
The formal verification of compilers

Xavier Leroy

Inria Paris

DeepSpec Summer School 2017

X. Leroy (Inria) Compiler verification DSSS 2017 1 / 233

Prologue

Mechanized semantics and its applications

X. Leroy (Inria) Compiler verification DSSS 2017 2 / 233

Formal semantics of programming languages

Provide a mathematically-precise answer to the question

What does this program do, exactly?

X. Leroy (Inria) Compiler verification DSSS 2017 3 / 233

What does this program do, exactly?

#include <stdio.h>
int l;int main(int o,char **O,
int I){char c,*D=O[1];if(o>0){
for(l=0;D[l];D[l
++]-=10){D [l++]-=120;D[l]-=
110;while (!main(0,O,l))D[l]
+= 20; putchar((D[l]+1032)
/20) ;}putchar(10);}else{
c=o+ (D[I]+82)%10-(I>l/2)*
(D[I-l+I]+72)/10-9;D[I]+=I<0?0
:!(o=main(c/10,O,I-1))*((c+999
)%10-(D[I]+92)%10);}return o;}

(Raymond Cheong, 2001)

(It computes arbitrary-precision square roots.)

X. Leroy (Inria) Compiler verification DSSS 2017 4 / 233

What does this program do, exactly?

#include <stdio.h>
int l;int main(int o,char **O,
int I){char c,*D=O[1];if(o>0){
for(l=0;D[l];D[l
++]-=10){D [l++]-=120;D[l]-=
110;while (!main(0,O,l))D[l]
+= 20; putchar((D[l]+1032)
/20) ;}putchar(10);}else{
c=o+ (D[I]+82)%10-(I>l/2)*
(D[I-l+I]+72)/10-9;D[I]+=I<0?0
:!(o=main(c/10,O,I-1))*((c+999
)%10-(D[I]+92)%10);}return o;}

(Raymond Cheong, 2001)

(It computes arbitrary-precision square roots.)

X. Leroy (Inria) Compiler verification DSSS 2017 4 / 233

What about this one?
#define crBegin static int state=0; switch(state) { case 0:
#define crReturn(x) do { state=__LINE__; return x; \

case __LINE__:; } while (0)
#define crFinish }

int decompressor(void) {
static int c, len;
crBegin;
while (1) {

c = getchar();
if (c == EOF) break;
if (c == 0xFF) {

len = getchar();
c = getchar();
while (len--) crReturn(c);

} else crReturn(c);
}
crReturn(EOF);
crFinish;

}

(Simon Tatham,
author of PuTTY)

(It’s a co-routined version of a
decompressor for run-length
encoding.)

X. Leroy (Inria) Compiler verification DSSS 2017 5 / 233

What about this one?
#define crBegin static int state=0; switch(state) { case 0:
#define crReturn(x) do { state=__LINE__; return x; \

case __LINE__:; } while (0)
#define crFinish }

int decompressor(void) {
static int c, len;
crBegin;
while (1) {

c = getchar();
if (c == EOF) break;
if (c == 0xFF) {

len = getchar();
c = getchar();
while (len--) crReturn(c);

} else crReturn(c);
}
crReturn(EOF);
crFinish;

}

(Simon Tatham,
author of PuTTY)

(It’s a co-routined version of a
decompressor for run-length
encoding.)

X. Leroy (Inria) Compiler verification DSSS 2017 5 / 233

When is formal semantics necessary?

When English prose is not enough.
(e.g. language standardization documents.)

A prerequisite to formal program verification.
(Program proof, model checking, static analysis, etc.)

A prerequisite to building reliable programming tools.
(Programs that operate over programs: compilers, code generators,
program verifiers, type-checkers, . . .)

X. Leroy (Inria) Compiler verification DSSS 2017 6 / 233

Is this program transformation correct?

struct list { int head; struct list * tail; };

struct list * foo(struct list ** p)
{

return ((*p)->tail = NULL); (*p)->tail = NULL;
return (*p)->tail;

}

No, not if p == &(l.tail) and l.tail == &l (circular list).

l:
p

X. Leroy (Inria) Compiler verification DSSS 2017 7 / 233

Is this program transformation correct?

struct list { int head; struct list * tail; };

struct list * foo(struct list ** p)
{

return ((*p)->tail = NULL); (*p)->tail = NULL;
return (*p)->tail;

}

No, not if p == &(l.tail) and l.tail == &l (circular list).

l:
p

X. Leroy (Inria) Compiler verification DSSS 2017 7 / 233

What about this one?

double dotproduct(int n, double * a, double * b)
{

double dp = 0.0;
int i;
for (i = 0; i < n; i++) dp += a[i] * b[i];
return dp;

}

Compiled for the Alpha processor with all optimizations and manually
decompiled back to C. . .

X. Leroy (Inria) Compiler verification DSSS 2017 8 / 233

double dotproduct(int n, double * a, double * b)
{

double dp, a0, a1, a2, a3, b0, b1, b2, b3;
double s0, s1, s2, s3, t0, t1, t2, t3;
int i, k;
dp = 0.0;
if (n <= 0) goto L5;
s0 = s1 = s2 = s3 = 0.0;
i = 0; k = n - 3;
if (k <= 0 || k > n) goto L19;
i = 4; if (k <= i) goto L14;
a0 = a[0]; b0 = b[0]; a1 = a[1]; b1 = b[1];
i = 8; if (k <= i) goto L16;

L17: a2 = a[2]; b2 = b[2]; t0 = a0 * b0;
a3 = a[3]; b3 = b[3]; t1 = a1 * b1;
a0 = a[4]; b0 = b[4]; t2 = a2 * b2; t3 = a3 * b3;
a1 = a[5]; b1 = b[5];
s0 += t0; s1 += t1; s2 += t2; s3 += t3;
a += 4; i += 4; b += 4;
prefetch(a + 20); prefetch(b + 20);
if (i < k) goto L17;

L16: s0 += a0 * b0; s1 += a1 * b1; s2 += a[2] * b[2]; s3 += a[3] * b[3];
a += 4; b += 4;
a0 = a[0]; b0 = b[0]; a1 = a[1]; b1 = b[1];

L18: s0 += a0 * b0; s1 += a1 * b1; s2 += a[2] * b[2]; s3 += a[3] * b[3];
a += 4; b += 4;
dp = s0 + s1 + s2 + s3;
if (i >= n) goto L5;

L19: dp += a[0] * b[0];
i += 1; a += 1; b += 1;
if (i < n) goto L19;

L5: return dp;
L14: a0 = a[0]; b0 = b[0]; a1 = a[1]; b1 = b[1]; goto L18;
}

X. Leroy (Inria) Compiler verification DSSS 2017 9 / 233

double dotproduct(int n, double * a, double * b)
{

double dp, a0, a1, a2, a3, b0, b1, b2, b3;
double s0, s1, s2, s3, t0, t1, t2, t3;
int i, k;
dp = 0.0;
if (n <= 0) goto L5;
s0 = s1 = s2 = s3 = 0.0;
i = 0; k = n - 3;
if (k <= 0 || k > n) goto L19;
i = 4; if (k <= i) goto L14;
a0 = a[0]; b0 = b[0]; a1 = a[1]; b1 = b[1];
i = 8; if (k <= i) goto L16;

L17: a2 = a[2]; b2 = b[2]; t0 = a0 * b0;
a3 = a[3]; b3 = b[3]; t1 = a1 * b1;
a0 = a[4]; b0 = b[4]; t2 = a2 * b2; t3 = a3 * b3;
a1 = a[5]; b1 = b[5];
s0 += t0; s1 += t1; s2 += t2; s3 += t3;
a += 4; i += 4; b += 4;
prefetch(a + 20); prefetch(b + 20);
if (i < k) goto L17;

L16: s0 += a0 * b0; s1 += a1 * b1; s2 += a[2] * b[2]; s3 += a[3] * b[3];
a += 4; b += 4;
a0 = a[0]; b0 = b[0]; a1 = a[1]; b1 = b[1];

L18: s0 += a0 * b0; s1 += a1 * b1; s2 += a[2] * b[2]; s3 += a[3] * b[3];
a += 4; b += 4;
dp = s0 + s1 + s2 + s3;
if (i >= n) goto L5;

L19: dp += a[0] * b[0];
i += 1; a += 1; b += 1;
if (i < n) goto L19;

L5: return dp;
L14: a0 = a[0]; b0 = b[0]; a1 = a[1]; b1 = b[1]; goto L18;
}

X. Leroy (Inria) Compiler verification DSSS 2017 9 / 233

This lecture

Using the Coq proof assistant, formalize some representative program
transformations and static analyses, and prove their correctness.

In passing, introduce the semantic tools needed for this effort.

X. Leroy (Inria) Compiler verification DSSS 2017 10 / 233

Lecture material

http://gallium.inria.fr/˜xleroy/courses/DSSS-2017/

The Coq development (source archive + HTML view).

These slides.

Further reading.

X. Leroy (Inria) Compiler verification DSSS 2017 11 / 233

http://gallium.inria.fr/~xleroy/courses/DSSS-2017/

Course outline

1 Compiling IMP to a simple virtual machine; first compiler proofs;
notions of semantic preservation.

2 More on semantics: big-step, small-step, small-step with
continuations. Finishing the proof of the IMP → VM compiler.

3 Verification of optimizing program transformations (dead code
elimination, register allocation) based on a static analysis (liveness
analysis).

4 Compiler verification “in the large”: a tour of CompCert.

Home work: the recommended exercises, plus
optional exercises,
or a mini-project (with much guidance),
or a full project (with little guidance).

X. Leroy (Inria) Compiler verification DSSS 2017 12 / 233

Part I

Compiling IMP to virtual machine code

X. Leroy (Inria) Compiler verification DSSS 2017 13 / 233

Compiling IMP to virtual machine code

1 Reminder: the IMP language

2 The IMP virtual machine

3 The compiler

4 Verifying the compiler: first results

X. Leroy (Inria) Compiler verification DSSS 2017 14 / 233

Reminder: the IMP language
(From Benjamin Pierce’s “Logical Foundations” course.)

A prototypical imperative language with structured control flow.

Arithmetic expressions:
a ::= n | x | a1 + a2 | a1 − a2 | a1 × a2

Boolean expressions:
b ::= true | false | a1 = a2 | a1 ≤ a2
| not b | b1 and b2

Commands (statements):
c ::= SKIP (do nothing)
| x ::= a (assignment)
| c1; ; c2 (sequence)
| IFB b THEN c1 ELSE c2 FI (conditional)
| WHILE b DO c END (loop)

X. Leroy (Inria) Compiler verification DSSS 2017 15 / 233

Reminder: IMP’s semantics

As defined in file Imp.v of “Logical Foundations”:

Evaluation function for arithmetic expressions

aeval st a : nat

Evaluation function for boolean expressions

beval st b : bool

Evaluation predicate for commands (in big-step operational style)

c/st ⇒ st ′

(st ranges over variable states: id→ nat.)

X. Leroy (Inria) Compiler verification DSSS 2017 16 / 233

Execution models for a programming language

1 Interpretation:
the program is represented by its abstract syntax tree. The interpreter
traverses this tree during execution.

2 Compilation to native code:
before execution, the program is translated to a sequence of machine
instructions, These instructions are those of a real microprocessor and
are executed in hardware.

3 Compilation to virtual machine code:
before execution, the program is translated to a sequence of
instructions, These instructions are those of a virtual machine. They
do not correspond to that of an existing hardware processor, but are
chosen close to the basic operations of the source language. Then,

1 either the virtual machine instructions are interpreted (efficiently)
2 or they are further translated to machine code (JIT).

X. Leroy (Inria) Compiler verification DSSS 2017 17 / 233

Execution models for a programming language

1 Interpretation:
the program is represented by its abstract syntax tree. The interpreter
traverses this tree during execution.

2 Compilation to native code:
before execution, the program is translated to a sequence of machine
instructions, These instructions are those of a real microprocessor and
are executed in hardware.

3 Compilation to virtual machine code:
before execution, the program is translated to a sequence of
instructions, These instructions are those of a virtual machine. They
do not correspond to that of an existing hardware processor, but are
chosen close to the basic operations of the source language. Then,

1 either the virtual machine instructions are interpreted (efficiently)
2 or they are further translated to machine code (JIT).

X. Leroy (Inria) Compiler verification DSSS 2017 17 / 233

Execution models for a programming language

1 Interpretation:
the program is represented by its abstract syntax tree. The interpreter
traverses this tree during execution.

2 Compilation to native code:
before execution, the program is translated to a sequence of machine
instructions, These instructions are those of a real microprocessor and
are executed in hardware.

3 Compilation to virtual machine code:
before execution, the program is translated to a sequence of
instructions, These instructions are those of a virtual machine. They
do not correspond to that of an existing hardware processor, but are
chosen close to the basic operations of the source language. Then,

1 either the virtual machine instructions are interpreted (efficiently)
2 or they are further translated to machine code (JIT).

X. Leroy (Inria) Compiler verification DSSS 2017 17 / 233

Compiling IMP to virtual machine code

1 Reminder: the IMP language

2 The IMP virtual machine

3 The compiler

4 Verifying the compiler: first results

X. Leroy (Inria) Compiler verification DSSS 2017 18 / 233

The IMP virtual machine

Components of the machine:

The code C : a list of instructions.
The program counter pc: an integer, giving the position of the
currently-executing instruction in C .
The store st: a mapping from variable names to integer values.
The stack σ: a list of integer values
(used to store intermediate results temporarily).

X. Leroy (Inria) Compiler verification DSSS 2017 19 / 233

The instruction set

i ::= Iconst(n) push n on stack
| Ivar(x) push value of x
| Isetvar(x) pop value and assign it to x
| Iadd pop two values, push their sum
| Isub pop two values, push their difference
| Imul pop two values, push their product
| Ibranch forward(δ) unconditional jump forward
| Ibranch backward(δ) unconditional jump backward
| Ibeq(δ) pop two values, jump if =
| Ibne(δ) pop two values, jump if 6=
| Ible(δ) pop two values, jump if ≤
| Ibgt(δ) pop two values, jump if >
| Ihalt end of program

By default, each instruction increments pc by 1. Exception: branch instructions
increment it by 1 + δ (forward) or 1− δ (backward).
(δ is a branch offset relative to the next instruction.)

