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Abstract

In this work, the Plantwide Control (PWC) problem of a continuous bio-ethanol process is
investigated from a Plantwide Optimizing Control (PWOC) perspective. A PWOC methodology
is proposed which addresses this problem by integrating real-time optimization and control
for optimal operation. The PWOC methodology consists of two main tasks. The first is a local
control-oriented task related to the identification and design of necessary local control loops
required for satisfying the primary objectives of the process (e.g. safe operation,
environmental and equipment protection, etc.). The second is a Plantwide control-oriented
task in which the available control degrees of freedom are used for maximizing the process
profitability. This means that, excluding the local loops, no pre-defined set points will be
either regulated or tracked. The core of the PWOC methodology proposed is the formulation
of a Dynamic Real time optimization (D-RTO) problem for the complete process. In this
work, two new approaches are proposed for reducing the computational effort of solving this
problem in real time. First, it is proposed to shrink the search region in the optimization
problem based on the effect of disturbances (both, known and unknown) on the profitability
of the process. Second, a new stochastic global optimization algorithm denoted as Molecular-
Inspired parallel Tempering (MIPT) is proposed for solving the D-RTO problem. The
performance of the MIPT algorithm is evaluated in different challenging case studies,
demonstrating to be a very competitive and efficient algorithm, reaching the global optimum
with 100% success ratio in most cases without requiring much computational effort. It is
shown that incorporating the shrinking approach and the MIPT algorithm results in a very
efficient approach for solving the complex problem of controling a complete, highly
interconnected plant, such as the bio-ethanol production process. In addition, two different
PWOC approaches have been considered: A Single-Layer Direct Optimizing Control (PWOC-
one-layer) and a Multi-Layer without Coordination approach (PWOC-two-layer). The
performance of the PWOC-one-layer and PWOC-two-layer schemes is analyzed under three
different disturbance scenarios: a known disturbance in the feed concentration, an unknown
disturbance in the kinetics parameters of fermentation, and a sudden increase in the raw
material price. The performance of the PWOC approaches facing these challenges is
compared to the performance when a decentralized Plantwide architecture (i.e. multiple
single PID loops) is used, a typical configuration in industry, demonstrating the benefits of
using Plantwide Optimization-based Control strategies towards reaching maximum
profitability.
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Zusammenfassung

In der vorliegenden Arbeit wurde die Plantwide Optimizing Contro/ (PWOC) fir die
kontinuierliche Bio-Ethanolproduktion untersucht. Diese Methode integriert Real-Time
Optimization (RTO) und Regelung flir den optimalen Betrieb in zwei verschiedene Aufgaben.
Die erste ist eine lokale dezentralisierte Regelungsaufgabe, die aus der Identifizierung und
dem Entwurf benétigter lokaler Regelkreise flir die Erflillung der Primdrregelungsziele des
Prozess (z.B. sicherer Betrieb, Umweltschutz, Anlageschutz, usw.) besteht. Die zweite ist
eine anlagenweite (plantwide) Regelungsaufgabe, die die verfiigbaren Freiheitsgrade nutzt
um die Prozessrentabilitdt zu maximieren. Das heiBt, dass auBer den lokalen Regelkreisen,
keine festgelegten Sollwerte vorgegeben werden. Das Prinzip des PWOC Methode ist die
Formulierung eines Dynamic Real-Time Optimization (D-RTO) Problems fiir den ganzen
Prozess. Die Berechnungsdauer der Losung der D-RTO wird durch die Ausfiihrung einer
neuen Methode zur Verkleinerung des Durchsuchungsbereich und durch eine neue
stochastiche globale Optimierungsmethode (Molecular-Inspired Parallel Tempering - MIPT)
stark reduziert. Die Leistung des MIPT Optimierungsalgorithmus wird fiir verschiedene
Probleme bewertet. Es wird nachgewiesen, dass MIPT eine sehr effiziente und hilfreiche
Methode ist. Die Verwendung der neuen Methode zur Verkleinerung des
Durchsuchungsbereichs und der MIPT Optimierungsmethode flihren zu einer
leistungsfahigen Losung des komplizierten Plantwide Contro/ (PWC) Problems (z.B. fiir den
kontinuierlichen Bio-Ethanol Produktionsprozess). Zwei verschiedene PWOC Architekturen
werden verwendet: Die Single-Layer Direct Optimizing Control Architektur und die Multi-
Layer without Coordination Architektur. Die Ergebnisse fiir jede Architektur sind fir drei
Stoérungsszenarien untersucht worden: eine bekannte Stérung in der Zulaufkonzentration,
eine unbekannte Stérung in den kinetischen Parametern der Fermentation, und eine
unerwartete Steigerung der Rohstoffpreise. Die Leistung der PWOC Architekturen werden mit
der Leistung einer dezentralisierten Architektur (mehrere PID Regelkreise) verglichen. Es ist
klar geworden, dass die PWOC Methode eine duBerst effiziente Strategie flir die Maximierung
der Prozessrentabilitat darstellt.

Vi
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1. Introduction

In the year 2000, the Intergovernmental Panel on Climate Change presented a scientific
study concluding that if the emission of greenhouse gases, mainly CO,, does not decrease,
the global warming effect would dramatically increase the Earth temperature (up to 6°C on
average), with devastating consequences for the environment and ecosystems, and
consequently for mankind. The report presented in year 2000, clearly stated that the global
warming is a real problem faced by the planet, and that the reduction of CO, emissions
generated by transportation is a challenge for the political, economic and industrial sectors.
The German federal government, in the framework of its climate protection program, has
adopted policies for motivating the production and consumption of fuels from regenerative
sources of energy (Schmitz, 2003). A recent report by the Saxon State Ministry of the
Environment and Agriculture (Grunert, 2005) summarizes the situation of the Bio-ethanol
industry in Germany, where it is reported that up to 2005, there were four bio-ethanol
production plants already installed and operating with a total production capacity of ca.
600.000 m>/year, using rye, triticale, corn and wheat as main raw materials. Furthermore,
up to the same year, 7 additional plants were under construction with a planned capacity of
100.000 m>/year each, in order to completely satisfy the internal bio-ethanol demand. As it
can be noticed, the Bio-ethanol industry in Germany, and also worldwide, has become a very
important sustainable alternative for replacing fuel-oils, in an effort to decrease the effects of

fuels on the climate change.

The intention of this work is to offer an alternative for assuring the economical feasibility of
the bio-ethanol process industry from a plantwide control and optimization perspectives. In
the next Section, the motivating reasons for this work are explained. Then, a general
description of the bio-ethanol production process is provided. Finally, at the end of the

section, the outline of this work is presented.
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1.1. Motivation to Plantwide Control for the Bio-ethanol/

process

Nowadays, bioprocess industry is an important part of the worldwide economy. Specifically,
the bio-ethanol industry has experienced a significant growth in the last years because
ethanol, as an environmentally friendly fuel, is considered an attractive alternative energy
source. Fuel ethanol is considered today as a bulk product, whose consumption is expected
to keep growing fast for the next 20 years, as reported by Licht (2006) and Walter et al.
(2008) (Figure 1.1). Despite the growing market and favorable predictions, ethanol industry
is at risk because the process is claimed to be economically infeasible, non-sustainable

without governmental subsidies, and non-competitive with fuel oil prices today.
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Figure 1.1 Fuel Ethanol consumption 2005-2030 (Source: Walter et al. 2008)

In order to assure the economical and environmental feasibility of the bio-ethanol industry,
ethanol production has been continuously improved in very different ways. Examples of this
progress include the genetic modifications of the microbial strains for building more ethanol-
tolerant yeast, strains capable of carrying out simultaneously saccharification and
fermentation tasks, and for the development of strains with capability for simultaneously

fermenting hexoses and pentoses. Furthermore, the development of different purification
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technologies for reducing energy consumption during the separation of the ethanol-water
mixture has also been an active area of research, where new technologies such as
pervaporation, extractive distillation, pressure swing adsorption using molecular sieves and
pressure swing distillation with heat integration appear to be promising alternatives for
improving the purification section in the bio-ethanol process. Recently, some efforts have
been done from the Process system Engineering point of view, in which the focus has been
to obtain an optimal design for the process, by minimizing energy consumption. For
example, the work by Karuppiah et al. (2008) addressed the optimal design problem of a
complete corn-based bio-ethanol plant, by formulating and solving a mixed integer nonlinear
programming problem. The work by Ahmetovic et al. (2010) uses the results reported by
Karuppiah et al. (2008), for both, optimizing energy consumption and synthesizing an
optimal process water network in corn-based ethanol plants. In the work by Alvarado-
Morales et al. (2009), a methodology is proposed and applied for analyzing and designing
a bio-ethanol production process from lignocelullose, considering new alternatives for
reducing the waste water generation, and different alternatives for downstream separation.
Finally, the works by Haelssig et al. (2008) and by Hoch and Espinosa (2008)
addresses the conceptual design of the purification section for the bio-ethanol process,
looking for a significant reduction in energy demand. The mentioned works have shown the
potential of the application of computer-aided tools to the bio-ethanol process, resulting in
very interesting alternatives for reducing operating costs whereas saving energy and
minimizing waste production. However, in addition to an optimal design of the process, it is
important also to account for an efficient and appropriate control system for the process
which should consider the interactions between the different operating units in the process.
Traditionally, the control problem for the bio-ethanol process (and for bioprocesses in
general) has been focused in controlling the fermentation section separately from the other
process units. This is why, in the literature, it is possible to find many works regarding the
modeling, estimation, and control of the isolated fermentation stage, but only few works
addressing the control problem considering the process as an integrated dynamic production
system consisting of more than one single process unit (i.e. accounting for interactions
between the fermentation, cells recycle, and purification units). Some representative works
in this direction include those by Meleiro et al. (2009) and Costa et al. (2002), in which
the model presented for controlling purposes includes more than one process equipment (i.e.
fermentation, cells recycle and a flash vessel). However, in spite of accounting for the
interaction between different process units, these works are still focused on the control of
some state variables only in the fermentor, and lack of a suitable plantwide control

formulation.
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In the present work, the Plantwide Control (PWC) problem for the complete bio-ethanol
process is addressed as an optimizing control problem based on Dynamic Real-Time
Optimization (D-RTO), due to the following facts: the process is highly nonlinear and
characterized by the coupling of slow and fast dynamics; there exist interactions between
different operating units which cannot be neglected, also the quality and availability of the
raw material change often, introducing disturbances into the process; and finally, the
economical feasibility of the process can be effectively assured only if this is the main control
objective of the plantwide strategy. Of course, an optimal process design should be the base
for an efficient and economically feasible process, but this is not enough, because, despite
optimal operation may be expected at the optimal operating point for the designed process,
a real process is always affected by disturbances and uncertainties, which in many cases
upset the process, driving the optimum to a very different operating point and thus resulting

in significant economic losses.

It is important to notice that for solving the dynamic real time optimization problem that
arises in the Plantwide optimizing control framework, it is desirable to use global optimization
algorithms for solving the problem in order to avoid reaching a lower profit performance at a
local optimum. As noted by Lacks (2003), in large chemical processes the profit can be a
nonlinear function of the operating conditions variables, and there may be local maxima,
local minima and saddle points on the profit function space. Therefore, since the optimal
operation of the process occurs at the conditions corresponding to the global maximum
profit, it is important to search for the global optimum of the profit function by using global
rather than local optimization algorithms. Although this last statement may seem obvious,
usually real-time applications are solved using local optimization algorithms because of the
larger computational requirements of global optimization procedures and the need to solve
fast the real-time optimization problem. Trying to overcome these drawbacks, a new global
optimization algorithm is proposed in Chapter 3, which has an excellent performance both in

terms of finding the global optimum and requiring a reasonable computational demand.

Before concluding this section, it is important to clarify that the scope of Global Optimization
(GO) is to find the absolutely best set of admissible conditions to achieve an objective under
given constraints (Neumaier, 2004). In this work, such “admissible conditions” is the set of
plantwide manipulated variables that lead the process to maximum profitability. Figure 1.2

shows an example of an optimization (maximization) problem consisting on a multimodal
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objective function in two dimensions where the use of global optimization techniques is

required in order to find the global maximum.

Objective Function

Figure 1.2 Global maximum and local maxima for the two-dimensional Shubert function. Only some of

the local maxima are indicated by arrows. The Shubert function is described in Appendix B.1.

In general, deterministic or stochastic approaches can be used for solving GO problems. In
this thesis, stochastic methods are investigated and compared with a new method proposed
and developed in this work, which is denoted as the Molecular-Inspired Parallel Tempering
Algorithm (MIPT) and is presented in Chapter 3.

1.2. Generalities of the Bio-ethanol process

Fuel-ethanol can be obtained from different raw materials (substrates), mainly from starchy
materials, sugar crops and lignocellulosic materials. In general, the production process
involves the stages shown in Figure 1.3. First, the polymeric substrates are broken down into
monosaccharides through physical, chemical or enzymatic techniques, as appropriate. Then,
the conversion of the sugars to alcohol by microbial fermentation (generally by yeasts) is
carried out. Finally, the alcohol is recovered by distillation and it is purified in subsequent

steps, to obtain fuel-grade ethanol (>99.8% wt).
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Figure 1.3 Main stages in fuel-ethanol production from different raw materials: Sugar crops (dotted

line), Starches (dashed line) and Lignocellulose (solid line)

As it is mentioned by Roehr (2001) the selection of an appropriate substrate depends on a
number of factors and one of the most important is the geographical climate of the intended
production site. Thus, while starchy materials like corn, wheat, rice and potatoes are the
most common substrates in Europe and North America; sugar cane, molasses, and cassava
appear to provide the most promising supply of ethanol for tropical countries like Brazil. If
well, lignocellulosic biomass is claimed to be a more convenient raw material for ethanol
production (no competition between food and fuel production, low price, etc.), currently only
few pilot plants worldwide produce ethanol from this raw material, mainly because
saccharification is more difficult to carry out than in the case of starches, due to the
presence of lignin which protects cellulose and hemicellulose against enzymatic action (thus
increasing the pre-treatment costs); and because fermentation is also more complicated, as
the substrate available for ethanol production consists on a mixture of pentoses and hexoses

usually requiring the use of a genetically modified yeast strain.

