22 2 44 23 44 2 2 2

2 2 2
12 55 1 23 44 2 55 1 44 2 22 3 3

( ) ( ) ( )
( ) ( )
( ) ( )

c c c c c c
c c c c c c c
c c c c c c c

ξ ξ ζ ξ ξ ξ ζ
ξ ξ ξ ξ ζ ξ ζ ρω
ξ ζ ξ ζ ξ ξ ζ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ + + + Ω Ω
⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ + + + Ω = Ω⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ + + + Ω Ω⎣ ⎦ ⎣ ⎦⎣ ⎦

 (125)

For fixed values of ξ1, ξ2, and ω, there are six possible roots ±ζi, i = 1 to 3, of this 

equation. The first two pairs of roots correspond to pairs of quasi-longitudinal waves 

(characterized by displacements dominantly along the wave propagation direction but 

with small components normal to it) and quasi-shear waves (characterized by 

displacements dominantly normal to the wave propagation direction but with small 

components along it, see [10]). The wavenumbers in the thickness direction for these four 

roots are, respectively [62]: 

2 2 2 2
1 2 1 2 2 2

2 2

1 2

2 2 2 2 2 2 2 2
1 5 1 2 5 3 1 1 5 2 1 5 1

;   

;   
2 2 2 2

;   =( ) ( );   =( )( )

b b

b b

a a a a a a a a a a

ζ ξ ζ ξ

β β γ β β γ
α α α α α α

α β ξ ω γ ξ ω ξ ω

= − + = − +

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − − − = − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

= + − − + − −

 (126)

The third pair of roots corresponds to quasi-shear waves and their through-thickness 

wavenumbers are given by: 

2 2 2 2
3 2 5 1 4( ) /a aζ ξ ω ξ= − + −  (127)

The displacement eigenvectors resulting from Eq. (125) corresponding to these roots are: 

[ ]
[ ]
[ ]

1 1 11 2 21 1 21

2 1 12 2 22 2 22

3 3 20

T

T

T

i q i q i q

i q i q i q

i i

ξ ξ ζ
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ζ ξ

=

=

= −

e

e

e

 (128)

where: 

2 2
11 3 1 21 2 1 5 1

2 2
21 3 2 22 2 1 5 2

;   

;   

q a b q a a b

q a b q a a b

ω ξ

ω ξ

= = − −

= = − −
 (129)
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and the other three eigenvectors e4, e5 and e6 are obtained by replacing ζi by −ζi. The 

general solution for the displacement vector is then given by: 

[ ]

1 3 2 3 3 3

1 1 2 2

1 3 2 3 3 3

1 1 2 2

1 1 2 2 3 3 ( )

1 4 2 5 3 6

( )3
11 12

3

( ) 0
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i x x t

i x i x i x

i x x t

C e C e C e
e

C e C e C e
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ζ ζ ζ

ξ ξ ω

+ + + − + −

− − −
− − −

+ − + −+

−−

⎛ ⎞+ + +
⎜ ⎟⎜ ⎟+ + +⎝ ⎠
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e e e
u =

e e e

CE
Q Q

CE

 (130) 

where Ci±, i = 1 to 3, are free constants and: 

[ ] [ ]
1 3 2 3 3 3

1 3 2 3 3 3

11 1 2 3 12 4 5 6

3

3

;     

( ) Diag , ,

( ) Diag , ,

i x i x i x

i x i x i x

x e e e

x e e e

ζ ζ ζ

ζ ζ ζ
−

= =

⎡ ⎤= ⎣ ⎦
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+

Q e e e Q e e e

E

E

 (131) 

 

VI. 1.B Assembling the Laminate Global Matrix from the Individual Layer Matrices 

With the general solution for the bulk medium in place, one can then seek the 

particular solution for the problem at hand. As mentioned earlier, the equations in this 

particular sub-section are adapted from Lih and Mal [62].   

Due to the different orientations of the fibers in the different layers, it is useful to 

work with a global coordinate system (X1, X2, X3) distinct from the local coordinate 

system, for which the 1
mx -axis is aligned with the fiber direction (with the superscript m 

indicating the layer number between 1 and N). However, the X3- and 3
mx -axes are 

coincident and the two coordinate systems differ only in the plane of the plate. One can 

relate the displacement vector u in the global system and u  in the local system using the 

transformation matrix Lm (defining φm to be the angle between the X1- and 1
mx -axes): 

cos sin 0
; where   sin cos 0

0 0 1

m m

m m m m m

φ φ
φ φ

⎡ ⎤−
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

u = L u    L  (132)

The surface traction conditions for this problem are: 
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1
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iX X f X X

X X H i

σ

σ

=

= =
i

N
i

 (133)

where the functions f1 and f2 depend on the shape of the actuator and 3 0f = . In addition, 

traction and displacement continuity must be maintained across the interfaces between 

the different layers. As in Chapter II, the 2-D spatial Fourier transform is used to ease 

solution of this problem. However, it should be noted that this transform uses the 

“global” wavenumbers K1 and K2 along the X1 and X2 directions respectively, which are 

related to the local wavenumbers ξ1 and ξ2 in each layer by the formula: 

( ) ( )
( ) ( )

1 1

2 2

cos sin

sin cos

m m

m m

K
K

φ φξ
ξ φ φ

⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥−⎣ ⎦ ⎣ ⎦⎣ ⎦

 (134)

Let U, Σ  and F denote the 2-D spatial Fourier transform of the variables u, σ and f, 

respectively. Furthermore, as for the bulk medium solution, without loss of generality, 

harmonic excitation at angular frequency ω is considered (the i te ω  factor is suppressed for 

convenience and is brought back at the end). Since continuity of both traction and 

displacement has to be ensured across all interfaces, it is convenient to work with a 

“displacement-stress vector” Sm
 in the transformed domain defined as: 

3 3 3 3( ) { ( )  ( )}m T
iX X X= Σm mS U  (135)

Then, from Eqs. (122), (130), and (132): 
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where: 
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with 3
mX  being the X3-coordinate of the interface between layers m and (m−1). Here 21

mQ  

and 22
mQ  are matrices whose columns are the stress eigenvectors for the mth layer 

corresponding to wavenumbers along the 3-axis, ζi and −ζi, respectively. These are 

obtained from the displacement eigenvectors using Eq. (121). The interface continuity 

conditions can then be expressed as: 

1 1

1 1 1 1
3 3

          

where                               ( );    ( )

m m m m

m m m m m mX X

+ +
+ −

+ + + +
+ −

= −

≡ ≡

Q C Q C

Q Q Q Q
 (139)

These equations ensure continuity of all displacement and traction components at the 

interface across two layers. The surface traction conditions can be expressed as: 

1 1

1 1 1 1 1 1
21 22 21 22

ˆ ˆ                              ;
ˆ ˆwhere                    ;     

N N

N N N N N N

− − + +

− +

= =

⎡ ⎤ ⎡ ⎤= − − =⎣ ⎦ ⎣ ⎦

0Q C F     Q C

Q LQ LQ E Q L Q E L Q
 (140)

Here the matrices Q̂ correspond to the lower-half of Q relating to stress. The system of 

equations is then solved by assembling Eqs. (139) and (140) together into a 6N × 6N 

banded matrix (called the global matrix, say G): 
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Alternatively, if the layup is symmetric about the mid-plane of the plate, then the 

system can be solved for the symmetric and anti-symmetric modes separately, thereby 

saving some computational time. The surface condition must also be split into its 

“symmetric” and “anti-symmetric” components. Then, the relevant surface condition on 

the top layer is enforced along with the continuity conditions up to the interface between 

layers 2N  and 2 1N −  along with conditions of symmetry (u3, σ32 and σ31 being zero at 

the mid-plane) or anti-symmetry (u1, u2 and σ33 being zero at the mid-plane). The 

problem is thus reduced to two systems, each of complexity 3N × 3N. With the problem 

constraints now enforced, if the forcing function is also known, this equation can be 

solved to find the constants, Cm.  

 

VI. 1.C Forcing Function due to Piezo-actuator 

The piezo actuator is modeled as causing in-plane shear traction of uniform 

magnitude (say τ0 per unit length) along its perimeter, in the direction normal to the free 

edge on the plate surface X3 = 0 (see Fig. 68), as was done in Chapter II. While the above 

formulation is generic enough to capture GW excitation by an arbitrary shape piezo, for 

brevity only the rectangular piezo shape is analyzed here. For the rectangular uniformly 

poled piezo-actuator of dimensions 2A1 × 2A2 (along the X1- and X2-axes respectively), 

which is located at the center of the coordinate system: 
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where He( ) is the Heaviside function. The constants in Eq. (141) can then be analytically 

solved using Cramer’s rule:  
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where K and Γ are the polar wavenumber coordinates, related to the Cartesian ones by the 

formulas: 

( ) ( )2 2 -1
1 2 2 1;    tanK K K K K= + Γ =  (144)

 

VI. 1.D Spatial Fourier Integral Inversion 

With the constants known, the expression for displacement in the wavenumber domain 

can be obtained from Eqs. (136) and (143). Fourier inversion can then be used to recover 

the spatial domain solution. For the case of a rectangular actuator, this leads to an 

expression of the following form for displacement along the 1-direction in the spatial 

domain: 



157 
 

1 2

0
2 1 22

1 3
( ( cos sin ) )0 0

sin( cos )sin( sin )
( 0)

( , )
( , )

i K X X t

KA KA
iu X KdKd

N K e
K

π

ω

τ
π∞

− Γ+ Γ −

−⎛ ⎞Γ Γ⎜ ⎟
⎜ ⎟= = Γ

Γ⎜ ⎟×⎜ ⎟∆ Γ⎝ ⎠

∫ ∫
 

(145)

The procedure for inversion of this integral is analogous to that in Section II.4. The 

integrand is singular at the roots ˆ ( )K Γ of ( , ) 0K∆ Γ = , which is the dispersion equation 

for the multilayered composite plate. These roots are the allowable in-plane radial 

wavenumbers for the multilayered composite plate at angular frequency ω. ( , )K∆ Γ  is 

symmetric about the K-axis. The final expression for u1 that would be obtained is: 
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where: 

( ) ( )2 21 2 2
1 1 1 1 2 2

1 1

tan ;   ,  etc.X A R X A X A
X A

− ⎛ ⎞−
Θ = = − + −⎜ ⎟−⎝ ⎠  

(147)

Again, this notation is analogous to that in Section II.4. Furthermore, an approximate 

closed form solution can be obtained for the far field using the method of stationary 

phase. This is assuming damping is not modeled and that the integrand is real-valued. If 

damping is modeled, then a similar approximation can be done using the method of 

steepest descent [11]. Thus, for large values of R (which leads to large values of 

,  1 to 4kR k = ): 
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where 
ˆ1tan( ) ˆk k

dK
dK

Γ − Θ =
Γ

. Thus, ( )k kΓ −Θ  is the angle between the phase velocity 

and group velocity vectors [10], as shown in Fig. 69 (a). For composites, the group 

velocity is along the normal to the “slowness curve,” which is the polar plot of the 

reciprocal of the phase velocity versus propagation direction. This implies that the 

contributions from kΓ  dominate the integrals over Γ at large distances from the source. 

This reiterates a well-known fact about wave propagation in anisotropic media, i.e., the 

wave travels at a “steering angle,” which may be different from the angle that it was 

launched along by its source [10], as shown in Fig. 69 (b). 

 

VI. 2  Implementation of the Formulation and Slowness Curve Computation 

The theoretical formulation described above was implemented in Fortran 90. The 

linear algebra package LAPACK [229] for Fortran 90 was employed to evaluate the 

determinants of large banded matrices. The roots of the dispersion equation ( , ) 0K∆ Γ =  
were simply computed by the “zero-crossing” approach, i.e., by evaluating the 

determinant of the matrix over a fine grid in the (K,Γ) plane and looking for sign changes  
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in the value of the determinant. In doing so, one has to avoid the bulk wave velocities of 

the composite material, which are also roots of the dispersion equation. One also has to 

take care to use double-precision variables and compute the roots with high precision 

since with the very large matrices involved, small errors in the values of the roots cause 

large errors in the response solution. Furthermore, in tracking zero-crossings on a grid of 

( , )K Γ , due to the large variations in order of magnitude, it is convenient to plot 

determinant values on a logarithmic scale. The derivatives w.r.t. K were evaluated 

analytically. The code implemented in Fortran 90 to evaluate the determinant values (for 

zero-crossings) and integrand values (for the kernel of the integral) was computationally 

efficient, with each run being completed in a few minutes on a standard desktop 

computer (1.2 GHz Pentium IV with 256 MB RAM). The integrals over Γ were evaluated 

numerically (by summing the integrand’s values taken at intervals of 1o). 

Some results for the slowness curves obtained are presented here. Graphite-epoxy 

composite plates (material properties: ρ = 1578 kg/m3; c11 = 160.73 GPa, c12 = 6.44 GPa, 

c22 = 13.92 GPa, c23 = 6.92 GPa, c55 = 7.07 GPa; this is the same material used in [62]) 

were analyzed. Damping was not considered for these analyses. The slowness surfaces 
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Fig. 69:  (a) Relation between group velocity and slowness curve and (b) “Steering” in 

anisotropic media 
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(plots of inverse of phase velocity versus propagation direction) for the A0 and S0 modes 

in a 1-mm thick unidirectional plate at 500 kHz are shown in Fig. 70 (a). As seen there, 

the wavespeeds along the fiber direction (0o) are much faster than those along the normal 

direction. The corresponding plots for a quasi-isotropic laminate at 200 kHz of layup 

[0/45/-45/90]s, with each ply being 0.11 mm thick, is shown in Fig. 70 (b). The S0 mode 

for this laminate is approximately isotropic, with the differences in wavespeeds along 

different directions being invisible to the naked eye. However, the A0 mode for the same 

laminate has significant directional dependence. 

 

 

VI. 3  Results and Comparison with Numerical Simulations 

Results were generated for a couple of test cases to compare with FEM 

simulations using ABAQUS [205] and examine the correlation between the two in terms 

of angular dependence of GW radiation patterns. The cases examined were for the 

unidirectional (in antisymmetric mode) and quasi-isotropic composite plates (in 

symmetric mode) described above, for which slowness curves were generated. In the case 

of the unidirectional plate, due to symmetry about three axes, a 1/8th plate section of size 
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Fig. 70:  Slowness curves for (a) 1-mm unidirectional plate at 500 kHz and (b) quasi-

isotropic laminate at 200 kHz of layup [0/45/-45/90]s, each ply being 0.11-mm thick 
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3 cm × 3 cm × 0.5 mm was modeled. For the quasi-isotropic plate, since it is symmetric 

about only one axis, a half-plate section of the modeled area was 20 cm × 20 cm × 0.44 

mm (illustrated in Fig. 76). The quasi-isotropic plate also has “periodic” symmetry in the 

plane of the plate, i.e., the half-section from 0o to 180o can be rotated about an axis going 

through the plate center normal to its plane by 180o to obtain the other half. However, this 

cannot be used to reduce problem complexity in ABAQUS. A uniform mesh of 3-D 8-

noded brick elements was used and the elements were small enough (0.375 × 0.375 × 

0.125 mm3 for the unidirectional plate and 1.3 × 1.3 × 0.11 mm3 for the quasi-isotropic 

laminate) to resolve the smallest wavelength excited over the frequency bandwidth. The 

element edges were all parallel to any of the three coordinate axes shown. Infinite 

elements could not be used to suppress reflections in these simulations, since they are not 

available in ABAQUS for use with anisotropic materials. Therefore, the simulation 

results were only used till the first excited GW pulse hit the plate boundary. Transversely 

isotropic material properties (identical to the values in Section VI. 2) were specified for 

the individual finite elements. For the transversely isotropic composite plate, four 

separate layers were modeled using one layer of finite elements each, and different 

material orientations were specified to model the [0/45/-45/90]s layup. Symmetry 

conditions were imposed along two edges along the in-plane axes for the unidirectional 

composite. Since antisymmetric modes were of interest for the unidirectional composite, 

thru-thickness antisymmetry conditions were applied to the nodes on the lower plate 

surface. Similarly, thru-thickness symmetric conditions were applied to the nodes on the 

lower plate surface of the quasi-isotropic laminate. On the upper plate surface of the 

unidirectional composite, to simulate the action of a square piezo exciting GWs at the 

center, a quarter section of the piezo was modeled. The complete piezo was modeled for 

the quasi-isotropic laminate. Shear forces were applied at nodes along the piezo’s edges.  

In both cases, a 3.5-cycle Hanning window-modulated sinusoidal toneburst with 

center frequency 200 kHz was applied as excitation signal by specifying this waveform 

for the time variation of the shear force applied at the piezo’s edges. Again, the time step 

was chosen to be small enough to accurately capture the highest excited frequency. The 

out-of-plane displacements over the plate’s top surface (which has the surface-bonded  
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piezo on it) were recorded at various time steps. The corresponding values from the semi-

analytical model were also generated. The results are shown in Fig. 72 and Fig. 73 for the 

unidirectional composite and quasi-isotropic laminate respectively, both normalized to 

the respective peak value of out-of-plane displacement over all time steps. Only results 

from half the plate-section of the quasi-isotropic plate are shown, due to its periodic 

symmetry. The row of nodes immediately adjacent to the piezo was not considered for 

the normalization to avoid errors due to the local numerical noise caused by the discrete 

nodal shear forces. 

To generate the antisymmetric mode surface plots from the semi-analytical model 

for the unidirectional composite, only the A0 mode was considered, since the highest 

frequency in the excited bandwidth is below the cutoff frequency for the A1 mode. 

Similarly, to generate the symmetric mode surface plots for the quasi-isotropic plate, only 

the S0 mode was considered. While the SH0 mode also exists for the symmetric mode 

analysis at all frequencies, being approximately isotropic, it can be considered to be a 

“pure” mode [10]. Thus, the displacements in this case are for all practical purposes 
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Fig. 71: Geometry of FEM models for: (a) 1-mm unidirectional plate and (b) quasi-isotropic 

plate of layup [0/45/-45/90]s, each ply being 0.11 mm thick. 
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Fig. 72: Surface out-of-plane displacements at different time instants for the unidirectional 

composite excited in the antisymmetric mode (by the piezo, in gray) with a 3.5-cycle 

Hanning windowed toneburst at 200 kHz obtained using: (a) FEM (b) the developed model. 
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Fig. 73: Surface out-of-plane displacements at different time instants for the quasi-isotropic 

composite excited symmetrically (by the piezo, in gray) with a 3.5-cycle Hanning 

windowed toneburst at 200 kHz obtained using: (a) FEM (b) the developed model.  
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within the plane of the plate. Therefore, as in the analysis for isotropic plates, it does not 

cause out-of-plane displacements. However, the SH0 mode would contribute to symmetric 

mode simulations for the unidirectional composite plate. This is because in that case, it is 

significantly dependent on direction and is therefore a “quasi-” SH0 mode. Consequently, 

the displacement patterns in this mode are not entirely in the plane of the plate for 

directions not along or normal to the fiber direction. 

The results from the FEM simulations are in agreement with that obtained from 

the semi-analytical model, thus verifying the accuracy of the model within the 

assumptions made. There are mild discrepancies in relative amplitudes between the two 

results. However, these are minor and can be ascribed to the limitations of the discrete 

mesh used in FEM and the application of the shear force at discrete nodal points along 

the piezo’s edge versus a continuous solid and uniform magnitude over the piezo edge 

modeled in the theoretical model. These models also need to be validated by experiment 

to ensure that the assumptions made here are sufficient before these models can be 

exploited for GW SHM system design in composite structures. 
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CHAPTER VII 

 

CONCLUDING REMARKS, KEY CONTRIBUTIONS AND PATH FORWARD 

 

This thesis examined a broad range of research issues in guided-wave structural 

health monitoring (GW SHM), an emerging area of structural mechanics with potential 

for application in a wide spectrum of aerospace, civil and mechanical structures. It started 

with an introduction to the topic including motivational drivers and basic concepts. As 

explained there, GW SHM essentially involves exciting structures using an onboard 

network of transducers with high frequency tonebursts and examining their response to 

get information about damage in them, if present. Work done by various researchers was 

reviewed and divided into different categories, viz., transducer technology, developments 

in theory and modeling, signal processing and pattern recognition, and GW SHM system 

development. Examples of application areas where GW SHM has been tested were then 

presented. Limitations of GW SHM in terms of blind zone areas in the vicinity of the 

transducers were identified and the use of piezos to implement alternative SHM 

approaches was discussed.  

Based on this detailed survey, some important areas where further work was 

required and those that were chosen to be addressed herein were highlighted. Those 

included modeling of GW transduction by piezoelectric wafer transducers or piezos (both 

uniformly poled wafers and anisotropic piezocomposites), furnishing guidelines for 

choosing various parameters in GW SHM, developing improved signal processing 

algorithms and understanding the effects of elevated temperature. The rest of this chapter 

summarizes the key contributions of this thesis and suggests some future directions for 

research and desirable developments to bring this technology closer to field deployment. 
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VII. 1 Key Contributions 

a) Reliable models for GW transduction by piezos in isotropic structures were 

developed. This work was original in that 3-D elasticity was used for modeling the 

GW field excited by arbitrary shape, finite-dimensional piezos with a semi-analytical 

formulation to capture the GW radiation patterns by various piezo shapes. The 3-D 

nature of these models ensures that they can capture the true multimodal nature as 

well as the attenuation and modified frequency response characteristics of GW fields 

due to excitation of GW fields in infinite plates by finite-dimensional piezos. This 

also enables the design of rectangular uniformly poled piezos and APTs for spatial 

focusing of GW fields in plates. Furthermore, these models were extensively 

validated with numerical and experimental results.  

b) The models developed above were used to optimize actuator and sensor dimensions 

for maximizing GW strain field and response strength. This was the first work to 

suggest the idea that the optimal dimensions for piezo-actuators and sensors are very 

different. It was found that larger sizes are preferable for actuators (if one avoids the 

nodal points) while sensors should ideally have as small dimensions as allowed by the 

shear lag limit of the bonding mechanism. The idea of designing sensors to be 

immune to one GW mode and thereby reducing demands on the signal processing 

algorithm was also discussed. 

c) A set of guidelines were furnished for the design of excitation signal and piezo 

transducers in GW SHM, backed by the theoretical reasoning for each. The 

recommendations for transducer selection were based on the models developed in this 

thesis and took into consideration practical system constraints. This was a unique 

effort to standardize selection of these test parameters in GW SHM. 

d) A novel signal processing was proposed for GW SHM using chirplet matching 

pursuits and mode identification. The algorithm’s potential advantages in terms of 

improved resolution, robustness to noise and ease of automated post-processing were 

highlighted. Results with this algorithm in initial numerical and experimental tests 

were very promising, where overlapping, multimodal GW reflections were 

successfully resolved and identified.  
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e) The effects of elevated temperature on GW propagation and transduction by piezos 

were also addressed. While earlier efforts to examine effects of temperature on GW 

SHM only went up to 70oC, the temperature range up to 150oC was examined in this 

thesis. This was motivated by the potential application of GW SHM in internal 

spacecraft structures. A suitable bonding agent was identified to withstand 

degradation in the face of this elevated temperature range (Epotek 353ND). The 

variation of thermally sensitive parameters was quantified based on data available in 

the literature. This data was used in conjunction with the theoretical models for GW 

transduction using piezos in isotropic plates developed earlier in this thesis to model 

the effects of elevated temperature. The increase in time-of-flight in a pitch-catch 

experiment with increasing temperature was captured within the error margins of the 

experiment. This can therefore be exploited to compensate for the effect of 

temperature on group velocity to improve damage triangulation at elevated 

temperatures. 

f) The feasibility of damage characterization at elevated temperatures in the presence of 

structural features which may add complications was also investigated. It was found 

that the sensitivity of GW SHM in aluminum plates suffered beyond 80oC. The cause 

of this was attributed to the sharper rate of decrease in the elastic modulus of 

aluminum with increasing temperature beyond 80oC. “Mild” damage in the form of 

an indentation could be detected and located with reasonable accuracy till 80oC. 