X. Leroy (Inria) Compiler verification DSSS 2017 20 / 233

Example

stack ε 12
1

12 13 ε

store x 7→ 12 x 7→ 12 x 7→ 12 x 7→ 12 x 7→ 13

p.c. 0 1 2 3 4

code Ivar(x); Iconst(1); Iadd; Isetvar(x); Ibranch
backward(5)

X. Leroy (Inria) Compiler verification DSSS 2017 21 / 233

Semantics of the machine

Given by a transition relation (small-step), representing the execution of
one instruction.

Definition code := list instruction.
Definition stack := list nat.
Definition configuration := (nat * stack * state)%type.

Inductive transition (C: code):
configuration -> configuration -> Prop :=

...

(See file Compil.v.)

X. Leroy (Inria) Compiler verification DSSS 2017 22 / 233

Executing machine programs

By iterating the transition relation:
Initial states: pc = 0, initial store, empty stack.
Final states: pc points to a halt instruction, empty stack.

Definition mach_terminates (C: code) (s_init s_fin: state) :=
exists pc,
code_at C pc = Some Ihalt /\
star (transition C) (0, nil, s_init) (pc, nil, s_fin).

Definition mach_diverges (C: code) (s_init: state) :=
infseq (transition C) (0, nil, s_init).

Definition mach_goes_wrong (C: code) (s_init: state) :=
(* otherwise *)

(star is reflexive transitive closure. See file Sequences.v.)

X. Leroy (Inria) Compiler verification DSSS 2017 23 / 233

Compiling IMP to virtual machine code

1 Reminder: the IMP language

2 The IMP virtual machine

3 The compiler

4 Verifying the compiler: first results

X. Leroy (Inria) Compiler verification DSSS 2017 24 / 233

Compilation of arithmetic expressions

General contract: if a evaluates to n in store st,

code for a

pc
σ

st
Before:

pc ′ = pc + |code|
n :: σ
st

After:

Compilation is just translation to “reverse Polish notation”.

(See function compile_aexpr in Compil.v)

X. Leroy (Inria) Compiler verification DSSS 2017 25 / 233

Compilation of arithmetic expressions
Base case: if a = x ,

Ivar(x)

pc
σ

st

pc ′ = pc + 1
st(x) :: σ
st

Recursive decomposition: if a = a1 + a2,

code for a1 code for a2 Iadd

pc
σ

st

pc ′
n1 :: σ
st

pc ′′
n2 :: n1 :: σ
st

pc ′′ + 1
(n1 + n2) :: σ
st

X. Leroy (Inria) Compiler verification DSSS 2017 26 / 233

Compilation of boolean expressions

compile bexp b cond δ:
skip δ instructions forward if b evaluates to boolean cond
continue in sequence if b evaluates to boolean ¬cond

code for b

pc
σ

st
Before

pc ′
σ

st

After (if result 6= cond)

pc ′ + δ
σ

st

After (if result = cond)

X. Leroy (Inria) Compiler verification DSSS 2017 27 / 233

Compilation of boolean expressions

A base case: b = (a1 = a2) and cond = true:

code for a1 code for a2 Ibeq(δ)

pc
σ

st

pc ′
n1 :: σ
st

pc ′′
n2 :: n1 :: σ
st

pc ′′′
σ

st

pc ′′′ + δ
σ

st

X. Leroy (Inria) Compiler verification DSSS 2017 28 / 233

Short-circuiting “and” expressions

If b1 evaluates to false, so does b1 and b2: no need to evaluate b2!

→ In this case, the code generated for b1 and b2 should skip over the
code for b2 and branch directly to the correct destination.

X. Leroy (Inria) Compiler verification DSSS 2017 29 / 233

Short-circuiting “and” expressions
If cond = false (branch if b1 and b2 is false):

code for b1 code for b2

skip |code(b2)|+ δ instrs if b1 false

skip δ instrs if b2 false

If cond = true (branch if b1 and b2 is true):

code for b1 code for b2

skip |code(b2)| instrs if b1 false

skip δ instrs if b2 true

X. Leroy (Inria) Compiler verification DSSS 2017 30 / 233

Compilation of commands

If the command c, started in initial state st, terminates in final state st ′,

code for c

pc
σ

st
Before:

pc ′ = pc + |code|
σ

st ′
After:

(See function compile_com in Compil.v)

X. Leroy (Inria) Compiler verification DSSS 2017 31 / 233

The mysterious offsets

Code for IFB b THEN c1 ELSE c2 FI:

code for b code for c1 Ibranch code for c2

skip |code(c1)|+ 1 instrs if b false

skip |code(c2)| instrs

X. Leroy (Inria) Compiler verification DSSS 2017 32 / 233

The mysterious offsets

Code for WHILE b DO c END:

code for b code for c Ibranch

skip |code(c)|+ 1 instrs if b false

go back |code(b)|+ |code(c)|+ 1 instrs

X. Leroy (Inria) Compiler verification DSSS 2017 33 / 233

Compiling IMP to virtual machine code

1 Reminder: the IMP language

2 The IMP virtual machine

3 The compiler

4 Verifying the compiler: first results

X. Leroy (Inria) Compiler verification DSSS 2017 34 / 233

Compiler verification

We now have two ways to run a program:
Interpret it using e.g. the ceval_step function from
ImpCEvalFun.v.
Compile it, then run the generated virtual machine code.

Will we get the same results either way?

The compiler verification problem
Verify that a compiler is semantics-preserving:
the generated code behaves as prescribed by the semantics of the source
program.

X. Leroy (Inria) Compiler verification DSSS 2017 35 / 233

First verifications
Let’s try to formalize and prove the intuitions we had when writing the
compilation functions.

Intuition for arithmetic expressions: if a evaluates to n in store st,

code for a

pc
σ

st
Before:

pc ′ = pc + |code|
n :: σ
st

After:

A formal claim along these lines:

Lemma compile_aexp_correct:
forall st a pc stk,
star (transition (compile_aexp a))

(0, stk, st)
(length (compile_aexp a), aeval st a :: stk, st).

X. Leroy (Inria) Compiler verification DSSS 2017 36 / 233

Verifying the compilation of expressions

For this statement to be provable by induction over the structure of the
expression a, we need to generalize it so that

the start PC is not necessarily 0;
the code compile_aexp a appears as a fragment of a larger code C .

To this end, we define the predicate codeseq_at C pc C’ capturing the
following situation:

C’C =

pc

X. Leroy (Inria) Compiler verification DSSS 2017 37 / 233

Verifying the compilation of expressions

Lemma compile_aexp_correct:
forall C st a pc stk,
codeseq_at C pc (compile_aexp a) ->
star (transition C)

(pc, stk, st)
(pc + length (compile_aexp a), aeval st a :: stk, st).

Proof: a simple induction on the structure of a.

The base cases are trivial:
a = n: a single Iconst transition.
a = x : a single Ivar(x) transition.

X. Leroy (Inria) Compiler verification DSSS 2017 38 / 233

An inductive case
Consider a = a1 + a2 and assume

codeseq at C pc (code(a1) + +code(a2) + +Iadd :: nil)

We have the following sequence of transitions:

(pc, σ, st)

↓ ∗ ind. hyp. on a1

(pc + |code(a1)|, aeval st a1 :: σ, st)

↓ ∗ ind. hyp. on a2

(pc + |code(a1)|+ |code(a2)|, aeval st a2 :: aeval st a1 :: σ, st)

↓ Iadd transition

(pc + |code(a1)|+ |code(a2)|+ 1, (aeval st a1 + aeval st a2) :: σ, st)

X. Leroy (Inria) Compiler verification DSSS 2017 39 / 233

Historical note

As simple as this proof looks, it is of historical importance:

First published proof of compiler correctness.
(McCarthy and Painter, 1967).
First mechanized proof of compiler correctness.
(Milner and Weyrauch, 1972, using Stanford LCF).

X. Leroy (Inria) Compiler verification DSSS 2017 40 / 233

Mathematical Aspects of Computer Science, 1967

X. Leroy (Inria) Compiler verification DSSS 2017 41 / 233

Machine Intelligence (7), 1972.

X. Leroy (Inria) Compiler verification DSSS 2017 42 / 233

(Even the proof scripts look familiar!)

X. Leroy (Inria) Compiler verification DSSS 2017 43 / 233

Verifying the compilation of expressions

Similar approach for boolean expressions:

Lemma compile_bexp_correct:
forall C st b cond ofs pc stk,
codeseq_at C pc (compile_bexp b cond ofs) ->
star (transition C)

(pc, stk, st)
(pc + length (compile_bexp b cond ofs)

+ if eqb (beval st b) cond then ofs else 0,
stk, st).

Proof: induction on the structure of b, plus copious case analysis.

X. Leroy (Inria) Compiler verification DSSS 2017 44 / 233

Verifying the compilation of commands

Lemma compile_com_correct_terminating:
forall C st c st’,
c / st ==> st’ ->
forall stk pc,
codeseq_at C pc (compile_com c) ->
star (transition C)

(pc, stk, st)
(pc + length (compile_com c), stk, st’).

An induction on the structure of c fails because of the WHILE case. An
induction on the derivation of c / st ==> st’ works perfectly.

X. Leroy (Inria) Compiler verification DSSS 2017 45 / 233

Summary so far

Piecing the lemmas together, and defining

compile program c = compile command c + + Ihalt :: nil

we obtain a rather nice theorem:

Theorem compile_program_correct_terminating:
forall c st st’,
c / st ==> st’ ->
mach_terminates (compile_program c) st st’.

But is this enough to conclude that our compiler is correct?

X. Leroy (Inria) Compiler verification DSSS 2017 46 / 233

What could have we missed?

Theorem compile_program_correct_terminating:
forall c st st’,
c / st ==> st’ ->
mach_terminates (compile_program c) st st’.

What if the generated VM code could terminate on a state other than
st’? or loop? or go wrong?

What if the program c started in st diverges instead of terminating?
What does the generated code do in this case?

Needed: more precise notions of semantic preservation + richer semantics
(esp. for non-termination).

X. Leroy (Inria) Compiler verification DSSS 2017 47 / 233

Part II

Notions of semantic preservation

X. Leroy (Inria) Compiler verification DSSS 2017 48 / 233

Comparing the behaviors of two programs

Consider two programs P1 and P2, possibly in different languages.

(For example, P1 is an IMP command and P2 is virtual machine code
generated by compiling P1.)

The semantics of the two languages associate to P1,P2
sets B(P1),B(P2) of observable behaviors.

card(B(P)) = 1 if P is deterministic, and card(B(P)) > 1 if it is not.

X. Leroy (Inria) Compiler verification DSSS 2017 49 / 233

Observable behaviors

For an IMP-like language:

observable behavior ::= terminates(st) | diverges | goeswrong

(Alternative: in the terminates case, observe not the full final state st
but only the values of specific variables.)

For a functional language like lambda-calculus with constants:

observable behavior ::= terminates(v) | diverges | goeswrong

where v is the value of the program.

X. Leroy (Inria) Compiler verification DSSS 2017 50 / 233

Observable behaviors

For an imperative language with I/O: add a trace of input-output
operations performed during execution.

x := 1; x := 2; ≈ x := 2;

(trace: ε) (trace: ε)

print(1); print(2); 6≈ print(2);

(trace: out(1).out(2)) (trace: out(2))

X. Leroy (Inria) Compiler verification DSSS 2017 51 / 233

Bisimulation (observational equivalence)

B(P1) = B(P2)

The source and transformed programs are completely undistinguishable.

A very strong notion of semantic preservation.

Often too strong in practice . . .

X. Leroy (Inria) Compiler verification DSSS 2017 52 / 233

Reducing non-determinism during compilation

Languages such as C leave evaluation order partially unspecified.

int x = 0;
int f(void) { x = x + 1; return x; }
int g(void) { x = x - 1; return x; }

The expression f() + g() can evaluate either
to 1 if f() is evaluated first (returning 1), then g() (returning 0);
to −1 if g() is evaluated first (returning −1), then f() (returning 0).

Every C compiler chooses one evaluation order at compile-time.

The compiled code therefore has fewer behaviors than the source program
(1 instead of 2).

X. Leroy (Inria) Compiler verification DSSS 2017 53 / 233

Reducing non-determinism during optimization
In a concurrent setting, classic optimizations often reduce
non-determinism:

Original program:

a := x + 1; b := x + 1; run in parallel with x := 1;

Program after common subexpression elimination:

a := x + 1; b := a; run in parallel with x := 1;

Assuming x = 0 initially, the final states for the original program are

(a, b) ∈ {(1, 1); (1, 2); (2, 2)}

Those for the optimized program are

(a, b) ∈ {(1, 1); (2, 2)}

X. Leroy (Inria) Compiler verification DSSS 2017 54 / 233

Backward simulation (refinement)

B(P1) ⊇ B(P2)

Every possible possible behavior of P2 is justified as being one of the legal
behaviors of P1. However, P2 can have fewer behaviors (e.g. because
some behaviors were eliminated during compilation).

Let Spec (a set of behaviors) be the functional specification of a program.
A program P satisfies Spec iff B(P) ⊆ Spec.

Lemma
If “backward simulation” holds and P1 satisfies Spec,
then P2 satisfies Spec.

X. Leroy (Inria) Compiler verification DSSS 2017 55 / 233

The pains of backward simulations

Backward simulation looks like “the” semantic preservation property we
expect from a correct compiler.

It is however rather difficult to prove:
We need to consider all steps that the compiled code can take, and
trace them back to steps the source program can take.
This is problematic if one source-level step is broken into several
machine-level steps.
(E.g. x ::= a is one step in IMP, but several instructions in the VM.)