In Germany, the most promising raw materials for ethanol production are cereals like wheat,
rye, barley and triticale (Jacobi and Hartman, 2005). Figure 1.4 shows a general block
diagram of the ethanol production process from starchy materials. The raw material is first

milled (in the milling section) to the desired grain size in order to allow enzymatic attack for
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breaking down the polysaccharide (starch) into monosaccharides (mainly glucose). Such
enzymatic process is done in the hydrolysis stage (involving gelatinization, liquefaction and
saccharification). After hydrolysis, the glucose fermentation to ethanol is carried out where a
fermentation broth containing ethanol, water, some glucose and non-fermentable material is
obtained, but also some CO, is produced. For obtaining fuel-ethanol, the fermentation broth
is then sent to the purification section (distillation, rectification and dehydration). The CO; is
sent to a scrubber whereas the stillage (a high valuable protein content by-product obtained
at the distillation bottoms) is sent to the Dried Distillers Grains section where it is dried and
treated for being sold as animal feed. A more detailed description, including the modelling of
each stage in the process is given in Chapter 4 where the particular case study addressed in

this work, namely the Bio-ethanol continuous process from starchy raw materials, is

presented.
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Figure 1.4 General block diagram for the ethanol production process from starch

1.3. Thesis Outline

The main purpose of this work is to present a novel approach for the Plantwide Control of
bio-ethanol production, in which the main control objective is to maximize the profitability of
the whole process. The core of the Plantwide Control approach proposed in this thesis is the

formulation of a Dynamic Real time optimization (D-RTO) problem for the complete process.
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As solving such a problem requires much computational effort and time, this work proposes
two new approaches for dealing with the problem in real time. First, an approach for
shrinking the search region of the optimization problem is proposed, which is based on the
effect of the disturbances (both, known and unknown) in the profitability of the process.
Second, a stochastic global optimization method is proposed for solving the D-RTO problem,
which is used in a sequential formulation for finding the global optima values for the
manipulated variables that lead to maximum profitability in a reasonable computation time.
With this novel approach it is possible to solve the complex problem of controlling a
complete (highly interconnected) plant, such as the bio-ethanol production process (which
considers three recycle loops) and similar applications in the chemical and biochemical

industry.

The thesis is organized as follows. Chapter 2 presents a review of the theoretical background
in the plantwide control architectures that have been investigated in chemical processes
applications during the last 20 years, including the decentralized, distributed, multilayer, and
single-layer architectures. Furthermore, the background of the stochastic methods used in
this work is also presented, namely, the localized random search algorithm, simulated
annealing, particle swarm and genetic algorithms. The new global optimization method
denoted as Molecular-Inspired Parallel tempering Algorithm is formulated in Chapter 3,
where the performance of the method is tested in 6 challenging optimization problems and
compared to the performance of other well-established optimization methods. As it is shown,
the MIPT has an excellent performance in solving global optimization problems of different
nature, showing to be a very promising algorithm for bioprocesses applications. The specific
case study for plantwide optimizing control addressed in this work, that is, the bio-ethanol
production from starchy raw materials is described in detail in Chapter 4, where the model
developed for the entire process is presented. In Chapter 5, the Plantwide Optimizing Control
(PWOC) methodology is presented. The proposed approach for PWOC is developed and
explained in detail. In Section 5.2 the shrinking approach for reducing the search space of
the D-RTO problem is introduced. Chapter 6 shows the application of the Plantwide
Optimizing Control (PWOC) framework (using the Multi-layer and Single-layer architectures,
denoted here as PWOC-two-layer and PWOC-one-layer, respectively) proposed in Chapter 5,
where the shrinking approach as well as the MIPT algorithm is used in the solution strategy
of the D-RTO problem that arises. The performance of the proposed PWOC approach
(including the shrinking) is evaluated in three different scenarios. First, a known disturbance
in the feed concentration (starch composition) is applied to the process. Second, a model

mismatch is introduced on the kinetics parameters in the fermentation section of the
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process. And third, a scenario that considers raw material price change is evaluated. The
performance of PWOC facing these challenges is compared to the performance when a
decentralized Plantwide architecture (i.e. multiple single PID loops) is used, which is a typical
configuration in industry. Finally, conclusions and recommendations for future work are

outlined in Chapter 7.

It is important to notice that the problem of controlling a complete process involves many
different interconnected tasks, as it is represented in Figure 1.5, all of which are very
important in real applications. In this work, the focus has been on the process control and
optimization tasks, which require the development of a reliable process model. In addition,
complete observability of the process based on reliable measures taken by accurate physical
sensors has been assumed, and therefore, the data reconciliation and soft-sensing issues
were not addressed. Furthermore, parameter identification was done off-line in order to

reduce computational effort.

Soft- Physical
Sensors Sensors
Process

Model Data
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Economical
Parameter
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Process Control
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Figure 1.5 Interconnected tasks and tools for Plantwide Control
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2. Theoretical Background

This research focuses on two main topics. The first is related to the control of a complete
process plant (plantwide control), while the second is concerned on the use of stochastic
global optimization as a tool for plantwide control. The purpose of this chapter is to
summarize the theoretical background in these two topics.

2.1. Plantwide Control Architectures (PWC)

Since the pioneer work by Buckley (1964), Plantwide Control (PWC) has attracted the
attention of the process control community for more than 40 years. Through these years,
different architectures have been used for tackling the problem of controlling a complete
process. The intention of this section is to present a brief review of the several options
reported for addressing PWC. One possible classification of the different PWC architectures is
shown in Figure 2.1. In this classification, which agrees in some points with that presented
by Scattolini (2009), PWC approaches are presented in four main groups, characterized by
the complexity of the model considered into the control system for describing the dynamics
of the process and by the degree of communication between controllers of different
operating units or between different layers of the control system hierarchy. These four main
architectures considered are: Decentralized, Distributed, Multi-layer and Single-layer.
Considering the complexity of the model, in the decentralized approach the need for a model
of the process is avoided (with exception of decentralized MPC, which of course do need a
process model). In the Distributed architecture, the usual case is to use linear dynamic
models. The Multi-layer case usually makes use of a nonlinear steady state model in the
optimization layer and a linear dynamic model in the controller layer as it will be explained in
Section 2.1.3. Finally, since the operation of the control system in the Single-layer case relies
on a centralized controller, it is desirable to consider a first-principles nonlinear dynamic

model of the process in order to predict the process behavior as close as possible to reality.

11



Plantwide Optimizing Control for the Continuous Bio-Ethanol Production Process
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Figure 2.1 Classification of Plantwide Control architectures (Ochoa et al. 2010a)

In the following, the description of the architectures considered in Figure 2.1 is given, in
which the main features as well as remarkable contributions specially dedicated to chemical

process applications are emphasized.

For all architectures, let us assume a process (chemical or biochemical plant) composed of V/
different operating units (OU;, OU,, ...,0U,, ..., OUy), in which the vector of output variables
to be regulated in OU, is denoted as Y,=[yi» Von, ., Vi, ., Y], Where I'is the number of
controlled variables in each operating unit. Furthermore, the vector of manipulated variables
in OU, is written as U,=[ U1, Uz, ., Uy, .., Un), Where Jis the number of manipulated variables
in each operating unit. Finally, the state vector X,;=[Xu, Xz, ., Xk, .., Xkn] Of Operating unit OU,

is conformed by the K'state variables in that operating unit.

2.1.1. Decentralized Architecture

The Decentralized architecture (Figure 2.2) consists usually of SISO PID loops in which
different individual controllers (Cizp ..., Gim .., Ciyn) @re used in each operating unit OU, for
regulating each output variable yj;, by manipulating ;. The main feature of this architecture
is that the control system is actually composed of several individual controllers which do not

12
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share any kind of information between them independently of whether or not the selection
of the manipulated and controlled variables takes into account the interactions in the
process, i.e. each controller operates independently of the others without receiving/sending
information from/to any controller, acting as an ‘“isolated entity”. As noted by
Stephanopoulous and Ng (2000), most of the research activities in the topic of PWC up
to the year 2000 addressed the PWC problem as the selection of the best input-output
pairing for the implementation of SISO PID loops. However, the work by Garcia and Morari
(1984) is a notable exception, in which a multivariable control scheme based on a multi-
layer PWC architecture was proposed for controlling a benzene plant. As the decentralized
approach is the simplest of the PWC structures (relying on PID controllers or linear dynamic
models for the MPCs), it is still predominant in industry. The work by Larsson and
Skogestad (2000) presents an excellent review in this topic and a mathematically-oriented
design procedure based on the self-optimizing control concept (Skogestad, 2000). Recent
works following these guidelines can be seen in Araujo (2007), Araujo et al. (2007a,
2007b, 2008), Baldea et al. (2008) and Larsson et al. (2003). Other works in
decentralized PWC architecture make use of an oriented process approach, in which mainly
heuristics and simulation analysis are used. The books by Luyben et al. (1998) and
Luyben (2002) present a popular heuristic procedure for developing decentralized PWC
schemes. Other relevant works applying heuristics coupled with simulation for decentralized
PWC include Konda et al. (2005, 2006), Lausch et al. (1998), McAvoy and Ye
(1993), Price et al. (1994) and Vasudevan et al. (2009).
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Figure 2.2 Decentralized architecture for Plantwide Control (Ochoa et al., 2009a)
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2.1.2. Distributed Architecture

Most of the works in the remaining three architectures shown in Figure 2.1 make use of a
multivariable controller. Two main reasons motivated the shift of the PWC problem from the
paradigm of decentralized PID towards different alternatives (Venkat et al., 2007):

1. The performance limitations of the decentralized architecture

2. The broad industrial impact of the Model Predictive Control (MPC) framework

In the Distributed architecture (Figure 2.3) each operating unit uses at least one MPC
controller (MPC,), which is in charge of controlling the outputs vector Y, by manipulating the
inputs U, of the specific operating unit. The main feature in this architecture is that the
multiple MPC controllers do exchange some information between them. Two basic
Distributed-MPC approaches are the communication-based and the cooperation-based, which
mainly differ that in the former, each controller has a local objective function whereas in the
latter the objective function in each controller is a copy of the total objective function for the
complete plant (Rawlings and Stewart, 2008). Recent representative works addressing
the PWC from the Distributed perspective are those by Mercang6z and Doyle (2007),
Sun and El-Farra (2008) and Venkat et al. (2006, 2007).

CONTROL
SYSTEM

: :
MPC1 _MPCZ* ------------ > MPCN

A A A

U, Y, U, Y, Yo Uy
SR XN
> O U1 — OU2 ™ 1 OU ™
A X2 A
& PLANT,

Figure 2.3 Distributed architecture for Plantwide Control (Ochoa et al., 2009a)
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2.1.3. Multilayer Architecture

The Multi-layer architecture is a hierarchical structure that follows the guidelines given by
Findeisen et al. (1980), who classified the hierarchical control into multi-layer and multi-
level. According to Findeisen’s work, in the multi-layer case the control of a system is split
into algorithms (layers), whereas in the multi-level case control it is divided into local goals
and the action of each local control unit is coordinated by an additional superior unit. In
Figure 2.1 it is proposed to sub-divide the Multi-layer (or hierarchical) architecture into:
Multi-layer with Coordination (Figure 2.4) -denoted as Multi-level approach by Findeisen- and
Multi-layer without Coordination (Figure 2.5). Both Multi-layer architectures are composed by
at least two different layers, i.e. an optimization and a control layer. The optimization layer
consists on a Real-Time Optimization (RTO) problem in which the main task is to compute
optimal set point values (Ys,q) for the set of controlled variables () that minimizes an
economic-type objective function. On the other hand, the control layer (MPC) is in charge of
tracking those optimal set point values that come from the RTO-layer, minimizing a
performance-type objective function. It is important to notice that the “connection” between
RTO and MPC layers may suffer inconsistencies due to model mismatch (non-linear steady
state vs. linear dynamic) and conflicting objectives (Biegler and Zavala, 2009). Therefore,
in the last years a proposal for replacing the steady state RTO by a Dynamic Real Time
Optimization (D-RTO) layer has emerged (Kadam et al., 2002, 2003; Kadam and
Marquardt, 2004).

2.1.3.1 Multilayer with Coordination Architecture

In this type of Multilayer architecture, a coordination layer is usually included between the
RTO and the MPC layers. This coordinator usually manages information coming from both
layers, and it is in charge of finding for each MPC, a locally feasible set point (V;,5,) close to
the global solution found by the RTO layer (Y:,0). Then, each MPC, is responsible of
tracking the local set points (V;,5) by calculating the vector of manipulated variables U, for
each operating unit. Further details can be found in the work by Ying and Joseph (1999)
where the coordinator is stated as a linear or quadratic programming problem; in the works
by Lu (2003) and Tosukhowong et al. (2004) in which a least-squares coordination
collar is used; and in the work by Cheng et al. (2007), where a price-driven method for
coordination between the RTO and the MPC layers is applied. A final mention should be done
regarding the difference between the Multi-layer with coordination and Distributed

architectures. As both schemes include a kind of coordination, in the Distributed case the
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coordination consists on exchanging some information between the local MPCs, whereas in
the Multi-layer with coordination, the local MPCs are not directly communicated between
them but communicated through the RTO layer (Figure 2.4).