“Moderate” damage in the form of a through-hole could be detected at all 

temperatures and located with good accuracy at the vast majority of temperature 

points. Suggestions for improving these results were also given. 

g) The semi-analytical models for isotropic plates were also extended to address GW 

excitation by finite dimensional piezos in multilayered, laminated plates built using 

unidirectional fibrous composite materials. These composites are gaining popularity 

as the structural material of choice in the aerospace industry. The developed models’ 

accuracy was verified by numerical simulations (within the assumptions made).  

h) Efforts by other researchers in various facets of this multidisciplinary field were 

brought together and thoroughly reviewed and the state-of-the-art in this area was 
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presented. This will be very useful not just as a starting point for any new researcher 

venturing into GW SHM but also for others engaged in research in this area to get a 

global perspective. 

 

VII. 2 Path Forward 

There are still several issues worthy of consideration to further advance the field 

of GW SHM. Transducers represent one crucial area where progress is needed. As 

discussed earlier, the majority of reviewed works and this thesis have employed 

piezoceramic wafer transducers. This is natural, since as pointed out in Niezrecki et al. 

[143], for high frequency actuation applications, piezoelectric transducers are most 

efficient and have high power density.  There are two aspects in which these fall short: 

first, being brittle, they might be unsuitable for field application. In SHM, it is crucial that 

the transducers be able to survive events such as impact or collisions, so that they are in a 

position to decide the extent of damage to the structure from such events. Second, these 

have a limited temperature range of operation (e.g., PZT-5A is rated for up to 175oC), 

and their performance degrades significantly as the temperature crosses roughly half their 

Curie temperatures. Furthermore, while the piezoelectric effect works at temperatures 

down to zero degrees Kelvin, the strength of the effect weakens at lower temperatures. To 

overcome the mechanical issue, piezocomposite transducers are a good start. These 

include the active/macro fiber composites (AFCs/MFCs) which were modeled in this 

thesis. These have been originally developed for low-frequency structural actuation and 

efforts should be invested into tailoring these for high frequency GW transduction. 

Simultaneously, more detailed studies into other non-conventional transducer options 

such as those discussed in Section I.3 are desirable. Those might turn out to be superior to 

piezoelectric transducers. To address the second concern, high performance active 

materials that do not significantly degrade at high or low temperatures need to be 

developed. The current piezoelectric materials developed for extremely high temperatures 

(such as lithium niobate) are much weaker in terms of response compared to conventional 

piezoceramics at room temperature. Nanotechnology may provide new candidates in this 

regard.  While some activities have been initiated into examining the non-obtrusiveness 
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and robustness of GW SHM system packaging to environmental extremes, further efforts 

in this direction are also needed. Suggestions for improving the performance of GW 

SHM systems under elevated temperature environments were provided in Section V.4. 

The effect of other harsh environmental conditions such as shock loads, humidity, etc. on 

packaging and the development of signal processing algorithms to overcome these effects 

should be pursued. In addition, more research into reliable electrical and mechanical 

connections is desirable including access to embedded transducers in composite 

structures. These may allow GW SHM to be used in extreme environment applications 

such as in long-duration mission spacecraft, aircraft engines, thermal protection system 

structures, cryogenic tanks, etc. In addition, transducer design should consider 

minimizing power and incorporating an onboard energy source for independent 

functioning. Significant advances in energy storage and/or harvesting devices are 

required to enable onboard power supply for GW excitation. Emerging alternatives in this 

regard are micro-engines (see for example Mehra et al. [230]) and fuel cells ([231], 

[232]), however these are still far from commercialization. Another promising option is 

the wireless transmission of energy in the form of radio frequency waves, as was done in 

the work by Kim et al. [146]. 

The models for composites developed in Chapter VI need to be experimentally 

validated before they can be utilized for designing GW SHM systems in composite 

structures. In addition, the theoretical work to model GW excitation by SHM transducers 

should be extended to more complex structural configurations such as curved shells, 

built-up structural constructions and composite structures. More investigation into 

different array configurations is also needed – these have better potential to monitor 

larger structural areas from a central location on the structure. Furthermore, coupled 

dynamics models of the transducer and the base structure are needed and should be 

pursued. In many of the above scenarios, pure analytical models may not be possible and 

a combination of semi-analytical and numerical methodologies might be needed. The 

modeling work done in this thesis for piezos will need to be extended towards modeling 

other non-conventional transducers.  
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In the majority of the reviewed literature and this thesis, GW testing was 

restricted to the lower GW modes. This might suffice if one is purely interested in 

locating the damage site, and not in characterizing it. For the latter, higher modes would 

be very useful due to their higher selectivity and better damage sensitivity. The reluctance 

of researchers to use higher modes can be traced to two reasons: first, the higher power 

requirements associated with exciting the necessary higher frequencies, and second, and 

most important, the inadequacy of the current signal processing algorithms for higher 

mode testing. Advanced signal processing methodologies that can accommodate such 

testing should be explored. One possible approach to handle higher mode testing would 

be using the matching pursuit algorithm with a dictionary of nonlinear chirplets, such as 

that used in [214] (however in that work, the algorithm was only tested for one of the 

fundamental GW modes). These should be complemented by the development and use of 

damage sensitivity models for better theoretical foundations in conjunction with pattern 

recognition algorithms for damage type and severity estimation. While several signal-

processing methodologies have been developed, most have not considered automation 

amenability, minimizing the computational complexity and processing power 

requirements. Future developments in this area should consider optimizing the local 

processing requirements and minimizing data to be transmitted to a central controller. 

It is hoped that the design guidelines provided in Chapter III will inspire similar 

efforts for choosing the other parameters and set standards for GW SHM systems by 

researchers/structural operators with the relevant expertise and experience. These will 

allow for the rapid dissemination of the GW SHM research knowledgebase to technicians 

and managers. System reliability and transducer diagnostics form another area where 

significant improvements are needed. Accurate methodologies for testing transducer 

health online are also highly desirable to ensure confidence in the data they collect. These 

will be crucial to avoid frequent false alarms being raised, which might take away from 

the desired benefit of fitting SHM systems of not having to frequently take the structure 

offline for inspection. 

Finally, structural designers must take a holistic view of all SHM approaches and 

make use of the advantages of each in attacking SHM system problems. GW methods 
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may certainly provide for the large-area coverage of more homogeneous structural 

layouts. There are several opportunities for retrofitting SHM systems in existing 

structures. However, it is the author’s view that SHM systems will be much more 

effective if made an integral part of the structural design process, right from the planning 

stage. Much more work is needed in this area. 
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APPENDIX A 

 

NOTES ON EXPERIMENTAL PROCEDURES AND SETUPS 

 

This appendix contains descriptions of several of the common experimental 

procedures used for the experiments. During the course of the research for this thesis, the 

author has gained experience with different instruments, transducers, and other 

components, along with the corresponding manufacturers/vendors. What follows is a 

simple compilation of that to ease the learning curve for other researchers and is not 

intended to be comprehensive. Moreover, the author has no stake in the companies listed 

here and cannot guarantee anything on their behalf. 

 

A.1 Cutting Piezoceramics and MFCs to Size 

Piezoelectric transducers can be obtained from several suppliers. Over this thesis, 

the author has come across the following companies:  

1. APC International (www.americanpiezo.com) 

2. EBL Products (www.eblproducts.com) 

3. Piezo Systems (www.piezo.com) 

4. Projects Unlimited (www.pui.com) 

5. Network Cable (www.networkcable.com) 

In particular, circular PZT-5H transducers with metal backing plates can be 

obtained at inexpensive prices (~ $1 apiece) from the last two manufacturers in the list 

above, since they are manufactured in large volumes for use as audio buzzers. The 

following companies supply anisotropic piezocomposite transducers:  
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1. Smart Material (www.smart-material.com, for MFCs) 

2. Continuum Control (www.powerofmotion.com, for AFCs) 

Often, the transducer dimensions desired for the experiment are different from the 

wafer sizes in stock. In addition, MFCs are available in big sizes which may need to be 

trimmed for an experiment. An Exacto knife usually suffices to cut through 

piezoceramics and MFCs. However, for some harder piezoceramics, a diamond point 

knife (one such knife was purchased from Ted Pella Inc., www.tedpella.com) may be 

needed. The procedure to cut a piezo to size is as follows:  

• First, the required size is marked off on one surface of the piezo with a sharp pencil. 

For uniformly poled ceramics, it should be ensured that identifying marks are made 

on the surface of the individual pieces to indicate the poling direction (usually it 

points inwards into the surface on which the manufacturer marks a round dot).  

• Three small (a few inches square or rectangular, bigger than the piezo and a few mm 

thick) metal pieces with reasonably accurate linearity of edge finish (e.g. steel rulers) 

and a table, preferably with a glass top, are required. Each of them should be washed 

with acetone to clean off any grease or dust. 

• The ceramic is then placed on the glass/table top and taped down with paper tape, 

leaving the pencil lines along which a cut is desired in clear view. This will ensure 

that the piezo does not shift while cuts are being made with the knife.  

• With a steel ruler to ensure a straight cut, the Exacto/diamond-point knife is used to 

score the piezo along the line where the cut is desired. This should be repeated four to 

five times (preferably without lifting the knife from the groove to avoid cutting a new 

groove) or until about a third to half the piezo thickness is penetrated. The groove 

should span the whole width of the wafer, regardless of whether the whole width is 

needed or not. 

• After this, the paper tape is removed and the piezo is aligned on top of one of the 

metal pieces (which is placed on the glass/table top). The freshly-cut groove should 

be just ahead its edge, so that the smaller part of the piezo is overhung from the metal 

piece. Again, paper tape is used to hold the portion of the piezo on top of the metal 
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piece in place. Then another metal piece is placed on top of the portion of the piezo 

on the first metal piece, with its edge lining up with the groove. Slight pressure is 

applied with one hand on the second metal piece.  

• Finally, the third metal piece is placed on top of the overhung portion of the piezo to 

snap it. This is illustrated in Fig. 74. If there is only a single groove, the effort 

required for snapping the piezo will be minimal. This approach usually results in the 

cleanest cuts. 

• Alternatively, the piezo can be cut by repeatedly scoring the piezo in the same groove 

with the Exacto/diamond-point knife till the groove goes through the thickness. This 

usually results in piezos with slightly rough edges, but this approach might be 

necessary for cutting MFCs, which are more mechanically flexible and may not 

“snap.” 

 

A.2 Bonding Piezos to Plates 

Epoxies were found to be the best bonding mechanism for reliably mounting the 

piezo to ensure effective transduction. Alternative bonding mechanisms such as 

electrically conductive tapes were found to be much less effective for transduction, even 

though those could allow for easier peeling off of the piezos. Using epoxies, it might be 

much more difficult to remove the piezos from the substrate, but at the same time, a 

strong bond and consequently efficient strain transmission is ensured. This section 

explains the procedure used to bond piezoceramics/macro fiber composite transducers to 

Metal piece

Metal piece Metal piece
PiezoPaper tape

Light pressure

Glass/table top  

Fig. 74: Schematic of arrangement to cut piezos to size 
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aluminum plates using three different two-part epoxies, viz., Epoxies Etc. 10-3004 [220] 

and Epotek 301 and 353 ND [221].  The steps involved are as follows: 

• First, pencil markings are made on the plate onto which the piezos will be bonded to 

mark the regions where the piezos will be attached.  

• Next, the plate region where the piezos will be attached is made a slightly rough by 

light sanding (using grade 150 sandpaper). The resulting aluminum chips are dusted 

off, and the plate and the piezos are washed using some acetone to remove residual 

dust/grease.  

• If the piezo is bonded onto a metallic plate, the plate itself can be used as common 

ground to access the lower electrode. If it bonded to a non-conducting substrate, a 

small copper/kapton tab can be attached to a corner of the lower surface while 

bonding. However, care should be taken to ensure that this has small in-plane 

dimensions and is thin compared to the piezo, otherwise the shear lag caused by this 

additional layer between the piezo and the substrate can affect transduction 

efficiency. 

• The piezo is bonded such that the positive electrode (the side marked with a dot) 

faces up, and the negative one faces the plate (unless needed otherwise, e.g., for A0 

mode actuation with a pair of piezos excited out-of-phase). For a MFC, ensure that 

the surface with the tabs for soldering wires faces up.  

• Uniform width strips (0.5 cm) of cork are cut in advance, to be of appropriate size to 

surround the piezo after it is placed for setting. One piece of cork strip is cut to the 

same size as the piezo and goes on top of the piezo (without removing the adhesive 

peel, so that it doesn’t stick to the piezo) to apply light pressure for setting.  

• Small portions of the epoxy components are mixed using an electronic scale to ensure 

the correct mixing ratio by weight. The epoxy is uniformly applied using wooden 

toothpicks/sticks to have a thin layer on both surfaces, the lower electrode of the 

piezo, and the plate region where the piezo will be bonded.  

• The piezo is then placed on the plate and aligned to fit within the pencil markings on 

the plate. Light pressure is applied to the piezo to allow excess epoxy to flow out. 
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Then, a gauze swab is used to wipe off the excess epoxy. The bond layer should be as 

thin and uniform as possible to maximize transduction efficiency. 

• The cork strips are subsequently glued on the plate to surround the piezo. These 

ensure that the piezo does not displace from its location when setting. The cork strip 

piece cut to the size of the piezo (with its adhesive peel strip intact) is then placed on 

top of the piezo with the adhesive peel layer facing the piezo.  

• A gauze swab is placed on top of the cork strip pieces, and taped down using paper 

tape. This will keep the cork strips in place.  

• Finally, weight is applied on top of the gauze swabs. Uniform weights are applied on 

each of the piezos. This is usually achieved by placing a thick sponge layer (or a big 

book) over the plate and then using small weights (~ 2 lbs.) over this layer.  

• There is no requirement for minimum pressure to be applied specified by the 

manufacturers as long as the two surfaces to be bonded are in good contact with each 

other. For bonding onto curved surfaces, this might imply designing a special 

clamp/fixture to maintain contact between the surfaces during curing. 

• The mixing ratios (part A:part B) and cure cycles for the three epoxies are: 

Epotek 301:  4:1; 24 hours at room temperature. 

Epoxies Etc. 10-3004:  1:1; 24 hours at room temperature. 

Epotek 353ND:  10:1; 30 minutes at 80oC. 

• When Epotek 353ND was used along with another epoxy on the same plate (as in the 

initial bonding agent evaluation tests), the piezo bonded with 353ND was cured first 

in the oven before the other piezos were attached for curing. 

• Epotek 301 and Epoxies Etc. 10-3004 are effective only for low temperature 

applications (up to ~ 40oC) while Epotek 353ND is effective for elevated temperature 

applications (tested up to 150oC, as reported in Chapter V). 

 

A.3 Soldering Wires to Piezos 

 For making electrical connections to piezos, standard multi-strand wires are the 

best option: single-strand wires, which can be easier to handle, break faster, due to poorer 
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mechanical fatigue properties and can pick electrical noise easily. BNC cables, which 

have excellent electrical noise robustness, on the other hand, can be cumbersome to 

handle for soldering on to piezos. It is advisable to use multi-strand wires up to a cable 

stand with connectors that provide strain relief and then use a thin BNC cable from that 

point to the instrument (as shown in Fig. 75). However, BNC cables can add more 

impedance to the circuit and consequently suppress the signal. Therefore, the length of 

the BNC cable should be minimal. For the thermal experiments, it should be ensured that 

the wires and BNC cables can withstand the temperature range of the experiment 

(standard wires and cables with polyvinyl chloride, i.e., PVC insulation are only good up 

to 70oC). 

  

 

For soldering, again ensure that the solder is rated up to the maximum 

temperature of the experiment. For the thermal experiments in this thesis, tin-lead-silver 

alloy solder wire (HMP 570-28R Sn-Pb-Ag of diameter 0.71 mm from Vishay was used) 

was used, which is capable of withstanding 150oC. The soldering iron was set at 450oC 

(850oF) for soldering with this wire. This is above the Curie limit for PZT-5A (360oC), 

 

Fig. 75: Photograph of specimen with cable stand in the autoclave for thermal 
experiments 
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however if care is taken to ensure the solder iron is not in contact with the piezo’s metal 

electrode for more than a few seconds at a time, the piezo will not be damaged.  For the 

room temperature experiments in Chapters II and IV, alloy Sn63/Pb37 solder wire of 

diameter 0.78 mm (purchased from McMaster-Carr) was used and the solder iron 

temperature was set at 340oC (650oF).  

Before starting, the piezo electrode surface to be soldered should be cleaned with 

acetone. A wire stripper or knife should be used to strip off a small portion of the 

insulation for soldering. The portion of the wire exposed for soldering should be minimal 

to avoid the possibility that the exposed lead touches the metallic plate or some other lead 

and causes a short circuit. As recommended by Ferroperm, a manufacturer of 

piezoceramics (http://www.ferroperm-piezo.com), the wire’s exposed cross-section 

should be in contact with and parallel to the electrode surface at the solder joint, as shown 

in Fig. 76, for better strength.  

 

 

A.4 Configuring the Function Generator 

The function generator used in this thesis was Agilent’s 33220A. Other 

manufacturers of similar function generators are Tektronix (Models AFG 3021 and AFG 

Wire

Piezo

Solder

Good solder joints Bad solder joints

(a) (b) 

Fig. 76: Illustration of solder joints: (a) Preferable configuration for strong connections 
and (b) Undesirable configuration 
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3022, www.tektronix.com), Rohde and Schwarz (Model R & S AM300 and above, 

www.rohde-schwarz.com) BK Precision (Model 4070A and above, 

www.bkprecision.com). The remainder of this section describes the settings for the 

Agilent 33220A function generator used in most of the experiments. 

A limited cycle sinusoidal tonebursts modulated by some window function was 

most commonly used as the excitation signal. This is not a standard signal available with 

the 33220A. Therefore, the signal had to be specified in the “arbitrary waveform” mode. 

The signal was produced in Matlab [233] and saved as a comma-separated values or .csv 

file (a sample code for generating such a signal is listed in the Appendix B in this thesis). 

It is preferable to define as many points as allowed by the instrument to minimize 

interpolation errors and also to allow for higher amplitude signals (the function generator 

tends to limit the amplitude for signals with fewer data points). Both these models come 

with “Agilent Intuilink,” which is special software for generating/downloading these 

signals from any standard desktop computer. It is menu-driven software which is fairly 

straightforward to use. Agilent 33220A can be connected via a local area network (LAN) 

cable through a router to the desktop. After identifying the instrument in Intuilink, the 

.csv file must be opened and downloaded to the instrument. If there is an error in 

downloading, the instrument usually gives an error code which can be looked up in the 

manual. Most commonly, errors result from improperly connected instruments. 

Once the signal is downloaded, it should be stored into the permanent memory. 

Once this is done, the “Arb” function key should be pressed (see Fig. 77). Several menu 

options appear on the screen which can be accessed via the softkeys. The “Select Wform” 

softkey should be pressed next, followed by the “Stored Wforms” softkey and the softkey 

for the downloaded waveform that was stored earlier. Once the desired waveform appears 

on the screen, the “Select Arb” softkey should be pressed. Next, the frequency of the 

arbitrary waveform signal should be chosen (by hitting the “Freq” softkey and entering a 

value by the number keypad or turning the number dial). It should be noted that this is 

different from the desired center frequency of the signal. If, for example, the waveform 

consists of 3.5 sinusoidal cycles, the center frequency will be 3.5 times the frequency 

setting of the arbitrary waveform. The amplitude should be selected next. The maximum 

amplitude was 18.2 V when outputting a 32,000-point 3.5 cycle Hanning windowed 
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toneburst and this was the default value chosen. The D.C. offset should be set to 0 V 

using the “Offset” softkey. 

With these settings, the function generator will continuously produce the arbitrary 

waveform. In the experiments done, tonebursts at regular intervals were required. To 

allow for this, the “Burst” key should be pressed which opens up a new menu on the 

screen. In this menu, the “# Cycles” softkey is used to set the number of cycles to “1 

Cyc”. Pressing the “Trigger Setup” softkey will open up the “Source” menu, and the 

“Int” option should be chosen there. The “Burst Period” should be chosen to be “1.0 s,” 

which allows a one-second gap between subsequent bursts. This usually is enough time to 

allow the multiple boundary reflections from the previous excited GW burst to die out. 

After making these settings, hit the “Arb” function key again. Hitting “Output” after this 

will emit the downloaded toneburst signal at the desired frequency and amplitude at one-

second intervals. A 3.5 V square wave is emitted from the “Sync” terminal for the 

duration of each burst. A BNC cable should be connected between this terminal and the 

auxiliary trigger input terminal of the oscilloscope to synchronize the start of the 

toneburst excitation signal and the start of sensor signal collection (the start of the burst 

then becomes time 0t = ).  Before the oscilloscope settings are discussed, one last point 

to note is that the function generator’s LAN address can be found using the “Utility” 

function key, followed by the “I/O,” “LAN” and “Current Config” softkeys. This will be 

needed as an input parameter for the thermal experiments’ Labview [234] module file 

(discussed later in this appendix). The “Store/Recall” function key can be used to store 

these settings, once they are configured, for easy retrieval later. Finally, pressing the 

“Output” key will enable the actuation signal being produced at the “Output” terminal. 

 

A.5 Setting the Oscilloscope Up for Reading and Saving Signals 

The oscilloscope used in this work was the Agilent Infiniium 54831B (shown in 

Fig. 78), which has four data channels and can handle signals up to 4 Gigasamples per 

second. Other manufacturers of similar oscilloscopes include Tektronix (THS 700 and 

above, www.tektronix.com), LeCroy (Waverunner-2 and above, www.lecroy.com), BK 

Precision (5105A and above, www.bkprecision.com). The rest of this section describes 
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the settings needed for data acquisition using the Infiniium 54831B, which has an in-built 

computer with a Windows 98 operating system: 

• The oscilloscope should be powered on and after it boots up, the mouse icon at the 

top-right corner should be clicked using the mouse, which leads one to the menu-

driven interface. 

• It should be ensured that each of the channels which are connected to the piezos are in 

the “AC coupling” mode (which automatically includes an inline 3 Hz high-pass filter 

to remove DC offsets) and have “1 MΩ” input coupling impedance (this ensures that 

negligible current flows into the oscilloscope thereby ensuring accurate 

measurements). These buttons are right above the respective channel on/off switch to 

the right of the screen. 

• The channel scales should be set suitably, depending on whether the channel is 

reading an actuator or a sensor signal (using the menu sequence “Setup → Channel 1” 

and adjusting the “Scale” in the popup). Typically, 5 V/div is a good scale for the 

actuation channel and 50 mV/div for the sensor channels ensures that the signal does 

not go out of the screen. However, these numbers may need to be tweaked depending 

on the center frequency, sensor sensitivity, etc. 

• Next, the horizontal scale (for time) and offset needs to be adjusted so that the 

relevant portion of the signal is visible (typically the actuation/first transmitted signal 

Softkeys

Screen

Number pad

Number dial

Fig. 77: Agilent 33220A front view 
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and first boundary reflection). The menu sequence “Setup → Horizontal” opens a 

popup where these parameters can be changed (alternatively these fields are located at 

the bottom of the screen to the right of the symbol Η ). Assuming the offset is 

relative to a center reference (indicated by a highlight on “Center” instead of “Left” 

or “Right” below the offset tab), the offset value needs to be 5 times the horizontal 

scale so that 0t =  is at the extreme left of the screen. Usually, for center frequencies 

in the vicinity of 200 kHz, setting the scale to 5 µs and the offset to 25 µs suffices. 

• To configure the trigger (assuming the BNC cable from the “Sync” terminal of the 

function generator is connected to the “Aux Trig In” terminal at the back of the 

oscilloscope), the menu sequence Setup → Trigger should be used, which opens the 

“Trigger Setup” popup. The following parameters should be used for the fields in the 

popup: Mode: “Edge”; Sweep: “Triggered”; Source: “Aux”; Level: “3 V” (with the 

rising icon checked next to the “Level” field). The last two fields can also be adjusted 

at the bottom of the screen next to the Τ  icon. 

• The acquisition parameters can be adjusted using the menu sequence “Setup → 

Acquisition” to open the “Acquisition Setup” popup. The following settings should be 

used: Sampling Mode: Real Time, Normal; Memory Depth: Automatic (this should 

be set to Manual and adjusted accordingly if many signal data files have to be saved); 

Averaging: Enabled (64); Sampling Rate: Manual (the number here should be the 

value just greater than 20 times the maximum expected frequency in the signal, which 

is usually the upper limit of the excited signal bandwidth). Also, the “Sin(x)/x 

Interpolation” box should be checked. After all these adjustments are made, close the 

popup by clicking the “Close” tab. 