X. Leroy (Inria) Compiler verification DSSS 2017 56 / 233

General shape of a backward simulation proof

1+2 3

Iconst(1) Iconst(2) Iadd
nil 1 :: nil 2 :: 1 :: nil 3 :: nil

Source code:

VM code:
VM stack:

one step

compilation decompilation decompilation

Intermediate VM code sequences like Iconst(2); Iadd or just Iadd do
not correspond to the compilation of any source expression.
One solution: invent a decompilation function that is left-inverse of
compilation. (Hard in general!)

X. Leroy (Inria) Compiler verification DSSS 2017 57 / 233

Forward simulations

Forward simulation property:

B(P1) ⊆ B(P2)

Significantly easier to prove than backward simulations. (For example, our
first correctness proof for IMP compilation is of this form: termination of
IMP program P1 implies termination of compiled VM code P2.)

But is forward simulation a sufficient property? It shows that the compiled
code P2 has all the good behaviors of P1, but P2 could have other
behaviors that are bad . . .

X. Leroy (Inria) Compiler verification DSSS 2017 58 / 233

Determinism to the rescue!

Lemma
If P2 is deterministic (i.e. B(P2) is a singleton), then “forward simulation”
implies “backward simulation” and therefore “bisimulation”.

Trivial result: follows from ∅ ⊂ X ⊆ {y} =⇒ X = {y}.

X. Leroy (Inria) Compiler verification DSSS 2017 59 / 233

Should “going wrong” behaviors be preserved?

Compilers routinely “optimize away” going-wrong behaviors. For example:

x := 1 / y; x := 42
(goes wrong if y = 0)

optimized to x := 42
(always terminates normally)

Justifications:
We know that the program being compiled does not go wrong

I because it was type-checked with a sound type system
I or because it was formally verified.

Or “it is the programmer’s responsibility to avoid going-wrong
behaviors, so the compiler can optimize under the assumption that
there are none”.

X. Leroy (Inria) Compiler verification DSSS 2017 60 / 233

Simulations for safe programs

According to the ISO C standard, if one execution of the source program
can go wrong (“invoke undefined behavior”), the code generated by the
compiler can have any behavior whatsoever.

This corresponds to the weaker simulation properties below.

Safe backward simulation: goeswrong /∈ B(P1) =⇒ B(P1) ⊇ B(P2)

Safe forward simulation: goeswrong /∈ B(P1) =⇒ B(P1) ⊆ B(P2)

X. Leroy (Inria) Compiler verification DSSS 2017 61 / 233

Should “going wrong” behaviors be preserved?

To minimize surprises and facilitate debugging, some C compilers (e.g.
CompCert) preserve the behaviors of the source program up to the point
where it goes wrong. Consider:

(1) printf("dividing by zero"); return 1/0;

(2) printf("dividing by zero"); return 0

(3) tmp = 1/0; printf("dividing by zero"); return tmp;

According to ISO C, (1) can be compiled like (2) and like (3) too.
Compiling like (2) preserves the output up to the crash; (3) does not.

X. Leroy (Inria) Compiler verification DSSS 2017 62 / 233

Simulations up to improvement

Define a pre-order “improves on” between behaviors. E.g.

ISO C interpretation: goeswrong(t) is improved by any behavior.
CompCert interpretation: goeswrong(t) is improved by any behavior
whose trace of observables starts with t.

Backward simulation with improvement:
∀b2 ∈ B(P2), ∃b1 ∈ B(P1), b2 improves on b1

Forward simulation with improvement:
∀b1 ∈ B(P1), ∃b2 ∈ B(P2), b2 improves on b1

X. Leroy (Inria) Compiler verification DSSS 2017 63 / 233

Relating preservation properties

Bisimulation

Backward
simulation

Backward simu.
w/ improvement

Safe backward
simulation

Preservation of
specifications

Preservation of
stable specs

Preservation of
safety specs

Forward
simulation

Forward simu.
w/ improvement

Safe forward
simulation

if P2 deterministic

if P1 deterministic

if P2 deterministic

if P1 deterministic

if P2 deterministic

if P1 deterministic

X. Leroy (Inria) Compiler verification DSSS 2017 64 / 233

Back to the IMP → VM compiler

We have already proved half of a forward simulation result:

Theorem compile_program_correct_terminating:
forall c st st’,
c / st ==> st’ ->
mach_terminates (compile_program c) st st’.

It remains to show the other half:
If command c diverges when started in state st,
then the virtual machine, executing code compile_program c
from initial state st, makes infinitely many transitions.

(Note that IMP has no going-wrong behaviors.)

What we need: a formal characterization of divergence for IMP commands.

X. Leroy (Inria) Compiler verification DSSS 2017 65 / 233

Part III

More on mechanized semantics

X. Leroy (Inria) Compiler verification DSSS 2017 66 / 233

More on mechanized semantics

5 Reminder: big-step semantics for terminating programs

6 Small-step semantics

7 Small-step semantics with continuations

X. Leroy (Inria) Compiler verification DSSS 2017 67 / 233

Big-step semantics

A predicate c/s ⇒ s ′, meaning “started in state s, command c terminates
and the final state is s ′”.

SKIP/s ⇒ s x := a/s ⇒ s[x ← aeval s a]

c1/s ⇒ s1 c2/s1 ⇒ s2

c1; c2/s ⇒ s2

c1/s ⇒ s ′ if beval s b = true
c2/s ⇒ s ′ if beval s b = false

IFB b THEN c1 ELSE c2 FI/s ⇒ s ′

beval s b = false

WHILE b DO c END/s ⇒ s

beval s b = true c/s ⇒ s1 WHILE b DO c END/s1 ⇒ s2

WHILE b DO c END/s ⇒ s2

X. Leroy (Inria) Compiler verification DSSS 2017 68 / 233

Pros and cons of big-step semantics

Pros:
Follows naturally the structure of programs.
(Gilles Kahn called it “natural semantics”).
Close connection with interpreters.
Powerful induction principle (on the structure of derivations).
Easy to extend with various structured constructs
(functions and procedures, other forms of loops)

Cons:
Fails to characterize diverging executions.
(More precisely: no distinction between divergence and going wrong.)
Concurrency, unstructured control (goto) nearly impossible to handle.

X. Leroy (Inria) Compiler verification DSSS 2017 69 / 233

Big-step semantics and divergence

For IMP, a negative characterization of divergence:

c/s diverges ⇐⇒ ¬(∃s ′, c/s ⇒ s ′)

In general (e.g. STLC), executions can also go wrong (in addition to
terminating or diverging). Big-step semantics fails to distinguish between
divergence and going wrong:

c/s diverges ∨ c/s goes wrong ⇐⇒ ¬(∃s ′, c/s ⇒ s ′)

Highly desirable: a positive characterization of divergence, distinguishing it
from “going wrong”.

X. Leroy (Inria) Compiler verification DSSS 2017 70 / 233

More on mechanized semantics

5 Reminder: big-step semantics for terminating programs

6 Small-step semantics

7 Small-step semantics with continuations

X. Leroy (Inria) Compiler verification DSSS 2017 71 / 233

Small-step semantics

Also called “structured operational semantics”.

Like β-reduction in the λ-calculus: view computations as sequences of
reductions

M β→ M1
β→ M2

β→ . . .

Each reduction M → M ′ represents an elementary computation.
M ′ represents the residual computations that remain to be done later.

X. Leroy (Inria) Compiler verification DSSS 2017 72 / 233

Small-step semantics for IMP

Reduction relation: c/s → c ′/s ′.

x := a/s → SKIP/s[x ← aeval s a]

c1/s → c ′1/s ′

(c1; c2)/s → (c ′1; c2)/s ′
(SKIP; c)/s → c/s

beval s b = true

IFB b THEN c1 ELSE c2 FI/s → c1/s

beval s b = false

IFB b THEN c1 ELSE c2 FI/s → c2/s

WHILE b DO c END/s → IFB b THEN c; WHILE b DO c END ELSE SKIP/s

X. Leroy (Inria) Compiler verification DSSS 2017 73 / 233

Sequences of reductions

The behavior of a command c in an initial state s is obtained by forming
sequences of reductions starting at c/s:

Termination with final state s ′: finite sequence of reductions to SKIP.

c/s → · · · → SKIP/s ′

Divergence: infinite sequence of reductions.

c/s → c1/s1 → · · · → cn/sn → · · ·

Going wrong: finite sequence of reductions to an irreducible command
that is not SKIP.

(c, s)→ · · · → (c ′, s ′) 6→ with c 6= SKIP

X. Leroy (Inria) Compiler verification DSSS 2017 74 / 233

Equivalence small-step / big-step

A classic result:

c/s ⇒ s ′ ⇐⇒ c/s ∗→ SKIP/s ′

(See Coq file Semantics.v.)

X. Leroy (Inria) Compiler verification DSSS 2017 75 / 233

Pros and cons of small-step semantics

Pros:
Clean, unquestionable characterization of program behaviors
(termination, divergence, going wrong).
Extends even to unstructured constructs
(goto, concurrency).
De facto standard in the type systems community and in the
concurrency community.

Cons:
Does not follow the structure of programs; lack of a powerful
induction principle.
Syntax often needs to be extended with intermediate forms arising
only during reductions.
“Spontaneous generation” of terms.

X. Leroy (Inria) Compiler verification DSSS 2017 76 / 233

Reasoning with or without structure

Reasoning, big-step style: by pre- and post-conditions
Single program: if c/s ⇒ s ′ and P s, then Q s ′.
Program transformation: if c/s ⇒ s ′ and T c c1 and P s s1, there
exists s ′1 s.t. c1/s1 ⇒ s ′1 and Q s ′ s ′1.

Proofs: by induction on a derivation of c/s ⇒ s ′.

Reasoning, small-step style: by invariants and simulations.
Single program: if c/s → c ′/s ′ and I(c, s) then I(c ′, s ′).
Program transformation: a relation I (c, s) (c1, s1) is a (bi)-simulation
for the transitions of the two programs.

Proofs: by case analysis on each transition.

X. Leroy (Inria) Compiler verification DSSS 2017 77 / 233

Intermediate forms extending the syntax
Many programming constructs require unnatural extensions of the syntax
of terms so that we can give reduction rules for these constructs.

Example: the break statement (as in C, Java, . . .).

Commands: c ::= . . . | BREAK | INLOOP c1 c2

Intuition: INLOOP c1 c2 ≈ c1; c2 but with special treatment of BREAK
arising out of c1.

WHILE b DO c END/s → IFB b THEN INLOOP c (WHILE b DO c END)
ELSE SKIP FI/s

(BREAK; c)/s → BREAK/s (INLOOP SKIP c)/s → c/s

(INLOOP BREAK c)/s → SKIP/s
c1/s → c ′1/s ′

INLOOP c1 c2/s → INLOOP c ′1 c2/s ′

X. Leroy (Inria) Compiler verification DSSS 2017 78 / 233

Spontaneous generation of terms

(IFB b THEN c1 ELSE c2 FI; c)/s → (c1; c)/s

Compiled code for initial command:

code for b code for c1 Ibranch code for c2 code for c

This code does not contain the compiled code for c1; c, which is:

code for c1 code for c

(Similar problem for
WHILE b DO c END/s → IFB b THEN c; WHILE b DO c END ELSE SKIP/s.)

X. Leroy (Inria) Compiler verification DSSS 2017 79 / 233

More on mechanized semantics

5 Reminder: big-step semantics for terminating programs

6 Small-step semantics

7 Small-step semantics with continuations

X. Leroy (Inria) Compiler verification DSSS 2017 80 / 233

Small-step semantics with continuations

A variant of standard small-step semantics that addresses issues #2 (no
extensions of the syntax of commands) and #3 (no spontaneous
generation of commands).

Idea: instead of rewriting whole commands:

c/s → c ′/s ′

rewrite pairs of (subcommand under focus, remainder of command):

c/k/s → c ′/k ′/s ′

(Vaguely related to focusing in proof theory.)

X. Leroy (Inria) Compiler verification DSSS 2017 81 / 233

Standard small-step semantics

Rewrite whole commands, even though only a sub-command (the redex)
changes.

Context C

c = C [redex]

redex

Context C

c ′ = C [reduct]

reduct

reduction

head
reduction

X. Leroy (Inria) Compiler verification DSSS 2017 82 / 233

Focusing the small-step semantics

Rewrite pairs (subcommand, context in which it occurs).

x ::= a , → SKIP ,

The sub-command is not always the redex: add explicit focusing and
resumption rules to move nodes between subcommand and context.

(c1; c2) , → c1 ,

; c2

SKIP , → c2 ,

; c2

Focusing on the left of a sequence Resuming a sequence

X. Leroy (Inria) Compiler verification DSSS 2017 83 / 233

Representing contexts “upside-down”

Inductive ctx := Inductive cont :=
| CThole: ctx | Kstop: cont
| CTseq: com -> ctx -> ctx. | Kseq: com -> cont -> cont.

CTseq

CTseq

CTseq

CThole

z
y

x

Kseq

Kseq

Kseq

z
y

x

Kstop

CTseq (CTseq (CTseq CThole x) y) z
Kseq x (Kseq y (Kseq z Kstop))

Upside-down context ≈ continuation.
(“Eventually, do x , then do y , then do z , then stop.”)

X. Leroy (Inria) Compiler verification DSSS 2017 84 / 233

Transition rules

x := a/k/s → SKIP/k/s[x ← aeval s a]

(c1; c2)/k/s → c1/Kseq c2 k/s

IFB b THEN c1 ELSE c2/k/s → c1/k/s if beval s b = true

IFB b THEN c1 ELSE c2/k/s → c2/k/s if beval s b = false

WHILE b DO c END/k/s → c/Kseq (WHILE b DO c END) k/s
if beval s b = true

WHILE b DO c END/k/s → SKIP/c/k if beval s b = false

SKIP/Kseq c k/s → c/k/s

Note: no spontaneous generation of fresh commands.