A 4

(D)-Real Time Optimization

Ysp,opt v
O = > i <
3 Coordinator CONTROL
o2 SYSTEM
e|_ Y1sp Y2$p YNsp
U, Y, U, Y, Yy Un
- (TJ ~ E =z ’6
23 £ 3 g3
= = S = S =
Y, U X
" OU, — OU, N=OU,\,<
X X, PLANT]

Figure 2.4 Multilayer architecture with Coordination for Plantwide Control (Ochoa et al., 2009a)

2.1.3.2 Multilayer without Coordination Architecture

When no coordination is used between the optimization and control layers, the RTO is
usually replaced by a D-RTO layer, in order to account for the dynamic nonlinear behavior of
the process. The D-RTO layer is in charge of calculating the optimal set point values ( Ys,00r)
for the process outputs, which are sent directly to the control layer (i.e. NMPC). Then, the
control layer calculates the set U of vectors of manipulated variables for being applied in the
process, where U={U; U,,...,Uy}. Kadam et al. (2002, 2003), Kadam and Marquardt
(2004) and Ochoa et al. (2009b) present examples of PWC using the Multi-layer without
Coordination architecture. Finally, the trigger blocks shown in Figure 2.4 and Figure 2.5 are
acting as switches for recalling the optimization and control layers, when a certain condition

is met. Some typical trigger conditions are presented in Section 5.1.5.
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Figure 2.5 Multilayer architecture without Coordination for Plantwide Control (Ochoa et al., 2009a)

A final mention should be done regarding the use of a NMPC controller layer instead of a
linear MPC in the Multilayer architectures. The use of a nonlinear first principles model of the
process is highly desirable in order to have a better predictive capacity of the performance of
the process. However, in order to avoid the complexity of developing such a nonlinear model
(which also commonly reduces the computational effort for solving the model), most of the
works reported in the Multilayer with coordination architecture used a linear MPC. In
contrast, works in the Multilayer without coordination architecture used more commonly a
Nonlinear MPC.

2.1.4. Single-Layer Architecture

The last PWC architecture in the classification is the Single-layer scheme (Figure 2.6). The
single-layer is a centralized structure that has been usually perceived and claimed as
intractable for PWC (Venkat et al., 2007). In the last years, however, some publications
from both industry and academia have shown that such approach is not only possible to
implement but also that it provides very good results from an economic point of view
(Bartusiak, 2007; Franke and Doppelhamer, 2007; Zavala et al., 2007). Works using
this architecture solve online a moving-horizon optimization problem, in which the set of
manipulated variables ({) corresponds to the set of decision variables that minimizes (or
maximizes) a given objective function. Reported works differ in the type of objective function
optimized. A first group of works denoted as Performance (N)MPC uses a performance-type
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objective function (Jamec) in which the tracking of reference values for the controlled and

manipulated variables (Y.s U is penalized as expressed in Equation (2.1).

tp
minJ  ypc = min [(Y =%, ) O(Y =Y, )+(U=U, ;) RU=U,,; )+ AUT PAU dt
tl

2.1)

where @, R and P are weighting matrices that can be seen as tuning parameters for the
(N)MPC.

| Optimization Based
Controller
5 o
= 0
£ 8 U
[angwn
8F CONTROL
Y SYSTEM
Y, U Ui} Uz L
ou, ou, F ol
X1 X2 A A
PLANT]

Figure 2.6 Single-layer architecture for Plantwide Control (Ochoa et al., 2009a)

A second group of works in the single-layer architecture includes, besides the performance
term, an economic penalization term in the formulation of the objective function. It is
therefore denoted here as Hybrid (N)MPC and is described by Equation (2.2); where n,, n,
and n, are the number of outputs, manipulated variables and measured disturbances

respectively, considered relevant for the objective function.

t tp

n}’ 14 n, ny tp
mind .0 = mUzn Jinmpc + Z Iwyiyidt + Z Iwumumdt + Z J'wdjdjdt

U ; :
i=1 { m=1 { j=1 2
2.2)

where w,, w,,»and w,; are cost-weighting factors.
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The last scheme denoted in the literature as Direct Optimizing Control (Engell, 2007) uses a
pure economic objective function (Equation 2.3) in which the usual control specifications

enter as constraints and not as set points, and therefore no tracking term is penalized.

n, t 7, t 1y ly
mUm J geon = mUm ijyl.yidt + ijumumdt + Z I wyd ;dt (2.3)

i=l 4 m=1 4 j=1 4

It is important to notice that the Performance (N)MPC (Equation 2.1) as well as the Hybrid
(N)MPC (Equation 2.2) differ from the Direct Optimizing Control (Equation 2.3) in that the
latter does not consider the use of a Model Predictive Controller (neither linear nor nonlinear)
because its objective is a pure economic function and it relies completely in the solution of a
dynamic real time optimization problem (D-RTO). Additionally, it is important to mention that
in the Performance N(MPC) as well as in the Hybrid case, the use of a nonlinear model of the
process would be highly desirable in order to have better model predictions. However the
decision about which kind of model to use should be done looking for a good balance
between predictive capability and costs (i.e. of developing a complete nonlinear model for
the whole process which also complicates the solution strategy resulting in higher

computational costs).

Some examples of the application of the Single-layer architecture can be found in Bartusiak
(2007), Biegler and Zavala (2009), Engell (2007), Franke and Doppelhamer
(2007), Franke and Vogelbacher (2006), Jockenhovel et al. (2003), Manenti and
Rovaglio (2007), Ochoa et al. (2009b), Roman et al. (2006), Toumi and Engell
(2004), Zavala et al. (2007) and the works by Trvzska de Gouvéa and Odloak
(1998) and Zanin et al. (2000, 2002). Most of the reported applications using the Single-
layer architecture formulate the optimization-based controller as a D-RTO problem, similar to
that included in the Multilayer without coordination architecture. Solving such D-RTO
problem is a challenging task that usually is carried out using direct optimization
formulations, which can be classified into (Jockenhdvel et al., 2003): sequential,
simultaneous or hybrid approaches (i.e. Multiple shooting). Srinivasan et al. (2003)
provide a detailed explanation of the mentioned methods. The main features, advantages
and disadvantages of the sequential, simultaneous and multiple shooting are summarized in
Table 2.1, which have been previously reported by Jockenhdvel et al. (2003), Michalik
et al. (2009), Srinivasan et al. (2003) and Zavala (2008).
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On the other hand, regarding specifically the control issue for the bio-ethanol process it is
noticed that despite the rapid growth of the bio-ethanol industry in the last 30 years and the
high economic risk that this industry faces (especially in Europe, where the process is
claimed to be neither sustainable nor competitive against the oil prices), not much effort has
been done in order to improve the efficiency of the process from the optimization and
control points of view. Several works have been published regarding mainly the modeling
and control of the fermentation unit in the process (including the development of soft
sensors for key fermentation variables), but only few works have addressed the control of
the process considering more than the fermentation stage. Costa et al. (2001) used
Dynamic Matrix Control for controlling the substrate or the product concentrations in the
fermentor, manipulating the substrate input flow or the cells recycle rate. In a second
contribution, Costa et al. (2002) proposes a SISO NMPC for controlling the substrate
concentration in the fermentor manipulating the substrate input flow. In addition, Meleiro
et al. (2009) presented a multivariate NMPC to control simultaneously the ethanol,
substrate and biomass concentrations in the fermentor. Although the process modeled in
these works considers interactions fermentor-cells recycle-flash, the control task is still
focused on tracking or regulating the main state variables in the fermentor without
considering the optimal economic operation of the whole process. Additionally, the recent
work by Andrade and Lima (2009) addressed the PWC problem of the purification section
(distillation and stripping but without including the fermentation section) of an ethanol
production plant, following the guidelines given by McAvoy and Ye (1993) and Price et
al. (1994) for designing decentralized SISO PWC architectures. Besides, Bartee et al.
(2008) proposed using MPC for controlling the process including milling, cooking, distillation
etc.; however, no details about the algorithms or implementation are given. Finally,
regarding the optimization point of view, some recent works have been focused on the
steady state analysis and optimization for designing the purification section (Dias et al.,
2009a; Hoch and Espinosa, 2008) or a complete bioethanol plant (Karuppiah et al.,
2008).

Table 2.2 Advantages and disadvantages of the different Plantwide Control schemes
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Finally, it should be noticed that the Multi-layer and the Single-layer architectures are used
as part of the Plantwide optimizing control framework proposed in Chapter 5, due to the
following reasons:

e Both formulations include the incorporation of an economical objective function into
their formulation, which is necessary if the Plantwide control objective pursued is to
maximize the profitability, as stated here.

e The formulations consider the dynamic behavior of the process through the use of a
first principles dynamic model, which is used as a tool for predicting the process
performance in terms of the objective function value, during the selected optimization
horizon. Considering the dynamic behavior of the process is of vital importance in
processes where the profitability is at risk when disturbances appear, such the case
of the bio-ethanol production process, which is highly vulnerable to raw material

quality disturbances, biomass viability, etc.

For concluding this Section, the advantages and disadvantages of the different plantwide
control architectures described, are summarized in Table 2.2.

2.2. Stochastic Global Optimization

As it was already explained, the main topic of this work is to propose a Plantwide Control
(PWC) strategy for the bio-ethanol process. Such PWC strategy (see Chapter 5) is based on
the optimizing control concept, in which a very important step is to solve a large-scale
dynamic optimization problem in an efficient way, that is, in short time, without requiring
much computational effort and with a high possibility of finding the global optimum.
Considering a potential industrial application, the implemented optimization algorithm should
be not only reliable, but also easy to understand and to implement. Furthermore, it is
important to notice that due to the disturbances appearance and process uncertainties, the
global optimum can move, therefore it is important that the optimization algorithm
implemented has the capability for finding fast the global optimum. Although the literature in
deterministic global optimization presents some powerful methods for solving global
optimization problems (as reviewed by Floudas and Gounaris, 2009), in general, the main
drawback of these methods is the need of gradient information, which becomes a main
problem when a complete process is considered, that is, when implementing a plantwide

strategy, as the case in this thesis. When deterministic approaches are not suitable for being
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applied, stochastic methods appear as an option for solving global optimization problems.
Stochastic optimization methods are those involving some kind of randomness or probability,
which are useful for solving many global optimization problems either with continuous and/or
discrete variables. In general, stochastic methods are simpler to implement from a
computational point of view, and easier to use in a particular application because there is no
need for derivatives. They are very well suited for highly multimodal problems, for problems
involving uncertainties, and for black-box objective functions (Faber et al., 2005; Egea et
al., 2009). Usually those algorithms sacrifice the guarantee of optimality for quickly finding

a satisfactory solution (Zabinsky, 2009), a very important feature for on-line applications.

Stochastic optimization methods can be classified into evolutionary and non-evolutionary
methods, as presented in Figure 2.7. The most important feature of evolutionary methods is
that they are inspired in biological systems. A detailed description and explanation of
stochastic methods can be found in Glover and Kochenberger (2003) and Schneider
and Kirkpatrick (2006).

STOCHASTIC METHODS

i v
EVOLUTIONARY
COMPUTING NON-EVOLUTIONARY
GENETIC > ANT COLONY STOCHASTIC ¢ > RANDOM
ALGORITHMS B OPTIMIZATION HILL CLIMBING OPTIMIZATION
DIFFERENTIAL > PARTICLE SIMULATED ¢ > PARALLEL
EVOLUTION B SWARM OPTIM. ANNEALING TEMPERING
v
C-GRASP T GLOBAL
TABU SEARCH |<—1—>
4
MOLECULAR INSPIRED
PARALLEL TEMPERING

Figure 2.7 Overview of stochastic optimization methods: Evolutionary vs. Non-evolutionary

This section examines several stochastic direct search methods for global optimization, which
are direct in the sense that they use no information about derivatives, are simple to
implement, and have shown to have a wide applicability in many different disciplines, for

successfully solving problems including constrained NLP, MINLP, dynamic optimization and
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problems with highly multimodal functions. The general problem to be solved, for which the
optimization algorithms are described in this section, is the minimization problem described
by Equation (2.4).

min F,,
X

s.t. g(x,y)=0
h(x,y)=0

X ingxgxmax

m

(2.4)

where £, is the objective function to be minimized, x is the set of decision variables, y are
the outputs of the process, g represents the set of equality constraints and / represents the

set of inequality constraints.

In this work, five stochastic algorithms were used, namely: Localized random search,
Simulated Annealing, Particle Swarm Optimization, Parallel Tempering and the Molecular-
Inspired Parallel Tempering Algorithm (MIPT) proposed by first time in (Ochoa et al.,
2009c). In the next chapter, the new MIPT optimization algorithm is presented and tested
in a wide range of problems, including constrained NLP, MINLP, dynamic optimization and
problems with highly multimodal functions. Results shown in Chapter 3 compare the
performance of the new MIPT algorithm, and it is proved that this new stochastic algorithm
is a very efficient method for solving global optimization problems, with a high success ratio
and with a reasonable computational effort. Therefore, the MIPT algorithm is used in
Chapter 6 for solving the dynamic optimization problem that arises during the

implementation of the plantwide optimizing control strategy proposed in Chapter 5.

In the following, the theoretical background of the localized random search, simulated
annealing, and the particle swarm optimization methods is revised, which were used in
Chapter 3 for comparing the performance of the MIPT algorithm developed in this work. On
the other hand, the Parallel Tempering and the Molecular Inspired Parallel Tempering are

very well described in Chapter 3.

25



Plantwide Optimizing Control for the Continuous Bio-Ethanol Production Process

2.2.1. Localized Random Search (LRS)

As it was previously mentioned, random search optimization methods are those employing
some kind of randomness or probability in their algorithms. The randomness usually appears
in the definition of the new trials and/or in the acceptance criteria at each iteration. In the
most simple random search algorithms, the new trials are generated using a probability
distribution (e.g. normal, uniform, etc), and the acceptance criteria simply checks if the
objective function for the new trial decreases when compared to the previous point.
According to Spall (2004), the most popular and simple random search algorithms that
contain the most essential of these methods, are: the Blind Random Search and the
Localized Random Search (Baba et al., 1994; Jang et al., 1997; Solis and Wets,
1981). The Blind Random Search (BRS) is the simplest version, in which the new trials are
randomly generated without taking into account the sampling history. Although the blind
search is the simplest algorithm, it is in general a very slow convergence algorithm. On the
other hand, the Localized Random Search (LRS) differs from the blind search, in that the
new trials are generated randomly around the current position. It is important to clarify that
LRS is “local” in the sense that their new trials depend on the local environment near the
current estimate, but this is not related with the searching for a local vs. a global solution. In

fact, sometimes LRS may also provide global solutions (Spall, 2004).

A flow diagram of the localized random search is shown in Figure 2.8. The first step is to pick
a starting guess, which can be done randomly or using prior information. At this initial point
(xp), the objective function value is evaluated for further comparison. The algorithm then
generates the new trial (x.;) around the previous sample, depending on a probability
distribution ¢&, as indicated by Equation (2.5).