• In order to readily obtain peak-to-peak measurements from each of the sensor signal 

channels, click on the icon to the left of the screen that reads “Vp-p” when the mouse 

is moved over it. The sensor channels in use should be chosen one at a time and the 

following entries are displayed at the bottom of screen for each of the chosen 

channels: Current, Mean, Std Dev, Min, Max.  

• The “Run” button to the right of the screen should be hit to start collecting data. The 

“Stop” button can be used to stop data acquisition after the required number of 
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samples is obtained for averaging. It should be noted that the channel statistics at the 

bottom of the screen will be reset if the signal is shifted using the mouse or zoomed 

into (which can be done by creating a box around the desired portion with the mouse 

and right-clicking). The signal can be saved using the menu sequence “File → Save 

→ Save Waveform”. The desired channel number should be chosen in the resulting 

popup and the signal should be saved as a .wfm format waveform if it is to be loaded 

on the screen for later viewing. If it is to be downloaded for plotting/processing 

externally, it should be saved as a .csv/.tsv (comma/tab-separated variable) file.  

 

 

• The oscilloscope can be connected to a computer via the LAN through a router for 

file sharing/downloading. A small office/home network between the desktop/laptop 

and the Infiniium might need to be set up from the desktop/laptop to which data needs 

to be downloaded. Care should be taken to not connect the oscilloscope to the 

internet, since the vulnerable Windows 98 system will be hacked into within no time. 

Fig. 78: Infiniium 54831B oscilloscope front view  



185 
 

After connecting it to a router, the LAN address of the oscilloscope can be obtained 

using the menu sequence “Utilities → GPIB Setup” which opens a popup showing 

the LAN address at the bottom (between the parentheses after “lan” and before 

“:inst0”). 

 

A.6 Using an Oscilloscope for Electromechanical Impedance Measurements 

 As mentioned in Chapter I, it might be necessary to supplement the GW approach 

to SHM with another methodology to scan the blind zone area close to a transducer. The 

same piezos mounted on the structure can be used to obtain electromechanical (EM) 

impedance measurements. Only the excitation signal and signal acquisition/processing 

method need to be changed. The paper by Park et al. [235] presents an overview of this 

approach. 

Early efforts to take EM impedance readings used expensive impedance 

analyzers. However, as suggested by Peairs et al. [236], an oscilloscope and function 

generator can be used in conjunction with a simple operational amplifier-based current 

measurement circuit to obtain electromechanical impedance measurements. The circuit 

diagram for this is shown in Fig. 79. The output voltage of the amplifier circuit, oGV , is 

proportional to the current flowing through the piezo (labeled “pzt”). A separate channel 

is used to measure the voltage drop across the piezo (V). A sine sweep function spanning 

1-2 seconds in the time domain is typically used as the excitation signal. The frequency 

range of the sweep has to be determined empirically for the structure and damage type of 

interest. Then, the impedance signal shape in the frequency domain is given by 

( ) ( ) ( )oZ f V f GV f∝ . The sensing resistor sR  should be around 100 Ω or so. This 

circuit was implemented on a breadboard using an LM741 operational amplifier chip and 

preliminary tests were done for bolt torque testing in an aluminum strip instrumented 

with piezos (Fig. 80). A gain factor of 1000 was set using 2 1100 k ; 100 R R= Ω = Ω . To 

avoid strong interference from the power supply’s 50 Hz signal and other radio frequency 

noise, the circuit had to be enclosed in a “Faraday cage.” This is essentially a metallic 

box with terminals on the outside for the cables connecting to the circuit. Encouraging 
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results were obtained for detecting bolt torque of the clamp in this initial experiment (Fig. 

81). A clear shift in the EM impedance signature is observed when one of the bolts is 

loosened in the clamp, and it returns close to the original signature when the bolt is 

retightened. 

 

 

 

45 cm

Piezos (2 cm × 0.5 cm each)Clamp 1

22.5 cm 6 cm

0.8 mm thick 
Aluminum beam P1 P2

Clamp 2

 

 

Fig. 79: Current measurement circuit using operational amplifier [236] 

Fig. 80: Experimental setup for EM impedance measurements of bolt torque 
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A.7 Notes on the Labview-based Setup for Automated Thermal Experiments 

 A fairly complex Labview [234] program was developed for taking readings 

automatically in the elevated temperature experiments done in Chapter V. The specimen 

was placed in the autoclave (which had one port opened to allow BNC cables and 

thermocouple wire to go through and connect the specimen to the instruments outside). 

The objective of the Labview program was to monitor the specimen temperature and at 

intervals of 10oC, it had to force the function generator to send an excitation signal to the 

actuators (a 3.5-cycle Hanning window toneburst with center frequency 120 kHz) 30 

times at one-second intervals. The oscilloscope was simultaneously activated and 

recorded the averaged signal after 30 such readings for each channel along with the 

statistics for each channel. The specimen temperature was increased at 1oC/minute from 

20oC to 150oC, after which the autoclave was pre-programmed to dwell the specimen at 

150oC for five minutes and then cool at the same rate to 20oC. At two pre-defined 

temperatures (100oC while heating and 70oC while cooling), instead of taking just the 

averaged signal, the 30 raw signals were recorded individually to get an estimate for error 

in time-of-flight (which cannot be obtained in the channel statistics). This is only done 

for two temperatures since doing so for all temperatures could cause the hard disk to fill 

up pretty quickly due to the large volumes of data.  

Fig. 81: Results from preliminary experiments done for bolt torque detection (FFT ≡ 
fast Fourier transform) 
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 The temperature was recorded using a K-type thermocouple, which was 

connected to a thermocouple module (Fluke 80TK), shown in Fig. 82 (a). This converts 

the K-type thermocouple signal into a voltage signal (at 1 mV/oC or 1 mV/oF depending 

on the switch setting). This module in turn was connected to the desktop with LABVIEW 

through a data acquisition (DAQ) system, shown in Fig. 82 (b) (in principle, a one-

channel temperature module DAQ would also suffice). The DAQ was a PCI-DAS6070 

system from Measurement Computing, which can be configured using “INSTACAL,” 

which is software that comes with the board. In configuring this DAQ board, it should be 

ensured that only the P3 connector is connected and the board is set to “16 channels 

(reference to ground), single-ended.” The Labview program assumes the thermocouple 

module is connected to “CH 0.” 

 

  

The front-end for the Labview program is shown in Fig. 83. The input parameters 

for this program are the IP addresses for the function generator and oscilloscope, the local 

directory on the desktop for saving the statistics files, the prefixes for the names of the 

signal files, the number of averages after which to stop acquiring data and total number of 

temperature points (at 10oC intervals) over the heating and cooling phases. The last two 

 

(a) (b) 

Fig. 82: (a) Thermocouple module and (b) data acquisition system 
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fields are 11 and 10 respectively if the starting temperature is just below 20oC and the 

maximum temperature is 150oC. The oscilloscope channel number is automatically 

prefixed to the signal files and the temperature at which it is recorded is also added at the 

end of the filename. The signal files are saved in the Infiniium’s hard disk in the directory 

“C:\Scope\Data” by default while the statistics files are saved on the desktop where 

specified. The temperature read by the thermocouple is shown in the fields labeled 

“Heating temp.” and “Cooling temp.” as well as by the thermometer graphics. The 

“Switch to cooling cycle” switch is a feature that would be desirable that does not 

presently function. It would enable one to manually switch to the cooling phase readings 

in the unlikely event that the autoclave does not heat the specimen all the way to 150oC, 

since there is no interaction between the LABVIEW system and the autoclave computer. 

Fig. 83: Front panel showing inputs for Labview program 
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The basic sequence of operations done by the Labview program for each reading is 

shown in Fig. 84. Some of the modules for the instruments were downloaded from 

Agilent’s website while some other minor ones had to be written borrowing the basic 

structure from the downloaded modules. The Labview program has two blocks, one each 

for the heating and cooling phases (indicated by “0” and “1” at the top of the structure). 

Each block executes two basic sub-blocks in a sequence, which is enclosed in a loop 

preprogrammed to run a finite number of times (defined as an input). The first sub-block 

reads the temperature through the DAQ (using the xAin module) and checks if it is within 

0.5oC of one of the pre-set temperature points (in this case a multiple of 10oC). The 0.5oC 

tolerance is needed, since without this allowance, occasionally some temperature 

readings are skipped. This is because of the noise in the thermocouple reading. It would 

be desirable to add a low pass filter to the temperature read from the thermocouple. As 

soon as the temperature is within 0.5oC of a 10oC multiple (and it is not the pre-defined 

temperature for collecting all the raw signals in the heating phase, indicated by the 

True/False state on top of the second sub-block), the second sub-block in the sequence 

begins and the instruments are awoken for data collection. First, the oscilloscope screen 

is cleared and it is activated (the “Run” light glows). Then, the output of the function 

generator is enabled and there is a time delay of 30 seconds to allow the signals to 

average over 30 readings. After that, the oscilloscope stops data collection (the “Run” 

light stops glowing) and the statistics are downloaded to the desktop and saved in a file in 

the pre-defined local directory. After a minor time delay of 2 seconds (to allow for the 

statistics data to download), the individual averaged signals recorded by the four channels 

are saved into .tsv files. The modules at the bottom concatenate the pre-defined file name 

string with the respective channel number and the temperature reading of the 

thermocouple (ignoring the value after the decimal point). Finally, the function generator 

output is disabled and the Labview program switches back to recording the temperature. 

For the two temperature points at which individual signals without averaging are desired, 

first the averaging feature of the oscilloscope is turned off and then a similar sequence of 

steps is executed and the individual signal files are saved (this is not shown in Fig. 84). 

The averaging feature is then turned back on and the Labview program switches back to 

monitoring temperature. After data is collected and stored for the pre-defined number of 
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temperatures at 10oC intervals during the heating phase, the loop in block “0” stops and 

the control switches to block “1” corresponding to the cooling phase and stops after 

collecting signals for the pre-defined temperature points (also at 10oC intervals). 

 

 

 

Fig. 84: Portion of the block diagram of the LABVIEW program 
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APPENDIX B 

 

SOFTWARE CODE AND COMMANDS 

 

This appendix lists some representative code files used for the FEM simulations 

(in Abaqus [205]), implementing the theoretical models (in Maple [237] and Fortran 90 

using LAPACK [229]) and generating movies/images (in Matlab [233]). It also gives a 

brief tutorial on using LastWave 2.0 [215] to implement the chirplet matching pursuit. 

Each sub-section heading also indicates where in the thesis results from that code was 

used. 

 

B.1 Abaqus Code for FEM Simulations 

  Some explanatory notes have been added following the “#” symbol, which is the 

comments symbol in Abaqus. Furthermore, the “\” symbol is used to signify line 

continuation. 

 

B.1.A Circular Actuator Model Verification (Fig. 13) 

*HEADING 
Simulation for circular actuator on plate model, 0.9 cm radius actuator, symmetric mode 
*NODE #These are the four corners of the plate cross-section and the infinite elements 
1,0,0,0 
601,15e-2,0,0 
602,30e-2,0,0 
4001,0,1e-3,0 
4601,15e-2,1e-3,0 
4602,30e-2,1e-3,0 
*NGEN,NSET=END #This command generates intermediate nodes at equal spacing 
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602,4602,1000  
*NGEN,NSET=N1 
1,601,1 
*NGEN,NSET=N2 
4001,4601,1 
*NFILL,NSET=PLATE #This command generates intermediate rows of nodes at equal   
# spacing 
N1,N2,4,1000 
*NSET,NSET=MID,GENERATE 
1,4001,1000 
*NSET,NSET=PE #Actuator node 
4037 
*NSET,NSET=MIDPLANE,GENERATE 
1,602,1 
*ELEMENT,TYPE=CAX4 #This command generates a 4-noded axisymmetric element 
1,1,2,1002,1001 
*ELGEN,ELSET=PLATE #This command generates the remaining elements  
1,600,1,1,4,1000,1000 
*ELEMENT,TYPE=CINAX4 #This command generates a 4-noded infinite axisymmetric       
# element 
601,1601,601,602,1602 
*ELGEN,ELSET=INFINITE 
601,4,1000,1000 
*SOLID SECTION, MATERIAL=ALM, ELSET=PLATE #This command associates    
# material properties to the element sets 
*SOLID SECTION, MATERIAL=ALM, ELSET=INFINITE 
*MATERIAL,NAME=ALM 
*ELASTIC,TYPE=ISOTROPIC 
70E9,0.33 #Elastic modulus in Pa and Poisson ratio 
*DENSITY 
2700 #Material density in kg/m3 
*BOUNDARY 
MID,XSYMM  
*BOUNDARY 
MIDPLANE,YSYMM #For symmetric modes. The corresponding option for                   
# antisymmetric modes is YASYMM 
*AMPLITUDE,NAME=HANNING,INPUT=waveform400khz.inp,DEFINITION=TAB\
ULAR,TIME=TOTAL  # Ensure that this file is in the local directory 
TIME,VALUE=RELATIVE 
*STEP,INC=127 #Adjust the number of steps according to the signal file 
*DYNAMIC,DIRECT,NOHAF 
1.59091E-06,0.000202811  #Adjust these numbers according to the signal file 
*CLOAD,AMPLITUDE=HANNING 
PE,1,1 
*EL PRINT,FREQUENCY=0 
*PRINT,FREQUENCY=127 #Adjust the number of steps according to the signal file 
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*END STEP 
 
B.1.B 2-D Plate with Two Dents (Chapter IV) 

*HEADING 
2nd simulation in Chapter IV for 2-D plate with 2 dents 
*NODE 
1,0,0,0 
501,12.5e-2,0,0 
4001,0,1e-3,0 
4501,12.5e-2,1e-3,0 
*NGEN,NSET=N1 
1,501,1 
*NGEN,NSET=N2 
4001,4501,1 
*NFILL,NSET=PLATE 
N1,N2,4,1000 
*NSET,NSET=MID,GENERATE 
1,4001,1000 
*NSET,NSET=PE 
4021,21 
*ELEMENT,TYPE=CPE4 #This command generates a 4-noded plane-strain element 
1,1,2,1002,1001 
*ELGEN,ELSET=PLATE 
1,239,1,1,4,1000,1000 
*ELEMENT,TYPE=CPE4 
2240,2240,2241,3241,3240 
*ELEMENT,TYPE=CPE4 
3240,3240,3241,4241,4240 
*ELEMENT,TYPE=CPE4 
241,241,242,1242,1241 
*ELGEN,ELSET=PLATE2 
241,159,1,1,4,1000,1000 
*ELEMENT,TYPE=CPE4 
2400,2400,2401,3401,3400 
*ELEMENT,TYPE=CPE4 
3400,3400,3401,4401,4400 
*ELEMENT,TYPE=CPE4 
401,401,402,1402,1401 
*ELGEN,ELSET=PLATE3 
401,100,1,1,4,1000,1000 
*ELSET,ELSET=PLATE4 
2240,3240,PLATE2,2400,3400,PLATE3 
*SOLID SECTION, MATERIAL=ALM, ELSET=PLATE 
*SOLID SECTION, MATERIAL=ALM, ELSET=PLATE4 
*MATERIAL,NAME=ALM 
*ELASTIC,TYPE=ISOTROPIC 
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70E9,0.33 
*DENSITY 
2700 
*BOUNDARY 
MID,XSYMM 
*AMPLITUDE,NAME=HANNING,INPUT=waveform275khz.inp,DEFINITION=TAB\
ULAR,TIME=TOTAL 
TIME,VALUE=RELATIVE 
*STEP,INC=5000 
*DYNAMIC,DIRECT,NOHAF 
1e-8,5e-5 
*CLOAD,AMPLITUDE=HANNING 
PE,1,1 
*EL PRINT,FREQUENCY=0 
*PRINT,FREQUENCY=5000 
*END STEP 
 
B.1.C Composite Plate Model Verification (Fig. 73, Chapter VI) 

*HEADING 
3-D quasiisotropic composite 1/2 plate S0 simulation 200 kHz; Actuator dimensions\ a1 
and a2 are 0.5 cm each 
*NODE 
1,0.,0.,0. 
161,20e-2,0.,0. 
160001,0.,20e-2,0. 
160161,20e-2,20e-2,0. 
*NGEN,NSET=N1 
1,161,1 
*NGEN,NSET=N2 
160001,160161,1 
*NFILL,NSET=N5 
N1,N2,160,1000 
*NSET,NSET=TOP 
N5 
*NCOPY,CHANGE NUMBER=1000000,OLD SET=TOP,SHIFT,MULTIPLE=1,NEW\ 
SET=INTER 
0,0,0.11E-3 
0,,,,,, 
*NCOPY,CHANGE NUMBER=1000000,OLD 
SET=INTER,SHIFT,MULTIPLE=1,NEW SET=INTER1 
0,0,0.11E-3 
0,,,,,, 
*NCOPY,CHANGE NUMBER=1000000,OLD 
SET=INTER1,SHIFT,MULTIPLE=1,NEW SET=INTER2 
0,0,0.11E-3 
0,,,,,, 
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*NCOPY,CHANGE NUMBER=1000000,OLD 
SET=INTER2,SHIFT,MULTIPLE=1,NEW SET=MIDZ 
0,0,0.11E-3 
0,,,,,, 
*NSET,NSET=EDGE1,GENERATE 
76077,76085,1 
*NSET,NSET=EDGE2,GENERATE 
76077,84077,1000 
*NSET,NSET=EDGE3,GENERATE 
84077,84085,1 
*NSET,NSET=EDGE4,GENERATE 
76085,84085,1000 
*ELEMENT,TYPE=C3D8 
1,1,2,1002,1001,1000001,1000002,1001002,1001001 
*ELGEN,ELSET=ZERO 
1,160,1,1,160,1000,1000 
*ELEMENT,TYPE=C3D8 
1000001,1000001,1000002,1001002,1001001,2000001,2000002,2001002,2001001 
*ELGEN,ELSET=FORTYFIVE 
1000001,160,1,1,160,1000,1000 
*ELEMENT,TYPE=C3D8 
2000001,2000001,2000002,2001002,2001001,3000001,3000002,3001002,3001001 
*ELGEN,ELSET=MFORTYFIVE 
2000001,160,1,1,160,1000,1000 
*ELEMENT,TYPE=C3D8 
3000001,3000001,3000002,3001002,3001001,4000001,4000002,4001002,4001001 
*ELGEN,ELSET=NINETY 
3000001,160,1,1,160,1000,1000 
*SOLID\ 
SECTION,ELSET=ZERO,MATERIAL=GRAPHITEEPOXY,ORIENTATION=OZERO 
*SOLID\ 
SECTION,ELSET=FORTYFIVE,MATERIAL=GRAPHITEEPOXY,ORIENTATION=
OFORTYFIVE 
*SOLID\ 
SECTION,ELSET=MFORTYFIVE,MATERIAL=GRAPHITEEPOXY,ORIENTATION\
=OMFORTYFIVE 
*SOLID\ 
SECTION,ELSET=NINETY,MATERIAL=GRAPHITEEPOXY,ORIENTATION=ONI\
NETY 
*ORIENTATION,NAME=OZERO 
1,0,0,0,1,0 
*ORIENTATION,NAME=OFORTYFIVE 
1,1,0,0,1,0 
*ORIENTATION,NAME=OMFORTYFIVE 
1,-1,0,0,1,0 
*ORIENTATION,NAME=ONINETY 
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0,1,0,1,0,0 
*MATERIAL,NAME=GRAPHITEEPOXY 
*ELASTIC,TYPE=ORTHOTROPIC 
160.73E9,6.44E9,13.92E9,6.44E9,6.92E9,13.92E9,3.5E9,7.07E9 
7.07E9 
*DENSITY 
1578 
*BOUNDARY 
MIDZ,ZSYMM 
*AMPLITUDE,NAME=HANNING,INPUT=waveform200khz.inp,DEFINITION=TAB\
ULAR,TIME=TOTAL 
TIME,VALUE=RELATIVE 
*STEP,INC=150 
*DYNAMIC,DIRECT,NOHAF 
1.6E-07,2.4E-05 
*CLOAD,AMPLITUDE=HANNING 
EDGE1,2,-1 
EDGE2,1,-1 
EDGE3,2,1 
EDGE4,1, 1 
*NODE PRINT,FREQUENCY=300 
U1,U2,U3 
*EL PRINT,FREQUENCY=0 
*PRINT,FREQUENCY=300 
*END STEP 
 
 
B.2 Maple Code for Theoretical Model Implementation (Isotropic Structures) 

It should be noted that some explanatory notes have been added following the “#” 

symbol, which is the comments symbol in Maple (as in Abaqus above). Some of these 

can take a while to run, so it may be necessary to leave these running overnight or longer.  