X. Leroy (Inria) Compiler verification DSSS 2017 85 / 233

Enriching the language

Let’s add a break statement. We need a new form of continuations for
loops, but no ad-hoc extension to the syntax of commands.

Commands: c ::= . . . | BREAK

Continuations: k ::= Kstop | Kseq c k | Kwhile b c k

New or modified rules:

WHILE b DO c END/k/s → c/Kwhile b c k/s
if beval s b = true

SKIP/Kwhile b c k/s → WHILE b DO c END/k/s

BREAK/Kseq c k/s → BREAK/k/s

BREAK/Kwhile b c k/s → SKIP/k/s

(Exercise: what about continue?)

X. Leroy (Inria) Compiler verification DSSS 2017 86 / 233

Equivalence with the other semantics

c/Kstop/s ∗→ SKIP/Kstop/s ′ iff c/s ⇒ s ′ iff c/s ∗→ SKIP/s ′

c/k/s →∞ iff c/s →∞

(See Coq file Semantics.v)

X. Leroy (Inria) Compiler verification DSSS 2017 87 / 233

Part IV

Compiling IMP to virtual machine code,
continued

X. Leroy (Inria) Compiler verification DSSS 2017 88 / 233

Finishing the proof of forward simulation

One half already proved: the terminating case.

Theorem compile_program_correct_terminating:
forall c st st’,
c / st \\ st’ ->
mach_terminates (compile_program c) st st’.

One half to go: the diverging case.
(If c/st diverges, then mach_diverges (compile_program c) st.)

X. Leroy (Inria) Compiler verification DSSS 2017 89 / 233

Forward simulations, small-step style

Show that every transition in the execution of the source program
is simulated by some transitions in the compiled program
while preserving a relation between the configurations of the two
programs.

X. Leroy (Inria) Compiler verification DSSS 2017 90 / 233

Lock-step simulation

Every transition of the source is simulated by exactly one transition in the
compiled code.

c1/k1/s1 C , (pc1, σ1, s ′1)

c2/k2/s2 C , (pc2, σ2, s ′2)

≈

≈

(Black = hypotheses; red = conclusions.)

X. Leroy (Inria) Compiler verification DSSS 2017 91 / 233

Lock-step simulation

Further show that initial configurations are related:

c/Kstop/s ≈ (C , (0, nil , s)) with C = compile program(c)

Further show that final configurations are quasi-related:

SKIP/Kstop/s ≈ (C ,mst)
=⇒ (C ,mst) ∗→ (C , (pc, nil , s)) ∧ C(pc) = Ihalt

X. Leroy (Inria) Compiler verification DSSS 2017 92 / 233

Lock-step simulation

Forward simulation follows easily:

c1/k1/s1 C , (pc1, σ1, s ′1)

c2/k2/s2 C , (pc2, σ2, s ′2)

SKIP/Kstop/sn C , (pcn, σn, s ′n)

halt with store = sn

≈

≈

≈

≈

∗

(Likewise if c1/k1/s1 reduces infinitely.)

X. Leroy (Inria) Compiler verification DSSS 2017 93 / 233

“Plus” simulation diagrams

In some cases, each transition in the source program is simulated by one or
several transitions in the compiled code.

(Example: compiled code for x ::= a consists of several instructions.)

c1/k1/s1 C , (pc1, σ1, s ′1)

c2/k2/s2 C , (pc2, σ2, s ′2)

≈

≈
+

Forward simulation still holds.

X. Leroy (Inria) Compiler verification DSSS 2017 94 / 233

“Star” simulation diagrams (incorrect)

In other cases, each transition in the source program is simulated by zero,
one or several transitions in the compiled code.

(Example: source reduction (SKIP; c)/s → c/s makes zero transitions in
the machine code.)

c1/k1/s1 C , (pc1, σ1, s ′1)

c2/k2/s2 C , (pc2, σ2, s ′2)

≈

≈
∗

Forward simulation is not guaranteed:
terminating executions are preserved;
but diverging executions may not be preserved.

X. Leroy (Inria) Compiler verification DSSS 2017 95 / 233

The “infinite stuttering” problem

c1/k1/s1 C , (pc, σ, s ′)

c2/k2/s2

cn/kn/sn

cn+1/kn+1/sn+1

≈
≈
≈
≈

The source program diverges but the compiled code can terminate,
normally or by going wrong.

X. Leroy (Inria) Compiler verification DSSS 2017 96 / 233

An incorrect optimization that exhibits infinite stuttering

Add special cases to compile_com so that the following trivially infinite
loop gets compiled to no instructions at all:

compile_com (WHILE BTrue DO SKIP END) = nil

X. Leroy (Inria) Compiler verification DSSS 2017 97 / 233

Infinite stuttering

Adding special cases to the ≈ relation, we can prove the following naive
“star” simulation diagram:

WHILE BTrue DO SKIP END/k/s C , (pc, σ, s)

SKIP/Kwhile BTrue SKIP k/s

WHILE BTrue DO SKIP END/k/s

≈
≈
≈

Conclusion: a naive “star” simulation diagram does not prove that a
compiler is correct.

X. Leroy (Inria) Compiler verification DSSS 2017 98 / 233

“Star” simulation diagrams (corrected)

Find a measure M(c, k) : nat over source terms that decreases strictly
when a stuttering step is taken. Then show:

c1/k1/s1 C , (pc1, σ1, s ′1)

c2/k2/s2 C , (pc2, σ2, s ′2)

≈

≈
+

c1/k1/s1 C , (pc1, σ1, s ′1)

c2/k2/s2

≈

≈or

and M(c2, k2) < M(c1, k1)

Forward simulation, terminating case: OK (as before).

Forward simulation, diverging case: OK.
(If c/k/s diverges, it must perform infinitely many non-stuttering steps, so the
machine executes infinitely many transitions.)

X. Leroy (Inria) Compiler verification DSSS 2017 99 / 233

Application to the IMP → VM compiler

Let’s try to prove a “star” simulation diagram for our compiler.

Two difficulties:
1 Rule out infinite stuttering.
2 Match the current command-continuation c, k (which changes during

reductions) with the compiled code C (which is fixed throughout
execution).

X. Leroy (Inria) Compiler verification DSSS 2017 100 / 233

Anti-stuttering measure

Stuttering reduction = no machine instruction executed. These include:

(c1; c2)/k/s → c1/Kseq c2 k/s
SKIP/Kseq c k/s → c/k/s

(IFB BTrue THEN c1 ELSE c2)/k/s → c1/k/s
(WHILE BTrue DO c END)/k/s → c/Kwhile BTrue c k/s

No measure M on the command c can rule out stuttering: for M to
decrease in the second case above, we should have

M(SKIP) > M(c) for all commands c, including c = SKIP

→ We must measure (c, k) pairs.

X. Leroy (Inria) Compiler verification DSSS 2017 101 / 233

Anti-stuttering measure

After some trial and error, an appropriate measure is:

M(c, k) = size(c) +
∑

c ′ appears in k
size(c ′)

In other words, every constructor of com counts for 1, and every
constructor of cont counts for 0.

M((c1; c2), k) = M(c1, Kseq c2 k) + 1
M(SKIP, Kseq c k) = M(c, k) + 1

M(IFB b THEN c1 ELSE c2 FI, k) ≥ M(c1, k) + 1
M(WHILE b DO c END, k) = M(c, Kwhile b c k) + 1

X. Leroy (Inria) Compiler verification DSSS 2017 102 / 233

Relating commands and continuations with compiled code

In the big-step proof: codeseq_at C pc (compile_com c).

compile com cC =

pc

In a proof based on the small-step continuation semantics: we must also
relate continuations k with the compiled code:

compile com c IhaltC =

pc pc’

machine instructions that “execute” k

X. Leroy (Inria) Compiler verification DSSS 2017 103 / 233

Relating continuations with compiled code

A predicate compile cont C k pc, meaning “there exists a code path in
C from pc to a Ihalt instruction that executes the pending computations
described by k”.

Base case k = Kstop:

Ihalt

pc
Sequence case k = Kseq c k ′:

compile com c

pc pc’ s.t. compile cont C k’ pc’

X. Leroy (Inria) Compiler verification DSSS 2017 104 / 233

Relating continuations with compiled code

A “non-structural” case allowing us to insert branches at will:

Ibranch

pc
pc’ s.t. compile cont C k pc’

Useful to handle continuations arising out of IFB b THEN c1ELSE c2:

code for b code for c1 Ibranch code for c2

pc s.t. compile cont C k pc

X. Leroy (Inria) Compiler verification DSSS 2017 105 / 233

The simulation invariant

A source-level configuration (c, k, s) is related to a machine configuration
C , (pc, σ, s ′) iff:

the memory states are identical: s ′ = s
the stack is empty: σ = ε

C contains the compiled code for command c starting at pc
C contains compiled code matching continuation k starting at
pc + |code(c)}.

X. Leroy (Inria) Compiler verification DSSS 2017 106 / 233

The simulation diagram

c1/k1/s1 (pc1, ε, s ′1)

c2/k2/s2 (pc2, ε, s ′2)

C ` c1/k1/s1 ≈ (pc1, ε, s1)

C ` c2/k2/s2 ≈ (pc2, ε, s2)

+
∨
∗ ∧M(c2, k2) < M(c1, k1)

Proof: by case analysis on the source transition on the left.

X. Leroy (Inria) Compiler verification DSSS 2017 107 / 233

Wrapping up

As a corollary of this simulation diagram, we obtain both:

An alternate proof of compiler correctness for terminating programs:
if c/Kstop/s ∗→ SKIP/Kstop/s ′
then mach terminates (compile program c) s s ′

A proof of compiler correctness for diverging programs:
if c/Kstop/s reduces infinitely,
then mach diverges (compile program c) s

Mission complete!

X. Leroy (Inria) Compiler verification DSSS 2017 108 / 233

Part V

Optimizations based on liveness analysis

X. Leroy (Inria) Compiler verification DSSS 2017 109 / 233

Compiler optimizations

Automatically transform the programmer-supplied code into equivalent
code that

Runs faster
I Removes redundant or useless computations.
I Use cheaper computations (e.g. x * 5 → (x << 2) + x)
I Exhibits more parallelism (instruction-level, thread-level).

Is smaller
(For cheap embedded systems.)
Consumes less energy
(For battery-powered systems.)
Is more resistant to attacks
(For smart cards and other secure systems.)

Dozens of compiler optimizations are known, each targeting a particular
class of inefficiencies.

X. Leroy (Inria) Compiler verification DSSS 2017 110 / 233

Compiler optimization and static analysis

Some optimizations are unconditionally valid, e.g.:

x ∗ 2 → x + x

x ∗ 4 → x << 2

Most others apply only if some conditions are met:

x / 4 → x >> 2 only if x ≥ 0
x + 1 → 1 only if x = 0

if x < y then c1 else c2 → c1 only if x < y
x := y + 1 → skip only if x unused later

→ need a static analysis prior to the actual code transformation.

X. Leroy (Inria) Compiler verification DSSS 2017 111 / 233

Static analysis

Determine some properties of all concrete executions of a program.

Often, these are properties of the values of variables at a given program
point:

x = n x ∈ [n,m] x = expr a.x + b.y ≤ n

Requirements:
The inputs to the program are unknown.
The analysis must terminate.
The analysis must run in reasonable time and space.

X. Leroy (Inria) Compiler verification DSSS 2017 112 / 233

Running example:
dead code elimination via liveness analysis

Remove assignments x := e, turning them into skip, whenever the
variable x is never used later in the program execution.

Example
Consider: x := 1; y := y + 1; x := 2

The assignment x := 1 can always be eliminated since x is not used
before being redefined by x := 2.

Builds on a static analysis called liveness analysis.

X. Leroy (Inria) Compiler verification DSSS 2017 113 / 233

Optimizations based on liveness analysis

8 Liveness analysis

9 Dead code elimination

10 Advanced topic: register allocation

X. Leroy (Inria) Compiler verification DSSS 2017 114 / 233

Notions of liveness

A variable is dead at a program point if its value is not used later in any
execution of the program:

either the variable is not mentioned again before going out of scope
or it is always redefined before further use.

A variable is live if it is not dead.

Easy to compute for straight-line programs (sequences of assignments):

(def x)
x := . . .

(use x)
. . . x . . .

(def x)
x := . . .

(use x)
. . . x . . .

(use x)
. . . x . . .

x dead

x live

X. Leroy (Inria) Compiler verification DSSS 2017 115 / 233

Notions of liveness
Liveness information is more delicate to compute in the presence of
conditionals and loops:

def x

if

use x def x

use x

Conservatively over-approximate liveness, assuming all if conditionals can
be true or false, and all while loops are taken 0 or several times.

X. Leroy (Inria) Compiler verification DSSS 2017 116 / 233

Liveness equations

Given a set L of variables live “after” a command c, write live(c, L) for
the set of variables live “before” the command.

live(SKIP, L) = L

live(x := a, L) =
{

(L \ {x}) ∪ FV (a) if x ∈ L;
L if x /∈ L.

live((c1; c2), L) = live(c1, live(c2, L))

live((IFB b THEN c1 ELSE c2), L) = FV (b) ∪ live(c1, L) ∪ live(c2, L)

live((WHILE b DO c END), L) = X such that
X ⊇ L ∪ FV (b) ∪ live(c,X)

X. Leroy (Inria) Compiler verification DSSS 2017 117 / 233

Liveness for loops

test b

c

test b

c

... exit point

entry point

X

live(c,X)

L
X

live(c,X)

L
X

We must have:
FV (b) ⊆ X
(evaluation of b)
L ⊆ X
(if b is false)
live(c,X) ⊆ X
(if b is true and c is
executed)

X. Leroy (Inria) Compiler verification DSSS 2017 118 / 233

Fixpoints, a.k.a “the recurring problem”

Consider F = λX . L ∪ FV (b) ∪ live(c,X).