Xip] =X +6 (2.5)

Such a distribution is usually a Gaussian-type (Figure 2.9), whose probability density function
(Equation 2.6) is defined by the values of the mean (1) and the variance (¢%); however,

other distributions can also be used.

(-’ ]
(2.6)

(&) =———ex
g V27o? ’ 207
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Figure 2.8 Flow diagram of the Localized Random Search (LRS) Algorithm

For the Gaussian distribution, also known as normal or bell distribution, the value of the
variance determines the magnitude of the change around the previous sample. As a rule of
thumb, almost all random values obtained from a Gaussian distribution are expected to
belong to the interval [x-30, u+30]. In addition, in order to make unbiased moves around
the current point, the mean value is usually set to zero (¢=0), although some other versions
of the algorithm include updating rules for both the mean and variance. The main purpose of
such updating rules is to enhance the performance of the pure random search methods,
mainly by reducing, in an efficient and reliable way, the search space of the optimization
problem at each iteration. Li and Rhinehart (1996) propose interesting rules for using the

gradient information and the history of success in the calculation of the mean and variance.
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Figure 2.9 Examples of probability density functions for Gaussian distributions

After generating the new trial, the objective function is evaluated, and all constraints are
checked. Then, the new trial is accepted only if it is feasible and if Aoy (Xivz)<Fops Where Fopr
is the current optimal value of the objective function. Finally, the stopping criteria are

checked, and the optimization stops when at least one of them has been satisfied.

Finally, it is important to notice that the localized random search algorithm, as shown in
Figure 2.8, is used in Chapter 6 as one of the implemented optimization algorithms for the
Plantwide Optimizing Control approach proposed in this work because:

e The algorithm is very simple to implement (i.e. does not need derivative
information, requires simple programming), which can be attractive for any
potential application at industrial level.

e The algorithm is very intuitive, and the only parameters to be tuned are the mean
and variance of the probability distribution.

e The hardware and software requirements for its implementation are not stringent.

Although the LRS algorithm might be convenient for solving local optimization problems, its
main drawback is that it lacks of a specific global character which, as it will be shown in

Chapter 6, is important for dealing with unknown disturbances that shift the optimal
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operating point far away form the current optimal. The implementation of the LRS algorithm
(Figure 2.8) was done in MATLAB® (The MathWorks, Inc.).

2.2.2. Simulated Annealing (SA)

The simulated annealing algorithm developed by Kirkpatrick et al. (1983) used the
concept of annealing in liquids and metals for finding the low energy configurations of
disordered magnetic materials. Because of the analogy to the minimization of an objective
function in an optimization problem, this algorithm has been extensively used in many other
applications in fields like material engineering, electrical engineering, mechanical
engineering,  bioengineering,  structural  engineering, = computational  chemistry,
crystallography and many other (Tan, 2008). A flow diagram of the algorithm is shown in
Figure 2.10.

The algorithm is initialized by defining an initial guess (x) as well as the initial annealing
parameter B, and the annealing policy. The annealing parameter is usually interpreted as the

reciprocal of the system temperature (Frenkel and Smit, 2002):

1

b= kB_T (2.7)

where £z is the Boltzmann constant and 7 is the temperature. After defining an initial point,
a new trial (x41) is randomly generated (from any random distribution, as in the case of the
localized random search method described in the previous section), and the objective
function value for this new trial (Fp(X+1)) is evaluated. Then, the acceptance probability P,
is calculated from Equation (2.8) and compared against a random number (7) generated
from a uniform distribution (e.g. r € [0,1]). Such comparison is called the Metropolis
condition (or Metropolis criterion) proposed first by Metropolis et al. (1953) in a pioneer
work in statistical mechanics. When the Metropolis condition as criteria for accepting or
rejecting a new trial is used, most of the trials will be accepted for low values of g (i.e. for
high temperature values) providing the method with a global character by allowing the
exploration of a wider region of the search space. However, for high values of g (i.e. low
temperatures), the majority of the moves that deteriorate the objective function value,
causing an increase in the energy of the system in analogy with the minimization of energy
landscapes, will be rejected. As can be seen, the definition of the annealing parameter is a
determining factor in the success of the method. A simple rule that can be implemented is
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that the annealing B-parameter increases linearly with the number of iterations (i.e. A/)=¢j

where cis a constant representing the rate of annealing and /is the iterations counter).

Pyee = min{lexpl— B, (Fp (xi1) = Fopo) )} (2.8)

( Initialization )
Xo, B

Xopt=X0;
F opt(Xi)=F obj(X0)

v
i=i+1

v

Xi+1=Xi+E(1,0)
F objsi+1=F obj(Xi+1)

\ 4

A 4

F)acc=min(1 ’eXp('B(Fobj(Xiﬂ )'Fopt(xi))

}

Generate an uniform random number:
re[0,1]

No

No
Xopt=Xi+1
Fopt=Fobj,i+1 {
Stopping criteria
p update satisfied? ves

End

Figure 2.10 Flow diagram of the Simulated Annealing (SA) optimization algorithm.
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The simulated annealing algorithm has been widely and successfully applied for solving
global optimization problems in many disciplines (Tan, 2008), which can be explained due
to the main virtues of this Monte Carlo-based method, such as:

¢ its random nature, which allows the exploration of a much wider region

e the Metropolis condition which avoids getting trapped in a local optimum

¢ the annealing effect which takes care of the convergence of the method

A detailed explanation of the origins of the method and a discussion of different cooling
techniques (i.e. for defining a convenient annealing policy) can be found in the work by
Schneider and Kirkpatrick (2006). A recent survey of different simulated annealing
algorithms for single and multiobjective optimization is presented by Suman and Kumar
(2006). The simulated annealing algorithm (provided by the Optimization Toolbox in

MATLAB) is used in this work in Chapter 3 for solving several global optimization problems.

2.2.3. Particle Swarm Optimization (PSO)

The Particle Swarm Optimization (PSO) is a stochastic method based on the movement of
swarms, developed by Kennedy and Eberhart (1995). In general terms, the PSO
algorithm considers 7 different particles (k=1,2,...,n1) moving in the search space looking for
the best solution. At each iteration, a new trial (x..«) is generated for each particle
according to its current velocity (vj«), its best preceding position (Xsest,) and the best
preceding position for the whole swarm (Xpes). In this way, each particle updates its
position using some knowledge from its own experience, but also from the past experiences
of the whole swarm. PSO is similar to genetic algorithms in that it uses a population of
particles (individuals) for exploring the search space, but it differs in that all particles are
kept as members of the population (i.e. there is no selection operation) and they just change
its position and velocity during the optimization procedure. The algorithm for the original
PSO method is presented in Figure 2.11.

For initializing the algorithm, the number of particles (1) must be defined and the initial
position and velocity for each of them is randomly picked. After that, the particle with the
best objective function is set as X (best particle in the swarm) with a corresponding
objective function value Fgues. Then, before calculating the new position for each particle
(Xi+1,4), @ new velocity (v;.14) is calculated according to three terms (Equation 2.9).
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Vieg =Vix + 6 (X bestk ~ Xik )+ ) (X ghest — Xik ) (2.9)

The first term is the velocity of the particle in the previous iteration (v,s), whereas the
second and third terms account for the best previous position (Xzes:x) and the best position
between all particles in the swarm (Xpes:), respectively. It is important to notice that the
second and third terms in the calculation for v« are weighted by some ¢; and ¢, factors,
which define how much the individual and the social experience affect the calculation of the
new position for each particle. Usually those factors are calculated considering a random
component (i.e. ¢;=C;&;, where ¢; is a constant and &; is a random number generated from
an uniform distribution in which &;€[0,1]). The new velocity vi.;« is limited by the maximal
velocity allowed (v,..x). According to Eberhart and Shi (2001), v,... is a very important
parameter determining the resolution at which the regions between the present and the
target positions (global optima) are searched. Therefore, if v, is too low, particles will
become trapped in local optima, whereas in the opposite case, they might pass good
positions without exploring them. Next, the new position x;.,« is calculated according to
Equation (2.10), assuming unit time steps, and the corresponding objective function

(FoufXi+1,4)) s evaluated.
Xtk =Xig T Visk (2.10)

If the objective function for the new trial position (Fs(Xix14)) is better than its own best
objective function (Feestk), the former will be set as Frests If (ForfXix14)) iS also better than
the best objective function for the whole swarm it is set as Fyes~ The procedure is repeated
for all particles in the swarm until any of the stopping criteria is met. A more detailed
explanation of the algorithm by its developers, including a discussion of many published
variants of the algorithm can be found in Eberhart et al. (2001).
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Figure 2.11 Flow diagram of the Particle Swarm Optimization method (PSO)

PSO is used in Chapter 3 for comparing its performance in solving challenging global
optimization problems. The algorithm in Figure 2.11 was implemented in MATLAB, following

the formulation given by Clerc and Kennedy (2002).
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2.2.4. Genetic Algorithms (GA)

Genetic algorithms (GA) is the generic term used to designate evolutionary stochastic search
method inspired on the mechanisms of natural selection, mutation and reproduction of living
organisms. In analogy to living organisms the individuals simulated in genetic algorithms
store genetic information in chromosomes, which can then be totally or partially transmitted

to the next generations.

The optimization by means of GA is performed assuming that the objective function to be
maximized (or minimized) measures the fitness of the individual to the environment. Thus,
by means of the selection operation, only the best fitted individuals in the population
(parents) are allowed to breed a new generation of individuals (children), which will
eventually substitute the older generations. The reproduction process may take place by
different mechanisms, including for example binary cross-over, the random interchange of
genetic information between two different parents, or unitary mutation, the replication of the
genetic information of the parent incorporating random changes in the genetic sequence.
Once a new generation of individuals has been generated, their fitness function (objective
function) is evaluated and the whole process of natural selection and reproduction is
repeated until any stopping criterion is met. This mechanism of successive cycles of selection
and genetic information interchange is expected to lead to the rise of a population of very
well-fitted individuals, and eventually, reaching the highest possible fitness value for the

system.

Since it is possible to consider many different types of selection rules as well as reproduction
operations, there are many possible alternatives for implementing genetic algorithms.
Chapter 3 of the book by Dréo et al. (2006) presents an excellent description of the
different selection operations. A generalized flow diagram of the GA optimization is

presented in Figure 2.12.
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Cnitial PopulatiorD

!

_|Objective Function
Evaluation

!

Selection

!

Crossover

!

Mutation
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Figure 2.12. Flow diagram of the Genetic Algorithms (GA) optimization method

During the initialization of the GA method, the number of individuals in the population (n) as
well as the length of the chromosomes (I) must be defined. Usually, n and | are kept
constant during the optimization procedure, but it is also possible to consider varying
population sizes and varying chromosome lengths during breeding. Each individual in the
population is initially generated by randomly assigning genetic information to its
chromosome. This information is usually binary (0 or 1) although other types of information
may be used. The advantage of binary genetic information relies on the easier

implementation of a wide range of genetic operations during the reproduction stage.

By far, the theoretical background in the core topics addressed in this work, namely,
plantwide control and stochastic global optimization has been presented. In the next
Chapter, the new algorithm for global optimization denoted as Molecular-Inspired Parallel

Tempering, developed in this work, is presented.
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2.3. Chapter conclusions

In this chapter, a classification of the different reported architectures for addressing the
Plantwide Control (PWC) problem in chemical processes has been proposed, and the
theoretical background of those PWC schemes was reviewed, summarizing its main
advantages and disadvantages in Table 2.1. After analyzing the different plantwide control
architectures, the Multi-layer and the Single-layer schemes were selected to be used as part
of the formulation of the Plantwide optimizing control framework proposed in Chapter 5. The
main reason for this decision is that both formulations incorporate the statement and
solution of a Dynamic Real Time Optimization (D-RTO) problem, which not only takes
explicitly into account the dynamic behaviour of the process (which is important when the
process is often subject to disturbances), but also allows the formulation of an economical
objective function (e.g. maximization of the profitability) to be pursued as the main control
objective of the process. In addition, considering that the solution of a D-RTO problem is an
important step in the development of the Plantwide Optimizing Control methodology
proposed in this work, the theoretical background of some relevant stochastic optimization

algorithms was also described.

Finally, it must be noticed that in this work stochastic optimization methods are used instead
of deterministic because the former do not require gradient information. The need for the
gradient increases the complexity of the problem becoming critical especially when
implementing a plantwide strategy. In general, stochastic algorithms have been receiving
increasingly attention because of their simplicity and they have been successfully used in
several chemical and bio-chemical process applications, showing to be well suited for highly
multimodal problems, for problems involving uncertainties, and for black-box-type objective
functions. Furthermore, in spite of sacrificing the guarantee of optimality, stochastic methods
are able to find quickly a satisfactory solution, which is a very important feature for on-line

applications.
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3.A New Stochastic Algorithm for Global
Optimization: Molecular-Inspired Parallel

Tempering

In this Chapter, a new algorithm for stochastic global optimization denoted as Molecular-
Inspired Parallel Tempering (MIPT) is presented. In Section 3.1, a brief review of the original
Parallel Tempering (PT) algorithm (which is the starting point for the development of the
MIPT) is included. The MIPT algorithm is detailed described in Section 3.2, and a comparison
of the performance of MIPT with respect to well-established optimization methods is

presented in Section 3.3.

3.1. Parallel Tempering

Parallel Tempering (PT), referred also as the Replica Exchange Method (Swendsen and
Wang, 1986) or the Markov Chain Monte Carlo approach (Geyer, 1992), simultaneously
simulates multiple non-interacting replicas of a system under different thermodynamic or
tempering conditions, e.g. under different temperatures (Earl and Deem, 2005; Li et al.,
2009a). Each replica can be independently cooled or warmed in order to achieve a global
exploration effect at higher temperatures (because the replicas are able to escape local
minima) and a local refinement effect (annealing effect) at lower temperatures. A key
feature of PT is that the method considers two different types of transitions for generating
new moves during the optimization algorithm (Hansmann, 1997; Schneider and
Kirkpatrick, 2006). The first is a standard Monte Carlo (MC) move independently applied
at each temperature level. The second is a replica transition, in which the configuration or
conformation (i.e. set of values of the decision variables) is exchanged between different
replicas. It is important to notice that in the standard MC transition the ~th replica is only
allowed to change its configuration in a neighborhood around x; whereas the replica
transition allows to exchange complete configurations usually between adjacent replicas

(adjacent in the temperature space, not in the configuration space). Thus, the replica
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transition move allows the replica to wander from low temperatures (local refinement) to
high temperatures (global exploration) by introducing random walk in the temperature space
(Hansmann, 1997).