 

B.2.A Image Data for MFC Harmonic u3 Displacement (Fig. 11 (c)) 

> restart; 

> with(plots): 

> xi:=658.6148; #This is the wavenumber (m-1) 

> for i from 1 by 1 to 200 do x(i):=10e-2/200*i: y(i):=10e-2/200*i: end do: #Spatial grid 

>fn1:=fopen("N:/sqmfcharmonicu3ap25cmp1.txt",WRITE): #Part of the data is saved to 
this file 
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>ax1:=0.25e-2: ay1:=0.25e-2: for j from 1 by 1 to 200 do for k from 6 by 1 to 200 do 
theta1:=evalf(arctan((y(k)-ay1)/(x(j)-ax1))): theta2:=evalf(arctan((y(k)+ay1)/(x(j)-ax1))): 
theta3:=arctan((y(k)-ay1)/(x(j)+ax1)): theta4:=arctan((y(k)+ay1)/(x(j)+ax1)): 
t1a:=evalf(theta1-Pi/2): t1b:=evalf(theta1+Pi/2): t2a:=evalf(theta2-Pi/2): 
t2b:=evalf(theta2+Pi/2): t3a:=evalf(theta3-Pi/2): t3b:=evalf(theta3+Pi/2): 
t4a:=evalf(theta4-Pi/2): t4b:=evalf(theta4+Pi/2): u3(j,k):=simplify(Re(-
4*int(sin(xi*cos(theta)*ax1)*sin(xi*sin(theta)*ax1)*exp(-I*xi*x(j)*cos(theta)-
I*xi*y(k)*sin(theta))*tan(theta),theta=t2a..t3b)+int(exp(-I*xi*(x(j)-ax1)*cos(theta)-
I*xi*(y(k)-ay1)*sin(theta))*tan(theta),theta=t1a..t2a)+int(exp(-I*xi*(x(j)-
ax1)*cos(theta)-I*xi*(y(k)-ay1)*sin(theta))*tan(theta),theta=t3b..t1b)-(int(exp(-
I*xi*(x(j)-ax1)*cos(theta)-
I*xi*(y(k)+ay1)*sin(theta))*tan(theta),theta=t3b..t2b)+int(exp(-
I*xi*(x(j)+ax1)*cos(theta)-I*xi*(y(k)-
ay1)*sin(theta))*tan(theta),theta=t3a..t2a))+int(exp(-I*xi*(x(j)+ax1)*cos(theta)-
I*xi*(y(k)+ay1)*sin(theta))*tan(theta),theta=t4a..t2a)+int(exp(-
I*xi*(x(j)+ax1)*cos(theta)-I*xi*(y(k)+ay1)*sin(theta))*tan(theta),theta=t3b..t4b))); 
writedata[APPEND](fn1,[u3(j,k)]): end do; end do; fclose(fn1):  

>fn1:=fopen("N:/ sqmfcharmonicu3ap25cmp2.txt",WRITE): #The second part of the 
data is saved to this file 

>ax1:=0.25e-2: ay1:=0.25e-2: for j from 6 by 1 to 200 do for k from 1 by 1 to 5 do 
theta1:=evalf(arctan((y(k)-ay1)/(x(j)-ax1))): theta2:=evalf(arctan((y(k)+ay1)/(x(j)-ax1))): 
theta3:=arctan((y(k)-ay1)/(x(j)+ax1)): theta4:=arctan((y(k)+ay1)/(x(j)+ax1)): 
t1a:=evalf(theta1-Pi/2): t1b:=evalf(theta1+Pi/2): t2a:=evalf(theta2-Pi/2): 
t2b:=evalf(theta2+Pi/2): t3a:=evalf(theta3-Pi/2): t3b:=evalf(theta3+Pi/2): 
t4a:=evalf(theta4-Pi/2): t4b:=evalf(theta4+Pi/2): u3(j,k):=simplify(Re(-
4*int(sin(xi*cos(theta)*ax1)*sin(xi*sin(theta)*ax1)*exp(-I*xi*x(j)*cos(theta)-
I*xi*y(k)*sin(theta))*tan(theta),theta=t2a..t3b)+int(exp(-I*xi*(x(j)-ax1)*cos(theta)-
I*xi*(y(k)-ay1)*sin(theta))*tan(theta),theta=t1a..t2a)+int(exp(-I*xi*(x(j)-
ax1)*cos(theta)-I*xi*(y(k)-ay1)*sin(theta))*tan(theta),theta=t3b..t1b)-(int(exp(-
I*xi*(x(j)-ax1)*cos(theta)-
I*xi*(y(k)+ay1)*sin(theta))*tan(theta),theta=t3b..t2b)+int(exp(-
I*xi*(x(j)+ax1)*cos(theta)-I*xi*(y(k)-
ay1)*sin(theta))*tan(theta),theta=t3a..t2a))+int(exp(-I*xi*(x(j)+ax1)*cos(theta)-
I*xi*(y(k)+ay1)*sin(theta))*tan(theta),theta=t4a..t2a)+int(exp(-
I*xi*(x(j)+ax1)*cos(theta)-I*xi*(y(k)+ay1)*sin(theta))*tan(theta),theta=t3b..t4b))); 
writedata[APPEND](fn1,[u3(j,k)]): end do; end do; fclose(fn1): 

 

B.2.B Circular Actuator Model Results for FEM Verification (Fig. 13 (a)) 

> restart; #This analysis is for the A0 Lamb mode 
 
> with(plots): 
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> f:=tan(d*sqrt(1-zeta^2))/tan(d*sqrt(xi^2-zeta^2))+(2*zeta^2-1)^2/(4*zeta^2*sqrt(1-
zeta^2)*sqrt(xi^2-zeta^2))=0: 
 
> E:=70e9: nu:=0.33: rho:=2700: t:=0.001: #Material properties 
 
> d:=omega*t*sqrt((2*rho*(1+nu))/E): xi:=sqrt((1-2*nu)/(2-2*nu)): 
 
> for j from 1 by 1 to 500 do f2(j):=subs(omega=2*Pi*2000*j,f) end do: 
 
> for j1 from 2 by 1 to 18 do zeta2(j1):=fsolve(f2(j1),zeta,0..32) end do: for j1 from 19 by 
1 to 500 do zeta2(j1):=fsolve(f2(j1),zeta,0..10.1) end do: 
> for j3 from 2 by 1 to 500 do c1(j3):=sqrt(E/(2*rho*(1+nu)*zeta2(j3)^2)) end do: 
 
> for j3 from 2 by 1 to 500 do fre(j3):=2000*j3 end do: 
 
> l1:=[[fre(n), c1(n)] $n=2..500]: plot(l1); #plots the phase velocity dispersion curve 
 
> mu:=E/(2*(1+nu)): lambda1:=E*nu/((1-2*nu)*(1+nu)): ct:=(mu/rho)^0.5: 
cl:=((lambda1+2*mu)/rho)^0.5: 
 
> for k1 from 1 to 5 do critfre1a(k1):=k1*cl/t end do: for k2 from 1 by 2 to 7 do 
critfre2a(k2):=k2*ct/(2*t) end do: for k3 from 1 by 2 to 7 do critfre1s(k3):=k3*cl/(2*t) 
end do: for k4 from 1 to 5 do critfre2s(k4):=k4*ct/t end do: #These are cut-off 
frequencies for higher modes 
 
> for n1 from 3 to 499 do c1g(n1):=c1(n1)/(1-(fre(n1)*(c1(n1+1)-c1(n1-
1)))/(c1(n1)*4000)) end do: #This gives the group velocity curve in the vector c1g 
 
> q:=sqrt(omega1^2/ct^2-xiv^2): p:=sqrt(omega1^2/cl^2-xiv^2): Da:=(xiv^2-
q^2)^2*sin(p)*cos(q)+4*xiv^2*p*q*cos(p)*sin(q): Dad:=diff(Da,xiv):  
Na:=xiv*q*(xiv^2+q^2)*sin(p)*sin(q): 
 
> a1:=0.9e-2: rs1:=5e-2: #Actuator radius and radial location of test point 
 
> for i from 2 by 1 to 500 do 
ura1(i):=simplify(I*subs(omega1=fre(i)*2*Pi,xiv=Omega1(i),Na)*BesselJ(1,Omega1(i)*
a1)*a1*HankelH2(1,Omega1(i)*rs1)/(subs(omega1=fre(i)*2*Pi,xiv=Omega1(i),Dad)*m
u)) end do: 
 
> f2p1c2:=2*Pi*(fr+fr/n1n)*(cos(2*Pi*n1n)*exp(-I*omegav*n1n/fr)-1)/(omegav^2-
4*Pi^2*(fr+fr/n1n)^2): 

> f2p2c2:=2*Pi*(fr-fr/n1n)*(cos(2*Pi*n1n)*exp(-I*omegav*n1n/fr)-1)/(omegav^2-
4*Pi^2*(fr-fr/n1n)^2): 
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> f2c2:=2*Pi*fr*(cos(2*Pi*n1n)*exp(-I*omegav*n1n/fr)-1)/(omegav^2-4*Pi^2*fr^2)-
0.5*f2p1c2-0.5*f2p2c2: 

> f2c3:=-I*n1n/(2*fr)-0.5*f2p1c2-0.5*f2p2c2: 

> for i from 2 by 1 to 125 do start1(i):=floor(i-i*2/3.5): end1(i):=ceil(i+i*2/3.5): end do: 
 
> for i from 2 by 1 to 125 do ura1td(i):=0: for j from start1(i) by 1 to end1(i) do if (j <> i) 
then  
ura1td(i):=ura1td(i)+simplify(ura1(j)*subs(n1n=3.5,fr=fre(i),omegav=2*Pi*fre(j),f2c2)*2
*Pi*2e3* exp(I*2*Pi*fre(j)*time)): else 
ura1td(i):=ura1td(i)+simplify(ura1(j)*subs(n1n=3.5,fr=fre(i),omegav=2*Pi*fre(j),f2c3)*2
*Pi*2e3*exp(I*2*Pi*fre(j)*time)): end if: end do: end do:  
> for i from 5 by 1 to 50 do for j from 1 by 1 to 1000 do 
ura1tdd1(i,j):=evalf(subs(time=j*4e-7,Re(ura1td(i)))) end do: 
ura1mag(i):=simplify(max(ura1tdd1(i,n) $n=1..1000)-min(ura1tdd1(i,n) $n=1..1000)) 
end do: for i from 51 by 1 to 101 do for j from 1 by 1 to 750 do 
ura1tdd1(i,j):=evalf(subs(time=j*9.33e-8,ura1td(i))) end do: 
ura1mag(i):=simplify(max(ura1tdd1(i,n) $n=1..1000)-min(ura1tdd1(i,n) $n=1..1000)) 
end do: 
 
> for i from 102 by 1 to 125 do for j from 1 by 1 to 500 do 
ura1tdd1(i,j):=evalf(subs(time=j*8e-8,Re(ura1td(i)))) end do: 
ura1mag(i):=simplify(max(ura1tdd1(i,n) $n=1..500)-min(ura1tdd1(i,n) $n=1..500)) end 
do: 
 
> l1:=[[fre(n), ura1mag(n)] $n=5..125]: plot(l1); #plots the radial displacement 
frequency response curve corrected for finite time excitation  
 
 

B.2.C Sensor Response Plots for Circular Actuators (Fig. 18 and Fig. 19) 

> restart;  #This analysis is for S0 Lamb mode 

> with(plots): 

> E:=70.28e9: nu:=0.33: rho:=2684.87: t:=1.575e-3: #Material properties and plate half-
thickness, all in SI units 

> d:=omega*t*sqrt((2*rho*(1+nu))/E): xi:=sqrt((1-2*nu)/(2-2*nu)): 

> for j3 from 1 by 1 to 630 do fre(j3):=1000*j3 end do: 

> mu:=E/(2*(1+nu)): lambda1:=E*nu/((1-2*nu)*(1+nu)): 

> ct:=(mu/rho)^0.5: cl:=((lambda1+2*mu)/rho)^0.5: 
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> fs:=tan(d*sqrt(1-zeta^2))/tan(d*sqrt(xi^2-zeta^2))+(4*zeta^2*sqrt(1-zeta^2)*sqrt(xi^2-
zeta^2))/(2*zeta^2-1)^2=0: 

> for j from 1 by 1 to 630 do f2s(j):=subs(omega=2*Pi*1000*j,fs) end do: 

> for j from 1 by 1 to 630 do zeta4(j):=fsolve(f2s(j),zeta,0.5..2.0) end do: 

> for j from 1 by 1 to 630 do 
Omega1(j):=2*Pi*fre(j)/(sqrt(E/(2*rho*(1+nu)*zeta4(j)^2))) end do:  

> q:=sqrt(omega1^2/ct^2-xiv^2): p:=sqrt(omega1^2/cl^2-xiv^2): 

> Ns:=xiv*q*(xiv^2+q^2)*cos(p*t)*cos(q*t): 

> Ds:=(xiv^2-q^2)^2*cos(p*t)*sin(q*t)+4*xiv^2*p*q*sin(p*t)*cos(q*t): 
Dsd:=diff(Ds,xiv):  

> a1:=0.65e-2: rs1:=5e-2: cb1:=0.5e-2: #Actuator radius, radial location of sensor and 
sensor length respectively 

> for i from 1 by 1 to 630 do snrsp(i):=simplify(-
I*subs(omega1=fre(i)*2*Pi,xiv=Omega1(i),Ns)*BesselJ(1,Omega1(i)*a1)*Omega1(i)*a
1*int(HankelH2(0,Omega1(i)*r)/cb1,r=rs1..(rs1+cb1))/subs(omega1=fre(i)*2*Pi,xiv=Om
ega1(i),Dsd)) end do: 

> ln6:=[[fre(n), abs(a0snrsp1(n))] $n=1..630]: #plot(ln6): 

> f2p1c2:=2*Pi*(fr+fr/n1n)*(cos(2*Pi*n1n)*exp(-I*omegav*n1n/fr)-1)/(omegav^2-
4*Pi^2*(fr+fr/n1n)^2): 

> f2p2c2:=2*Pi*(fr-fr/n1n)*(cos(2*Pi*n1n)*exp(-I*omegav*n1n/fr)-1)/(omegav^2-
4*Pi^2*(fr-fr/n1n)^2): 

> f2c2:=2*Pi*fr*(cos(2*Pi*n1n)*exp(-I*omegav*n1n/fr)-1)/(omegav^2-4*Pi^2*fr^2)-
0.5*f2p1c2-0.5*f2p2c2: 

> f2c3:=-I*n1n/(2*fr)-0.5*f2p1c2-0.5*f2p2c2: 

> for i from 100 by 2 to 400 do start1(i):=floor(i-i*2/3.5): end1(i):=ceil(i+i*2/3.5): end 
do: 

> for i from 100 by 2 to 400 do snrsptd(i):=0: for j from start1(i) by 1 to end1(i) do if (j 
<> i) then  
snrsptd(i):=snrsptd(i)+simplify(snrsp(j)*subs(n1n=3.5,fr=fre(i),omegav=2*Pi*fre(j),f2c2)
*2*Pi*2e3* exp(I*2*Pi*fre(j)*time)): else 
snrsptd(i):=snrsptd(i)+simplify(snrsp(j)*subs(n1n=3.5,fr=fre(i),omegav=2*Pi*fre(j),f2c3)
*2*Pi*2e3*exp(I*2*Pi*fre(j)*time)): end if: end do: end do: 
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> for i from 100 by 2 to 200 do for j from 1 by 1 to 500 do 
snrsptdd1(i,j):=evalf(subs(time=j*1e-7,Re(snrsptd(i)))) end do: 
snrspmag(i):=simplify(max(snrsptdd1(i,n) $n=1..500)-min(snrsptdd1(i,n) $n=1..500)) 
end do: for i from 202 by 2 to 300 do for j from 1 by 1 to 500 do 
snrsptdd1(i,j):=evalf(subs(time=j*6e-8, snrsptd(i))) end do: 
snrspmag(i):=simplify(max(snrsptdd1(i,n) $n=1..500)-min(snrsptdd1(i,n) $n=1..500)) 
end do: 
 
> for i from 302 by 1 to 400 do for j from 1 by 1 to 250 do 
snrsptdd1(i,j):=evalf(subs(time=j*1e-7,Re(snrsptd(i)))) end do: 
snrspmag(i):=simplify(max(snrsptdd1(i,n) $n=1..250)-min(snrsptdd1(i,n) $n=1..250)) 
end do: 
 
 
B.2.D Theoretical Images for the Laser Vibrometer Experiment  (Fig. 24 (a))  
 

> restart; 

> with(plots): 

> E:=70e9: nu:=0.33: rho:=2700: t:=0.5e-3: 

> f1:=fopen("N:/Maple/1mmAlplatecpa0.txt",READ): a:=readdata(f1,float): fclose(f1); 
#This text file should have the A0 mode dispersion curve for a 1-mm thick Al plate in a 
single column 

> mu:=E/(2*(1+nu)): lambda1:=E*nu/((1-2*nu)*(1+nu)): ct:=(mu/rho)^0.5: 
cl:=((lambda1+2*mu)/rho)^0.5: 

> for i from 12 by 1 to 48 do fre(i):=1000*i end do: for i from 12 by 1 to 48 do 
xi1(i):=2*Pi*fre(i)/a[i] end do: 

> q:=sqrt(omega1^2/ct^2-xiv^2): p:=sqrt(omega1^2/cl^2-xiv^2):  

> Ta:=xiv^2*(q^2-xiv^2)*sin(p*t)*cos(q*t)-2*p*q*xiv^2*sin(q*t)*cos(p*t): Da:=(xiv^2-
q^2)^2*sin(p*t)*cos(q*t)+4*xiv^2*p*q*cos(p*t)*sin(q*t): Dad:=diff(Da,xiv): 

> for j from 1 by 1 to 41 do x(j):=(j-1)*0.5e-2: end do: for j from 1 by 1 to 66 do y(j):=(j-
1)*0.3e-2+0.1e-2: end do:  #These coordinates match those for which experimental 
readings were taken with the laser vibrometer 

> ax1:=1.45e-2/2: ay1:=1.4e-2: #These values are the half-dimensions of the MFC’s 
active area along the x-axis and y-axis (the latter being along the MFC fiber direction) 
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> fn1:=fopen("N:/mfcmovietheoRexj3to41yk1to5.txt",WRITE): 
fn2:=fopen("N:/mfcmovietheoImxj3to41yk1to5.txt",WRITE):  for j from 3 by 1 to 41 do 
for k from 1 by 1 to 5 do for i from 12 by 1 to 48 do theta1:=evalf(arctan((y(k)-ay1)/(x(j)-
ax1))): theta2:=evalf(arctan((y(k)+ay1)/(x(j)-ax1))): theta3:=arctan((y(k)-
ay1)/(x(j)+ax1)): theta4:=arctan((y(k)+ay1)/(x(j)+ax1)): t1a:=evalf(theta1-Pi/2): 
t1b:=evalf(theta1+Pi/2): t2a:=evalf(theta2-Pi/2): t2b:=evalf(theta2+Pi/2): 
t3a:=evalf(theta3-Pi/2): t3b:=evalf(theta3+Pi/2): t4a:=evalf(theta4-Pi/2): 
t4b:=evalf(theta4+Pi/2): 
v3(i,j,k):=simplify(8*Pi*fre(i)*subs(omega1=fre(i)*2*Pi,xiv=xi1(i),Ta)/(subs(omega1=fr
e(i)*2*Pi,xiv=xi1(i),Dad)*xi1(i))*(int(sin(xi1(i)*cos(theta)*ax1)*exp(-
I*xi1(i)*x(j)*cos(theta)-
I*xi1(i)*(y(k)+ay1)*sin(theta))*tan(theta),theta=t2a..t4b)+int(exp(-I*xi1(i)*(x(j)-
ax1)*cos(theta)-I*xi1(i)*(y(k)+ay1)*sin(theta))*tan(theta),theta=t4b..t2b)/(2*I)-int(exp(-
I*xi1(i)*(x(j)+ax1)*cos(theta)-
I*xi1(i)*(y(k)+ay1)*sin(theta))*tan(theta),theta=t4a..t2a)/(2*I)+int(sin(xi1(i)*cos(theta)*
ax1)*exp(-I*xi1(i)*x(j)*cos(theta)-I*xi1(i)*(y(k)-
ay1)*sin(theta))*tan(theta),theta=t3a..t1b)+int(exp(-I*xi1(i)*(x(j)-ax1)*cos(theta)-
I*xi1(i)*(y(k)-ay1)*sin(theta))*tan(theta),theta=t1a..t3a)/(2*I)-int(exp(-
I*xi1(i)*(x(j)+ax1)*cos(theta)-I*xi1(i)*(y(k)-
ay1)*sin(theta))*tan(theta),theta=t1b..t3b)/(2*I))); 
writedata[APPEND](fn1,[Re(v3(i,j,k))]): writedata[APPEND](fn2,[Im(v3(i,j,k))]): end 
do; end do; end do; fclose(fn1): fclose(fn2):  

>fn1:=fopen("N: /mfcmovietheoRexj1to2yk6to66.txt",WRITE): 
fn2:=fopen("N:/mfcmovietheoImxj1to2yk6to66.txt",WRITE):  ax1:=1.45e-2/2: 
ay1:=1.4e-2: for j from 1 by 1 to 2 do for k from 6 by 1 to 66 do for i from 12 by 1 to 48 
do theta1:=evalf(Pi+arctan((y(k)-ay1)/(x(j)-ax1))): 
theta2:=evalf(Pi+arctan((y(k)+ay1)/(x(j)-ax1))): theta3:=arctan((y(k)-ay1)/(x(j)+ax1)): 
theta4:=arctan((y(k)+ay1)/(x(j)+ax1)): t1a:=evalf(theta1-Pi/2): t1b:=evalf(theta1+Pi/2): 
t2a:=evalf(theta2-Pi/2): t2b:=evalf(theta2+Pi/2): t3a:=evalf(theta3-Pi/2): 
t3b:=evalf(theta3+Pi/2): t4a:=evalf(theta4-Pi/2): t4b:=evalf(theta4+Pi/2): 
v3(i,j,k):=simplify(-
2*Pi*fre(i)*subs(omega1=fre(i)*2*Pi,xiv=xi1(i),Ta)/(subs(omega1=fre(i)*2*Pi,xiv=xi1(i
),Dad)*xi1(i))*(-4*int(sin(xi1(i)*cos(theta)*ax1)*sin(xi1(i)*sin(theta)*ay1)*exp(-
I*xi1(i)*x(j)*cos(theta)-I*xi1(i)*y(k)*sin(theta))*tan(theta),theta=t2a..t3b)+int(exp(-
I*xi1(i)*(x(j)-ax1)*cos(theta)-I*xi1(i)*(y(k)-
ay1)*sin(theta))*tan(theta),theta=t1a..t2a)+int(exp(-I*xi1(i)*(x(j)-ax1)*cos(theta)-
I*xi1(i)*(y(k)-ay1)*sin(theta))*tan(theta),theta=t3b..t1b)-(int(exp(-I*xi1(i)*(x(j)-
ax1)*cos(theta)-I*xi1(i)*(y(k)+ay1)*sin(theta))*tan(theta),theta=t3b..t2b)+int(exp(-
I*xi1(i)*(x(j)+ax1)*cos(theta)-I*xi1(i)*(y(k)-
ay1)*sin(theta))*tan(theta),theta=t3a..t2a))+int(exp(-I*xi1(i)*(x(j)+ax1)*cos(theta)-
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I*xi1(i)*(y(k)+ay1)*sin(theta))*tan(theta),theta=t4a..t2a)+int(exp(-
I*xi1(i)*(x(j)+ax1)*cos(theta)-
I*xi1(i)*(y(k)+ay1)*sin(theta))*tan(theta),theta=t3b..t4b))): 
writedata[APPEND](fn1,[Re(v3(i,j,k))]); writedata[APPEND](fn2,[Im(v3(i,j,k))]): end 
do; end do; end do; fclose(fn1): fclose(fn2):          

>#The following loop is particularly computationally intensive and it is advised that the 
spatial grid be split and run in parallel on 4-5 machines to save time 

> fn1:=fopen("N:/mfcmovietheoRexj3to41yk6to66.txt",WRITE): 
fn2:=fopen("N:/mfcmovietheoImxj3to41yk6to66.txt",WRITE):  for j from 3 by 1 to 41 
do for k from 6 by 1 to 66 do for i from 12 by 1 to 48 do theta1:=evalf(arctan((y(k)-
ay1)/(x(j)-ax1))): theta2:=evalf(arctan((y(k)+ay1)/(x(j)-ax1))): theta3:=arctan((y(k)-
ay1)/(x(j)+ax1)): theta4:=arctan((y(k)+ay1)/(x(j)+ax1)): t1a:=evalf(theta1-Pi/2): 
t1b:=evalf(theta1+Pi/2): t2a:=evalf(theta2-Pi/2): t2b:=evalf(theta2+Pi/2): 
t3a:=evalf(theta3-Pi/2): t3b:=evalf(theta3+Pi/2): t4a:=evalf(theta4-Pi/2): 
t4b:=evalf(theta4+Pi/2): v3(i,j,k):=simplify(-
2*Pi*fre(i)*subs(omega1=fre(i)*2*Pi,xiv=xi1(i),Ta)/(subs(omega1=fre(i)*2*Pi,xiv=xi1(i
),Dad)*xi1(i))*(-4*int(sin(xi1(i)*cos(theta)*ax1)*sin(xi1(i)*sin(theta)*ay1)*exp(-
I*xi1(i)*x(j)*cos(theta)-I*xi1(i)*y(k)*sin(theta))*tan(theta),theta=t2a..t3b)+int(exp(-
I*xi1(i)*(x(j)-ax1)*cos(theta)-I*xi1(i)*(y(k)-
ay1)*sin(theta))*tan(theta),theta=t1a..t2a)+int(exp(-I*xi1(i)*(x(j)-ax1)*cos(theta)-
I*xi1(i)*(y(k)-ay1)*sin(theta))*tan(theta),theta=t3b..t1b)-(int(exp(-I*xi1(i)*(x(j)-
ax1)*cos(theta)-I*xi1(i)*(y(k)+ay1)*sin(theta))*tan(theta),theta=t3b..t2b)+int(exp(-
I*xi1(i)*(x(j)+ax1)*cos(theta)-I*xi1(i)*(y(k)-
ay1)*sin(theta))*tan(theta),theta=t3a..t2a))+int(exp(-I*xi1(i)*(x(j)+ax1)*cos(theta)-
I*xi1(i)*(y(k)+ay1)*sin(theta))*tan(theta),theta=t4a..t2a)+int(exp(-
I*xi1(i)*(x(j)+ax1)*cos(theta)-
I*xi1(i)*(y(k)+ay1)*sin(theta))*tan(theta),theta=t3b..t4b))); 
writedata[APPEND](fn1,[Re(v3(i,j,k))]): writedata[APPEND](fn2,[Im(v3(i,j,k))]): end 
do; end do; end do; fclose(fn1): fclose(fn2):  

> f2p1c2:=2*Pi*(fr+fr/n1n)*(cos(2*Pi*n1n)*exp(-I*omegav*n1n/fr)-1)/(omegav^2-
4*Pi^2*(fr+fr/n1n)^2): f2p2c2:=2*Pi*(fr-fr/n1n)*(cos(2*Pi*n1n)*exp(-
I*omegav*n1n/fr)-1)/(omegav^2-4*Pi^2*(fr-fr/n1n)^2): 
f2c2:=2*Pi*fr*(cos(2*Pi*n1n)*exp(-I*omegav*n1n/fr)-1)/(omegav^2-4*Pi^2*fr^2)-
0.5*f2p1c2-0.5*f2p2c2: 

> f2c3:=-I*n1n/(2*fr)-0.5*f2p1c2-0.5*f2p2c2: 