To analyze while loops, we need to compute a pre-fixpoint of F , i.e. an
X such that F (X) ⊆ X .

For maximal precision, X would preferably be the smallest fixpoint
F (X) = X ; but for soundness, any pre-fixpoint suffices.

X. Leroy (Inria) Compiler verification DSSS 2017 119 / 233

The mathematician’s approach to fixpoints

Let A,≤ be a partially ordered type. Consider F : A→ A.

Theorem (Knaster-Tarski)
The sequence

⊥, F (⊥), F (F (⊥)), . . . , F n(⊥), . . .

converges to the smallest fixpoint of F , provided that

F is increasing: x ≤ y ⇒ F (x) ≤ F (y).
⊥ is a smallest element.
All strictly ascending chains x0 < x1 < . . . < xn are finite.

This provides an effective way to compute fixpoints.
(See Coq file Fixpoint.v).

X. Leroy (Inria) Compiler verification DSSS 2017 120 / 233

Problems with Knaster-Tarski

1 Formalizing and exploiting the ascending chain property
→ well-founded orderings and Noetherian induction.

2 In our case (liveness analysis), the ordering ⊂ has infinite ascending
chains: ∅ ⊂ {x1} ⊂ {x1, x2} ⊂ · · ·
Need to restrict ourselves to subsets of a given, finite universe of
variables (= all variables free in the program).
→ dependent types.

Time for plan B. . .

X. Leroy (Inria) Compiler verification DSSS 2017 121 / 233

The engineer’s approach to fixpoints

F = λX . L ∪ FV (b) ∪ live(c,X)

Compute F (∅),F (F (∅)), . . . ,F N(∅) up to some fixed N.
Stop as soon as a pre-fixpoint is found (F i+1(∅) ⊆ F i (∅)).
Otherwise, return a safe over-approximation
(in our case, a ∪ FV (while b do c done)).

A compromise between analysis time and analysis precision.

(Coq implementation: see file Deadcode.v)

X. Leroy (Inria) Compiler verification DSSS 2017 122 / 233

Optimizations based on liveness analysis

8 Liveness analysis

9 Dead code elimination

10 Advanced topic: register allocation

X. Leroy (Inria) Compiler verification DSSS 2017 123 / 233

Dead code elimination

The program transformation eliminates assignments to dead variables:

x := a becomes SKIP if x is not live “after” the assignment

Presented as a function dce : com→ VS.t→ com
taking the set of variables live “after” as second parameter
and maintaining it during its traversal of the command.

(Implementation & examples in file Deadcode.v)

X. Leroy (Inria) Compiler verification DSSS 2017 124 / 233

The semantic meaning of liveness

What does it mean, semantically, for a variable x to be live at some
program point?

Hmmm. . .

What does it mean, semantically, for a variable x to be dead at some
program point?

That its precise value has no impact on the rest of the program execution!

X. Leroy (Inria) Compiler verification DSSS 2017 125 / 233

The semantic meaning of liveness

What does it mean, semantically, for a variable x to be live at some
program point?

Hmmm. . .

What does it mean, semantically, for a variable x to be dead at some
program point?

That its precise value has no impact on the rest of the program execution!

X. Leroy (Inria) Compiler verification DSSS 2017 125 / 233

Liveness as an information flow property
Consider two executions of the same command c in different initial states:

c/s1 ⇒ s2

c/s ′1 ⇒ s ′2

Assume that the initial states agree on the variables live(c, L) that are
live “before” c:

∀x ∈ live(c, L), s1(x) = s ′1(x)

Then, the two executions terminate on final states that agree on the
variables L live “after” c:

∀x ∈ L, s2(x) = s ′2(x)

The proof of semantic preservation for dead-code elimination follows this
pattern, relating executions of c and dce c L instead.

X. Leroy (Inria) Compiler verification DSSS 2017 126 / 233

Agreement and its properties

Definition agree (L: VS.t) (s1 s2: state) : Prop :=
forall x, VS.In x L -> s1 x = s2 x.

Agreement is monotonic w.r.t. the set of variables L:

Lemma agree_mon:
forall L L’ s1 s2,
agree L’ s1 s2 -> VS.Subset L L’ -> agree L s1 s2.

Expressions evaluate identically in states that agree on their free variables:

Lemma aeval_agree:
forall L s1 s2, agree L s1 s2 ->
forall a, VS.Subset (fv_aexp a) L -> aeval s1 a = aeval s2 a.

Lemma beval_agree:
forall L s1 s2, agree L s1 s2 ->
forall b, VS.Subset (fv_bexp b) L -> beval s1 b = beval s2 b.

X. Leroy (Inria) Compiler verification DSSS 2017 127 / 233

Agreement and its properties

Agreement is preserved by parallel assignment to a variable:

Lemma agree_update_live:
forall s1 s2 L x v,
agree (VS.remove x L) s1 s2 ->
agree L (update s1 x v) (update s2 x v).

Agreement is also preserved by unilateral assignment to a variable that is
dead “after”:

Lemma agree_update_dead:
forall s1 s2 L x v,
agree L s1 s2 -> ˜VS.In x L ->
agree L (update s1 x v) s2.

X. Leroy (Inria) Compiler verification DSSS 2017 128 / 233

Forward simulation for dead code elimination

For terminating source programs:

Theorem dce_correct_terminating:
forall st c st’, c / st \\ st’ ->
forall L st1,
agree (live c L) st st1 ->
exists st1’, dce c L / st1 \\ st1’ /\ agree L st’ st1’.

(Proof: an induction on the derivation of c / st ==> st’.)

st

st ′

st1

st ′1

agree (live c L)

eval c eval (dce c L)
agree L

X. Leroy (Inria) Compiler verification DSSS 2017 129 / 233

Forward simulation for dead code elimination

Exercise: extend the result to diverging programs by proving a simulation
diagram for the transitions of the small-step semantics of IMP (no need
for continuations):

c1/s1 dce c1 L/s ′1

c2/s2 dce c2 L/s ′2

agree (live c1 L) s1 s ′1

agree (live c2 L) s2 s ′2

1 or (0 and |c2| < |c1|)

X. Leroy (Inria) Compiler verification DSSS 2017 130 / 233

Optimizations based on liveness analysis

8 Liveness analysis

9 Dead code elimination

10 Advanced topic: register allocation

X. Leroy (Inria) Compiler verification DSSS 2017 131 / 233

The register allocation problem

Place the variables used by the program (in unbounded number) into:
either hardware registers
(very fast access, but available in small quantity)
or memory locations (generally allocated on the stack)
(available in unbounded quantity, but slower access)

Try to maximize the use of hardware registers.

A crucial step for the generation of efficient machine code.

X. Leroy (Inria) Compiler verification DSSS 2017 132 / 233

Approaches to register allocation

Naive approach (injective allocation):
Assign the N most used variables to the N available registers.
Assign the remaining variables to memory locations.

Optimized approach (non-injective allocation):
Notice that two variables can share a register
as long as they are not simultaneously live.

X. Leroy (Inria) Compiler verification DSSS 2017 133 / 233

Example of register sharing

(def x)
x := . . .

(use x)
. . . x . . .

(def y)
y := . . .

(use y)
. . . y . . .

(use y)
. . . y . . .

x dead

x live

y dead

y live

(def R)
R := . . .

(use R)
. . .R . . .

(def R)
R := . . .

(use R)
. . .R . . .

(use R)
. . .R . . .

X. Leroy (Inria) Compiler verification DSSS 2017 134 / 233

Register allocation for IMP

Properly done:
1 Break complex expressions by introducing temporaries.

(E.g. x = (a + b) * y becomes tmp = a + b; x = tmp * y.)
2 Translate IMP to a variant IMP′ that uses registers ∪ memory

locations instead of variables.

Simplified as follows in this lecture:
1 Do not break expressions.
2 Translate from IMP to IMP, by renaming identifiers.

(Convention: low-numbered identifiers ≈ hardware registers.)

X. Leroy (Inria) Compiler verification DSSS 2017 135 / 233

The program transformation

Assume given a “register assignment” f : id→ id.

The program transformation consists of:
Renaming variables: all occurrences of x become f x .
Dead code elimination:

x ::= a −→ SKIP if x is dead “after”

Coalescing:
x ::= y −→ SKIP if f x = f y

X. Leroy (Inria) Compiler verification DSSS 2017 136 / 233

Correctness conditions on the register assignment

Clearly, not all register assignments f preserve semantics.

Example: assume f x = f y = f z = R

x ::= 1; R ::= 1;
y ::= 2; ----> R ::= 2;
z ::= x + y; R ::= R + R;

Computes 4 instead of 3 . . .

What are sufficient conditions over f ? Let’s discover them by reworking
the proof of dead code elimination.

X. Leroy (Inria) Compiler verification DSSS 2017 137 / 233

Agreement, revisited

Definition agree (L: VS.t) (s1 s2: state) : Prop :=
forall x, VS.In x L -> s1 x = s2 (f x).

An expression and its renaming evaluate identically in states that agree on
their free variables:

Lemma aeval_agree:
forall L s1 s2, agree L s1 s2 ->
forall a, VS.Subset (fv_aexp a) L ->
aeval s1 a = aeval s2 (rename_aexp a).

Lemma beval_agree:
forall L s1 s2, agree L s1 s2 ->
forall b, VS.Subset (fv_bexp b) L ->
beval s1 b = beval s2 (rename_bexp b).

X. Leroy (Inria) Compiler verification DSSS 2017 138 / 233

Agreement, revisited

As before, agreement is monotonic w.r.t. the set of variables L:

Lemma agree_mon:
forall L L’ s1 s2,
agree L’ s1 s2 -> VS.Subset L L’ -> agree L s1 s2.

As before, agreement is preserved by unilateral assignment to a variable
that is dead “after”:

Lemma agree_update_dead:
forall s1 s2 L x v,
agree L s1 s2 -> ˜VS.In x L ->
agree L (update s1 x v) s2.

X. Leroy (Inria) Compiler verification DSSS 2017 139 / 233

Agreement, revisited

Agreement is preserved by parallel assignment to a variable x and its
renaming f x , but only if f satisfies a non-interference condition (in red
below):

Lemma agree_update_live:
forall s1 s2 L x v,
agree (VS.remove x L) s1 s2 ->
(forall z, VS.In z L -> z <> x -> f z <> f x) ->
agree L (update s1 x v) (update s2 (f x) v).

Counter-example: assume f x = f y = R.
agree {y} (x = 0, y = 0) (R = 0) holds, but
agree {x ; y} (x = 1, y = 0) (R = 1) does not.

X. Leroy (Inria) Compiler verification DSSS 2017 140 / 233

A special case for moves

Consider a variable-to-variable copy x ::= y .
In this case, the value v assigned to x is not arbitrary, but known to be
s1 y . We can, therefore, weaken the non-interference criterion:

Lemma agree_update_move:
forall s1 s2 L x y,
agree (VS.union (VS.remove x L) (VS.singleton y)) s1 s2 ->
(forall z, VS.In z L -> z <> x -> z <> y -> f z <> f x) ->
agree L (update s1 x (s1 y)) (update s2 (f x) (s2 (f y))).

This makes it possible to assign x and y to the same location, even if x
and y are simultaneously live.

X. Leroy (Inria) Compiler verification DSSS 2017 141 / 233

The interference graph

The various non-interference constraints f x 6= f y can be represented as
an interference graph:

Nodes = program variables.
Undirected edge between x and y =
x and y cannot be assigned the same location.

Chaitin’s algorithm to construct this graph:
For each move x ::= y , add edges between x and every variable z live
“after” except x and y .
For each other assignment x ::= a, add edges between x and every
variable z live “after” except x .

X. Leroy (Inria) Compiler verification DSSS 2017 142 / 233

Example of an interference graph

r := a;
q := 0;
WHILE b <= r DO

r := r - b;
q := q + 1

END

a

b

q

r

(Full edge = interference; dotted edge = preference.)

X. Leroy (Inria) Compiler verification DSSS 2017 143 / 233

Register allocation as a graph coloring problem
(G. Chaitin, 1981; P. Briggs, 1987)

Color the interference graph, assigning a register or memory location to
every node;

under the constraint that the two ends of an interference edge have
different colors;

with the objective to
minimize the number (or total weight) of nodes that are colored by a
memory location
maximize the number of preference edges whose ends have the same
color.

(A NP-complete problem in general, but good linear-time heuristics exist.)

X. Leroy (Inria) Compiler verification DSSS 2017 144 / 233

Example of coloring

a

b

q

r

X. Leroy (Inria) Compiler verification DSSS 2017 145 / 233

Example of coloring

a

b

q

r

a

b

q

r

yellow := yellow;
green := 0;
WHILE red <= yellow DO

yellow := yellow - red;
green := green + 1

END

X. Leroy (Inria) Compiler verification DSSS 2017 145 / 233

What needs to be proved in Coq?

Full compiler proof:
formalize and prove correct a good graph coloring heuristic.

George and Appel’s Iterated Register Coalescing ≈ 6 000 lines of Coq.

Validation a posteriori:
invoke an external, unproven oracle to compute a candidate allocation;
check that it satisfies the non-interference conditions;
abort compilation if the checker says false.

X. Leroy (Inria) Compiler verification DSSS 2017 146 / 233

The verified transformation–verified validation spectrum

transformation transformation

validator

×

transformation

untrusted solver

×

checker

Verified transformation Verified translation validation

External solver with verified validation

= formally verified

= not verified

X. Leroy (Inria) Compiler verification DSSS 2017 147 / 233

Validating candidate allocations in Coq

It is easy to write a Coq boolean-valued function

correct_allocation: (id -> id) -> com -> VS.t -> bool

that returns true only if the expected non-interference properties are
satisfied.

(See file Regalloc.v.)

X. Leroy (Inria) Compiler verification DSSS 2017 148 / 233

Semantic preservation

The proofs of forward simulation that we did for dead code elimination
then extend easily, under the assumption that correct_allocation
returns true:

Theorem transf_correct_terminating:
forall st c st’, c / st

st’ ->
forall L st1, agree (live c L) st st1 ->
correct_allocation c L = true ->
exists st1’, transf_com c L / st1

st1’ / agree L st’ st1’.