C Initialization )
v

Sample a point x;*
using MC

Metropolis condition
accepted for replica i2

No

Update current state

No

eplica Exchange i-f
criteria accepted?

Exchange Replicas
X6 X;
Xi=Xjors Xi= Xiojq

Stopping
riteria satisfied?

Figure 3.1 Simplified flowchart of the Parallel Tempering Algorithm (Ochoa et al., 2009c¢)

A simplified flowchart of the parallel tempering algorithm is presented in Figure 3.1. The
system is initialized by randomly selecting the position x; (for /=1,2,..,/N) of the N replicas in
the search space, evaluating their corresponding objective function values (F.(X)), and
assigning a temperature (7)) to each replica. It is important to notice, that position x; is
defined by the set of values of decision variables in the optimization problem, which is called
in the following the configuration of the ~th replica. Then, the new possible position (x;*) for
each replica is determined using Monte Carlo (MC) random steps (&) around its current

position (x;), as shown in Equation (3.1), which is called the MC move:

X = (3-1)
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where ¢ represents a random number taken from a given distribution (i.e. uniform, Gaussian,
etc.). The new position x;* of the replica is only accepted if the Metropolis condition given in
Equation (3.2) is satisfied (otherwise the current position of the replica is retained).

<P (3.2)

acc

where r € [0,1) is a uniform random number and P, is the Metropolis acceptance

probability given by Equation (3.3):

P, =min(l,exp(-BAG,)) (3.3)

acc

where g, is a parameter inversely proportional to 7, and, in analogy to thermodynamics, the

“Gibbs free energy” change A4G;is taken as expressed in Equation (3.4):

AG; = Fobj (x;k) _Fobj (x;) (3.4)

After applying a certain number of standard MC movements (Equation 3.1), the replica
transition move is proposed (usually between adjacent ~j replicas) according to Equation

(3.5), in which the replica /takes as new position (x;*) the current position (x;) of the replica

J, and at the same time x;* is proposed to take the current configuration of the /th replica

(x).
=x;,x; =x (3.5)

The replica exchange transition given by Equation (3.5) is only accepted if the Metropolis-like
condition (Equation 3.2) is satisfied. In this case, the acceptance probability criterion P is

calculated according to Equation (3.6):
P, =min(l,exp((8, - 8)AG,)) (3.6)

where AGj is given by Equation (3.7):
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AGij =F0bj(xj)_Fobj(xi)a

j-i=1 (3.7)

High temperature replica trajectory

Low temperature replica trajectory before exchange transition

before excha\nge transition High temperature replica trajectory
after exchange transition i

A \

X4

eplica€xchange transition -

X

i 2

Low temperature replica trajectory
after exchange transition

Figure 3.2 Representation of the replica transition in Parallel Tempering

It should be highlighted that during the transition (Equation 3.5), the values of the decision
variables of the two replicas involved are completely exchanged. Finally, the procedure is
repeated from the generation of the Monte Carlo steps (Equation 3.1) until a certain
stopping criterion is met (i.e. a given tolerance, maximum number of iterations, etc). A
schematic representation of a replica transition in PT is shown in Figure 3.2. Two replicas
(one at high and one at low temperature) are considered in an optimization problem with
two decision variables (x; and x). The low temperature replica moves through the search
region in short MC moves (dotted line) with a low probability of accepting worst
configurations, whereas the high temperature replica moves in longer MC moves (dashed
line) with a higher probability of accepting worst configurations. At a certain point in their
trajectories, a replica exchange transition is accepted and the configurations of both replicas
are interchanged. Therefore, the low temperature replica continues its search at the position
of the high temperature replica and at the same time, the high temperature replica continues
at the position of the low temperature replica. This algorithm was implemented in MATLAB
following the flowchart presented in Figure 3.1.
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Parallel Tempering methods have been successfully applied in different fields during the last
20 years, especially for finding the optimal configuration of polymers (Sikorski, 2002),
biomolecules (Calvo, 2009) and proteins (Lin et al., 2003; Schug and Wenzel, 2004);
for the optimal determination of X-ray structures (Favre-Nicolin and Cerny, 2002), for
solving benchmark global optimization problems (Li et al., 2009a), and many other
applications (Earl and Deem, 2005). In spite of the successful application of the PT
algorithm especially in complex systems with many local minima (complex systems with a
rugged energy landscape), there are still some open issues that could be addressed in order
to overcome some weaknesses of the algorithm towards improving its performance. For
example, it is important to find more efficient strategies for amplifying the global character
of the algorithm (improving the barrier-crossing capability, as mentioned by Li et al.,
2009b). Another issue is the adequate selection of temperatures for each replica. Several
authors have pointed out the need of defining not only good temperature values, but also a
suitable temperature distribution in order to provide the PT algorithm with a good capability
for escaping local minima at a low computational cost. For example, according to Earl and
Deem (2008), the highest temperature must be high enough for the simulation to pass
over all of the energy barriers in the search space in a manageable computational time.
Furthermore, as stated by Bittner et al. (2008) after two adjacent replicas have been
exchanged, it is more likely than in the next move they change back to the original state
than an exchange with another replica, and therefore, the replicas became trapped (they do
not move from low to high temperatures at all). In the next section, a new Molecular-
Inspired Parallel Tempering algorithm (MIPT) is proposed, which addresses some of these
open issues, resulting in a more efficient algorithm very well suited for Global Optimization
problems of different nature, as it will be shown through the case studies solved in Section
3.3.

3.2. Molecular-Inspired Parallel Tempering Algorithm
(MIPT)

A novel stochastic algorithm for global optimization, denoted as Molecular-Inspired Parallel
Tempering (MIPT), is developed in this section. MIPT incorporates some basic features of
Molecular Dynamics simulation into the Parallel Tempering formulation. In MIPT, molecules
move in the decision-variable-space as the result of different forces: repulsion, friction and
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random forces. Two different types of molecules are considered: explorers and refiners.
Explorers present lower friction and are subject to repulsion forces causing them to move
faster towards low molecular density regions. Refiner molecules can only be feasible and are
subject to larger friction forces restricting their motion to a narrow region around their
current position. The efficiency of MIPT is tested in Section 3.3 in five challenging case

studies.
The Molecular Inspired Parallel Tempering (MIPT) algorithm mimics the behavior of charged

molecules in solution. Each molecule is affected by three different forces: repulsion (F,),

random (Fz,,), and friction (F,), as depicted in Figure 3.3.

Molecule j

Fo >F

a)ij -
Random Forces (Fg,,)
Repulsion Forces (F,,,
F
>F Bm Friction Forces (F,)

Molecule i

Figure 3.3 Schematic representation of the forces acting on two molecules in solution: Basis of MIPT
algorithm. Green arrows: Repulsion forces; Red arrows: Random forces; Blue arrows: Friction forces;

Pink dashed arrows: Sum of forces acting on each molecule. Black arrow: Intermolecular distance

The repulsion force exerted by molecule jover molecule /7 (F (/) is calculated in analogy to
Coulomb’s law (Equation 3.8), as inversely proportional to the square of the distance (dj)
between them.
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d.
- E Y
Frep (l) = _Kl d_2 (38)

J#i

The random force (Fz,), is responsible for the Brownian motion of the molecule and it is
expressed by means of a normalized Gaussian distribution vector & with zero mean and

standard deviation one, as given by Equation (3.9).
Fp,, (D) = K)&, (3.9

The parameters K; and A5 in Equation (3.8) and Equation (3.9) are the repulsion force and
the stochastic force constants, respectively; these force constants can be seen as tuning
parameters of the MIPT algorithm. Finally, the friction force (F, has an opposite direction to
the net external force (F..”"=F+Fzy) and it is proportional to the velocity v; of the

molecule by a factor y; as shown in Equation (3.10):
F, () ==7;v; (3.10)

where y; is a friction coefficient inversely proportional to the temperature associated to each
molecule and it is the parameter used in this approach for tempering the algorithm. In
general, » may be expressed as a function of the objective function value (/) (Equation
3.11) in such a way that the best molecules will be subject to the highest friction coefficients
and the worst molecules to the lowest friction coefficients. Any type of distribution of friction
coefficients can be used. In this work, a logarithmic distribution of friction coefficients
determined by the values of the objective function for each molecule is considered, as given
by Equation (3.11).

i = expn(y pin ) + ((AN(Y oy ) — 0¥ in ) * (1, — rank(i)) * Feasible(i) /(n,, —1))))
(3.11)

where ymin and ymax are the minimal and maximal values allowed for the friction coefficient.
Ny, is the total number of molecules, rank(i) (1<rank(i)<n) is the position of molecule /in a
ranking classification according to its objective function value £, and its feasibility value (0-

infeasible, 1-feasible). In this way, if the molecule is in an infeasible position (Feasible(/)=0),
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then 1/) =ymin, Which results in a larger displacement (Ax(i)) for molecule /j in comparison to

the displacement of all other molecules.

At the equilibrium condition, the sum of forces acting on each molecule is zero (Equation
3.12) and their velocities become constant (v; = dx/d¢ = const.).

SF(i) = F,, (i) + Fp,, (i) + F (1) = 0 (3.12)

Combining Equation (3.10) and (3.12), and using finite differences to approximate the
velocity of the molecules, the friction force (F,) is found to be:

AX.
Py ()= ~{Fp () + Py ()= 71 = (3.13)

where Ax(7) is the displacement of the /-£4 molecule during a sample time Af Considering
one optimization step equivalent to one arbitrary unit of time (A¢=1), then the displacement
of the molecules at each optimization step, used for generating the new trials of the
algorithm, can be calculated using Equation (3.14):

d,
- KIZ% + K586,
Ax, = 7Y (3.14)
Vi

On the other hand, one special feature of MIPT that differentiates it from the original PT is
that in MIPT the replicas (molecules) are classified in two groups: refiners and explorers.
Refiners-type molecules are always feasible points constrained to higher friction values,
forcing the search to a narrow region around their current position and providing a local
character to the method. These molecules make shorter displacements in the search region
in order to refine the search in a neighborhood that contains local optima. Explorer-type
molecules have lower friction values, are allowed to be infeasible and are affected by the
repulsive effect (F.#0), which force them to move towards unexplored zones, providing a
global character to the method. In this way, explorers make larger moves escaping from
local optima that are already being explored by refiners. It is important to highlight that the

inclusion of the repulsion force for the explorer-type molecules allows the MIPT algorithm to
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greatly improve the barrier-cross capability of the original PT. A graphical representation of

the main characteristics of the refiners and explorers is shown in Figure 3.4.

. |Feasible regio|

b)

- |Feasible region

No Repulsion force
‘ between Refiners

Feasible region Feasible region Feasible region

Explorer turns into Repulsion force
Refiner only on Explorer
s X2 Xz Xz

>
> »

| Optimization Steps >

Figure 3.4 Main characteristics of the molecules used in MIPT and their interaction (Ochoa et al.,
2010b): a) Two explorer-type molecules, both are subject to intermolecular repulsion forces and are
allowed to be infeasible, b) Two refiner-type molecules, they do not experience repulsion and must be

always feasible, c) Explorer-type molecule (1) turns into a refiner (it found a feasible objective
function value better than that of the worst refiner) whereas molecule (2) is kept as a explorer. Only

the explorer is subject to repulsion force

So far, the main features of the MIPT algorithm have been introduced, namely: the types of
forces acting on each molecule which are responsible for its displacement (Ax)) in the search
space at each step of the algorithm, and the type of molecules used in the algorithm in order
to improve both the global and the local character of the optimization algorithm. The
remaining of this section explains in detail the MIPT algorithm, which is depicted in the flow
diagram shown in Figure 3.5. The following description is presented taking into account the

problem of minimizing a given objective function.
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Figure 3.5 Molecular-Inspired Parallel Tempering (MIPT) Algorithm for Global Optimization (Ochoa et

al., 2009c¢)

The MIPT optimization algorithm starts with the initialization of the number of molecules

(n,), the stopping criteria and the tuning parameters of the algorithm. MIPT tuning

parameters include the range of y~values used for the friction coefficients of the molecules,

the force constants K; and K-, the parameter K; included in the calculation of the Metropolis

acceptance probability (see Equation (3.17)) and the minimum allowed fraction of explorers
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(minfg). 1t is suggested that 7, > 2.1, in order to achieve an efficient coverage of the search
region, taking into account that the probability of finding the global optimum increases with
the number of molecules. However, selection of an adequate number of molecules depends
on the specific problem addressed (e.g. on the number of local minima and the number of
decision variables involved). In general, it is recommended to look for a good compromise
between the success of finding the global optimum and the required computational effort.
Furthermore, it is suggested that minf: > n,/2 ensuring that at least half of the molecules
are exploring the search region looking for the global optimum. The next step is the random
generation of the initial 77, molecules (starting positions x,(7)). Then, the objective function
(Foy) s evaluated for each molecule and the y-factors are updated (i.e. calculated as a
function of the rank in £y, see Equation 3.11). Afterwards, the molecules are ranked as
Refiners (R) or Explorers (£), according to their objective function values and feasibility. The
ranking criteria must satisfy the condition that the total number of explorers (/NVg) should be
greater or equal than the minimum number of explorers required, that is Ne>minfz . Then the
algorithm is split into two branches depending on whether the molecule is a refiner or an
explorer. The refiners’ branch begins setting the repulsion force to zero (F., = 0). The
random force Fg,(/) is calculated from a Gaussian distribution, as given by Equation (3.9).
After that, the new position (X, for each molecule is calculated according to Equation
(3.15), where the displacement AXx; is given by Equation (3.14).