> for i from 3 by 1 to 41 do for j from 1 by 1 to 5 do v3td(i,j):=0: for k from 12 by 1 to 48 
do if (k <> 30) then 
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v3td(i,j):=v3td(i,j)+simplify(v3(k,i,j)*subs(n1n=3.499,fr=30e3,omegav=2*Pi*fre(k),f2c2
)*2*Pi*2e3*exp(I*2*Pi*fre(k)*time)): else 
v3td(i,j):=v3td(i,j)+simplify(v3(k,i,j)*subs(n1n=3.499,fr=30e3,omegav=2*Pi*fre(k),f2c3
)*2*Pi*2e3*exp(I*2*Pi*fre(k)*time)): end if: end do: end do: end do: 

> for i from 1 by 1 to 41 do for j from 6 by 1 to 66 do v3td(i,j):=0: for k from 12 by 1 to 
48 do if (k <> 30) then 
v3td(i,j):=v3td(i,j)+simplify(v3(k,i,j)*subs(n1n=3.499,fr=30e3,omegav=2*Pi*fre(k),f2c2
)*2*Pi*2e3*exp(I*2*Pi*fre(k)*time)): else 
v3td(i,j):=v3td(i,j)+simplify(v3(k,i,j)*subs(n1n=3.499,fr=30e3,omegav=2*Pi*fre(k),f2c3
)*2*Pi*2e3*exp(I*2*Pi*fre(k)*time)): end if: end do: end do: end do: 

> f1:=fopen("N:/mfcmoviei3to41j1to5.txt",WRITE):  

> for i from 3 by 1 to 41 do for j from 1 by 1 to 5 do for k from 1 by 1 to 40 do 
v3tdv(i,j,k):=evalf(subs(time=k*4e-4/40,Re(v3td(i,j)))): 
writedata[APPEND](f1,[v3tdv(i,j,k)]) end do: end do: end do: fclose(f1):  

> f2:=fopen("N:/mfcmoviei1to41j6to66.txt",WRITE):  

> for i from 1 by 1 to 41 do for j from 6 by 1 to 66 do for k from 1 by 1 to 40 do 
v3tdv(i,j,k):=evalf(subs(time=k*4e-4/40,Re(v3td(i,j)))): 
writedata[APPEND](f2,[v3tdv(i,j,k)]) end do: end do: end do: fclose(f2):  

 
B.3 Fortran 90 Code for Implementing GW Excitation Models in Composites  

The code below is used to evaluate the out-of-plane displacement response kernel 

for a quasi-isotropic laminate [0/45/-45/90]s in the S0 mode over a range of frequencies. It 

uses the phase velocities at 3o intervals as input. Those can be computed by tweaking this 

code to only evaluate the global matrix determinant over a grid of ( , )K Γ  and looking for 

zero-crossings. Of course, the code for unidirectional composites can be derived from this 

too. 

 
program main 
implicit none 
! Variable type definitions 
complex*16 :: F1,F2,xi 
complex*16,dimension(2) :: 
Qv,Qv1v,C1mv,C2mv,C3mv,C4mv,C5mv,C6mv,C1,C2,C3,C4,C5,C6,Qmvtv 
integer :: 
i,j,k,l,n1,C1minfo,C2minfo,C3minfo,C4minfo,C5minfo,C6minfo,Qv1info,Qmvtinfo,ierr
or,nlayer 
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real*8 :: ang,pi,omega,r 
real*8,dimension(181) :: angle 
complex*16,dimension(2340) :: cp 
complex*16,dimension(24,24) :: 
Qmv,Qmvd,Qmv1,Qmv2,Qv1,C1m,C2m,C3m,C4m,C5m,C6m,Qdiffv,Qm,Qmvt 
integer,dimension(24) :: 
C1mpvt,C2mpvt,C3mpvt,C4mpvt,C5mpvt,C6mpvt,Qv1pvt,Qmvtpvt 
complex*16,dimension(6,1) :: Cst 
complex*16,dimension(3,6) :: Q1pluoh1 
complex*16,dimension(3,1) :: u 
complex*16,dimension(91) :: u1,u2,u3 
 
! The real and imaginary harmonic out-of-plane displacement components are written to 
these files 
open 
(unit=1,file='multiQmkernS020to800khz045m4590p11mmlayertssymmre.txt',status='ne
w',action='write',iostat=ierror) 
open 
(unit=2,file='multiQmkernS020to800khz045m4590p11mmlayertssymmim.txt',status='ne
w',action='write',iostat=ierror) 
 
nlayer=4 !Half the total # of layers in the laminate - for a unidirectional composite, 
nlayer=1 
 
! The ray surfaces (plots of phase velocity v/s angle) are stored in this file 
! for frequencies from 20 kHz to 800 kHz in steps of 20 kHz 
open 
(unit=1,file='S0multi045m4590p11mmlayertssymmroot20to800khzallangs.txt',status='ol
d',action='read',iostat=ierror) 
read(1,*),(cp(i),i=1,2340) 
close(1) 
pi=3.14159 
 
do k=1,2340 
ang=pi*(mod(k-1,60))*3/180 
omega=(((k-1-mod(k-1,60))/60+2)*20e3)*2*pi 
F1=(0.d0,1.d0)*cos(ang) 
F2=(0.d0,1.d0)*sin(ang) 
xi=omega/cp(k) 
call layerprops(Q1pluoh1,Qmv,Qmvd,xi,ang,omega) 
 
!This sequence of lines computes the derivative of the global matrix determinant 
do n1=1,24 
Qv1=reshape((/ (0.d0,i=1,576) /),(/ 24,24 /)) 
Qv1=Qmv 
Qv1(n1,:)=Qmvd(n1,:) 
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call zgetrf(24,24,Qv1,24,Qv1pvt,Qv1info)  
Qv1v(1) = ( 1.0D+00, 0.0D+00) 
Qv1v(2) = ( 0.0D+00, 0.0D+00) 
do i=1,24 
  if (Qv1pvt(i)/=i) then 
  Qv1v(1)=-Qv1v(1) 
  end if 
  Qv1v(1)=Qv1v(1)*Qv1(i,i) 
  do while ( abs(real(Qv1v(1)))+abs(aimag(Qv1v(1)))  < 1.0D+00 ) 
  Qv1v(1) = Qv1v(1)*(10.0D+00,0.0D+00) 
  Qv1v(2) = Qv1v(2)-(1.0D+00,0.0D+00) 
  end do 
  do while ( 10.0D+00 <= abs(real(Qv1v(1)))+abs(aimag(Qv1v(1))) )  
  Qv1v(1) = Qv1v(1)/(10.0D+00,0.0D+00) 
  Qv1v(2) = Qv1v(2)+(1.0D+00,0.0D+00) 
  end do 
end do 
if (n1==1) then 
 Qv=Qv1v 
else 
 if (min(real(Qv1v(2)),real(Qv(2)))==real(Qv(2))) then 
 do while (Qv1v(2)/=Qv(2)) 
 Qv1v(1) = Qv1v(1)*(10.0D+00,0.0D+00) 
    Qv1v(2) = Qv1v(2)-(1.0D+00,0.0D+00) 
 end do 
 else 
 do while (Qv1v(2)/=Qv(2)) 
 Qv(1) = Qv(1)*(10.0D+00,0.0D+00) 
    Qv(2) = Qv(2)-(1.0D+00,0.0D+00) 
 end do 
 end if 
 Qv(1)=Qv(1)+Qv1v(1) 
 do while ( abs(real(Qv(1)))+abs(aimag(Qv(1)))  < 1.0D+00 ) 
    Qv(1) = Qv(1)*(10.0D+00,0.0D+00) 
    Qv(2) = Qv(2)-(1.0D+00,0.0D+00) 
    end do 
    do while ( 10.0D+00 <= abs(real(Qv(1)))+abs(aimag(Qv(1))) )  
    Qv(1) = Qv(1)/(10.0D+00,0.0D+00) 
    Qv(2) = Qv(2)+(1.0D+00,0.0D+00) 
    end do 
end if 
end do 
 
! This sequence of lines computes the constants C1 to C6 
C1m=Qmv 
C1m(1,1)=F1 
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C1m(2,1)=F2 
C1m(3:24,1)=(/ (0.d0,i=1,22) /) 
call zgetrf(24,24,C1m,24,C1mpvt,C1minfo)  
C1mv(1) = ( 1.0D+00, 0.0D+00) 
C1mv(2) = ( 0.0D+00, 0.0D+00) 
do i=1,24 
  if (C1mpvt(i)/=i) then 
  C1mv(1)=-C1mv(1) 
  end if 
  C1mv(1)=C1mv(1)*C1m(i,i) 
  do while ( abs(real(C1mv(1)))+abs(aimag(C1mv(1)))  < 1.0D+00 ) 
  C1mv(1) = C1mv(1)*(10.0D+00,0.0D+00) 
  C1mv(2) = C1mv(2)-(1.0D+00,0.0D+00) 
  end do 
  do while ( 10.0D+00 <= abs(real(C1mv(1)))+abs(aimag(C1mv(1))) )  
  C1mv(1) = C1mv(1)/(10.0D+00,0.0D+00) 
  C1mv(2) = C1mv(2)+(1.0D+00,0.0D+00) 
  end do 
end do 
 
C2m=Qmv 
C2m(1,2)=F1 
C2m(2,2)=F2 
C2m(3:24,2)=(/ (0.d0,i=1,22) /) 
call zgetrf(24,24,C2m,24,C2mpvt,C2minfo)  
C2mv(1) = ( 1.0D+00, 0.0D+00) 
C2mv(2) = ( 0.0D+00, 0.0D+00) 
do i=1,24 
  if (C2mpvt(i)/=i) then 
  C2mv(1)=-C2mv(1) 
  end if 
  C2mv(1)=C2mv(1)*C2m(i,i) 
  do while ( abs(real(C2mv(1)))+abs(aimag(C2mv(1)))  < 1.0D+00 ) 
  C2mv(1) = C2mv(1)*(10.0D+00,0.0D+00) 
  C2mv(2) = C2mv(2)-(1.0D+00,0.0D+00) 
  end do 
  do while ( 10.0D+00 <= abs(real(C2mv(1)))+abs(aimag(C2mv(1))) )  
  C2mv(1) = C2mv(1)/(10.0D+00,0.0D+00) 
  C2mv(2) = C2mv(2)+(1.0D+00,0.0D+00) 
  end do 
end do 
 
C3m=Qmv 
C3m(1,3)=F1 
C3m(2,3)=F2 
C3m(3:24,3)=(/ (0.d0,i=1,22) /) 
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call zgetrf(24,24,C3m,24,C3mpvt,C3minfo)  
C3mv(1) = ( 1.0D+00, 0.0D+00) 
C3mv(2) = ( 0.0D+00, 0.0D+00) 
do i=1,24 
  if (C3mpvt(i)/=i) then 
  C3mv(1)=-C3mv(1) 
  end if 
  C3mv(1)=C3mv(1)*C3m(i,i) 
  do while ( abs(real(C3mv(1)))+abs(aimag(C3mv(1)))  < 1.0D+00 ) 
  C3mv(1) = C3mv(1)*(10.0D+00,0.0D+00) 
  C3mv(2) = C3mv(2)-(1.0D+00,0.0D+00) 
  end do 
  do while ( 10.0D+00 <= abs(real(C3mv(1)))+abs(aimag(C3mv(1))) )  
  C3mv(1) = C3mv(1)/(10.0D+00,0.0D+00) 
  C3mv(2) = C3mv(2)+(1.0D+00,0.0D+00) 
  end do 
end do 
 
C4m=Qmv 
C4m(1,4)=F1 
C4m(2,4)=F2 
C4m(3:24,4)=(/ (0.d0,i=1,22) /) 
call zgetrf(24,24,C4m,24,C4mpvt,C4minfo)  
C4mv(1) = ( 1.0D+00, 0.0D+00) 
C4mv(2) = ( 0.0D+00, 0.0D+00) 
do i=1,24 
  if (C4mpvt(i)/=i) then 
  C4mv(1)=-C4mv(1) 
  end if 
  C4mv(1)=C4mv(1)*C4m(i,i) 
  do while ( abs(real(C4mv(1)))+abs(aimag(C4mv(1)))  < 1.0D+00 ) 
  C4mv(1) = C4mv(1)*(10.0D+00,0.0D+00) 
  C4mv(2) = C4mv(2)-(1.0D+00,0.0D+00) 
  end do 
  do while ( 10.0D+00 <= abs(real(C4mv(1)))+abs(aimag(C4mv(1))) )  
  C4mv(1) = C4mv(1)/(10.0D+00,0.0D+00) 
  C4mv(2) = C4mv(2)+(1.0D+00,0.0D+00) 
  end do 
end do 
 
C5m=Qmv 
C5m(1,5)=F1 
C5m(2,5)=F2 
C5m(3:24,5)=(/ (0.d0,i=1,22) /) 
call zgetrf(24,24,C5m,24,C5mpvt,C5minfo)  
C5mv(1) = ( 1.0D+00, 0.0D+00) 
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C5mv(2) = ( 0.0D+00, 0.0D+00) 
do i=1,24 
  if (C5mpvt(i)/=i) then 
  C5mv(1)=-C5mv(1) 
  end if 
  C5mv(1)=C5mv(1)*C5m(i,i) 
  do while ( abs(real(C5mv(1)))+abs(aimag(C5mv(1)))  < 1.0D+00 ) 
  C5mv(1) = C5mv(1)*(10.0D+00,0.0D+00) 
  C5mv(2) = C5mv(2)-(1.0D+00,0.0D+00) 
  end do 
  do while ( 10.0D+00 <= abs(real(C5mv(1)))+abs(aimag(C5mv(1))) )  
  C5mv(1) = C5mv(1)/(10.0D+00,0.0D+00) 
  C5mv(2) = C5mv(2)+(1.0D+00,0.0D+00) 
  end do 
end do 
 
C6m=Qmv 
C6m(1,6)=F1 
C6m(2,6)=F2 
C6m(3:24,6)=(/ (0.d0,i=1,22) /) 
call zgetrf(24,24,C6m,24,C6mpvt,C6minfo)  
C6mv(1) = ( 1.0D+00, 0.0D+00) 
C6mv(2) = ( 0.0D+00, 0.0D+00) 
do i=1,24 
  if (C6mpvt(i)/=i) then 
  C6mv(1)=-C6mv(1) 
  end if 
  C6mv(1)=C6mv(1)*C6m(i,i) 
  do while ( abs(real(C6mv(1)))+abs(aimag(C6mv(1)))  < 1.0D+00 ) 
  C6mv(1) = C6mv(1)*(10.0D+00,0.0D+00) 
  C6mv(2) = C6mv(2)-(1.0D+00,0.0D+00) 
  end do 
  do while ( 10.0D+00 <= abs(real(C6mv(1)))+abs(aimag(C6mv(1))) )  
  C6mv(1) = C6mv(1)/(10.0D+00,0.0D+00) 
  C6mv(2) = C6mv(2)+(1.0D+00,0.0D+00) 
  end do 
end do 
C1(1)=xi*C1mv(1)/Qv(1) 
C1(2)=C1mv(2)-Qv(2) 
C2(1)=xi*C2mv(1)/Qv(1) 
C2(2)=C2mv(2)-Qv(2) 
C3(1)=xi*C3mv(1)/Qv(1) 
C3(2)=C3mv(2)-Qv(2) 
C4(1)=xi*C4mv(1)/Qv(1) 
C4(2)=C4mv(2)-Qv(2) 
C5(1)=xi*C5mv(1)/Qv(1) 
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C5(2)=C5mv(2)-Qv(2) 
C6(1)=xi*C6mv(1)/Qv(1) 
C6(2)=C6mv(2)-Qv(2) 
 
Cst(1,1)=C1(1)*10**C1(2) 
Cst(2,1)=C2(1)*10**C2(2) 
Cst(3,1)=C3(1)*10**C3(2) 
Cst(4,1)=C4(1)*10**C4(2) 
Cst(5,1)=C5(1)*10**C5(2) 
Cst(6,1)=C6(1)*10**C6(2) 
 
u=matmul(Q1pluoh1,Cst) 
 
write(1,*),real(u(3,1)) 
write(2,*),aimag(u(3,1)) 
end do 
 
close(1) 
close(2) 
end program main 
 
! This subroutine evaluates the global matrix, its determinant and the displacement 
response matrix 
! Inputs: wavenumber, angular excitation frequency, propagation angle 
subroutine layerprops(Q1pluoh,Qm,Qmd,xi,ang,omega) 
implicit none 
real*8,intent(in) :: ang,omega 
complex*16,intent(in) :: xi 
real*8 :: theta1,theta2,theta3,theta4,rho,h1,h2,h3,h4,pi 
complex*16 :: 
C11,C12,C22,C23,C55,C44,A1,A2,A3,A4,A5,alpha,beta,gamma1,q11,q12 
complex*16 :: q21,q22,zeta1,zeta2,xi1,xi2,delta1,delta2,zeta3,b1,b2,b1d,b2d,xi1d,xi2d 
complex*16,dimension(3,3) :: 
L1,L2,L3,L4,Q111,Q121,Q211,Q221,Q112,Q122,Q212,Q222,Q113 
complex*16,dimension(3,3) :: 
Q123,Q213,Q223,Q114,Q124,Q214,Q224,E1,E2,E3,E4,Q111d,Q121d 
complex*16,dimension(3,3) :: 
Q211d,Q221d,Q112d,Q122d,Q212d,Q222d,Q113d,Q123d,Q213d,Q223d 
complex*16,dimension(3,3) :: Q114d,Q124d,Q214d,Q224d,E1d,E2d,E3d,E4d 
complex*16,dimension(6,6) :: 
Q1min,Q2min,Q3min,Q4min,Q2plu,Q3plu,Q4plu,Q1mind,Q2mind 
complex*16,dimension(6,6) :: Q3mind,Q4mind,Q2plud,Q3plud,Q4plud 
complex*16,dimension(3,6) :: Q1pluh,Q1pluhd 
complex*16,dimension(3,6),intent(out) :: Q1pluoh 
complex*16,dimension(24,24),intent(out) :: Qm,Qmd 
pi=3.14159 
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! Layer angles 
theta1=0.d0 
theta2=pi/4 
theta3=-pi/4 
theta4=pi/2 
L1=reshape((/ cos(theta1),sin(theta1),0.d0,-sin(theta1),cos(theta1),0.d0,0.d0,0.d0,1.d0 
/),(/ 3,3 /)) 
L2=reshape((/ cos(theta2),sin(theta2),0.d0,-sin(theta2),cos(theta2),0.d0,0.d0,0.d0,1.d0 
/),(/ 3,3 /)) 
L3=reshape((/ cos(theta3),sin(theta3),0.d0,-sin(theta3),cos(theta3),0.d0,0.d0,0.d0,1.d0 
/),(/ 3,3 /)) 
L4=reshape((/ cos(theta4),sin(theta4),0.d0,-sin(theta4),cos(theta4),0.d0,0.d0,0.d0,1.d0 
/),(/ 3,3 /)) 
h1=0.11e-3 
h2=h1 
h3=h1 
h4=h1 
!Material properties 
C11=160.73e9 
C12=6.44e9 
C22=13.92e9 
C23=6.92e9 
C55=7.07e9 
rho=1.578e3 
 
A1=C22/rho 
A2=C11/rho 
A3=(C12+C55)/rho 
A4=(C22-C23)/(2*rho) 
A5=C55/rho 
 
!For layer 1 
xi1=xi*cos(ang) 
xi2=xi*sin(ang) 
alpha=A1*A5 
beta=(A1*A2+A5**2-A3**2)*xi1**2-omega**2*(A1+A5) 
gamma1=(A2*xi1**2-omega**2)*(A5*xi1**2-omega**2) 
b1=-(beta*0.5/alpha)-((beta*0.5/alpha)**2-gamma1/alpha)**0.5 
b2=-(beta*0.5/alpha)+((beta*0.5/alpha)**2-gamma1/alpha)**0.5 
b1d=-1.0*(A1*A2+A5**2-A3**2)*xi*cos(ang)**2/A1/A5-.5/(.25*((A1*A2+A5**2-
A3**2)*xi**2*cos(ang)**2-omega**2*(A1+A5))**2/A1**2/A5**2-
(A2*xi**2*cos(ang)**2-omega**2)*(A5*xi**2*cos(ang)**2-
omega**2)/A1/A5)**.5*(1.00*((A1*A2+A5**2-A3**2)*xi**2*cos(ang)**2-
omega**2*(A1+A5))/A1**2/A5**2*(A1*A2+A5**2-A3**2)*xi*cos(ang)**2-