X. Leroy (Inria) Compiler verification DSSS 2017 149 / 233

Part VI

Compiler verification in the large: CompCert

X. Leroy (Inria) Compiler verification DSSS 2017 150 / 233

Compiler verification in the large: CompCert

11 Compiler issues in critical software

12 The CompCert project

13 Tower of Babel: the languages of CompCert

14 The CompCert memory model

15 Observables, non-determinism, and semantic preservation

16 Concluding remarks

X. Leroy (Inria) Compiler verification DSSS 2017 151 / 233

The CompCert project
(X.Leroy, S.Blazy, et al — http://compcert.inria.fr/)

Develop and prove correct a realistic compiler, usable for critical embedded
software.

Source language: a subset of C.
Target language: PowerPC, ARM and x86 assembly.
Generates reasonably compact and fast code
⇒ some optimizations.

This is “software-proof codesign”: the compiler and its proof are written
from scratch; not trying to prove an existing compiler.

Uses Coq to mechanize the proof of semantic preservation and also to
implement most of the compiler.

X. Leroy (Inria) Compiler verification DSSS 2017 152 / 233

The subset of C supported
Supported:

Types: integers, floats, arrays, pointers, struct, union.
Operators: arithmetic, pointer arithmetic.
Control: if/then/else, loops, simple switch, goto.
Functions, recursive functions, function pointers.

Not supported:
The long double type.
Unstructured switch, longjmp/setjmp.

Supported via de-sugaring (not proved!):
Block-scoped variables.
Returning struct and union by value from functions
Bit-fields.
Variable-arity functions.

X. Leroy (Inria) Compiler verification DSSS 2017 153 / 233

The formally verified part of the compiler

CompCert C Clight C#minor

CminorCminorSelRTL

LTL Linear Mach

Asm PPCAsm ARMAsm x86

side-effects out
of expressions

type elimination
loop simplifications

stack allocation
of “&” variables

instruction
selection

CFG construction
expr. decomp.

register allocation (IRC)
calling conventions

linearization
of the CFG

layout of
stack frames

asm code generation

Optimizations: constant prop., CSE,
inlining, tail calls, dead code

X. Leroy (Inria) Compiler verification DSSS 2017 154 / 233

Formally verified using Coq

The correctness proof (semantic preservation) for the compiler is entirely
machine-checked, using the Coq proof assistant.

Theorem transf_c_program_correct:
forall (p: Csyntax.program) (tp: Asm.program)

(b: behavior),
transf_c_program p = OK tp ->
program_behaves (Asm.semantics tp) b ->
exists b’, program_behaves (Csem.semantics p) b’

/\ behavior_improves b’ b.

A fairly large proof: 120 000 lines, 8 person.years, low automation.

X. Leroy (Inria) Compiler verification DSSS 2017 155 / 233

Programmed (mostly) in Coq

All the verified parts of the compiler are programmed directly in Coq’s
specification language, using pure functional style.

Monads to handle errors and mutable state.
Purely functional data structures.

Coq’s extraction mechanism produces executable Caml code from these
specifications.

Claim: purely functional programming is the shortest path to writing and
proving a program.

X. Leroy (Inria) Compiler verification DSSS 2017 156 / 233

The whole Compcert compiler

AST C

AST Asm

C source

AssemblyExecutable

preprocessing, parsing, AST construction
type-checking, de-sugaring

Verified
com

piler

printing of
asm syntax

assembling
linking

Register allocation

Code linearization heuristics

Proved in Coq
(extracted to Caml)

Not proved
(hand-written in Caml)

Part of the TCB
Validated
Verified

X. Leroy (Inria) Compiler verification DSSS 2017 157 / 233

Performance of generated code
(On a Power 7 processor)

fib
qs

or
t fft

sh
a1 ae

s
al

m
ab

en
ch lis
ts

bi
na

ry
tr

ee
s

fa
nn

ku
ch

kn
uc

le
ot

id
e

m
an

de
lb

ro
t

nb
od

y
ns

ie
ve

ns
ie

ve
bi

ts
sp

ec
tr

al
vm

ac
h

bi
se

ct
ch

om
p

pe
rli

n
ar

co
de lzw lzs

s
ra

yt
ra

ce
r

Execution time gcc -O0 CompCert gcc -O1 gcc -O3

X. Leroy (Inria) Compiler verification DSSS 2017 158 / 233

A tangible increase in quality

The striking thing about our CompCert results is that the
middleend bugs we found in all other compilers are absent. As of
early 2011, the under-development version of CompCert is the
only compiler we have tested for which Csmith cannot find
wrong-code errors. This is not for lack of trying: we have
devoted about six CPU-years to the task. The apparent
unbreakability of CompCert supports a strong argument that
developing compiler optimizations within a proof framework,
where safety checks are explicit and machine-checked, has
tangible benefits for compiler users.

X. Yang, Y. Chen, E. Eide, J. Regehr, PLDI 2011

X. Leroy (Inria) Compiler verification DSSS 2017 159 / 233

Availability

http://compcert.inria.fr/

Source distribution, documentation, papers, commented Coq.

For non-commercial use (evaluation, research, teaching).

AbsInt (http://absint.com) sells a commercial version of CompCert
with technical support.

X. Leroy (Inria) Compiler verification DSSS 2017 160 / 233

http://compcert.inria.fr/
http://absint.com

Compiler verification in the large: CompCert

11 Compiler issues in critical software

12 The CompCert project

13 Tower of Babel: the languages of CompCert

14 The CompCert memory model

15 Observables, non-determinism, and semantic preservation

16 Concluding remarks

X. Leroy (Inria) Compiler verification DSSS 2017 161 / 233

The languages of CompCert

Source language: CompCert C

Target language: Asm (three variants: ARM, PowerPC, x86)

8 intermediate languages that bridge the gap.

Some intermediate languages are reused in other projects:
Clight: VST program logic; Velus Lustre compiler
C#minor: Verasco static analyzer by abstract interpretation
Cminor: MiniML compiler, GHC Core compiler.

X. Leroy (Inria) Compiler verification DSSS 2017 162 / 233

Machine (in-)dependence

CompCert C
Clight

C#minor

Cminor
CminorSel

RTL
LTL

Linear
Mach
Asm

Independent of the target processor

Parameterized by the target processor
– Operations, conditions, addressing modes (module Op)
– Machine registers (Machregs)
– Calling conventions (Conventions0)

Specific to the target processor

X. Leroy (Inria) Compiler verification DSSS 2017 163 / 233

Representing control flow

CompCert C
Clight

C#minor

Cminor
CminorSel

RTL
LTL

Linear
Mach
Asm

Expressions with side-effects; statements (structured, goto)

Pure expressions; statements (structured, goto)

Control-Flow Graph of instructions
Control-Flow Graph of basic blocks

List of instructions w/ labels and jumps

List of instructions indexed by PC

X. Leroy (Inria) Compiler verification DSSS 2017 164 / 233

Control-flow graphs
double average(int * tbl, int size)
{

double s = 0.0;
int i;
for (i = 0; i < size; i++)

s = s + tbl[i];
return s;

} s = 0.0

i = 0

if (i >= size)

a = i << 2

b = load(tbl+a)

c = float(b)

s = s +f c

i = i + 1

d = float(size)

e = s /f d

return(e)

X. Leroy (Inria) Compiler verification DSSS 2017 165 / 233

Representing local variables
(Global variables and dynamically-allocated memory: unchanged
throughout compilation.)

CompCert C
Clight

C#minor

Cminor
CminorSel

RTL
LTL

Linear
Mach
Asm

Local addressable variables

Local addressable variables + temporaries (local, non-a var)

Stack frame + temporaries

Stack frame + locations (machine registers or stack slots)

Stack frame + machine registers

X. Leroy (Inria) Compiler verification DSSS 2017 166 / 233

A look at abstract syntax trees

Asm
Note: flat structure, many instructions, some pseudo.

RTL
Note: few instructions, parameterization by
operations/conditions/addressing modes of the target.

Clight
Note: expressions are pure, assignments and function calls
are statements.

CompCert C
Note: complex expressions including assignments (several
forms) and function calls.

X. Leroy (Inria) Compiler verification DSSS 2017 167 / 233

Programs and compilation units

Common to all languages, a compilation unit is a name for a main entry
point plus a list of (name, definition/declaration):

Internal function definition (language-dependent)
External function declaration
Variable definition/declaration, including
size and initialization data
language-dependent information (e.g. the C type)

See module AST.

Module Linking defines a general framework for linking compilation units
together, connecting identically-named definitions of one unit with external
declarations of another unit [KKH+16].

X. Leroy (Inria) Compiler verification DSSS 2017 168 / 233

Styles of semantics used (as a function of time)

Clight . . . Cminor RTL . . . Mach Asm

1st gen. big-step “mixed-step” small-step
(b.s. for calls,

(s.s. otherwise)

2nd gen. big-step small-step small-step
(+ divergence) (coinductive) (w/ call stacks)

3rd gen. small-step small-step small-step
(+ goto (w/ continuations) (w/ call stacks)
& tailcalls)

X. Leroy (Inria) Compiler verification DSSS 2017 169 / 233

CompCert’s semantics, today

All languages use Labeled Transition Systems to describe their operational
semantics in small-step style.

genv ` state1
t→ state2

genv: global environment, maps global identifiers (functions,
variables) to memory addresses, and those addresses to the
definitions/declarations. (See module Globalenvs.)
state1, state2: execution states “before” and “after” the transition.
Contain at least a memory state (see later) and a way to tell the
current control point.
t trace of observable events performed during the transition, e.g.
system calls and volatile memory accesses.
The trace is empty for internal transitions.

X. Leroy (Inria) Compiler verification DSSS 2017 170 / 233

Generic shape of small-step semantics

Record semantics : Type := Semantics_gen {
state: Type;
genvtype: Type;
step : genvtype -> state -> trace -> state -> Prop;
initial_state: state -> Prop;
final_state: state -> int -> Prop;
globalenv: genvtype;
symbolenv: Senv.t

}.

See module Smallstep for generic definitions and theorems about those
semantics.

X. Leroy (Inria) Compiler verification DSSS 2017 171 / 233

The Asm semantics

States: memory state × register state (register 7→ value).

One transition = execute the instruction pointed by register PC.

Broadly similar to the instruction set manuals of the target architecture
and to processor formalizations such as [FM10, KBJD13].

More abstract in some respects:
The code is immutable and not stored in memory.
No bit-level encoding of instructions.

X. Leroy (Inria) Compiler verification DSSS 2017 172 / 233

Chapter 8. Instruction Set 8-9Chapter 8. Instruction Set 8-9Chapter 8. Instruction Set 8-9

8

addx addx
Add (x’7C00 0214’)

add rD,rA,rB (OE = 0 Rc = 0)
add. rD,rA,rB (OE = 0 Rc = 1)
addo rD,rA,rB (OE = 1 Rc = 0)
addo. rD,rA,rB (OE = 1 Rc = 1)

rD ← (rA) + (rB)

The sum (rA) + (rB) is placed into rD.

The add instruction is preferred for addition because it sets few status bits.

Other registers altered:
• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (If Rc = 1)
NOTE: CR0 field may not reflect the infinitely precise result if overflow occurs (see

next bullet item.

• XER:
Affected: SO, OV (If OE = 1)
NOTE: For more information on condition codes see Section 2.1.3, “Condition

Register,” and Section 2.1.5, “XER Register.”

PowerPC Architecture Level Supervisor Level PowerPC Optional Form

UISA XO

0 5 6 10 11 15 16 20 21 22 30 31
31 D A B OE 266 Rc

X. Leroy (Inria) Compiler verification DSSS 2017 173 / 233

The Asm semantics

For most instructions there are no observable events (trace is empty) and
the state after is a partial function Asm.exec_instr of the state before.

Execution of builtin functions (e.g. volatile memory accesses) and external
functions (e.g. system calls) can produce observables and use a
language-independent semantics partially defined, partially axiomatized in
module Events.

X. Leroy (Inria) Compiler verification DSSS 2017 174 / 233

The RTL semantics

Execution states have more components and more structure:
f: RTL function currently executing
sp: pointer to its stack frame
pc: node of the CFG to be executed next
rs: maps temporaries (pseudoregisters) to their values
m: memory state
stk: call stack (list of pending function calls, with f, sp, pc and rs)

Most transitions execute the instruction at node pc of the CFG of the
current function f.

X. Leroy (Inria) Compiler verification DSSS 2017 175 / 233

Handling of function calls and returns
Function calls and function returns are slightly different and use special
intermediate states Callstate and Returnstate.

StateCallstate Returnstate

other instructions

internal
function

return
instr.

call and tailcall instr. nonempty call stack

external function

Program
starts

Program
ends

empty
call

stack

X. Leroy (Inria) Compiler verification DSSS 2017 176 / 233

The Clight semantics

Like in IMP, execution points are pairs (s, k) of a statement under focus s
and a continuation k.

The continuation k also encodes the call stack (pending function calls).

Two local environments:
e: name of addressable local variable 7→ memory address
le: name of temporary 7→ current value

Like in IMP, expressions are evaluated in big-step style. Complications:
overloading of operators; lvalues and rvalues.

The semantics is parameterized and instantiated twice to give:
Clight1 semantics: function parameters are addressable local variables
Clight2 semantics: function parameters are temporaries.

X. Leroy (Inria) Compiler verification DSSS 2017 177 / 233

Handling goto by continuation surgery

A search function find_label that finds a statement labeled lbl while
manufacturing the corresponding continuation:

goto lbl

continuation 1

call continuation

function body
continuation 2

lbl :

Implements the transition goto lbl/k1 → lbl : c/k2.

X. Leroy (Inria) Compiler verification DSSS 2017 178 / 233

The CompCert C semantics

The semantics of statements is similar to that of Clight, using focusing
and continuations.