X =x; + Ax; (3.15)

new,i

Once the new position has been calculated, the objective function value (Fop;nen) fOr Xpen,i is
evaluated, and the normalized “free energy” change AG; with respect to the current objective

function value (F,) is calculated according to Equation (3.16).

_ Fobj,new(i) _Fobj (0
: max (£, ) —min(£7,;)

(3.16)

After calculating AG; all constraints are evaluated to check the feasibility of the new position.
If the new position is an infeasible point, X, ;is rejected. On the contrary, if X, is feasible
and also 4G;<0, the new position is accepted and the position of molecule /is updated to its

new value (X, =X ey, )-
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The explorers’ branch begins calculating F.,(7) as a function of the intermolecular distance
(Equation 3.8). The calculation of the new point X, and the corresponding AG; is carried
out as in the case of the refiners (using Equation 3.15 and Equation 3.16, respectively). After
that, the Metropolis criterion given in Equation (3.2) is evaluated in order to reject or accept
the new position X, In this case, the Metropolis acceptance probability is given by
Equation (3.17):

P, =min(lexp(- K,7,AG, )) (3.17)
Equation (3.17) is an equivalent expression to that used in PT (see Equation 3.3) and in
general in any formulation based on the Metropolis-Monte Carlo algorithm. In MIPT the
tempering parameter used is the friction factor »." If the Metropolis criterion is satisfied, the
new position will be accepted and updated. In the following step the algorithm checks the
feasibility of the new position and if the new position is feasible and also has an objective
function value lower than that for the worst refiner (the one with the highest £,;), it would
be set as refiner. Then, the total number of explores (/Ng) is checked, and if Ng<minfz, the
worst refiner must be set as an explorer. Finally, the stopping criterion is checked and the
algorithm stops if it has been met. The MIPT algorithm was implemented as an Optimization
Toolbox in MATLAB according to the procedure shown in Figure 3.5. Instructions for the use
of the MIPT Toolbox, as well as a quick overview of the algorithm pseudo-code, are

presented in Appendix A. Additional information can be found in Ochoa et al. (2009c,
2009d, 2010b).

Finally, it is important to remark that the main advantage of the MIPT over the original
Parallel Tempering (PT) formulation is that the classification of the replicas (molecules) in the
MIPT algorithm into two different types (explorers and refiners) provides the method with an
improved global character without deteriorating the local search capability. The improved
global character of the MIPT over PT is evidenced in Section 3.3.1, where a set of
challenging global optimization test problems containing many local minima is solved using

both algorithms, and it is show that MIPT surpasses the performance obtained by using PT.

" Actually, yis related to the S parameter used in Equation (3.3) according to the following
expression: =//K3, and therefore, yis related to the temperature according to: y=(KsksT) ",
where kp is the Boltzmann’s constant.
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3.3. Performance Evaluation of the MIPT Algorithm for
Global Optimization

In this section, the capability and efficiency of the MIPT algorithm developed for solving
different Global Optimization (GO) problems is tested in six case studies, and compared with
other established, well-known optimization methods. The first example tests the
performance of different optimization methods (including MIPT) over a set of 8 challenging
benchmark GO test problems containing many local minima. The second case study
evaluates MIPT performance in Mixed Integer Nonlinear Problems (MINLP). The last four
examples are specifically related to bio-ethanol production, testing MIPT performance in the
steady state optimization problem of biochemical reaction networks, the parameter
identification problem in a 12-parameter unstructured model, the dynamic optimization
problem of ethanol fed-batch fermentation, and solving the optimizing control problem for
the purification stage of the process (distillation and rectification). Results shown in this
Section demonstrate that MIPT is an efficient and very suitable algorithm for global
optimization, capable of reaching the global optimum with 100% success ratio in most cases,

without requiring much computational effort.
MIPT was implemented in MATLAB, using the MIPT toolbox developed in this work (Appendix
A). The results were obtained using a PC with 1.66GHz Intel Core 2 Duo processor and 1 GB

RAM. The default set of parameters for MIPT used in all case studies is shown in Table 3.1.

Table 3.1 Default set of parameters of the MIPT algorithm

Parameter Value
Yonin 107
Ymax 1

K 5

K 5x10

K 100

I 2y
minfz 0.1
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3.3.1. Dixon-Szego Set

The first example is a set of 8 standard continuous GO test problems taken from the Dixon-
Szeg6 collection (Dixon and Szegd, 1978). This set of functions was chosen because it is
diverse enough to cover many kinds of difficulties that arise in global optimization (Hedar
and Fukushima, 2006). A description of the 8 test problems including the already known
global minima values can be found in Hedar and Fukushima (2003), and a brief summary
of the test functions used is included in Appendix B.1. A graphical representation of two
challenging functions from the set, the Easom and Shubert functions, is shown in Figure 3.6

in order to show graphically the complexity of the GO problems addressed.

a) Easom Function b) Shubert Function

760 local minima:
18 global minima in 9 clusters
surrounded by several local optima!

Several local minima: The
GO is in a small area!

Figure 3.6 Objective function surfaces and main features of the Easom (a) and Shubert (b) benchmark

functions.

In this work, each test problem was run 100 times, starting from randomly generated points.
Two stopping criteria were implemented. The first one is the criterion reported by Hirsch et
al. (2007), which is given in Equation (3.18):

‘Fglobal - Fobj

+é& (3.18)

<& ‘F global

where Fyupa is the global optimum already known for each test function (see Appendix B.1.),
Fosy is the current objective function value, and ¢, and ¢, are tolerance parameters taken as
10* and 10°®, respectively. The second criterion was the maximum number of function

evaluations, which was set to 100.000 function evaluations.
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Table 3.2 shows a comparison between the results obtained using MIPT, Simulated
Annealing (SA), Particle Swarm Optimization (PSO), the PT algorithm (which was
implemented as described in Section 3.1), a new version of the GLOBAL method (Csendes
et al., 2008) and the Continuous Grasp (C-GRASP) method (Hirsch et al., 2007). Columns
in Table 3.2 show the test problems addressed, the number of decision variables in each
case, the number of known local minima for each test problem, the average number of
function evaluations (Nfeval) before reaching any stopping criterion, and the success ratio
for the MIPT, SA, PSO, PT, the Global and C-GRASP methods, respectively. It is important to
highlight that MIPT algorithm achieved a 100% of success ratio in all cases, as also reported
for the GLOBAL method and the C-GRASP". In contrast, the SA and PSO methods stalled in
local minima in some of the runs, resulting in a lower success ratio. In the case of SA, the
algorithm failed in the Hartman-6 problem, which is a challenging problem involving many
local minima and 6 decision variables. In terms of success ratio, the PSO algorithm showed
the worst performance, because its success ratio oscillated between 33%-92%, being unable

to show complete success in any problem.

According to results shown In Table 3.2, MIPT showed a better performance in solving the
Easom, Shubert, Hartman-3 and Hartman-6 problems, whereas the GLOBAL achieved better
performance for the remaining problems except for the Goldstein-Price. In conclusion, some
facts are remarkable:

1. The MIPT method was able to significantly improve PT results especially in larger
problems involving many local minima. This is mainly a result of the improved global
character of the MIPT algorithm, over the original PT formulation.

2. The MIPT algorithm outperforms the SA and PSO methods, not only requiring a lower
number of function evaluations in all the problems, but also achieving a 100% success
ratio in all cases.

3. In general the performance of the MIPT method lies below the range of average values
of all other methods, showing to be competitive in solving global unconstrained highly
multimodal problems. It should also be noticed that MIPT is the best algorithm for the
most challenging problems, including the Shubert, and Easom functions (Figure 3.6),
even though they have completely different characteristics. These results show that the

MIPT is a versatile algorithm, suitable for a wide range of global optimization problems.

" Results for the GLOBAL and C-GRASP methods were taken from the corresponding reported literature, where
the stopping criterion was only the one given by Equation (3.18). The second stopping criterion was only
implemented for the algorithms run in this work, namely, MIPT, PT, SA and PSO.
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Table 3.2 Comparative Results for case study 1: MIPT vs. SA, PSO, PT, GLOBAL and C-GRASP. Values

in bold correspond to the lowest average number of function evaluations for each case study.
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3.3.2. Mixed Integer Nonlinear Problem (MINLP)

In this section, a case study consisting in a Mixed Integer Nonlinear Problem (MINLP) that
involves 7 decision variables is addressed, which is formulated in Equation (3.19). Yiqing et
al. (2007) have recently reported results for this problem, comparing Genetic Algorithms
(GA), a Simulated Annealing based algorithm (M-SIMPSA), the original PSO algorithm, and
an improved PSO algorithm denoted as R-PSO. Furthermore, R-PSO algorithm was used in
two variants: R-PSO_unc which updates continuous and discrete variables simultaneously,
and the other, denoted as R-PSO_c that updates the different types of variables at difference

pace.

min [(y —1)2 + (5 =2)7 + (3 =12 —In(py +1)+ (x, =1 + (x5 =2 + (x5 - 3)°]
st yi+y,+y3+x+x, +x3<5

y32 +x12 +x§ +x32 <55

y3 +x5 <1.64; y3 +x3 <425

y% + x32 <4.64; x<0; ye {0,1}4

Figure 3.7 shows the comparison between the mentioned stochastic algorithms and MIPT, in
terms of the average number of function evaluations (Afeval) and the success ratio (VRC),
which is the percentage of runs that converged to the global optimum (F/,,=4.579582), in
100 executions randomly initialized. As shown in Figure 3.7, MIPT algorithm has reached the
global optimum in all the runs, having a success ratio NRC=100%. Furthermore, MIPT has
also required by far the fewest number of function evaluations for reaching the global

optimum, which demonstrates its capability for dealing successfully with MINLP problems.
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Figure 3.7 Comparative results for the mixed-integer nonlinear optimization problem presented by
Yiqing et al. (2007): Number of function evaluations and success ratio for MIPT, M-SIMPSA, GA,
Original PSO, R-PSO Unc, R-PSO C, for 100 different runs randomly initialized.

3.3.3. Nonlinear Constrained Optimization Problem

The third case study is an example of the steady state optimization problem of biochemical
reaction networks, which addresses the maximization of the flux of Piruvate Kinase (), the
enzyme directly responsible for ethanol production in the Saccharomyces cerevisiae pathway
(Xu et al., 2008). This case study consists on a nonlinear constrained optimization problem,
given in Equation (3.20):
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max Vpg (X1, X, X3, X4, X5,1))
st. f(X,Y)=0

Vin =Viax =03 Vg =Vppgx =Vpor =0

Vekr =Veapp = 0.5V 6o = 0; 2Vepp —Vpg =0 (3.20)

2Vearp Ve —Vik =Vpor =Verk =V arpase =0

Veg <2V Y0 <Y, £50Y,; £ =1,2,3,4,5,8
where 7 represents the nonlinear steady-state model of the process (which is presented in
detail in Appendix B.2), X; the metabolites concentrations, Y; the enzymes activities, and Xj
and Yj are the basal steady-state values (corresponding to an objective function value
Vo=30.1124). Xu et al. (2008) solved the problem by applying a standard iterative
Indirect Optimization Method (IOM) and a modified iterative IOM approaches, finding an
objective function value of Vx=64.828Vy and Vx=64.829Vy, respectively. The same
problem was solved in this work using MIPT, Simulated Annealing (SA) and Particle Swarm
Optimization (PSO). SA results were obtained using the MATLAB Optimization Toolbox
whereas PSO was also implemented in MATLAB following the formulation given by Clerc
and Kennedy (2002). These three methods reached the same objective function value,
Vek= 65.022 Vg, better than that obtained by the IOM approaches. A comparison on the
performance for MIPT, SA and PSO in terms of number of function evaluations (Nfeval) and
CPU time for the average, best and worst cases from 100 different runs randomly initialized,
is presented in Figure 3.8. Values for the IOM approaches are not reported in the original
work, and therefore are not included in the comparison. As it can be seen, MIPT has the best
performance in terms of CPU time, whereas the number of function evaluations required for
reaching the global optimum lies between those needed by SA and PSO, which confirms that

MIPT provides a good performance also in constrained optimization problems.
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Figure 3.8 Comparative results for the nonlinear constrained optimization problem presented by Xu et
al. (2008): Number of function evaluations and total CPU time for MIPT, SA and PSO for 100

different runs randomly initialized.

3.3.4. Nonlinear parameter identification

The fourth case study addresses the parameter identification of an unstructured model of
ethanol production. The model includes 12 parameters to be identified by minimizing the
normalized squared error between the predictions of the model and experimental data. The
model and the experimental data for identification have been reported by Phisalaphong et
al. (2006), and are summarized in Appendix B.3. In order to compare MIPT performance,
the identification problem was also solved using Simulated Annealing (SA), Genetic
Algorithms (GA) and a gradient-based (GRAD) method (i.e SQP), incorporated into the
MATLAB Optimization Toolbox. The values of the objective function (normalized squared
error) and computation time for the average, best and worst cases of ten different
independent runs (randomly initialized) are presented in Figure 3.9. The stopping criterion
was 1000 iterations for each algorithm. It can be observed that the best results
(corresponding to the minimal objective function values) in all cases (average, best and
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worst) have been obtained using the MIPT algorithm proposed in the present work. It can
also be observed that the average CPU time of the MIPT method lies within the range of
average values of the other methods. Therefore, it is possible to conclude that a significant
improvement towards finding the global optimum is achieved using the MIPT method

without increasing the computational effort.
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Figure 3.9 Comparative results for the nonlinear parameter identification problem of the model
presented in Phisalaphong et al. (2006): Values of the objective function and total CPU time for
MIPT, SA, GA and GRAD, for 10 different runs randomly initialized.