213 
 

2*A2*xi*cos(ang)**2*(A5*xi**2*cos(ang)**2-omega**2)/A1/A5-
2*(A2*xi**2*cos(ang)**2-omega**2)*xi*cos(ang)**2/A1) 
b2d=-1.0*(A1*A2+A5**2-A3**2)*xi*cos(ang)**2/A1/A5+.5/(.25*((A1*A2+A5**2-
A3**2)*xi**2*cos(ang)**2-omega**2*(A1+A5))**2/A1**2/A5**2-
(A2*xi**2*cos(ang)**2-omega**2)*(A5*xi**2*cos(ang)**2-
omega**2)/A1/A5)**.5*(1.00*((A1*A2+A5**2-A3**2)*xi**2*cos(ang)**2-
omega**2*(A1+A5))/A1**2/A5**2*(A1*A2+A5**2-A3**2)*xi*cos(ang)**2-
2*A2*xi*cos(ang)**2*(A5*xi**2*cos(ang)**2-omega**2)/A1/A5-
2*(A2*xi**2*cos(ang)**2-omega**2)*xi*cos(ang)**2/A1) 
zeta1=(-xi2**2+b1)**0.5 
if (aimag(zeta1)/=abs(aimag(zeta1))) then 
zeta1=-zeta1 
end if 
zeta2=(-xi2**2+b2)**0.5 
if (aimag(zeta2)/=abs(aimag(zeta2))) then 
zeta2=-zeta2 
end if 
zeta3=(-xi2**2+(omega**2-A5*xi1**2)/A4)**0.5 
if (aimag(zeta3)/=abs(aimag(zeta3))) then 
zeta3=-zeta3 
end if 
q11=A3*b1 
q21=(omega**2-A2*xi1**2-A5*b1) 
q12=A3*b2 
q22=(omega**2-A2*xi1**2-A5*b2) 
delta1=rho*((A5-A3)*xi1**2*q11-(A1-2*A4)*xi2**2*q21-A1*zeta1**2*q21) 
delta2=rho*((A5-A3)*xi1**2*q12-(A1-2*A4)*xi2**2*q22-A1*zeta2**2*q22) 
Q111=reshape((/ 
(0.d0,1.d0)*xi1*q11,(0.d0,1.d0)*xi2*q21,(0.d0,1.d0)*zeta1*q21,(0.d0,1.d0)*xi1*q12,(0.
d0,1.d0)*xi2*q22,(0.d0,1.d0)*zeta2*q22,(0.d0,0.d0),(0.d0,1.d0)*zeta3,(0.d0,-1.d0)*xi2  
/),(/ 3,3 /)) 
Q121=reshape((/ (0.d0,1.d0)*xi1*q11,(0.d0,1.d0)*xi2*q21,(0.d0,-
1.d0)*zeta1*q21,(0.d0,1.d0)*xi1*q12,(0.d0,1.d0)*xi2*q22,(0.d0,-
1.d0)*zeta2*q22,(0.d0,0.d0),(0.d0,-1.d0)*zeta3,(0.d0,-1.d0)*xi2 /),(/ 3,3 /)) 
Q211=reshape((/ -rho*A5*xi1*zeta1*(q11+q21),-2*rho*A4*xi2*zeta1*q21,delta1,-
rho*A5*xi1*zeta2*(q12+q22),-
2*rho*A4*xi2*zeta2*q22,delta2,rho*A5*xi1*xi2,rho*A4*(xi2**2-
zeta3**2),2*rho*A4*xi2*zeta3 /),(/ 3,3 /)) 
Q221=reshape((/ 
rho*A5*xi1*zeta1*(q11+q21),2*rho*A4*xi2*zeta1*q21,delta1,rho*A5*xi1*zeta2*(q12
+q22),2*rho*A4*xi2*zeta2*q22,delta2,rho*A5*xi1*xi2,rho*A4*(xi2**2-zeta3**2),-
2*rho*A4*xi2*zeta3 /),(/ 3,3 /)) 
E1=reshape((/ 
exp((0.d0,1.d0)*zeta1*h1),(0.d0,0.d0),(0.d0,0.d0),(0.d0,0.d0),exp((0.d0,1.d0)*zeta2*h1),
(0.d0,0.d0),(0.d0,0.d0),(0.d0,0.d0),exp((0.d0,1.d0)*zeta3*h1) /),(/ 3,3 /)) 
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Q111d=reshape((/ (0.d0,1.d0)*(xi1*A3*b1d+cos(ang)*q11),(0.d0,1.d0)*(-
xi2*(2*A2*xi*cos(ang)**2+A5*b1d)+sin(ang)*q21),(0.d0,1.d0)*((-
2*xi*sin(ang)**2+b1d)*q21/(2*zeta1)+zeta1*(-2*A2*xi*cos(ang)**2-
A5*b1d)),(0.d0,1.d0)*(xi1*A3*b2d+cos(ang)*q12),(0.d0,1.d0)*(-
xi2*(2*A2*xi*cos(ang)**2+A5*b2d)+sin(ang)*q22),(0.d0,1.d0)*((-
2*xi*sin(ang)**2+b2d)*q22/(2*zeta2)+zeta2*(-2*A2*xi*cos(ang)**2-
A5*b2d)),(0.d0,0.d0),(0.d0,1.d0)*(-2*xi*sin(ang)**2-
2*A5/A4*xi*cos(ang)**2)/(2*zeta3),-(0.d0,1.d0)*sin(ang) /),(/ 3,3 /)) 
Q121d=reshape((/ (0.d0,1.d0)*(xi1*A3*b1d+cos(ang)*q11),(0.d0,1.d0)*(-
xi2*(2*A2*xi*cos(ang)**2+A5*b1d)+sin(ang)*q21),-(0.d0,1.d0)*((-
2*xi*sin(ang)**2+b1d)*q21/(2*zeta1)+zeta1*(-2*A2*xi*cos(ang)**2-
A5*b1d)),(0.d0,1.d0)*(xi1*A3*b2d+cos(ang)*q12),(0.d0,1.d0)*(-
xi2*(2*A2*xi*cos(ang)**2+A5*b2d)+sin(ang)*q22),-(0.d0,1.d0)*((-
2*xi*sin(ang)**2+b2d)*q22/(2*zeta2)+zeta2*(-2*A2*xi*cos(ang)**2-
A5*b2d)),(0.d0,0.d0),-(0.d0,1.d0)*(-2*xi*sin(ang)**2-
2*A5/A4*xi*cos(ang)**2)/(2*zeta3),-(0.d0,1.d0)*sin(ang) /),(/ 3,3 /)) 
Q211d(1,1)=-rho*A5*(xi1*zeta1*(A3*b1d-2*A2*xi*cos(ang)**2-
A5*b1d)+zeta1*(q11+q21)*cos(ang)+xi1*(q11+q21)*(-
2*xi*sin(ang)**2+b1d)/(2*zeta1)) 
Q211d(1,2)=-rho*A5*(xi1*zeta2*(A3*b2d-2*A2*xi*cos(ang)**2-
A5*b2d)+zeta2*(q12+q22)*cos(ang)+xi1*(q12+q22)*(-
2*xi*sin(ang)**2+b2d)/(2*zeta2)) 
Q211d(1,3)=rho*A5*(xi1*sin(ang)+xi2*cos(ang)) 
Q211d(2,1)=-2*rho*A4*(xi2*zeta1*(-2*A2*xi*cos(ang)**2-
A5*b1d)+zeta1*q21*sin(ang)+xi2*q21*(-2*xi*sin(ang)**2+b1d)/(2*zeta1)) 
Q211d(2,2)=-2*rho*A4*(xi2*zeta2*(-2*A2*xi*cos(ang)**2-
A5*b2d)+zeta2*q22*sin(ang)+xi2*q22*(-2*xi*sin(ang)**2+b2d)/(2*zeta2)) 
Q211d(2,3)=rho*A4*(4*xi*sin(ang)**2+2*A5*xi*cos(ang)**2/A4) 
Q211d(3,1)=rho*((A5-A3)*(2*xi*cos(ang)**2*q11+xi1**2*A3*b1d)-(A1-
2*A4)*(2*xi*sin(ang)**2*q21-xi2**2*(2*A2*xi*cos(ang)**2+A5*b1d))-A1*(q21*(-
2*xi*sin(ang)**2+b1d)-zeta1**2*(2*A2*xi*cos(ang)**2+A5*b1d))) 
Q211d(3,2)=rho*((A5-A3)*(2*xi*cos(ang)**2*q12+xi1**2*A3*b2d)-(A1-
2*A4)*(2*xi*sin(ang)**2*q22-xi2**2*(2*A2*xi*cos(ang)**2+A5*b2d))-A1*(q22*(-
2*xi*sin(ang)**2+b2d)-zeta2**2*(2*A2*xi*cos(ang)**2+A5*b2d))) 
Q211d(3,3)=2*rho*A4*zeta3*sin(ang)-
2*rho*A4*xi2*(xi*sin(ang)**2+A5*xi*cos(ang)**2/A4)/zeta3 
Q221d=Q211d 
Q221d(1:2,1:2)=-Q211d(1:2,1:2) 
Q221d(3,3)=-Q211d(3,3) 
E1d=reshape((/ exp((0.d0,1.d0)*zeta1*h1)*(0.d0,1.d0)*h1*(-
2*xi*sin(ang)**2+b1d)/(2*zeta1),(0.d0,0.d0),(0.d0,0.d0),(0.d0,0.d0),exp((0.d0,1.d0)*zet
a2*h1)*(0.d0,1.d0)*h1*(-
2*xi*sin(ang)**2+b2d)/(2*zeta2),(0.d0,0.d0),(0.d0,0.d0),(0.d0,0.d0),exp((0.d0,1.d0)*zet
a3*h1)*(0.d0,1.d0)*h1*(-2*xi*sin(ang)**2-2*A5*xi*cos(ang)**2/A4)/(2*zeta3) /),(/ 3,3 
/)) 
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Q1min(1:3,1:3)=matmul(Q111,E1) 
Q1min(1:3,4:6)=Q121 
Q1min(4:6,1:3)=matmul(Q211,E1) 
Q1min(4:6,4:6)=Q221 
Q1pluh(1:3,1:3)=-Q211 
Q1pluh(1:3,4:6)=-matmul(Q221,E1) 
Q1pluoh(1:3,1:3)=-Q111 
Q1pluoh(1:3,4:6)=-matmul(Q121,E1) 
 
Q1mind(1:3,1:3)=matmul(Q111d,E1)+matmul(Q111,E1d) 
Q1mind(1:3,4:6)=Q121d 
Q1mind(4:6,1:3)=matmul(Q211d,E1)+matmul(Q211,E1d) 
Q1mind(4:6,4:6)=Q221d 
Q1pluhd(1:3,1:3)=-Q211d 
Q1pluhd(1:3,4:6)=-matmul(Q221d,E1)-matmul(Q221,E1d) 
 
!For layer 2 
xi1=cos(theta2)*xi*cos(ang)+sin(theta2)*xi*sin(ang) 
xi2=-sin(theta2)*xi*cos(ang)+cos(theta2)*xi*sin(ang) 
alpha=A1*A5 
beta=(A1*A2+A5**2-A3**2)*xi1**2-omega**2*(A1+A5) 
gamma1=(A2*xi1**2-omega**2)*(A5*xi1**2-omega**2) 
b1=-(beta*0.5/alpha)-((beta*0.5/alpha)**2-gamma1/alpha)**0.5 
b2=-(beta*0.5/alpha)+((beta*0.5/alpha)**2-gamma1/alpha)**0.5 
b1d=-1.0*(A1*A2+A5**2-
A3**2)*(cos(theta2)*xi*cos(ang)+sin(theta2)*xi*sin(ang))*(cos(theta2)*cos(ang)+sin(th
eta2)*sin(ang))/A1/A5-.5/(.25*((A1*A2+A5**2-
A3**2)*(cos(theta2)*xi*cos(ang)+sin(theta2)*xi*sin(ang))**2-
omega**2*(A1+A5))**2/A1**2/A5**2-
(A2*(cos(theta2)*xi*cos(ang)+sin(theta2)*xi*sin(ang))**2-
omega**2)*(A5*(cos(theta2)*xi*cos(ang)+sin(theta2)*xi*sin(ang))**2-
omega**2)/A1/A5)**.5*(1.00*((A1*A2+A5**2-
A3**2)*(cos(theta2)*xi*cos(ang)+sin(theta2)*xi*sin(ang))**2-
omega**2*(A1+A5))/A1**2/A5**2*(A1*A2+A5**2-
A3**2)*(cos(theta2)*xi*cos(ang)+sin(theta2)*xi*sin(ang))*(cos(theta2)*cos(ang)+sin(th
eta2)*sin(ang))-
2*A2*(cos(theta2)*xi*cos(ang)+sin(theta2)*xi*sin(ang))*(cos(theta2)*cos(ang)+sin(thet
a2)*sin(ang))*(A5*(cos(theta2)*xi*cos(ang)+sin(theta2)*xi*sin(ang))**2-
omega**2)/A1/A5-2*(A2*(cos(theta2)*xi*cos(ang)+sin(theta2)*xi*sin(ang))**2-
omega**2)*(cos(theta2)*xi*cos(ang)+sin(theta2)*xi*sin(ang))*(cos(theta2)*cos(ang)+si
n(theta2)*sin(ang))/A1) 
b2d=-1.0*(A1*A2+A5**2-
A3**2)*(cos(theta2)*xi*cos(ang)+sin(theta2)*xi*sin(ang))*(cos(theta2)*cos(ang)+sin(th
eta2)*sin(ang))/A1/A5+.5/(.25*((A1*A2+A5**2-
A3**2)*(cos(theta2)*xi*cos(ang)+sin(theta2)*xi*sin(ang))**2-
omega**2*(A1+A5))**2/A1**2/A5**2-
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(A2*(cos(theta2)*xi*cos(ang)+sin(theta2)*xi*sin(ang))**2-
omega**2)*(A5*(cos(theta2)*xi*cos(ang)+sin(theta2)*xi*sin(ang))**2-
omega**2)/A1/A5)**.5*(1.00*((A1*A2+A5**2-
A3**2)*(cos(theta2)*xi*cos(ang)+sin(theta2)*xi*sin(ang))**2-
omega**2*(A1+A5))/A1**2/A5**2*(A1*A2+A5**2-
A3**2)*(cos(theta2)*xi*cos(ang)+sin(theta2)*xi*sin(ang))*(cos(theta2)*cos(ang)+sin(th
eta2)*sin(ang))-
2*A2*(cos(theta2)*xi*cos(ang)+sin(theta2)*xi*sin(ang))*(cos(theta2)*cos(ang)+sin(thet
a2)*sin(ang))*(A5*(cos(theta2)*xi*cos(ang)+sin(theta2)*xi*sin(ang))**2-
omega**2)/A1/A5-2*(A2*(cos(theta2)*xi*cos(ang)+sin(theta2)*xi*sin(ang))**2-
omega**2)*(cos(theta2)*xi*cos(ang)+sin(theta2)*xi*sin(ang))*(cos(theta2)*cos(ang)+si
n(theta2)*sin(ang))/A1) 
xi1d=cos(theta2)*cos(ang)+sin(theta2)*sin(ang) 
xi2d=-sin(theta2)*cos(ang)+cos(theta2)*sin(ang) 
zeta1=(-xi2**2+b1)**0.5 
zeta2=(-xi2**2+b2)**0.5 
zeta3=(-xi2**2+(omega**2-A5*xi1**2)/A4)**0.5 
q11=A3*b1 
q21=(omega**2-A2*xi1**2-A5*b1) 
q12=A3*b2 
q22=(omega**2-A2*xi1**2-A5*b2) 
delta1=rho*((A5-A3)*xi1**2*q11-(A1-2*A4)*xi2**2*q21-A1*zeta1**2*q21) 
delta2=rho*((A5-A3)*xi1**2*q12-(A1-2*A4)*xi2**2*q22-A1*zeta2**2*q22) 
Q112=reshape((/ 
(0.d0,1.d0)*xi1*q11,(0.d0,1.d0)*xi2*q21,(0.d0,1.d0)*zeta1*q21,(0.d0,1.d0)*xi1*q12,(0.
d0,1.d0)*xi2*q22,(0.d0,1.d0)*zeta2*q22,(0.d0,0.d0),(0.d0,1.d0)*zeta3,-(0.d0,1.d0)*xi2  
/),(/ 3,3 /)) 
Q122=reshape((/ (0.d0,1.d0)*xi1*q11,(0.d0,1.d0)*xi2*q21,-
(0.d0,1.d0)*zeta1*q21,(0.d0,1.d0)*xi1*q12,(0.d0,1.d0)*xi2*q22,-
(0.d0,1.d0)*zeta2*q22,(0.d0,0.d0),-(0.d0,1.d0)*zeta3,-(0.d0,1.d0)*xi2 /),(/ 3,3 /)) 
Q212=reshape((/ -rho*A5*xi1*zeta1*(q11+q21),-2*rho*A4*xi2*zeta1*q21,delta1,-
rho*A5*xi1*zeta2*(q12+q22),-
2*rho*A4*xi2*zeta2*q22,delta2,rho*A5*xi1*xi2,rho*A4*(xi2**2-
zeta3**2),2*rho*A4*xi2*zeta3 /),(/ 3,3 /)) 
Q222=reshape((/ 
rho*A5*xi1*zeta1*(q11+q21),2*rho*A4*xi2*zeta1*q21,delta1,rho*A5*xi1*zeta2*(q12
+q22),2*rho*A4*xi2*zeta2*q22,delta2,rho*A5*xi1*xi2,rho*A4*(xi2**2-zeta3**2),-
2*rho*A4*xi2*zeta3 /),(/ 3,3 /)) 
E2=reshape((/ 
exp((0.d0,1.d0)*zeta1*h2),(0.d0,0.d0),(0.d0,0.d0),(0.d0,0.d0),exp((0.d0,1.d0)*zeta2*h2),
(0.d0,0.d0),(0.d0,0.d0),(0.d0,0.d0),exp((0.d0,1.d0)*zeta3*h2) /),(/ 3,3 /)) 
Q112d=reshape((/ (0.d0,1.d0)*(xi1*A3*b1d+xi1d*q11),(0.d0,1.d0)*(-
xi2*(2*A2*xi1*xi1d+A5*b1d)+xi2d*q21),(0.d0,1.d0)*((-
2*xi2d*xi2+b1d)*q21/(2*zeta1)+zeta1*(-2*A2*xi1*xi1d-
A5*b1d)),(0.d0,1.d0)*(xi1*A3*b2d+xi1d*q12),(0.d0,1.d0)*(-
xi2*(2*A2*xi1*xi1d+A5*b2d)+xi2d*q22),(0.d0,1.d0)*((-
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2*xi2*xi2d+b2d)*q22/(2*zeta2)+zeta2*(-2*A2*xi1*xi1d-
A5*b2d)),(0.d0,0.d0),(0.d0,1.d0)*(-2*xi2*xi2d-2*A5/A4*xi1*xi1d)/(2*zeta3),-
(0.d0,1.d0)*xi2d /),(/ 3,3 /)) 
Q122d=reshape((/ (0.d0,1.d0)*(xi1*A3*b1d+xi1d*q11),(0.d0,1.d0)*(-
xi2*(2*A2*xi1*xi1d+A5*b1d)+xi2d*q21),-(0.d0,1.d0)*((-
2*xi2d*xi2+b1d)*q21/(2*zeta1)+zeta1*(-2*A2*xi1*xi1d-
A5*b1d)),(0.d0,1.d0)*(xi1*A3*b2d+xi1d*q12),(0.d0,1.d0)*(-
xi2*(2*A2*xi1*xi1d+A5*b2d)+xi2d*q22),-(0.d0,1.d0)*((-
2*xi2*xi2d+b2d)*q22/(2*zeta2)+zeta2*(-2*A2*xi1*xi1d-A5*b2d)),(0.d0,0.d0),-
(0.d0,1.d0)*(-2*xi2*xi2d-2*A5/A4*xi1*xi1d)/(2*zeta3),-(0.d0,1.d0)*xi2d /),(/ 3,3 /)) 
Q212d(1,1)=-rho*A5*(xi1*zeta1*(A3*b1d-2*A2*xi1*xi1d-
A5*b1d)+zeta1*(q11+q21)*xi1d+xi1*(q11+q21)*(-2*xi2*xi2d+b1d)/(2*zeta1)) 
Q212d(1,2)=-rho*A5*(xi1*zeta2*(A3*b2d-2*A2*xi1*xi1d-
A5*b2d)+zeta2*(q12+q22)*xi1d+xi1*(q12+q22)*(-2*xi2*xi2d+b2d)/(2*zeta2)) 
Q212d(1,3)=rho*A5*(xi1*xi2d+xi2*xi1d) 
Q212d(2,1)=-2*rho*A4*(xi2*zeta1*(-2*A2*xi1*xi1d-
A5*b1d)+zeta1*q21*xi2d+xi2*q21*(-2*xi2*xi2d+b1d)/(2*zeta1)) 
Q212d(2,2)=-2*rho*A4*(xi2*zeta2*(-2*A2*xi1*xi1d-
A5*b2d)+zeta2*q22*xi2d+xi2*q22*(-2*xi2*xi2d+b2d)/(2*zeta2)) 
Q212d(2,3)=rho*A4*(4*xi2*xi2d+2*A5*xi1*xi1d/A4) 
Q212d(3,1)=rho*((A5-A3)*(2*xi1*xi1d*q11+xi1**2*A3*b1d)-(A1-
2*A4)*(2*xi2*xi2d*q21-xi2**2*(2*A2*xi1*xi1d+A5*b1d))-A1*(q21*(-
2*xi2*xi2d+b1d)-zeta1**2*(2*A2*xi1*xi1d+A5*b1d))) 
Q212d(3,2)=rho*((A5-A3)*(2*xi1*xi1d*q12+xi1**2*A3*b2d)-(A1-
2*A4)*(2*xi2*xi2d*q22-xi2**2*(2*A2*xi1*xi1d+A5*b2d))-A1*(q22*(-
2*xi2*xi2d+b2d)-zeta2**2*(2*A2*xi1*xi1d+A5*b2d))) 
Q212d(3,3)=2*rho*A4*zeta3*xi2d-2*rho*A4*xi2*(xi2*xi2d+A5*xi1*xi1d/A4)/zeta3 
Q222d=Q212d 
Q222d(1:2,1:2)=-Q212d(1:2,1:2) 
Q222d(3,3)=-Q212d(3,3) 
E2d=reshape((/ exp((0.d0,1.d0)*zeta1*h2)*(0.d0,1.d0)*h2*(-
2*xi2*xi2d+b1d)/(2*zeta1),(0.d0,0.d0),(0.d0,0.d0),(0.d0,0.d0),exp((0.d0,1.d0)*zeta2*h2)
*(0.d0,1.d0)*h2*(-
2*xi2*xi2d+b2d)/(2*zeta2),(0.d0,0.d0),(0.d0,0.d0),(0.d0,0.d0),exp((0.d0,1.d0)*zeta3*h2)
*(0.d0,1.d0)*h2*(-2*xi2*xi2d-2*A5*xi1*xi1d/A4)/(2*zeta3) /),(/ 3,3 /)) 
 
Q2min(1:3,1:3)=matmul(L2,matmul(Q112,E2)) 
Q2min(1:3,4:6)=matmul(L2,Q122) 
Q2min(4:6,1:3)=matmul(L2,matmul(Q212,E2)) 
Q2min(4:6,4:6)=matmul(L2,Q222) 
Q2plu(1:3,1:3)=matmul(-L2,Q112) 
Q2plu(1:3,4:6)=matmul(-L2,matmul(Q122,E2)) 
Q2plu(4:6,1:3)=matmul(-L2,Q212) 
Q2plu(4:6,4:6)=matmul(-L2,matmul(Q222,E2)) 
 
Q2mind(1:3,1:3)=matmul(L2,(matmul(Q112d,E2)+matmul(Q112,E2d))) 
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Q2mind(1:3,4:6)=matmul(L2,Q122d) 
Q2mind(4:6,1:3)=matmul(L2,(matmul(Q212d,E2)+matmul(Q212,E2d))) 
Q2mind(4:6,4:6)=matmul(L2,Q222d) 
Q2plud(1:3,1:3)=matmul(-L2,Q112d) 
Q2plud(1:3,4:6)=matmul(-L2,(matmul(Q122d,E2)+matmul(Q122,E2d))) 
Q2plud(4:6,1:3)=matmul(-L2,Q212d) 
Q2plud(4:6,4:6)=matmul(-L2,(matmul(Q222d,E2)+matmul(Q222,E2d))) 
 