Expressions can contain function calls
⇒ small-step evaluation of expressions

Several evaluation orders are allowed for expressions
⇒ non-determinism
⇒ reductions under a context (Felleisen-style).

A reference interpreter (ccomp -interp) is provided to explore the
semantics.

X. Leroy (Inria) Compiler verification DSSS 2017 179 / 233

Evaluation orders in C expressions

int a(void) { printf("a"); return 1; }
int b(void) { printf("b"); return 2; }
int c(void) { printf("c"); return 3; }
int main(void) { return a() + b() + c(); }

The subexpressions a() and b() and c() can be evaluated in any order
that the compiler chooses.

⇒ any of the 6 permutations abc, acb, bac, bca, cab, cba
is a valid output for this program.

(This is different from saying that e1 + e2 either evaluates e1 fully then e2,
or e2 then e1, as in Scheme or OCaml.)

(The ISO C standards have a notion of sequence points that declare as
illegal some expressions where different evaluation orders give different
results. Function calls as in the above are not illegal.)

X. Leroy (Inria) Compiler verification DSSS 2017 180 / 233

Reductions under contexts
(Felleisen and Hieb, 1989; Wright and Felleisen, 1992)

One or several head reduction rules, e.g. for the call-by-value λ-calculus,

(λx .a) v ε→ a{x ← v} (βv)

A single reduction under context rule:

a ε→ b

Γ[a]→ Γ[b]

A definition of valid reduction contexts Γ, often as a grammar:

Left-to-right evaluation: Γ ::= [] | Γ b | v Γ
Right-to-left evaluation: Γ ::= [] | Γ v | a Γ
Nondeterministic evaluation: Γ ::= [] | Γ b | a Γ

X. Leroy (Inria) Compiler verification DSSS 2017 181 / 233

Nondeterminism and going-wrong behaviors
Depending on evaluation order, an expression can evaluate normally, or
diverge, or go wrong:

(x = 0) + (x = 1) + (10 / x)

loop() + (10 / 0)

(Assuming loop is a function that never returns.)
Common sense and the ISO C standard say that an expression is undefined
as soon as one evaluation order goes wrong. (“Demonic nondeterminism”.)

The usual convention for head reduction rules is “no reduction if going
wrong”, as opposed to “reduce to ERROR if going wrong”. To get demonic
nondeterminism, we need one “reduce to ERROR” rule:

a is not a value and doesn’t head-reduce

Γ[a]→ ERROR

X. Leroy (Inria) Compiler verification DSSS 2017 182 / 233

Quick tour of the Coq specification
Module Csem: the nondeterministic semantics.

Head reductions: callred for function calls, rred for other r-value
expressions, lred for l-value expressions.
Contexts: functions C : expr→ expr constrained by the predicate
context k1 k2 C , where k1 is the kind (l-value or r-value) of the hole
and k2 the kind of the result.
Reduction of expressions: relation estep between states.
Other transitions between states: relation sstep.

Module Cstrategy: the deterministic evaluation strategy implemented by
CompCert. (Roughly: evaluate effectful subexpressions first, then finish.)

Big-step evaluation of simple, pure subexpressions.
Reductions under contexts for other expressions.
Contexts (predicate lcontext) impose strict left-to-right evaluation.
Reuses the sstep transitions of Csem.

X. Leroy (Inria) Compiler verification DSSS 2017 183 / 233

Compiler verification in the large: CompCert

11 Compiler issues in critical software

12 The CompCert project

13 Tower of Babel: the languages of CompCert

14 The CompCert memory model

15 Observables, non-determinism, and semantic preservation

16 Concluding remarks

X. Leroy (Inria) Compiler verification DSSS 2017 184 / 233

What is a memory model?

Semantics for imperative languages are expressed in terms of evolution of
the state.

A memory model defines:
What a state contains.
The basic operations over states:
at least read and write; also alloc and free.
The properties of these operations
⇒ reasoning over programs
⇒ reasoning over program transformations.

Not treated here: issues of weak consistency in the presence of parallelism
with shared memory (threads).

X. Leroy (Inria) Compiler verification DSSS 2017 185 / 233

High-level memory models

For IMP:
a memory state = a mapping from variable names to values.

For Java, OCaml, etc:
a memory state = a mapping from abstract references to values.

(References are identifiers, like variable names; fresh references are created
at dynamic allocation points.)

In both cases: the good variables properties:

load(store(m, r , v), r) = v
load(store(m, r , v), r ′) = load(m, r ′) if r 6= r ′

X. Leroy (Inria) Compiler verification DSSS 2017 186 / 233

High-level memory models

For (a well-behaved fragment of) C and C++, we can use references to
designate objects and paths to designate their sub-objects (record fields,
array elements) [RF95]:

Path: p ::= r reference to top-level object
| p.field access to a field of a struct or union
| p[i] access to the i-th element of an array

The good variables properties become:

load(store(m, p, v), p) = v
load(store(m, p, v), p′) = load(m, p′) if p and p′ are disjoint

X. Leroy (Inria) Compiler verification DSSS 2017 187 / 233

Problems with low-level C programming idioms

High-level models have difficulties accounting for low-level C programming
idioms such as byte-per-byte access to the representation of data:

void memcpy(void * dst, void * src, int n)
{

int i;
for (i = 0; i < n; i++) ((char *)dst)[i] = ((char *)src)[i];

}

double a[10], b[10];
memcpy(a, b, 10 * sizeof(double));

X. Leroy (Inria) Compiler verification DSSS 2017 188 / 233

Problems with low-level C programming idioms

Another low-level idiom that works only with IEEE floating-point numbers
and a little-endian processor:

double copysign(double x, double y)
{

union { double d, uint64_t i } ux, uy;
ux.d = x; uy.d = y;
ux.i &= 0x7FFFFFFFFFFFFFFF;
ux.i |= (uy.i & 0x8000000000000000);
return ux.d;

}

(This is not standard-conformant C but widely used in the field.)

X. Leroy (Inria) Compiler verification DSSS 2017 189 / 233

Low-level memory models

A machine-oriented view of memory as a flat array of bytes [TKN07]
Memory state = mapping int 7→ byte
Pointer value = machine integer.

For each data type τ of the language, define two functions

encodeτ : τ → list byte

decodeτ : list byte→ τ

such that (at least)

decodeτ (encodeτ (x)) = x
length(encodeτ (x)) = sizeof(τ)

X. Leroy (Inria) Compiler verification DSSS 2017 190 / 233

Low-level memory models

Definition of memory operations:

loadτ (m, a) = decodeτ (m[a], . . . ,m[a + sizeof(τ)− 1])
storeτ (m, a, x) = m[a, . . . , a + sizeof(τ)− 1← encodeτ (x)]

Weak “good variables” properties:

loadτ (storeτ (m, a, x), a) = x
loadτ ′(storeτ (m, a, x), a′) = loadτ ′(m, a′)

if a′ + sizeof(τ ′) ≤ a or a + sizeof(τ) ≤ a′

X. Leroy (Inria) Compiler verification DSSS 2017 191 / 233

Low-level memory models

Also need to account for:

Alignment constraints, e.g. “for a 32-bit memory access, the address
must be a multiple of 4”.
⇒ define the minimal alignment of a type alignof(τ)
⇒ enforce (alignof(τ) | a) for a τ access at a.

Permissions / access rights. Some addresses do not correspond to
working memory. Others correspond to readonly memory.
⇒ memory states include a mapping address → permission

The CompCert permissions:
Empty < Nonempty < Readable < Writable < Freeable.

X. Leroy (Inria) Compiler verification DSSS 2017 192 / 233

The good, the bad, and the ugly

Good: all low-level C programming idioms can be accounted for.

Bad: C programs can observe too many things about memory:

Adjacency of data in memory:
int a[2], b[2]; a[3] = 42; return b[1]; // returns 42

Relative order of data in memory:
int a, b; return &a < &b;

Absolute addresses:
int a; return &a == (int *) 4;

X. Leroy (Inria) Compiler verification DSSS 2017 193 / 233

The good, the bad, and the ugly

Ugly: program transformations in general and compilers in particular do
not preserve these extra observations:

Insertion of padding ⇒ invalidates adjacency properties
int a[2], b[2]; a[3] = 42; return b[1];

-->
int a[2], padding[2], b[2]; a[3] = 42; return b[1];

Permutation of allocations ⇒ invalidates adjacency and relative order
int a, b; return &a < &b; // returns true

-->
int b, a; return &a < &b; // returns false

Late (link-time or run-time) placement of data
⇒ invalidates absolute addresses.

X. Leroy (Inria) Compiler verification DSSS 2017 194 / 233

A sanity condition on semantics

Semantics for imperative languages should be invariant under renaming of
references/addresses

S1 S2

T1 T2

execution of
statement c

execution of
statement c

renaming ρ renaming ρ′ ≥ ρ

High-level models: OK. Low-level models: no.

X. Leroy (Inria) Compiler verification DSSS 2017 195 / 233

The CompCert memory model [LABS14]

A “medium-level” memory model:

States are composed of memory blocks (similar to top-level objects in
the abstract C/C++ view), disjoint by construction, designated by
abstract references b.

The contents of a memory block are accessed by byte offsets, with
alignment constraints and per-byte permissions, just like in a low-level
model.

Pointer values are pairs (b, δ) of a block identifier b and a byte
offset δ (unsigned 32 or 64-bit integer, depending on the target
processor).

Used for all the languages of CompCert, from C to Asm.

X. Leroy (Inria) Compiler verification DSSS 2017 196 / 233

The CompCert value model
(Module Values)

Values are either pointers or numbers (different kinds), plus a special
Vundef value meaning “an unknown bit pattern”.

Inductive val: Type :=
| Vundef: val
| Vint: int -> val
| Vlong: int64 -> val
| Vfloat: float -> val
| Vsingle: float32 -> val
| Vptr: block -> ptrofs -> val.

X. Leroy (Inria) Compiler verification DSSS 2017 197 / 233

In-memory encoding of values
(Module Memdata)

Inductive memval: Type :=
| Undef: memval
| Byte: byte -> memval
| Fragment: val -> quantity -> nat -> memval.

The concrete encoding:
As a list of bytes (8-bit integers).
Used for numbers (integers and FP).
Exposes bit-level representation (2’s complement, IEEE754 FP) and
processor endianness.

The abstract encoding:
As a list of symbolic fragments “the n-th byte of value v”.
Used for pointers.

X. Leroy (Inria) Compiler verification DSSS 2017 198 / 233

Main properties of the model
(Module Memory; see also [LABS14])

Weak good variables properties:

loadτ (storeτ (m, p, x), p) = x
loadτ ′(storeτ (m, p, x), p′) = loadτ ′(m, p′)

if p, p′ point to different blocks
or to disjoint areas of the same block

Pointer values cannot be forged: the only way for a load to return a
pointer value is for this pointer value to have been stored earlier at
the same address.

Compatibility with renamings of block identifiers.

Compatibility with generalized renamings: memory injections.

X. Leroy (Inria) Compiler verification DSSS 2017 199 / 233

Memory injections

j : block→ option(block× Z)
j(b) = None: block b disappears (e.g. contents pulled into a register)
j(b) = Some(b′, δ): block b becomes a sub-block of b′ at offset δ.

/

X. Leroy (Inria) Compiler verification DSSS 2017 200 / 233

Memory injections

A memory injection j : block→ option(block× Z) induces a
correspondence j ` v ≈ v ′ between values:

j ` Vundef ≈ v j ` Vint(i) ≈ Vint(i)

j(b) = Some(b′, δ) o′ = o + δ (mod 2wordsize)

j ` Vptr(b, o) ≈ Vptr(b′, o′)

It also induces a correspondence between memory states j ` M ≈ M ′:
No overlap between block images
Block contents match.

X. Leroy (Inria) Compiler verification DSSS 2017 201 / 233

Uses of memory injections in CompCert’s proofs

0
undef

1

0
42
1

Pulling data out of memory
(Clight1 to Clight2)

Merging blocks
(C#minor to Cminor; inlining)

Refinement of stored values
(many passes)

Extending stack frames
(spilling)

X. Leroy (Inria) Compiler verification DSSS 2017 202 / 233

Compiler verification in the large: CompCert

11 Compiler issues in critical software

12 The CompCert project

13 Tower of Babel: the languages of CompCert

14 The CompCert memory model

15 Observables, non-determinism, and semantic preservation

16 Concluding remarks

X. Leroy (Inria) Compiler verification DSSS 2017 203 / 233

Semantic preservation in early CompCert

The first versions of CompCert were similar to big-step IMP, in that:

The semantics only let us observe termination with a given exit status
(return value of the main function).

The semantic preservation result proved was of the form
If the source Cminor program terminates with status N,
the generated assembly code also terminates with status N.

The assembly language had deterministic semantics, hence no other
behavior of the compiled code was possible.

X. Leroy (Inria) Compiler verification DSSS 2017 204 / 233

The need for stronger preservation properties

Most real programs produce more output than just an integer exit status,
e.g. write results to files.

Many real programs are interactive and input data in addition to
outputting it.

Many real programs are intended to run forever; termination is an error.
This is the case of servers but also of control-command codes.

every δt seconds do
acquire current-state from sensors
compute action = control-law (desired-state− current-state)
send action to actuators

done

X. Leroy (Inria) Compiler verification DSSS 2017 205 / 233

Observing more behaviors

1- Associate observable events to certain actions of the program:
Calls to the OS or to a standard I/O library,
e.g. putchar, getchar.
Reads from and writes to volatile global variables,
because these variables can correspond to hardware I/O devices.

2- Describe diverging (non-terminating) executions in addition to
terminating executions.

X. Leroy (Inria) Compiler verification DSSS 2017 206 / 233

Labeled Transition Systems

genv ` state1
t→ state2

Classically, labels t are either τ (for internal, non-observable
computations), c!v for output operations, and c?v for input operations.