3.3.5. Dynamic optimization of ethanol fed-batch fermentation

Solving the dynamic optimization problem for a fed-batch bioreactor allows finding optimal
feeding profiles that should be applied to the process in order to maximize a given
productivity objective function. This problem is usually solved using direct dynamic
optimization methods, which parameterize the control profile as piecewise polynomial
functions. However, in this work, parameterization of the control profile is done using cosine
functions which are nonlinear and have the advantage of being non-monotonic, allowing to

find control profiles that increase and decrease smoothly and continuously. Such
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parameterization can be especially suitable for bioprocesses applications. The dynamic
optimization problem for the fed-batch ethanol production has been previously studied in
different works and the model of the process can be found in Banga et al. (1997) and it is
also included in Appendix B.4. Equation (3.21) summarizes the optimization problem solved
in this section. The state variables on the process are Volume (), Biomass (X), Glucose (S)
and Ethanol (£) concentrations. The manipulated variable whose profile is found by solving
the dynamic optimization problem is the input flow of glucose (F). The productivity of the
process has been maximized using different optimization algorithms, taking the parameters
of the cosine profile as decision variables, using as stopping criterion the maximum number
of function evaluations (i.e. 1000). All the optimization algorithms were randomly initialized,
that is, the starting points were randomly selected from the set of values bounded by the
upper and lower limits of the decision variable(s). The results of ten different independent
runs are summarized in Figure 3.10. It is observed that the best results were obtained using
the MIPT algorithm proposed in this work, compared to the Simulated Annealing algorithm
(SA), the Genetic Algorithm (GA) and the gradient-based (GRAD) method (i.e. SQP). It is
important to notice that the highest productivity values of individual runs were obtained for
both the MIPT algorithm and the gradient based (GRAD) method, but the average
performance of the MIPT is consistently high while the performance of the gradient method
is strongly dependent on the starting conditions of the optimization. In the graph of Figure
3.10, the best cosine feeding profile obtained from MIPT optimization is compared to the
best feeding profile obtained by Banga et al. (1997) using a piecewise linear
approximation. The use of a smooth non-linear profile, although similarly shaped, allows

improving significantly the productivity of the ethanol fermentation process.

max Productivity = E(t 0 )V (¢ )
F(1) : :

st f(x,xu,d,t)=0

x(ty) = xg

x' <x(t)<x" (3.21)

r—t r—t
F(t)=ay +a;cos| w O 1+¢ |+aycos| w, 0 1+4,
Ly —1y Ly —1y

0<F(t)<12
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Figure 3.10 Dynamic optimization of ethanol fed-batch fermentation. MIPT vs. Simulated Annealing
(SA), Genetic Algorithms (GA) and gradient-based (GRAD). In the right, the best smooth non-linear
feeding profile obtained with MIPT vs. the best piecewise linear profile by Banga et al. (1997).

3.3.6. Optimizing control of a Purification stage in Bio-ethanol

production

The last case study addresses the optimizing control problem of a two-distillation-column

system for purification of a beer stream in an ethanol production process, which is shown in

Figure 3.11.

PRODUCT

RECTIFICATION

COLUMN

........

BEER
COLUMN

Figure 3.11 Flow diagram of a two-distillation column system for ethanol purification. Beer column: no

condenser. Rectification column: partial condenser.
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The steady state model of the process (taken from the Aspen Plus Library) was exported to
AspenTech’s Aspen Dynamics for obtaining the dynamic model comprising a total of 2411
equations, involving 241 state variables. Five control loops for controlling the pressure in
both columns, the level in the reboilers and in the partial condenser of the rectification
column were included. The initial conditions for the dynamic model are the original steady
state values. In case of disturbance, the heat duty of both reboilers (Gk; and Gk;) and the
heat duty of the partial condenser (@) can be used as manipulated variables in order to
optimize the economic operation of the process (i.e. minimizing a cost function by varying
the decision variables of an Optimizing Control problem). The cost function (/) to be
minimized is given by Equation (3.22), where A, is the optimization horizon, Fg;, Fss Fps are
the mass flow rates in the bottoms of the distillation and the rectification columns, and the
distillate mass flow rate at the top of the rectification column. Xgz;, Xes2 Xwp2 are the ethanol
mass fractions at the bottom of the distillation and rectification, and the water mass fraction
at the top of the rectification column. The factors that multiply each term of Equation (3.22)
are penalization terms related to the ethanol price, the cost of steam to the reboilers and the
cost of cooling water in the partial condenser. frepresents the nonlinear dynamic model of
the process, U, and un. are the upper and lower bounds for the decision variables in
Equation (3.22) and xgp, is the mass fraction of ethanol in the distillate of the second
column.

Lopt Aot

min _[(0-63(XE31F31 +XppaFp) +xWD2FD2)+6'33(QR1 + QR2)+0'31QC )df
Or1.9r2.9c

topt

st f(x,x,u,d,t)=0
x; (t) = xo;

u Susu

min — max

XED2 >09

(3.22)

In order to discuss the performance of different optimization algorithms in optimizing the
economic operation of this large scale system, a step disturbance corresponding to a 25%
increase of the feed flow rate to the system was done. An optimization horizon of two hours
was considered. The maximum number of function evaluations used as stopping criteria was
200. In the scope of comparison, MIPT, SA, PSO and a Gradient based method (GRAD) were
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tested. SA and GRAD were run using the MATLAB Optimization Toolbox (in the case of
GRAD, a SQP method was used).
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Figure 3.12 Comparative results for the dynamic optimization of a two-distillation column system for
ethanol purification: Values of the objective function and total CPU time for MIPT, SA, GRAD and PSO,

for five different runs randomly initialized.

Figure 3.12 shows the comparison results for the average, best and worst cases of 5
randomly initialized runs for each method, in terms of the objective function value reached
after satisfying the stopping criteria (e.g. the maximal number of functions evaluations
allowed was 200) and the total CPU time, respectively. It can be seen that MIPT algorithm
has reached the same average and best optimal values than SA and PSO, but requiring less
CPU Time in average. In contrast, the GRAD method had the worse performance for the
average and worst cases, which is due to the fact that the method got trapped into local
minima, probably because of the random initialization that was done in order to provide a
faire comparison. In this example, it has been shown that MIPT is also suitable for large-
scale global dynamic optimization problems, which makes it a promising alternative for on-
line optimizing control applications.

61



Plantwide Optimizing Control for the Continuous Bio-Ethanol Production Process

3.4. Chapter conclusion

In this chapter, a new stochastic algorithm for Global Optimization, denoted as Molecular-
Inspired Parallel Tempering (MIPT) has been proposed combining the advantages of Monte
Carlo methods (taking as a base the PT algorithm) and the basic principles of Molecular
dynamics. It was shown that MIPT was capable to reach the global optima with a high
success rate and a reasonable number of function evaluations for a wide range of problems,
including constrained NLP, MINLP, dynamic optimization and problems with highly
multimodal functions. Through six challenging case studies, the performance of MIPT was
compared to well-established optimization algorithms, reaching the best performance in most
of the cases and showing to be a very well suited method for solving global optimization
problems. In fact, the excellent results in terms of number of function evaluations and in
success rate for finding the global optimum, especially in the set of benchmark test functions
with many local minima and in the dynamic optimization related case studies, are the main
reasons why the MIPT is the algorithm used for solving the Dynamic Real-Time optimization
problem that arises in the formulation of the Plantwide Optimizing Control procedure
proposed in Chapter 5. Finally, it was also shown that the MIPT method was able to
significantly improve the performance of the Parallel Tempering algorithm, especially in
larger problems involving many local minima. This is mainly a result of the improved global
character of MIPT over the original PT formulation, resulting in a more efficient algorithm

very well suited for different types of Global Optimization problems.
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4. Case Study: Continuous Bio-ethanol Production

Process from Starch

In this chapter, a detailed description of the continuous bio-ethanol process form starchy raw
materials is presented, including the dynamic model for each operating unit involved in the
process. The dynamic model presented in Section 4.1 was implemented using Simulink as
described in Section 4.2. It is important to mention that despite the fact that different steady
state models and simulations for the bio-ethanol process have been already reported in the
literature (Kwiatkowski et al., 2006; Alvarado-Morales et al., 2009), this is the first
time that a completely rigorous dynamic model for the whole process is presented. The basic

control loops in the process are also included in the model.

4.1. Process Description and Modeling

In this Section, the generalities and the dynamic model for the main operating units involved
in the Bio-ethanol production process, namely the enzymatic hydrolysis, fermentation and

the purification sections, are described.

4.1.1. Generalities

The purpose of this section is to present a complete description of the bio-ethanol process
from starch-containing raw materials, which is the case study addressed in this work. In
general the complete process involves five main unit operations: Milling, Enzymatic
Hydrolysis, Fermentation, Ethanol Purification and DDGs (Distilled Dried Grains) drying, as
shown in Figure 1.4. The purpose of milling is to break up the starchy raw material to an
appropriate particle size, in order to facilitate the penetration of water during the hydrolysis
stage. By means of the enzymatic hydrolysis, starch is depolymerized into its basic
monosaccharide building blocks (glucose). During fermentation, certain microorganisms

successfully transform glucose into ethanol as part of their metabolism. In the purification
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section, ethanol is separated from all other components present in the fermentation broth,
reaching a purity > 99.8% wt (= 99.5% mol). The DDGs drying section removes water from
the ethanol-free stream obtained at the bottom of the distillation column, producing a by-
product that can be used as animal feed due to its high protein content (up to 30%). In this
work, the milling and DDGs drying sections are not considered for plantwide control, because
milling is only a grinding process that does not change the chemical structure of the raw
materials (although the grain size may influence the efficiency of enzymatic hydrolysis of the
raw material), and the DDGs unit is devoted to the post-processing of a byproduct (i.e.

stillage), which is not taken into account in the profitability analysis in this work.

Figure 4.1 presents a flowsheet of the process considered, in which the feed to the process
is a starch slurry stream (Fp) coming from the milling unit, and the end-product is fuel-grade
ethanol (F,). The by-products of the process are the stillage (B;), which is a mixture of non-
fermentable matter leaving the process at the bottom of the distillation column for being
sent to the DDGs unit; and CO, (produced at the fermentation stage), which should be sent
to a scrubber (via stream Fyg). For simplicity, the local control loops are not shown in Figure
4.1, as they will be described in Section 6.1.1. It is possible to distinguish three main
sections in the process, which correspond to the starch hydrolysis, fermentation, and
purification sections. For the specific example addressed in Chapter 6, a nominal production
of 100.000 ton ethanol/year (12.6 Ton/h for 330 days of operation during 24h/day) is
considered, using a mash of starchy material as feed. The process design procedure, which

is based on a sensitivity analysis, is described in detail in Appendix D.

As it can be seen in Figure 4.1, the process consists on the following main equipment:

e A liquefaction tank (R-101) and a saccharification tank (R-102), where the enzymatic
conversion of the starch polysaccharide into glucose (monosaccharide) is carried out.
These tanks belong to the section denoted as Starch hydrolysis.

e A fermentation tank (R-201), a biomass filter (F-201), a cells treatment tank (V-201) and
a flash vessel (V-202), where the glucose fermentation to ethanol, as well as yeast
separation, treatment and posterior recycle is carried out, and also CO, separation is
done. These equipments correspond to the Fermentation section.

e A distillation column with reboiler and total condenser (T-301), a rectification column
with reboiler and partial condenser (T-302) and the molecular sieves beds (T-303/ T-
304), where ethanol purification and dehydration for reaching the fuel-grade ethanol is

carried out. These equipments make up the Purification section.
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Figure 4.1 Flowsheet diagram for the continuous bio-ethanol production process from starch
considered for plantwide control (control loops are not shown). 1- Enzymatic Starch hydrolysis (red
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Some of the most relevant characteristics of the bio-ethanol production process, that

constitute a challenge when addressing the plantwide control problem, include:

» There is a high variability in the quality of the raw material.

» The main state variables in the process present a highly nonlinear behavior.

» The process may contain recycle loops. In the particular process flowsheet considered in
this work, three different recycle loops are present. The first loop is the recycle of cells
from the filter to the fermentor (F;;). The second loop is the recycle of the yeast-free
stream from the bottom of the flash to the fermentor (F;s). Finally, the third loop is the
recycle of lutter water from the bottom of the rectification column to the liquefaction
tank (F,;). Due to the presence of these recycle loops the process has strong interactions
between different units that makes difficult the control task.

» The biomass concentration in the fermentor must track its optimal value (as it will be
explained in Section 6.1.1), which is a dynamic variable whose optimal value depends on

the behavior of other state variables in the process.

In the following, a description of each stage involve in the continuous bio-ethanol production

process is given, and the corresponding dynamic model is presented.

4.1.2. Starch Hydrolysis

4.1.2.1. Description

Starch is a combination of two polymeric carbohydrates called amylose and amylopectin.
Amylose (Figure 4.2a) is constituted by glucose monomer units which are linked by a—1,4
linkages. Amylopectin (Figure 4.2b) has a branched structure comprising the o-1,4
glucosidic linkages as in the amylase, but also branches connected by a—1,6 linkages. The
ratio of amylose to amylopectin is characteristic for each starch source and has an impact on
its gelatinization properties (e.g. gelatinization temperature range). Starches have the
general formula (CsH1005),, where nis the total number of glucose monomer units (Jacques
et al., 2003).
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Figure 4.2 Polymeric components of starch: a) Amylose, b) Amylopectin.

In order to achieve the hydrolysis of the starch into fermentable sugars, the enzymatic

hydrolysis of the starchy material is carried out in three stages, as follows:

e Gelatinization: The conversion of starch into fermentable sugars is accomplished by
the action of the enzymes a-amylase and glucoamylase. However, in order for the o-
amylase to access the starch molecules, the starch should be gelatinized.
Gelatinization is a physical process in which a slurry of starch meal is solubilized in
water by heating. This is sometimes referred as “cooking”, and occurs at the
gelatinization temperature, which can range from between 50°C — 120°C, depending
on the starch source. In general, gelatinization temperatures for starch cereals are
higher than those for root-starches (Thomas and Atwell, 1999). During this
“cooking”, the starch adsorbs water and swells, losing gradually its crystalline
structure, making it susceptible to enzymatic attack. The starch gelatinization process

is described by Equation (4.1).