!For layer 3 
xi1=cos(theta3)*xi*cos(ang)+sin(theta3)*xi*sin(ang) 
xi2=-sin(theta3)*xi*cos(ang)+cos(theta3)*xi*sin(ang) 
alpha=A1*A5 
beta=(A1*A2+A5**2-A3**2)*xi1**2-omega**2*(A1+A5) 
gamma1=(A2*xi1**2-omega**2)*(A5*xi1**2-omega**2) 
b1=-(beta*0.5/alpha)-((beta*0.5/alpha)**2-gamma1/alpha)**0.5 
b2=-(beta*0.5/alpha)+((beta*0.5/alpha)**2-gamma1/alpha)**0.5 
b1d=-1.0*(A1*A2+A5**2-
A3**2)*(cos(theta3)*xi*cos(ang)+sin(theta3)*xi*sin(ang))*(cos(theta3)*cos(ang)+sin(th
eta3)*sin(ang))/A1/A5-.5/(.25*((A1*A2+A5**2-
A3**2)*(cos(theta3)*xi*cos(ang)+sin(theta3)*xi*sin(ang))**2-
omega**2*(A1+A5))**2/A1**2/A5**2-
(A2*(cos(theta3)*xi*cos(ang)+sin(theta3)*xi*sin(ang))**2-
omega**2)*(A5*(cos(theta3)*xi*cos(ang)+sin(theta3)*xi*sin(ang))**2-
omega**2)/A1/A5)**.5*(1.00*((A1*A2+A5**2-
A3**2)*(cos(theta3)*xi*cos(ang)+sin(theta3)*xi*sin(ang))**2-
omega**2*(A1+A5))/A1**2/A5**2*(A1*A2+A5**2-
A3**2)*(cos(theta3)*xi*cos(ang)+sin(theta3)*xi*sin(ang))*(cos(theta3)*cos(ang)+sin(th
eta3)*sin(ang))-
2*A2*(cos(theta3)*xi*cos(ang)+sin(theta3)*xi*sin(ang))*(cos(theta3)*cos(ang)+sin(thet
a3)*sin(ang))*(A5*(cos(theta3)*xi*cos(ang)+sin(theta3)*xi*sin(ang))**2-
omega**2)/A1/A5-2*(A2*(cos(theta3)*xi*cos(ang)+sin(theta3)*xi*sin(ang))**2-
omega**2)*(cos(theta3)*xi*cos(ang)+sin(theta3)*xi*sin(ang))*(cos(theta3)*cos(ang)+si
n(theta3)*sin(ang))/A1) 
b2d=-1.0*(A1*A2+A5**2-
A3**2)*(cos(theta3)*xi*cos(ang)+sin(theta3)*xi*sin(ang))*(cos(theta3)*cos(ang)+sin(th
eta3)*sin(ang))/A1/A5+.5/(.25*((A1*A2+A5**2-
A3**2)*(cos(theta3)*xi*cos(ang)+sin(theta3)*xi*sin(ang))**2-
omega**2*(A1+A5))**2/A1**2/A5**2-
(A2*(cos(theta3)*xi*cos(ang)+sin(theta3)*xi*sin(ang))**2-
omega**2)*(A5*(cos(theta3)*xi*cos(ang)+sin(theta3)*xi*sin(ang))**2-
omega**2)/A1/A5)**.5*(1.00*((A1*A2+A5**2-
A3**2)*(cos(theta3)*xi*cos(ang)+sin(theta3)*xi*sin(ang))**2-
omega**2*(A1+A5))/A1**2/A5**2*(A1*A2+A5**2-
A3**2)*(cos(theta3)*xi*cos(ang)+sin(theta3)*xi*sin(ang))*(cos(theta3)*cos(ang)+sin(th
eta3)*sin(ang))-
2*A2*(cos(theta3)*xi*cos(ang)+sin(theta3)*xi*sin(ang))*(cos(theta3)*cos(ang)+sin(thet
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a3)*sin(ang))*(A5*(cos(theta3)*xi*cos(ang)+sin(theta3)*xi*sin(ang))**2-
omega**2)/A1/A5-2*(A2*(cos(theta3)*xi*cos(ang)+sin(theta3)*xi*sin(ang))**2-
omega**2)*(cos(theta3)*xi*cos(ang)+sin(theta3)*xi*sin(ang))*(cos(theta3)*cos(ang)+si
n(theta3)*sin(ang))/A1) 
xi1d=cos(theta3)*cos(ang)+sin(theta3)*sin(ang) 
xi2d=-sin(theta3)*cos(ang)+cos(theta3)*sin(ang) 
zeta1=(-xi2**2+b1)**0.5 
zeta2=(-xi2**2+b2)**0.5 
zeta3=(-xi2**2+(omega**2-A5*xi1**2)/A4)**0.5 
q11=A3*b1 
q21=(omega**2-A2*xi1**2-A5*b1) 
q12=A3*b2 
q22=(omega**2-A2*xi1**2-A5*b2) 
delta1=rho*((A5-A3)*xi1**2*q11-(A1-2*A4)*xi2**2*q21-A1*zeta1**2*q21) 
delta2=rho*((A5-A3)*xi1**2*q12-(A1-2*A4)*xi2**2*q22-A1*zeta2**2*q22) 
Q113=reshape((/ 
(0.d0,1.d0)*xi1*q11,(0.d0,1.d0)*xi2*q21,(0.d0,1.d0)*zeta1*q21,(0.d0,1.d0)*xi1*q12,(0.
d0,1.d0)*xi2*q22,(0.d0,1.d0)*zeta2*q22,(0.d0,0.d0),(0.d0,1.d0)*zeta3,-(0.d0,1.d0)*xi2  
/),(/ 3,3 /)) 
Q123=reshape((/ (0.d0,1.d0)*xi1*q11,(0.d0,1.d0)*xi2*q21,-
(0.d0,1.d0)*zeta1*q21,(0.d0,1.d0)*xi1*q12,(0.d0,1.d0)*xi2*q22,-
(0.d0,1.d0)*zeta2*q22,(0.d0,0.d0),-(0.d0,1.d0)*zeta3,-(0.d0,1.d0)*xi2 /),(/ 3,3 /)) 
Q213=reshape((/ -rho*A5*xi1*zeta1*(q11+q21),-2*rho*A4*xi2*zeta1*q21,delta1,-
rho*A5*xi1*zeta2*(q12+q22),-
2*rho*A4*xi2*zeta2*q22,delta2,rho*A5*xi1*xi2,rho*A4*(xi2**2-
zeta3**2),2*rho*A4*xi2*zeta3 /),(/ 3,3 /)) 
Q223=reshape((/ 
rho*A5*xi1*zeta1*(q11+q21),2*rho*A4*xi2*zeta1*q21,delta1,rho*A5*xi1*zeta2*(q12
+q22),2*rho*A4*xi2*zeta2*q22,delta2,rho*A5*xi1*xi2,rho*A4*(xi2**2-zeta3**2),-
2*rho*A4*xi2*zeta3 /),(/ 3,3 /)) 
E3=reshape((/ 
exp((0.d0,1.d0)*zeta1*h3),(0.d0,0.d0),(0.d0,0.d0),(0.d0,0.d0),exp((0.d0,1.d0)*zeta2*h3),
(0.d0,0.d0),(0.d0,0.d0),(0.d0,0.d0),exp((0.d0,1.d0)*zeta3*h3) /),(/ 3,3 /)) 
Q113d=reshape((/ (0.d0,1.d0)*(xi1*A3*b1d+xi1d*q11),(0.d0,1.d0)*(-
xi2*(2*A2*xi1*xi1d+A5*b1d)+xi2d*q21),(0.d0,1.d0)*((-
2*xi2d*xi2+b1d)*q21/(2*zeta1)+zeta1*(-2*A2*xi1*xi1d-
A5*b1d)),(0.d0,1.d0)*(xi1*A3*b2d+xi1d*q12),(0.d0,1.d0)*(-
xi2*(2*A2*xi1*xi1d+A5*b2d)+xi2d*q22),(0.d0,1.d0)*((-
2*xi2*xi2d+b2d)*q22/(2*zeta2)+zeta2*(-2*A2*xi1*xi1d-
A5*b2d)),(0.d0,0.d0),(0.d0,1.d0)*(-2*xi2*xi2d-2*A5/A4*xi1*xi1d)/(2*zeta3),-
(0.d0,1.d0)*xi2d /),(/ 3,3 /)) 
Q123d=reshape((/ (0.d0,1.d0)*(xi1*A3*b1d+xi1d*q11),(0.d0,1.d0)*(-
xi2*(2*A2*xi1*xi1d+A5*b1d)+xi2d*q21),-(0.d0,1.d0)*((-
2*xi2d*xi2+b1d)*q21/(2*zeta1)+zeta1*(-2*A2*xi1*xi1d-
A5*b1d)),(0.d0,1.d0)*(xi1*A3*b2d+xi1d*q12),(0.d0,1.d0)*(-
xi2*(2*A2*xi1*xi1d+A5*b2d)+xi2d*q22),-(0.d0,1.d0)*((-
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2*xi2*xi2d+b2d)*q22/(2*zeta2)+zeta2*(-2*A2*xi1*xi1d-A5*b2d)),(0.d0,0.d0),-
(0.d0,1.d0)*(-2*xi2*xi2d-2*A5/A4*xi1*xi1d)/(2*zeta3),-(0.d0,1.d0)*xi2d /),(/ 3,3 /)) 
Q213d(1,1)=-rho*A5*(xi1*zeta1*(A3*b1d-2*A2*xi1*xi1d-
A5*b1d)+zeta1*(q11+q21)*xi1d+xi1*(q11+q21)*(-2*xi2*xi2d+b1d)/(2*zeta1)) 
Q213d(1,2)=-rho*A5*(xi1*zeta2*(A3*b2d-2*A2*xi1*xi1d-
A5*b2d)+zeta2*(q12+q22)*xi1d+xi1*(q12+q22)*(-2*xi2*xi2d+b2d)/(2*zeta2)) 
Q213d(1,3)=rho*A5*(xi1*xi2d+xi2*xi1d) 
Q213d(2,1)=-2*rho*A4*(xi2*zeta1*(-2*A2*xi1*xi1d-
A5*b1d)+zeta1*q21*xi2d+xi2*q21*(-2*xi2*xi2d+b1d)/(2*zeta1)) 
Q213d(2,2)=-2*rho*A4*(xi2*zeta2*(-2*A2*xi1*xi1d-
A5*b2d)+zeta2*q22*xi2d+xi2*q22*(-2*xi2*xi2d+b2d)/(2*zeta2)) 
Q213d(2,3)=rho*A4*(4*xi2*xi2d+2*A5*xi1*xi1d/A4) 
Q213d(3,1)=rho*((A5-A3)*(2*xi1*xi1d*q11+xi1**2*A3*b1d)-(A1-
2*A4)*(2*xi2*xi2d*q21-xi2**2*(2*A2*xi1*xi1d+A5*b1d))-A1*(q21*(-
2*xi2*xi2d+b1d)-zeta1**2*(2*A2*xi1*xi1d+A5*b1d))) 
Q213d(3,2)=rho*((A5-A3)*(2*xi1*xi1d*q12+xi1**2*A3*b2d)-(A1-
2*A4)*(2*xi2*xi2d*q22-xi2**2*(2*A2*xi1*xi1d+A5*b2d))-A1*(q22*(-
2*xi2*xi2d+b2d)-zeta2**2*(2*A2*xi1*xi1d+A5*b2d))) 
Q213d(3,3)=2*rho*A4*zeta3*xi2d-2*rho*A4*xi2*(xi2*xi2d+A5*xi1*xi1d/A4)/zeta3 
Q223d=Q213d 
Q223d(1:2,1:2)=-Q213d(1:2,1:2) 
Q223d(3,3)=-Q213d(3,3) 
E3d=reshape((/ exp((0.d0,1.d0)*zeta1*h3)*(0.d0,1.d0)*h3*(-
2*xi2*xi2d+b1d)/(2*zeta1),(0.d0,0.d0),(0.d0,0.d0),(0.d0,0.d0),exp((0.d0,1.d0)*zeta2*h3)
*(0.d0,1.d0)*h3*(-
2*xi2*xi2d+b2d)/(2*zeta2),(0.d0,0.d0),(0.d0,0.d0),(0.d0,0.d0),exp((0.d0,1.d0)*zeta3*h3)
*(0.d0,1.d0)*h3*(-2*xi2*xi2d-2*A5*xi1*xi1d/A4)/(2*zeta3) /),(/ 3,3 /)) 
 
Q3min(1:3,1:3)=matmul(L3,matmul(Q113,E3)) 
Q3min(1:3,4:6)=matmul(L3,Q123) 
Q3min(4:6,1:3)=matmul(L3,matmul(Q213,E3)) 
Q3min(4:6,4:6)=matmul(L3,Q223) 
Q3plu(1:3,1:3)=matmul(-L3,Q113) 
Q3plu(1:3,4:6)=matmul(-L3,matmul(Q123,E3)) 
Q3plu(4:6,1:3)=matmul(-L3,Q213) 
Q3plu(4:6,4:6)=matmul(-L3,matmul(Q223,E3)) 
Q3mind(1:3,1:3)=matmul(L3,(matmul(Q113d,E3)+matmul(Q113,E3d))) 
Q3mind(1:3,4:6)=matmul(L3,Q123d) 
Q3mind(4:6,1:3)=matmul(L3,(matmul(Q213d,E3)+matmul(Q213,E3d))) 
Q3mind(4:6,4:6)=matmul(L3,Q223d) 
Q3plud(1:3,1:3)=matmul(-L3,Q113d) 
Q3plud(1:3,4:6)=matmul(-L3,(matmul(Q123d,E3)+matmul(Q123,E3d))) 
Q3plud(4:6,1:3)=matmul(-L3,Q213d) 
Q3plud(4:6,4:6)=matmul(-L3,(matmul(Q223d,E3)+matmul(Q223,E3d))) 
 
!For layer 4 
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xi1=cos(theta4)*xi*cos(ang)+sin(theta4)*xi*sin(ang) 
xi2=-sin(theta4)*xi*cos(ang)+cos(theta4)*xi*sin(ang) 
alpha=A1*A5 
beta=(A1*A2+A5**2-A3**2)*xi1**2-omega**2*(A1+A5) 
gamma1=(A2*xi1**2-omega**2)*(A5*xi1**2-omega**2) 
b1=-(beta*0.5/alpha)-((beta*0.5/alpha)**2-gamma1/alpha)**0.5 
b2=-(beta*0.5/alpha)+((beta*0.5/alpha)**2-gamma1/alpha)**0.5 
b1d=-1.0*(A1*A2+A5**2-
A3**2)*(cos(theta4)*xi*cos(ang)+sin(theta4)*xi*sin(ang))*(cos(theta4)*cos(ang)+sin(th
eta4)*sin(ang))/A1/A5-.5/(.25*((A1*A2+A5**2-
A3**2)*(cos(theta4)*xi*cos(ang)+sin(theta4)*xi*sin(ang))**2-
omega**2*(A1+A5))**2/A1**2/A5**2-
(A2*(cos(theta4)*xi*cos(ang)+sin(theta4)*xi*sin(ang))**2-
omega**2)*(A5*(cos(theta4)*xi*cos(ang)+sin(theta4)*xi*sin(ang))**2-
omega**2)/A1/A5)**.5*(1.00*((A1*A2+A5**2-
A3**2)*(cos(theta4)*xi*cos(ang)+sin(theta4)*xi*sin(ang))**2-
omega**2*(A1+A5))/A1**2/A5**2*(A1*A2+A5**2-
A3**2)*(cos(theta4)*xi*cos(ang)+sin(theta4)*xi*sin(ang))*(cos(theta4)*cos(ang)+sin(th
eta4)*sin(ang))-
2*A2*(cos(theta4)*xi*cos(ang)+sin(theta4)*xi*sin(ang))*(cos(theta4)*cos(ang)+sin(thet
a4)*sin(ang))*(A5*(cos(theta4)*xi*cos(ang)+sin(theta4)*xi*sin(ang))**2-
omega**2)/A1/A5-2*(A2*(cos(theta4)*xi*cos(ang)+sin(theta4)*xi*sin(ang))**2-
omega**2)*(cos(theta4)*xi*cos(ang)+sin(theta4)*xi*sin(ang))*(cos(theta4)*cos(ang)+si
n(theta4)*sin(ang))/A1) 
b2d=-1.0*(A1*A2+A5**2-
A3**2)*(cos(theta4)*xi*cos(ang)+sin(theta4)*xi*sin(ang))*(cos(theta4)*cos(ang)+sin(th
eta4)*sin(ang))/A1/A5+.5/(.25*((A1*A2+A5**2-
A3**2)*(cos(theta4)*xi*cos(ang)+sin(theta4)*xi*sin(ang))**2-
omega**2*(A1+A5))**2/A1**2/A5**2-
(A2*(cos(theta4)*xi*cos(ang)+sin(theta4)*xi*sin(ang))**2-
omega**2)*(A5*(cos(theta4)*xi*cos(ang)+sin(theta4)*xi*sin(ang))**2-
omega**2)/A1/A5)**.5*(1.00*((A1*A2+A5**2-
A3**2)*(cos(theta4)*xi*cos(ang)+sin(theta4)*xi*sin(ang))**2-
omega**2*(A1+A5))/A1**2/A5**2*(A1*A2+A5**2-
A3**2)*(cos(theta4)*xi*cos(ang)+sin(theta4)*xi*sin(ang))*(cos(theta4)*cos(ang)+sin(th
eta4)*sin(ang))-
2*A2*(cos(theta4)*xi*cos(ang)+sin(theta4)*xi*sin(ang))*(cos(theta4)*cos(ang)+sin(thet
a4)*sin(ang))*(A5*(cos(theta4)*xi*cos(ang)+sin(theta4)*xi*sin(ang))**2-
omega**2)/A1/A5-2*(A2*(cos(theta4)*xi*cos(ang)+sin(theta4)*xi*sin(ang))**2-
omega**2)*(cos(theta4)*xi*cos(ang)+sin(theta4)*xi*sin(ang))*(cos(theta4)*cos(ang)+si
n(theta4)*sin(ang))/A1) 
xi1d=cos(theta4)*cos(ang)+sin(theta4)*sin(ang) 
xi2d=-sin(theta4)*cos(ang)+cos(theta4)*sin(ang) 
zeta1=(-xi2**2+b1)**0.5 
zeta2=(-xi2**2+b2)**0.5 
zeta3=(-xi2**2+(omega**2-A5*xi1**2)/A4)**0.5 
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q11=A3*b1 
q21=(omega**2-A2*xi1**2-A5*b1) 
q12=A3*b2 
q22=(omega**2-A2*xi1**2-A5*b2) 
delta1=rho*((A5-A3)*xi1**2*q11-(A1-2*A4)*xi2**2*q21-A1*zeta1**2*q21) 
delta2=rho*((A5-A3)*xi1**2*q12-(A1-2*A4)*xi2**2*q22-A1*zeta2**2*q22) 
Q114=reshape((/ 
(0.d0,1.d0)*xi1*q11,(0.d0,1.d0)*xi2*q21,(0.d0,1.d0)*zeta1*q21,(0.d0,1.d0)*xi1*q12,(0.
d0,1.d0)*xi2*q22,(0.d0,1.d0)*zeta2*q22,(0.d0,0.d0),(0.d0,1.d0)*zeta3,-(0.d0,1.d0)*xi2  
/),(/ 3,3 /)) 
Q124=reshape((/ (0.d0,1.d0)*xi1*q11,(0.d0,1.d0)*xi2*q21,-
(0.d0,1.d0)*zeta1*q21,(0.d0,1.d0)*xi1*q12,(0.d0,1.d0)*xi2*q22,-
(0.d0,1.d0)*zeta2*q22,(0.d0,0.d0),-(0.d0,1.d0)*zeta3,-(0.d0,1.d0)*xi2 /),(/ 3,3 /)) 
Q214=reshape((/ -rho*A5*xi1*zeta1*(q11+q21),-2*rho*A4*xi2*zeta1*q21,delta1,-
rho*A5*xi1*zeta2*(q12+q22),-
2*rho*A4*xi2*zeta2*q22,delta2,rho*A5*xi1*xi2,rho*A4*(xi2**2-
zeta3**2),2*rho*A4*xi2*zeta3 /),(/ 3,3 /)) 
Q224=reshape((/ 
rho*A5*xi1*zeta1*(q11+q21),2*rho*A4*xi2*zeta1*q21,delta1,rho*A5*xi1*zeta2*(q12
+q22),2*rho*A4*xi2*zeta2*q22,delta2,rho*A5*xi1*xi2,rho*A4*(xi2**2-zeta3**2),-
2*rho*A4*xi2*zeta3 /),(/ 3,3 /)) 
E4=reshape((/ 
exp((0.d0,1.d0)*zeta1*h4),(0.d0,0.d0),(0.d0,0.d0),(0.d0,0.d0),exp((0.d0,1.d0)*zeta2*h4),
(0.d0,0.d0),(0.d0,0.d0),(0.d0,0.d0),exp((0.d0,1.d0)*zeta3*h4) /),(/ 3,3 /)) 
Q114d=reshape((/ (0.d0,1.d0)*(xi1*A3*b1d+xi1d*q11),(0.d0,1.d0)*(-
xi2*(2*A2*xi1*xi1d+A5*b1d)+xi2d*q21),(0.d0,1.d0)*((-
2*xi2d*xi2+b1d)*q21/(2*zeta1)+zeta1*(-2*A2*xi1*xi1d-
A5*b1d)),(0.d0,1.d0)*(xi1*A3*b2d+xi1d*q12),(0.d0,1.d0)*(-
xi2*(2*A2*xi1*xi1d+A5*b2d)+xi2d*q22),(0.d0,1.d0)*((-
2*xi2*xi2d+b2d)*q22/(2*zeta2)+zeta2*(-2*A2*xi1*xi1d-
A5*b2d)),(0.d0,0.d0),(0.d0,1.d0)*(-2*xi2*xi2d-2*A5/A4*xi1*xi1d)/(2*zeta3),-
(0.d0,1.d0)*xi2d /),(/ 3,3 /)) 
Q124d=reshape((/ (0.d0,1.d0)*(xi1*A3*b1d+xi1d*q11),(0.d0,1.d0)*(-
xi2*(2*A2*xi1*xi1d+A5*b1d)+xi2d*q21),-(0.d0,1.d0)*((-
2*xi2d*xi2+b1d)*q21/(2*zeta1)+zeta1*(-2*A2*xi1*xi1d-
A5*b1d)),(0.d0,1.d0)*(xi1*A3*b2d+xi1d*q12),(0.d0,1.d0)*(-
xi2*(2*A2*xi1*xi1d+A5*b2d)+xi2d*q22),-(0.d0,1.d0)*((-
2*xi2*xi2d+b2d)*q22/(2*zeta2)+zeta2*(-2*A2*xi1*xi1d-A5*b2d)),(0.d0,0.d0),-
(0.d0,1.d0)*(-2*xi2*xi2d-2*A5/A4*xi1*xi1d)/(2*zeta3),-(0.d0,1.d0)*xi2d /),(/ 3,3 /)) 
Q214d(1,1)=-rho*A5*(xi1*zeta1*(A3*b1d-2*A2*xi1*xi1d-
A5*b1d)+zeta1*(q11+q21)*xi1d+xi1*(q11+q21)*(-2*xi2*xi2d+b1d)/(2*zeta1)) 
Q214d(1,2)=-rho*A5*(xi1*zeta2*(A3*b2d-2*A2*xi1*xi1d-
A5*b2d)+zeta2*(q12+q22)*xi1d+xi1*(q12+q22)*(-2*xi2*xi2d+b2d)/(2*zeta2)) 
Q214d(1,3)=rho*A5*(xi1*xi2d+xi2*xi1d) 
Q214d(2,1)=-2*rho*A4*(xi2*zeta1*(-2*A2*xi1*xi1d-
A5*b1d)+zeta1*q21*xi2d+xi2*q21*(-2*xi2*xi2d+b1d)/(2*zeta1)) 
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Q214d(2,2)=-2*rho*A4*(xi2*zeta2*(-2*A2*xi1*xi1d-
A5*b2d)+zeta2*q22*xi2d+xi2*q22*(-2*xi2*xi2d+b2d)/(2*zeta2)) 
Q214d(2,3)=rho*A4*(4*xi2*xi2d+2*A5*xi1*xi1d/A4) 
Q214d(3,1)=rho*((A5-A3)*(2*xi1*xi1d*q11+xi1**2*A3*b1d)-(A1-
2*A4)*(2*xi2*xi2d*q21-xi2**2*(2*A2*xi1*xi1d+A5*b1d))-A1*(q21*(-
2*xi2*xi2d+b1d)-zeta1**2*(2*A2*xi1*xi1d+A5*b1d))) 
Q214d(3,2)=rho*((A5-A3)*(2*xi1*xi1d*q12+xi1**2*A3*b2d)-(A1-
2*A4)*(2*xi2*xi2d*q22-xi2**2*(2*A2*xi1*xi1d+A5*b2d))-A1*(q22*(-
2*xi2*xi2d+b2d)-zeta2**2*(2*A2*xi1*xi1d+A5*b2d))) 
Q214d(3,3)=2*rho*A4*zeta3*xi2d-2*rho*A4*xi2*(xi2*xi2d+A5*xi1*xi1d/A4)/zeta3 
Q224d=Q214d 
Q224d(1:2,1:2)=-Q214d(1:2,1:2) 
Q224d(3,3)=-Q214d(3,3) 
E4d=reshape((/ exp((0.d0,1.d0)*zeta1*h4)*(0.d0,1.d0)*h4*(-
2*xi2*xi2d+b1d)/(2*zeta1),(0.d0,0.d0),(0.d0,0.d0),(0.d0,0.d0),exp((0.d0,1.d0)*zeta2*h4)
*(0.d0,1.d0)*h4*(-
2*xi2*xi2d+b2d)/(2*zeta2),(0.d0,0.d0),(0.d0,0.d0),(0.d0,0.d0),exp((0.d0,1.d0)*zeta3*h4)
*(0.d0,1.d0)*h4*(-2*xi2*xi2d-2*A5*xi1*xi1d/A4)/(2*zeta3) /),(/ 3,3 /)) 
 
Q4min(1:3,1:3)=matmul(L4,matmul(Q114,E4)) 
Q4min(1:3,4:6)=matmul(L4,Q124) 
Q4min(4:6,1:3)=matmul(L4,matmul(Q214,E4)) 
Q4min(4:6,4:6)=matmul(L4,Q224) 
Q4plu(1:3,1:3)=matmul(-L4,Q114) 
Q4plu(1:3,4:6)=matmul(-L4,matmul(Q124,E4)) 
Q4plu(4:6,1:3)=matmul(-L4,Q214) 
Q4plu(4:6,4:6)=matmul(-L4,matmul(Q224,E4)) 
 
Q4mind(1:3,1:3)=matmul(L4,(matmul(Q114d,E4)+matmul(Q114,E4d))) 
Q4mind(1:3,4:6)=matmul(L4,Q124d) 
Q4mind(4:6,1:3)=matmul(L4,(matmul(Q214d,E4)+matmul(Q214,E4d))) 
Q4mind(4:6,4:6)=matmul(L4,Q224d) 
Q4plud(1:3,1:3)=matmul(-L4,Q114d) 
Q4plud(1:3,4:6)=matmul(-L4,(matmul(Q124d,E4)+matmul(Q124,E4d))) 
Q4plud(4:6,1:3)=matmul(-L4,Q214d) 
Q4plud(4:6,4:6)=matmul(-L4,(matmul(Q224d,E4)+matmul(Q224,E4d))) 
Qm(1:24,1:24)=0.d0 
Qm(1:3,1:6)=Q1pluh 
Qm(4:9,1:6)=Q1min 
Qm(4:9,7:12)=Q2plu 
Qm(10:15,7:12)=Q2min 
Qm(10:15,13:18)=Q3plu 
Qm(16:21,13:18)=Q3min 
Qm(16:21,19:24)=Q4plu 
!Qm(22:23,19:24)=Q4min(1:2,1:6) !For AntiSymmetric modes 
Qm(22:24,19:24)=Q4min(3:5,1:6) !For Symmetric modes 
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!Qm(24,19:24)=Q4min(6,1:6)   !For Antisymm modes 
 
Qmd(1:24,1:24)=0.d0 
Qmd(1:3,1:6)=Q1pluhd 
Qmd(4:9,1:6)=Q1mind 
Qmd(4:9,7:12)=Q2plud 
Qmd(10:15,7:12)=Q2mind 
Qmd(10:15,13:18)=Q3plud 
Qmd(16:21,13:18)=Q3mind 
Qmd(16:21,19:24)=Q4plud 
!Qmd(22:23,19:24)=Q4mind(1:2,1:6) !For AntiSymmetric modes 
Qmd(22:24,19:24)=Q4mind(3:5,1:6) !For Symmetric modes 
!Qmd(24,19:24)=Q4mind(6,1:6)   !For Antisymm modes 
 
end subroutine layerprops 
 
 
B.4 Matlab Code for Generating Images/Movies and Waveform Files 

 Some explanatory notes have been added following the “%” symbol, which is the 

commenting symbol in Matlab.  