In CompCert, t is a list of observable events (see module Events).
The list is empty for internal computations.

Events come in several kinds and can combine output and input,
e.g. “call system function F with argument out and get result in”.

X. Leroy (Inria) Compiler verification DSSS 2017 207 / 233

From transitions to whole-program behaviors

Normal termination with trace a1 . . . ak :

initial 3 s τ→ s1
a1→ s2

τ→ · · · ak→ sn ∈ final

“Going wrong” with trace a1 . . . ak :

initial 3 s τ→ s1
a1→ s2

τ→ · · · ak→ sn ∈ error

Reactive divergence with infinite trace a1 . . . ak . . .:

initial 3 s τ→ · · · ai→ τ→ τ→ τ→ · · · aj→ τ→ τ→ · · ·

Silent divergence with trace a1 . . . ak :

initial 3 s τ→ · · · ak→ sn
τ→ τ→ τ→ τ→ · · ·

X. Leroy (Inria) Compiler verification DSSS 2017 208 / 233

Simulations

Using these notions of whole-program behaviors, we can reuse the
framework from part 2 of this lecture to define forward simulation and
backward simulation between an original program P1 and a compiled
program P2:

Backward simulation with improvement:
Any observable behavior b2 of P2 is identical to or improves
upon a possible behavior b1 of P1.

Forward simulation with improvement:
Any possible behavior b1 of P1 is identical to or is improved
by a possible behavior b2 of P2.

However, these simulations can be defined directly in terms of the labeled
transition systems for P1 and P2, as commutative diagrams.

X. Leroy (Inria) Compiler verification DSSS 2017 209 / 233

Forward simulation diagram
R is a relation between execution states of the two programs.
Black = hypothesis; red = conclusion.

error 6= S1 S2
R

Original program Transformed program

S ′1

t

S ′2

+
t or

∗ and |S ′1| < |S1|
R

initial 3 S1 S2 ∈ initialR

final 3 S1 S2 ∈ finalR

X. Leroy (Inria) Compiler verification DSSS 2017 210 / 233

Early CompCert semantic preservation proofs
(See [Ler09b])

1 Show safe forward simulation for every compilation pass.
(Using simulation diagrams and small-step semantics, mostly.)

2 Show safe forward simulation for the whole compiler
by composing the per-pass simulations.

3 Argue that the target language (Asm) is deterministic.

4 Conclude that we have safe backward simulation.

X. Leroy (Inria) Compiler verification DSSS 2017 211 / 233

Issues with external nondeterminism

Input operations (“c?v ′′ events in the trace) receive values v that are not
determined by the program, but instead chosen by the environment.

For example, reading from a global volatile variable returns any value of its
type.

Hence the Asm semantics is not deterministic:

S
S1

S2

c?v1

c?v2

Workaround: determinize the environment by making input values partial
functions of an initial environment state and of the previous outputs of the
program.

X. Leroy (Inria) Compiler verification DSSS 2017 212 / 233

Issues with internal nondeterminism

A compiler pass that reduces internal nondeterminism
(e.g. by selecting one evaluation order among several permitted orders)
cannot enjoy a forward simulation property.

(Forward simulation: every behavior of the source is matched by a
behavior of the compiled.)

Early CompCert: problem not apparent because the C→Clight pass that
chooses an evaluation order was not formally verified yet.

Later CompCert: use a backward simulation diagram to relate
CompCert C with multiple evaluation orders
CompCert C with the fixed order from module Cstrategy

then a forward simulation from the latter to Clight.

X. Leroy (Inria) Compiler verification DSSS 2017 213 / 233

Backward simulation diagrams

safe 3 S1 S2
R

Original program Transformed program

S ′2

t

S ′1

+
or t

|S ′2| < |S2| and ∗
R

safe 3 S1 S2 /∈ finalR

S ′2

t

Simulation:

Progress:

(Not shown: initial states, final states)

S ∈ safe means ¬ S ∗−−→
τ

error (cannot crash silently).

X. Leroy (Inria) Compiler verification DSSS 2017 214 / 233

From determinism to determinacy and receptiveness

In their CompCertTSO work [SVN+11], Sevćık, Vafeiadis, Zappa Nardelli,
Jagannathan and Sewell show how to get rid of the “deterministic external
world” hypothesis, by reasoning purely over diagrams and forgetting about
whole-program behaviors.

Theorem (Sevćık et al)
Assume a forward simulation diagram from LTS L1 to LTS L2.
If L1 is receptive and L2 is determinate, there exists a backward simulation
diagram from L1 to L2.

Proof: highly nontrivial; see module Smallstep.

X. Leroy (Inria) Compiler verification DSSS 2017 215 / 233

Determinacy and receptiveness

Two labels are compatible `1 � `2 if they differ only by input values.
(I.e. `1 = `2 = τ or `1 = `2 = c!v or `1 = c?v1, `2 = c?v2.)

A language is determinate if:
s `1→ s1 and s `2→ s2 imply `1 � `2.
s `→ s1 and s `→ s2 imply s1 = s2.

In other words: the only nondeterminism comes from the input values in
labels. This is the case for Asm and all other CompCert language except
CompCert C (because of its internal nondeterminism).

A language is receptive if:
s `1→ s1 and `1 � `2 implies ∃s2, s

`2→ s2.
In other words: a transition with an input is possible regardless of the
value of the input. This is the case for all CompCert languages.

X. Leroy (Inria) Compiler verification DSSS 2017 216 / 233

Putting it all together
(Module Compiler)

C (non-det)

C (determinized)

Clight

Mach

Asm

(same code)

pass 1

many passes

pass N

: forward simulation diagram
: backward simulation diagram

X. Leroy (Inria) Compiler verification DSSS 2017 217 / 233

Putting it all together
(Module Compiler)

C (non-det)

C (determinized)

Clight

Mach

Asm

(same code)

pass 1

many passes

pass N

: forward simulation diagram
: backward simulation diagram

X. Leroy (Inria) Compiler verification DSSS 2017 217 / 233

Putting it all together
(Module Compiler)

C (non-det)

C (determinized)

Clight

Mach

Asm

(same code)

pass 1

many passes

pass N

: forward simulation diagram
: backward simulation diagram

X. Leroy (Inria) Compiler verification DSSS 2017 217 / 233

Putting it all together
(Module Compiler)

C (non-det)

C (determinized)

Clight

Mach

Asm

(same code)

pass 1

many passes

pass N

: forward simulation diagram
: backward simulation diagram

X. Leroy (Inria) Compiler verification DSSS 2017 217 / 233

Putting it all together
(Module Compiler)

C (non-det)

C (determinized)

Clight

Mach

Asm

(same code)

pass 1

many passes

pass N

: forward simulation diagram
: backward simulation diagram

X. Leroy (Inria) Compiler verification DSSS 2017 217 / 233

Compiler verification in the large: CompCert

11 Compiler issues in critical software

12 The CompCert project

13 Tower of Babel: the languages of CompCert

14 The CompCert memory model

15 Observables, non-determinism, and semantic preservation

16 Concluding remarks

X. Leroy (Inria) Compiler verification DSSS 2017 218 / 233

On tool verification

CompCert is still an ongoing project, but it demonstrates that the formal
verification of realistic compilers is feasible (within the limitations of
today’s proof assistants).

Some related tool verification projects:
CakeML (compiler for core ML)
Velus (Lustre→C code generator)
Verasco (C static analyzer based on abstract interpretation)
The Verified Software Toolchain at Princeton

X. Leroy (Inria) Compiler verification DSSS 2017 219 / 233

Future directions for CompCert

Increase confidence further by reducing the number of unverified
components.
Re-engineer and model differently to be more easily extensible, e.g. to
new target processors and ABIs.
Add more optimizations, esp. loop optimizations.
Extend the verification “up” to connect with more abstract semantics
of C such as Krebbers’s [Kre15].
Extend the verification “down” towards instruction set architectures
(machine language, e.g. [FM10, KBJD13]) and hardware
implementations (e.g. the CLI stack [Moo96]).
Support shared-memory concurrency.
Early attempt: CompCertTSO [SVN+11]. Ongoing work at Princeton.

X. Leroy (Inria) Compiler verification DSSS 2017 220 / 233

On trusting the specifications

A difficult problem, faced by all kinds of formal verifications.

A small simplification in the specifications is worth a large increase in
proof effort.

In the DeepSpec project: exercise specifications by connecting them to
multiple verifications.

Executable specifications (e.g. reference interpreters) can also help:
For testing the specifications.
To discuss with standard committees.

X. Leroy (Inria) Compiler verification DSSS 2017 221 / 233

On mechanized semantics

A need shared by many verification efforts, not just verified compilers.

A difficult task, especially for realistic programming languages
(i.e. Java and the JVM; C; Javascript; C++).

Machine assistance is a necessity to scale up to realistic programming
languages.

The sensitivity is disturbingly high: adding one language feature can
deeply impact the whole semantics.

The unreasonable effectiveness of Labeled Transition Systems
(despite looking more like abstract machines than high-level specs).

X. Leroy (Inria) Compiler verification DSSS 2017 222 / 233

Part VII

Appendix

X. Leroy (Inria) Compiler verification DSSS 2017 223 / 233

References I
Anthony C. J. Fox and Magnus O. Myreen.
A trustworthy monadic formalization of the ARMv7 instruction set architecture.
In ITP 2010: Interactive Theorem Proving, volume 6172 of LNCS, pages 243–258.
Springer, 2010.
https://www.cl.cam.ac.uk/˜mom22/itp10-armv7.pdf.

Andrew Kennedy, Nick Benton, Jonas Braband Jensen, and Pierre-Évariste Dagand.
Coq: the world’s best macro assembler?
In PPDP’13: Principles and Practice of Declarative Programming, pages 13–24. ACM,
2013.
https://www.microsoft.com/en-us/research/publication/
coq-worlds-best-macro-assembler/.

Jeehoon Kang, Yoonseung Kim, Chung-Kil Hur, Derek Dreyer, and Viktor Vafeiadis.
Lightweight verification of separate compilation.
In POPL 2016: Symposium on Principles of Programming Languages, pages 178–190.
ACM, 2016.
https://people.mpi-sws.org/˜viktor/papers/sepcompcert.pdf.

Robbert Krebbers.
The C standard formalized in Coq.
PhD thesis, Radboud University Nijmegen, 2015.
http://robbertkrebbers.nl/thesis.html.

X. Leroy (Inria) Compiler verification DSSS 2017 224 / 233

https://www.cl.cam.ac.uk/~mom22/itp10-armv7.pdf
https://www.microsoft.com/en-us/research/publication/coq-worlds-best-macro-assembler/
https://www.microsoft.com/en-us/research/publication/coq-worlds-best-macro-assembler/
https://people.mpi-sws.org/~viktor/papers/sepcompcert.pdf
http://robbertkrebbers.nl/thesis.html

References II
Xavier Leroy, Andrew W. Appel, Sandrine Blazy, and Gordon Stewart.
The CompCert memory model.
In Andrew W. Appel, editor, Program Logics for Certified Compilers, pages 237–271.
Cambridge University Press, March 2014.
Preliminary version as Inria report RR-7987, https://hal.inria.fr/hal-00703441.

Xavier Leroy.
Formal verification of a realistic compiler.
Communications of the ACM, 52(7):107–115, 2009.
http://gallium.inria.fr/˜xleroy/publi/compcert-CACM.pdf.

Xavier Leroy.
A formally verified compiler back-end.
Journal of Automated Reasoning, 43(4):363–446, 2009.
http://gallium.inria.fr/˜xleroy/publi/compcert-backend.pdf.

J. S. Moore.
Piton: a mechanically verified assembly-language.
Kluwer, 1996.

Michael Norrish.
C formalized in HOL.
PhD thesis, University of Cambridge, 1998.
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-453.pdf.

X. Leroy (Inria) Compiler verification DSSS 2017 225 / 233

https://hal.inria.fr/hal-00703441
http://gallium.inria.fr/~xleroy/publi/compcert-CACM.pdf
http://gallium.inria.fr/~xleroy/publi/compcert-backend.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-453.pdf

References III

Jonathan G. Rossie and Daniel P. Friedman.
An algebraic semantics of subobjects.
In OOPSLA’95: Object-Oriented Programming, Systems, Languages, and Applications,
pages 187–199. ACM, 1995.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.44.57.

Jaroslav Sevćık, Viktor Vafeiadis, Francesco Zappa Nardelli, Suresh Jagannathan, and
Peter Sewell.
Relaxed-memory concurrency and verified compilation.
In POPL 2011: Symposium on Principles of Programming Languages, pages 43–54. ACM,
2011.
http://www.cl.cam.ac.uk/˜pes20/CompCertTSO/doc/paper.pdf.

Harvey Tuch, Gerwin Klein, and Michael Norrish.
Types, bytes, and separation logic.
In POPL 2007: Symposium on Principles of Programming Languages, pages 97–108.
ACM, 2007.
https://ts.data61.csiro.au/publications/nicta_full_text/134.pdf.

X. Leroy (Inria) Compiler verification DSSS 2017 226 / 233

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.44.57
http://www.cl.cam.ac.uk/~pes20/CompCertTSO/doc/paper.pdf
https://ts.data61.csiro.au/publications/nicta_full_text/134.pdf

	Compiling IMP to virtual machine code
	Reminder: the IMP language
	The IMP virtual machine
	The compiler
	Verifying the compiler: first results

	Notions of semantic preservation
	More on mechanized semantics
	Reminder: big-step semantics for terminating programs
	Small-step semantics
	Small-step semantics with continuations

	Compiling IMP to virtual machine code, continued
	Optimizations based on liveness analysis
	Liveness analysis
	Dead code elimination
	Advanced topic: register allocation

	Compiler verification in the large: CompCert
	Compiler issues in critical software
	The CompCert project
	Tower of Babel: the languages of CompCert
	The CompCert memory model
	Observables, non-determinism, and semantic preservation
	Concluding remarks

	Appendix