 

B.4.A Out-of-Plane Displacement Field Image for Circular Actuator (Fig. 11 (b)) 

for i=1:1600 
    x(i)=-10e-2+i*10e-2/800; 
end 
for i=1:1600 
    for j=1:1600 
        if (x(i)^2+x(j)^2 > 6.25e-6)  
            uz(i,j)=BESSELJ(0,2*pi*(x(i)^2+x(j)^2)^0.5/0.9542e-2); 
        else 
            uz(i,j)=0; 
        end 
    end 
end 
uz=uz/min(min(uz)); 
figure; surf(x,x,uz'); 
shading interp; view(2) 
axis off; 
colorbar 
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B.4.B Waveform Generation and Storage in a File (for Agilent Intuilink/Abaqus) 

f=275e3; % Center frequency  
step=1E-08; % Time step – note that this is much finer for Intuilink. For Abaqus, it        
% should only be fine enough to resolve the highest frequency (~ (20fmax)-1) 
end1=10E-5; % Last instant of time in signal: if no zero padding is needed, this is n/f 
n=2.5; % Number of cycles 
t=0:step:n/f; 
% The following line is for a n-cycle Hanning windowed sinusoidal toneburst 
y=0.5*sin(2*pi*f*t)-0.25*(sin(2*(n+1)*pi*f*t/n)+sin(2*(n-1)*pi*f*t/n)); 
a=max(size(t)); 
b=floor(end1/step); 
t(a+1:b)=(n/f+step):step:end1; 
y(a+1:b)=0; 
plot(t,y) 
csvwrite('waveform275khz.csv',y) %Use this line only for signal generation to download 
% to the function generator 
% If using the file for ABAQUS, include the remaining lines and delete the above line 
for i=1:b/4 %The steps of 4 data points in each line is needed for ABAQUS 
    l=(4*(i-1)+1); 
    ll=4*i; 
    for j=l:ll 
        y2(i,2*(j-4*(i-1))-1)=t(j); 
        y2(i,2*(j-4*(i-1)))=y(j); 
    end 
end 
csvwrite('waveform275khz.inp',y2) 

 

B.4.C Post-Processing the Data from the Laser Vibrometer Experiment (Fig. 24 (a)) 

clear all 
x(1:4)=0:0.5:1.5; x(5:23)=2:1:20; 
x3=floor(x/2); 
x2=round(10*(x/2-floor(x/2))); 
y=-19.6:0.6:-0.4;  
    y1=(12.6/25*(25+y)-3.6); 
    y2=round(abs(100*y1))-100*floor(abs(y1)); 
    y3=floor(abs(y1)); 
t=0:1.25e-7:933*1.25e-7; 
f=sin(2*pi*30e3*t).*window(934,'Hanning')'; 
j=1; 
for i=1:30 
    x2s=num2str(x2(j)); 
    x3s=num2str(x3(j)); 
    y2s=num2str(y2(i)); 
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    y3s=num2str(y3(i)); 
    if y2(i)==3 
        y2s='03'; 
    end 
    if y2(i)==5 
        y2s='05'; 
    end 
    if y2(i)==8 
        y2s='08'; 
    end 
    if y1(i)>0 
        fn=strcat('x0y',y3s,'p',y2s,'_30khza0.tsv'); 
    else 
        fn=strcat('x0ym',y3s,'p',y2s,'_30khza0.tsv'); 
    end 
    [z(j,i,:),gr,cr]=wden(detrend(dlmread(fn,'\t',25,1)),'heursure','s','one',6,'dmey'); 
end     
 
for j=2:23 
for i=1:30 
    x2s=num2str(x2(j)); 
    x3s=num2str(x3(j)); 
    if x2(j)==3 
        x2s='25'; 
    end 
    if x2(j)==8 
        x2s='75'; 
    end 
    y2s=num2str(y2(i)); 
    y3s=num2str(y3(i)); 
    if y2(i)==3 
        y2s='03'; 
    end 
    if y2(i)==5 
        y2s='05'; 
    end 
    if y2(i)==8 
        y2s='08'; 
    end 
    if y1(i)>0 
        fn=strcat('x',x3s,'p',x2s,'y',y3s,'p',y2s,'_30khza0.tsv'); 
    else 
        fn=strcat('x',x3s,'p',x2s,'ym',y3s,'p',y2s,'_30khza0.tsv'); 
    end 
    [z(j,i,:),gr,cr]=wden(detrend(dlmread(fn,'\t',25,1)),'heursure','s','one',6,'dmey'); 
end     
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end 
for j=4:23 
for i=31:33 
    x2s=num2str(x2(j)); 
    x3s=num2str(x3(j)); 
    if x2(j)==3 
        x2s='25'; 
    end 
    if x2(j)==8 
        x2s='75'; 
    end 
    y2s=num2str(y2(i)); 
    y3s=num2str(y3(i)); 
    if y2(i)==3 
        y2s='03'; 
    end 
    if y2(i)==5 
        y2s='05'; 
    end 
    if y2(i)==8 
        y2s='08'; 
    end 
    if y1(i)>0 
        fn=strcat('x',x3s,'p',x2s,'y',y3s,'p',y2s,'_30khza0.tsv'); 
    else 
        fn=strcat('x',x3s,'p',x2s,'ym',y3s,'p',y2s,'_30khza0.tsv'); 
    end 
    [z(j,i,:),gr,cr]=wden(detrend(dlmread(fn,'\t',25,1)),'heursure','s','one',6,'dmey'); 
end     
end 
figure;  
z=-z/max(max(max(z))); 
c2=[-0.8 0.8]; 
[xo,yo]=meshgrid(x,y); 
[xi,yi]=meshgrid(0.1:0.3:19.6,-19.6:0.3:-0.1); 
for k=1:30 
   ti=k*10 
   titl=sprintf('Time = %g microsec.',ti); 
   zn(1:23,1:33)=z(:,:,k*80); 
   zn1=interp2(xo,yo,zn',xi,yi,'cubic'); 
   surf(xi,yi,zn1); colormap('jet'); caxis(c2); text(-5e-2,9.5e-2,titl,'FontSize',12); shading 
interp; axis square; axis off;  view(2); colorbar; % caxis(c2); 
   M(k)=getframe; 
end 
movie2avi(M,'vibroexpmfcmovie2.avi','compression','None','Quality',100,'fps',1); 
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B.4.D Spectrograms on Log-Scale with Colors as in LastWave 2.0 (Fig. 42 (b)) 

clear all 
yd=load('e11n12ds6cm10cmb12p5cmnoisy.txt'); %Noisy FEM simulation signal file 
yds=specgram(yd,max(size(yd)),1/1e-7,90,89); 
freq=20:20:600; 
time=(10:1e-1:45.75); 
for i=1:30 
    ydsn(i,:)=yds(31-i,:); 
end 
atem=abs(max(max(ydsn(1:30,55:412))))^2; 
for k=1:30 
    for l=55:412 
        ate=abs(ydsn(k,l))^2/atem; 
        ydsn1(k,l)=20*log10(ate); 
    end 
end 
freq1=1:1:600; 
[to,fo]=meshgrid(time,freq); 
[tf,ff]=meshgrid(time,freq1); 
ydsn2=interp2(to,fo,ydsn1(1:30,55:412),tf,ff); 
v=[-30 0]; 
figure; imagesc(time,freq1,ydsn2); caxis(v); 
atest=0:0.0625:1; 
atest1=0:0.125:1; 
atest2=1:-0.125:0; 
atest3=1:-0.0625:0; 
atest4=0:0.0625:1; 
test(1:17,3)=atest'; 
test(18:26,3)=1; 
test(18:26,2)=atest1'; 
test(27:43,3)=atest3'; 
test(27:43,2)=1; 
test(44:60,2)=1; 
test(44:60,3)=0; 
test(44:60,1)=atest4'; 
test(61:77,1)=1; 
test(61:77,3)=0; 
test(61:77,2)=atest3'; 
colormap(test); h=colorbar('vert'); 
set(h,'FontSize',20); 
xlabel('Time (   s)','FontSize',24); 
ylabel('Frequency (kHz)','FontSize',24); 
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B.4.E Transient Out-of-plane Displacements by a Square Piezo Function for Composites 

This code uses the kernel function evaluated by the Fortran 90 code in Section 

B.3 as input and generates out-of-plane displacement surface plots due to excitation by a 

square piezo. 

 

clc 
clear all 
cpf=load('S0multi045m4590p11mmlayertssymmroot20to800khzallangs.txt'); 
kern=load('multiQmkernS020to800khz045m4590p11mmlayertssymmre.txt'); 
for k=1+90:361+90 
angle1(k)=-pi+2*pi*(k-91)/360; 
end 
for k=1:90 
angle1(k)=-pi-(91-k)*pi/180; 
end 
for k=361+91:361+183 
angle1(k)=pi+(k-361-91)*pi/180; 
end 
 
% These angle changes eliminate computation singularities at 0,90,180,270 and 360 
degrees 
% since cos( ) and sin( ) functions appear in the denominator 
angle1(1)=-3*pi/2-pi/180; 
angle1(91)=-pi-pi/180; 
angle1(181)=-pi/2-pi/180; 
angle1(271)=-pi/180; 
angle1(361)=pi/2-pi/180; 
angle1(361+91)=pi-pi/180; 
angle1(361+182)=3*pi/2-pi/180; 
for ko=5:17 
    ko 
cpd(1:60)=cpf((ko-2)*60+1:(ko-1)*60); 
cpd(61)=cpd(60); 
for j=1:60 
cp1(3*(j-1)+1)=cpd(j); 
cp1(3*(j-1)+2)=cpd(j)*2/3+cpd(j+1)/3; 
cp1(3*j)=cpd(j)/3+cpd(j+1)*2/3; 
end 
cp1(181)=cp1(180); 
cp(182+90:361+90)=cp1(1:180); 
cp(1+90:181+90)=cp1(1:181); 
cp(1:90)=cp1(91:180); 
cp(361+91:361+183)=cp1(1:93); 
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ydd(1:60)=kern((ko-2)*60+1:(ko-1)*60); 
ydd(61)=ydd(60); 
 
%Upsampling from 3 deg intervals to 1 deg intervals 
for j=1:60 
yd(3*(j-1)+1)=ydd(j); 
yd(3*(j-1)+2)=ydd(j)*2/3+ydd(j+1)/3; 
yd(3*j)=ydd(j)/3+ydd(j+1)*2/3; 
end 
 
yd(181)=yd(180); 
u3r(1:90)=yd(91:180); 
u3r(1+90:181+90)=yd(1:181); 
u3r(182+90:361+90)=yd(1:180); 
u3r(361+91:361+183)=yd(1:93); 
u3=u3r; 
omega=2*pi*20e3*(ko-1); 
 
xn(1:80)=0.125e-2*3/2:0.125e-2:10e-2+0.125e-2/2; 
yn=-10e-2+0.125e-2*3/2:0.125e-2:10e-2+0.125e-2/2; 
[xn1,yn1]=meshgrid(xn,yn); 
 
%Actuator half-size along x1 and x2 directions 
a1=0.005; 
a2=0.005; 
 
for x1i=4:80 
for x1j=1:160 
u3f(x1i,x1j,ko)=0.; 
x1=0.125e-2*x1i+0.125e-2/2; 
x2=0.125e-2*x1j+0.125e-2/2-10e-2; 
angc=atan2((x2-a2),(x1-a1)); 
r=((x1-a1)^2+(x2-a2)^2)^0.5; 
kin=round((angc-pi/2)*180/pi)+181+90; 
kfin=round((angc+pi/2)*180/pi)+181+90; 
for k=kin:kfin 
xi=omega/cp(k); 
ang=angle1(k); 
u3f(x1i,x1j,ko)=u3f(x1i,x1j,ko)+u3(k)*exp(-i*xi*r*cos(angc-ang))/(cos(ang)*sin(ang)); 
end 
angc=atan2((x2+a2),(x1-a1)); 
r=((x1-a1)^2+(x2+a2)^2)^0.5; 
kin=round((angc-pi/2)*180/pi)+181+90; 
kfin=round((angc+pi/2)*180/pi)+181+90; 
for k=kin:kfin 
xi=omega/cp(k); 
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ang=angle1(k); 
u3f(x1i,x1j,ko)=u3f(x1i,x1j,ko)-u3(k)*exp(-i*xi*r*cos(angc-ang))/(cos(ang)*sin(ang)); 
end 
angc=atan2((x2-a2),(x1+a1)); 
r=((x1+a1)^2+(x2-a2)^2)^0.5; 
kin=round((angc-pi/2)*180/pi)+181+90; 
kfin=round((angc+pi/2)*180/pi)+181+90; 
for k=kin:kfin 
xi=omega/cp(k); 
ang=angle1(k); 
u3f(x1i,x1j,ko)=u3f(x1i,x1j,ko)-u3(k)*exp(-i*xi*r*cos(angc-ang))/(cos(ang)*sin(ang)); 
end 
angc=atan2((x2+a2),(x1+a1)); 
r=((x1+a1)^2+(x2+a2)^2)^0.5; 
kin=round((angc-pi/2)*180/pi)+181+90; 
kfin=round((angc+pi/2)*180/pi)+181+90; 
for k=kin:kfin 
xi=omega/cp(k); 
ang=angle1(k); 
u3f(x1i,x1j,ko)=u3f(x1i,x1j,ko)+u3(k)*exp(-i*xi*r*cos(angc-ang))/(cos(ang)*sin(ang)); 
end 
end 
end 
 
for x1i=1:3 
    x1i 
for x1j=1:77 
u3f(x1i,x1j,ko)=0.; 
x1=0.125e-2*x1i+0.125e-2/2; 
x2=0.125e-2*x1j+0.125e-2/2-10e-2; 
angc=atan2((x2-a2),(x1-a1)); 
r=((x1-a1)^2+(x2-a2)^2)^0.5; 
kin=round((angc-pi/2)*180/pi)+181+90; 
kfin=round((angc+pi/2)*180/pi)+181+90; 
for k=kin:kfin 
xi=omega/cp(k); 
ang=angle1(k); 
u3f(x1i,x1j,ko)=u3f(x1i,x1j,ko)+u3(k)*exp(-i*xi*r*cos(angc-ang))/(cos(ang)*sin(ang)); 
end 
angc=atan2((x2+a2),(x1-a1)); 
r=((x1-a1)^2+(x2+a2)^2)^0.5; 
kin=round((angc-pi/2)*180/pi)+181+90; 
kfin=round((angc+pi/2)*180/pi)+181+90; 
for k=kin:kfin 
xi=omega/cp(k); 
ang=angle1(k); 
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u3f(x1i,x1j,ko)=u3f(x1i,x1j,ko)-u3(k)*exp(-i*xi*r*cos(angc-ang))/(cos(ang)*sin(ang)); 
end 
angc=atan2((x2-a2),(x1+a1)); 
r=((x1+a1)^2+(x2-a2)^2)^0.5; 
kin=round((angc-pi/2)*180/pi)+181+90; 
kfin=round((angc+pi/2)*180/pi)+181+90; 
for k=kin:kfin 
xi=omega/cp(k); 
ang=angle1(k); 
u3f(x1i,x1j,ko)=u3f(x1i,x1j,ko)-u3(k)*exp(-i*xi*r*cos(angc-ang))/(cos(ang)*sin(ang)); 
end 
angc=atan2((x2+a2),(x1+a1)); 
r=((x1+a1)^2+(x2+a2)^2)^0.5; 
kin=round((angc-pi/2)*180/pi)+181+90; 
kfin=round((angc+pi/2)*180/pi)+181+90; 
for k=kin:kfin 
xi=omega/cp(k); 
ang=angle1(k); 
u3f(x1i,x1j,ko)=u3f(x1i,x1j,ko)+u3(k)*exp(-i*xi*r*cos(angc-ang))/(cos(ang)*sin(ang)); 
end 
end 
end 
 
for x1i=1:3 
    x1i 
for x1j=84:160 
u3f(x1i,x1j,ko)=0.; 
x1=0.125e-2*x1i+0.125e-2/2; 
x2=0.125e-2*x1j+0.125e-2/2-10e-2; 
angc=atan2((x2-a2),(x1-a1)); 
r=((x1-a1)^2+(x2-a2)^2)^0.5; 
kin=round((angc-pi/2)*180/pi)+181+90; 
kfin=round((angc+pi/2)*180/pi)+181+90; 
for k=kin:kfin 
xi=omega/cp(k); 
ang=angle1(k); 
u3f(x1i,x1j,ko)=u3f(x1i,x1j,ko)+u3(k)*exp(-i*xi*r*cos(angc-ang))/(cos(ang)*sin(ang)); 
end 
angc=atan2((x2+a2),(x1-a1)); 
r=((x1-a1)^2+(x2+a2)^2)^0.5; 
kin=round((angc-pi/2)*180/pi)+181+90; 
kfin=round((angc+pi/2)*180/pi)+181+90; 
for k=kin:kfin 
xi=omega/cp(k); 
ang=angle1(k); 
u3f(x1i,x1j,ko)=u3f(x1i,x1j,ko)-u3(k)*exp(-i*xi*r*cos(angc-ang))/(cos(ang)*sin(ang)); 
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end 
angc=atan2((x2-a2),(x1+a1)); 
r=((x1+a1)^2+(x2-a2)^2)^0.5; 
kin=round((angc-pi/2)*180/pi)+181+90; 
kfin=round((angc+pi/2)*180/pi)+181+90; 
for k=kin:kfin 
xi=omega/cp(k); 
ang=angle1(k); 
u3f(x1i,x1j,ko)=u3f(x1i,x1j,ko)-u3(k)*exp(-i*xi*r*cos(angc-ang))/(cos(ang)*sin(ang)); 
end 
angc=atan2((x2+a2),(x1+a1)); 
r=((x1+a1)^2+(x2+a2)^2)^0.5; 
kin=round((angc-pi/2)*180/pi)+181+90; 
kfin=round((angc+pi/2)*180/pi)+181+90; 
for k=kin:kfin 
xi=omega/cp(k); 
ang=angle1(k); 
u3f(x1i,x1j,ko)=u3f(x1i,x1j,ko)+u3(k)*exp(-i*xi*r*cos(angc-ang))/(cos(ang)*sin(ang)); 
end 
end 
end 
 
%These lines are used to remove some numerical noise spikes 
u3f(4,53+80:61+80,ko)=(u3f(3,53+80:61+80,ko)+u3f(5,53+80:61+80,ko))/2; 
u3f(4,80-61:80-53,ko)=(u3f(3,80-61:80-53,ko)+u3f(5,80-61:80-53,ko))/2; 
u3f(53:61,84,ko)=(u3f(53:61,85,ko)+u3f(53:61,83,ko))/2; 
u3f(53:61,76,ko)=(u3f(53:61,75,ko)+u3f(53:61,77,ko))/2; 
u3f(1:3,80-4,ko)=u3f(1:3,80-5,ko)+(u3f(1:3,80-2,ko)-u3f(1:3,80-5,ko))*1/3; 
u3f(1:3,80-3,ko)=u3f(1:3,80-5,ko)+(u3f(1:3,80-2,ko)-u3f(1:3,80-5,ko))*2/3; 
u3f1=real(u3f); 
 
figure;   
surf(xn,yn,u3f1(:,:,ko)'/max(max(abs(u3f1(:,:,ko))))); colormap('jet'); shading interp; axis 
equal; axis off;   view(2);  colorbar; %text(20,-10,titl,'FontSize',9); %title(titl); %  
caxis(c2);caxis(c2); 
end 
 
u3f(:,:,18:32)=0; 
u3fb(:,:,1:32)=u3f(:,:,1:32); 
 
% Time vector 
t=0:1.6e-6:4.96e-5; 
 
% Excitation signal (3.5-cycle Hanning windowed toneburst) 
y(1:12)=sin(2*pi*200e3*t(1:12)).*(1-cos(2*pi*200e3/3.5*t(1:12)))*0.5; 
y(13:32)=0; 
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yf=fft(y); 
for x1i=1:80 
    for x1j=1:160 
        for bl=5:17 
        u3fte2(bl)=u3fb(x1i,x1j,bl); 
        end 
        u3fte2(18:32)=0; 
        u3tn(x1i,x1j,:)=imag(ifft(u3fte2.*yf)); 
    end 
end 
 
% These points are set to zero to avoid comparison with FEM results very close to the 
actuator 
% The discrete nodal shear forces in FEM cause spikes in its immediate vicinity 
u3tn(4,77:84,:)=0; u3tn(1:4,84,:)=0; u3tn(1:4,77,:)=0;  
 
[xno,yno]=meshgrid(xn,yn); 
figure; surf(xno,yno,u3tn(:,:,i)'/max(max(max(abs(u3tn))))); axis equal; axis off; 
colormap('jet'); shading interp;  view(2);  h=colorbar; set(h,'Fontsize',20); %text(20,-
10,titl,'FontSize',9); %title(titl); %  caxis(c2);caxis(c2); 
%M(i)=getframe; 
end 
%movie2avi(M,'s0quasiiso200khzu3theo.avi','compression','None','Quality',100,'fps',1) 
 

B.5 Using LastWave 2.0 for Chirplet Matching Pursuits 

LastWave 2.0 [215], which is Linux-based freeware, can be downloaded from the 

website listed. If one is not comfortable in the Linux environment, a system 

administrator’s support might be needed for installation. After installing it, the signal to 

be analyzed should be saved in the directory where the LastWave executable, “lw”, is 

located. The signal’s sampling rate should be such that the chosen scale 0l  (which has to 

be a power of 2 in the chirplet matching pursuit implemented in LastWave, e.g., 128, 

256, 512, etc.) is about 20-30% samples more than the number of samples in the 

excitation signal toneburst. The Matlab command “resample” can be used to change the 

signal sampling rate. In addition, the signal file should be a text file with the data in a 

single column. For this demo, it is assumed that the filename is “testsignal.txt,” the signal 

sampling rate is 0.1 µs, the scale 0l  is 256, and that four atoms suffice to decompose the 

signal (this number may have to be revised till atoms below the preset energy threshold 

described in Chapter IV are obtained). 
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The LastWave program can be started by typing “lw” at the Linux prompt. At the 

resulting LastWave prompt, the sequence of commands listed below should be typed to 

produce an image showing the time-frequency plot of the individual chirplet atoms and to 

list the properties of the first two chirplet atoms: 

wtrans a> m 

book m> read 0 (‘testsignal.txt’) 

book m> 0.dx=1e-7 

book m> mpd 3 ‘-s’ {256} ‘-O’ {‘chirp’} 

book m> disp m 

book m> print m[0][0] 

book m> print m[1][0] 

Further extensive documentation on LastWave is also available on their website. 
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