A
[(C6H1005 )n Lngelatinized H—20>[(C6H1005 )n ]gelatinized (4.1)
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Liquefaction: During liquefaction, the «-1,4 linkages in amylose and amylopectin of
the exposed starch molecules are broken down by the action of the endoenzyme a-
amylase, resulting in shorter chains (oligosaccharides) called dextrins. Usually,
maltose (C;;H»,01) is produced during this stage (as shown in Equation 4.2), but
other dextrins such as maltotriose (C;sH3,046) can also be produced (see Equation

4.3).

a—amylase
2(C6H1005 )n +nH,0 a >nCi,Hy 0 (4.2)

a—amylase
3(C6H1005 )n +nH,0 - >nCigH 3,06 (4.3)

In the model developed in this work, the gelatinization and liquefaction stages are
considered to be carried out in the same reactor, which corresponds to the

liquefaction tank denoted as R-101 in Figure 4.1.

Saccharification: In the saccharification stage (R-102 in Figure 4.1), the release of
monosaccharides (individual glucose molecules) from the liquefied mixture of dextrins
occurs. Saccharification is carried out by the action of the exoenzyme glucoamylase,
which releases the single glucose (CsH1,0¢) molecules by hydrolyzing both (although
at different rate), the remaining «-1,4 linkages and the «-1,6 branch linkages.
Dextrins (e.g. maltose or maltotriose) conversion to glucose during saccharification

can be expressed by means of Equation (4.4) and (4.5):

CioHy 0 + Hy)O clucoanyine 2CsH 1,04 (4.4)

CisH3,0,6 +2H,0 Cheoanrtwe 3CsH 1,04 (4.5)

In general, depolymerization of starch into glucose (involving gelatinization-
liquefaction-saccharification) can be expressed by Equation (4.6). Figure 4.3 shows
typical operating conditions for the three main stages of starch hydrolysis (Jacques

et al., 2003).
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Figure 4.3 Typical block diagram and operating conditions of starch hydrolysis

Now that the generalities of the starch hydrolysis stage have been explained, in the next

section, the dynamic model for this stage is presented.

4.1.2.2. Model

The model of the hydrolysis stage was developed according to the sketch shown in Figure

4.4 under the following assumptions:

Gelatinization and liquefaction take place simultaneously in the liquefaction tank R-
101.

Saccharification takes place only in the saccharification tank R-102.

The density is assumed to be constant and the same for all the streams.

There is no thermal degradation of glucoamylase.

Enzymatic action on gelatinized starch leads to the production of dextrins with a
general formula CygH3,016.

Enzymatic action on dextrins leads only to the production of glucose.

Temperatures in both vessels are assumed to be kept constant at their optimal values
by using external heating and/or by manipulation of the cooling fluid passing through
the jacket.

Each vessel is considered to be ideally mixed.
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Starch slurry containing ungelatinized starch (S,,,), water (w) and non-fermentable material
(ny), is fed into the liquefaction tank (through the feed stream F), in which gelatinization of
Sung iNto gelatinized starch (S,) occurs simultaneously with the liquefaction of S, into dextrins
(my) by the action of a-amylase (e;). The model is derived from the mass balances for each
state variable (Sung, S; M €, wand ny) in the liquefaction tank (represented by the sub-

index L) as follows:

The mass balance for the ungelatinazed starch in the liquefaction tank (Syng,) is:

dSung,L _ FOSung,O o rgVL o FZSung,L Sung,L dVL ( )
- o 4.7

dt v, v, di

where Fy is the starch slurry feed flow from the milling unit, Syng,0 is the ungelatinized starch
concentration coming on the feed stream, rq is the gelatinization rate, V, is the liquid volume
in the Liquefaction tank, F; is the alpha-amylase feed flow rate and F; is a recycle flow from
the bottom of the rectification. F, is the output volumetric flow from the liquefaction tank,

which is calculated according to the control law given by Equation (4.8).

F2 :FZ,SS +Kc (HL _HL,sp) (48)
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F.ss i the steady state value for F,, K. is the controller gain, and H_. and H, s, are the

measured level and level set point values, respectively.

A mass balance for the gelatinized starch in the liquefaction tank (Sq.) is given by

as,, rV, —-09643n,V, -FS,, S, dV,

di v Y a (+9)

where the 0.9643 factor corresponds to the mass stoichiometric factor for gelatinized starch
conversion into dextrins (kg dextrins/kg gelatinized starch), and r is the rate for dextrins

production.

A mass balance for dextrins (my,) results in:

dmlt,L VoV —Eomy,  my, dv,

= - 4.10
dt v, v, dt (4.10)
From a mass balance for alpha-amylase (e;,.),
del,L . Flel,l — 1.V, _FZeI,L e, dv,
= - (4.11)

dt v, v, dt

where e, ; is the alpha-amylase concentration in the diluted enzyme-feed stream F;; and rqe

is the enzyme deactivation rate.

A water mass balance is given by;

dw, _ Eywy + Fyywy + Fowy = Fyw, —0.0357r,, 7, _w, dV, (4.12)
dt Vv, v, dt '
where wy is the water content in the feed flow stream Fy, F,3 is @ mainly water content flow
(i.e. it contains some ethanol traces), which results from a mixture of the recycle stream F;
(from the rectification bottoms’) and a fresh water flow (F,,). w; is the water content in Fy,

and the 0.0357 factor is the stoichiometric mass factor of water consumed (swelled) for
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dextrins production (e.g. the amount of water consumed during liquefaction corresponds to
a factor of 0.0357 kg water/kg dextrins).

The mass balance for the non-fermentable material (n¢.) is given by;

dn,, _ Fon,o—Fn, e, dvy
dt v, v, dt

(4.13)

where n¢ is the concentration of non- fermentable material in the feed flow F.

Finally, Equation (4.14) describes the overall mass balance in the liquefaction tank:

dVv,
T;ZFO+F1+F23_ 2 (4.14)

In general the volume of liquid in the reactors (1) is related to the level by the following

expression:
V=A4:H (4.15)

where Ar and H represent the cross section area of the tank and the level of liquid in the
reactor, respectively.

The mathematical expressions for the reaction rates of starch gelatinization (7;), dextrins
production (7, and enzyme deactivation (ry) involved in Equations (4.7 - 4.13) are given
by Equations (4.16 — 4.18) respectively, which were taken from Brandam et al. (2003).
The parameters for these expressions are shown in Appendix C.1.

E,.
re =k, exp —E Sung.L (4.16)
Tt :kmlt (MJS&L (417)
PL
E d.
Foo =kyp exp(— R‘}e jeLL (4.18)
L
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Parameters kg, ki and kqe are the kinetic constant for gelatinization, the kinetic factor for
dextrins production, and the kinetic constant for alph-amyalse deactivation. E,q and E.qe are
the activation energies for gelatinization and enzyme denaturation, respectively. R, T,, aa«
and p_ are the universal gas constant, the liquefaction temperature, the specific alpha-

amylase activity and the density of the liquid mixture in the liquefaction tank.

Next, the model of the saccharification tank is presented. The dextrins-rich stream £ is
continuously fed to the saccharification tank, in which dextrins are converted into glucose
(G) by the action of gluco-amylase (e;). The mass balances for S,,, S; €, nrand e, are
only affected by a dilution effect. The mass balance for ungelatinized starch in the

saccharificator tank (Sung,s) is:

dSung,S — FZSung,L - F4Sung,S N Sung,S dVS (4 19)
dt Vs Ve dt '

where F4 is the output flow from the saccharification tank, calculated according to the control
law given by Equation (4.20) and V; is the liquid volume in the saccharification tank, which

can be calculated from equation (4.21).

F4 :F4,SS +Kc (HS _HS,Sp) (420)
dv.

The terms F4., Hs and Hssp in (4.20) correspond to the steady state value for Fy4, the actual

liquid level in the saccharification tank and its respective set point.

Mass balances in the saccharification for the gelatinized starch (Sys), alpha-amylase (e;s)
and non- fermentables (n:s) are given by Equations (4.22-4.24).

aS,s F,S,,—F,S,; B S,s dV

a ¥, v, dr (4.22)

de, 5 _ e, —Fe e dly (4.23)
dt v Vv, dt '
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dnfys anf,L—F4nf,S n,s dv

= - (4.24)
dt Vs Ve dt
The mass balance for glucoamylase in the saccharificator tank (e, ) is
de, . Fie,, —Fe,s e, dlV
= - 4.25
dt v vV dt (4.23)

where F; and e, ; are the glucoamylase feed flow and concentration, respectively.

The dynamics of the remaining state variables in the saccharificator tank is also affected by
chemical reactions in addition to the dilution effect. The mass balance for the water in the

saccharification (w;) is represented by equation (4.26):

dw B Fw, + F,w, — F,wg —0.071 Voit.s Vs Wy dV
dt VS VS dt

(4.26)

where ws is the water content in stream F;, and the 0.071 factor represents the water
consumed during the saccharification for releasing glucose (0.071 kg water/kg dextrins).
Therefore, the total water consumption in liquefaction and saccharification amounts to
0.1111 kg water/kg starch.

The mass balances for dextrins (/mys) and glucose (G;) in the saccharificator are given by
equations (4.27) and (4.28):

dmlt,S _ FZmlt,L _F4mlt,S - rmlt,SI/s My dvV (4.27)
dt Ve Ve dt '

dGg 1.071r,, Vs - F,Gy _ G dVs
dt Vs Vs dt

(4.28)

where the 1.071 factor is the stoichiometric factor for dextrins conversion to glucose (1.071
kg of dextrins /kg glucose). The dextrins reaction rate in the saccharificator (/ks) is
expressed by Equation (4.29) as reported by Gongalves et al. (2001):
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k3‘32,s 8actMy s

Vnit,s =
’ G
k | 1+—5 |+m
m[ k j It,S

i

(4.29)

where g.« is the specific glucoamylase activity. ks, kn and k; are the kinetic constant,
Michaelis- Menten constant and product inhibition constant for dextrins consumption,

respectively.

A final remark should be made regarding the saccharification step. Alternatively, the
saccharification can be carried out simultaneously with the fermentation in the Simultaneous
Saccharification Fermentation (SSF) process, whose main advantage is the reduction of the
inhibition effect by high sugar concentration by adding the glucoamylase directly to the
fermentor tank. Ochoa et al. (2007, 2008) developed and compared two different models

(an unstructured and a cybernetic model) of the SSF process for ethanol production.

The next section to be described and modeled is the fermentation stage, which is composed
of: the fermentation tank, a yeast filter, a yeast treatment tank and a flash vessel for
carrying out a first purification stage for releasing the CO, produced in the fermentation,
which was dissolved with the fermentation broth. Additionally, in Section 4.1.5 a degrees-of-

freedom analysis for the whole process is presented.

4.1.3. Fermentation

4.1.3.1. Description

Conversion of glucose to ethanol is an exothermic reaction (enthalpy of reaction ~ -550 J/g
glucose according to Riva et al., 1998) carried out by many types of yeast and by few
bacteria. Yeasts are capable of using a wide variety of substrates (although most of these
substrates belong to the hexoses family). In general they are able to grow and efficiently
ferment ethanol at pH values of 3.5-6.0 and temperatures of 28-35°C. Yeasts, under
anaerobic conditions, metabolize glucose to ethanol following the Embden — Merhof pathway
(Figure 4.5). Yeasts in the genus Saccharomyces are responsible for almost all the current
industrial production of alcohol by fermentation (Roehr, 2001). As a result of the
fermentation process, 2 moles of Adenosine Triphosphate (ATP) are produced per mole of
glucose metabolized, and the yeast cells use them mainly for growth. Although fermentation
by Saccharomyces is an anaerobic process, a small concentration of oxygen must be
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provided to the fermentation tank, as it is a necessary component in the biosynthesis of
polyunsaturated fats and lipids. However, an excess in O, concentration will promote the use
of ethanol as an additional substrate for the cells, further increasing cell growth but
decreasing ethanol productivity. Besides the addition of a small amount of O,, other
components are required for an efficient fermentation, including some nutrients (i.e.
compounds containing nitrogen, hydrogen and small quantities of phosphorus and

potassium, between others) and vitamins like biotin.

Since the separation of ethanol from water accounts for much of the energy used in the
overall production process, the higher the concentration of ethanol in the fermentor, the
lower the purification costs per liter of product. However, there is a practical limit because
ethanol is toxic to yeast cells at concentrations ranging between 8 and 18% by weight,
depending on the strain of the yeast (Glazer and Nikaido, 1994). This phenomenon
caused by an adverse effect of ethanol on the cell membranes is denoted as product
inhibition. Above the inhibition concentration, a large number of ethanol molecules pass
through the cell membrane and once inside the cell, they weaken the cell membrane
structure allowing vital molecules, such as glucose, to leak out of the cells back into the
medium. This effect is translated into a lower glucose metabolic rate and therefore, in a

lower rate of ethanol production.

Fermentation is a very complex process in which many byproducts can be produced. In the
case of fermentation by yeast (see Figure 4.5), in addition to ethanol and CO,, it is possible
to obtain glycerol, lactic acid, and fusel oil (higher alcohols). However, those components are
not considered in this work, because its presence depends on the raw material used, the
fermentation conditions (i.e. operating conditions and microorganism used, etc.) and,
because usually their proportion to the other main components is minimal (Reimelt et al.,
2002). For modeling purposes, in this work it is considered that the main reactions occurring
during glucose fermentation by the action of the yeast Saccharomyces cerevisiae lead to the

production of ethanol, CO, and also yeast growth, as follows:

CyH,,0s——>2C,H5OH +2CO, (4.30)

C6H1206 —>yeast (431)
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Figure 4.5 Embden-Meyerhof yeast metabolic pathway from glucose (Jacques et al., 2003; Roehr,
2001)

Equation (4.30) shows the stoichiometric reaction for the production of ethanol (C;HsOH)
and CO,, where the theoretical yield of ethanol from glucose (C¢H;,06) is 51.1%. On the

other hand, Equation (4.31) represents the anaerobic production of yeast.

Over the years, several configurations of the fermentation stage have been tested for the

production of ethanol in order to increase the productivity of the process. A review on the
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different fermentation schemes was presented by Maiorella et al. (1981, 1984), including
batch, simple CSTR, CSTR with cells recycle, and schemes with selective ethanol removal (as
the flash fermentation, extractive fermentation and selective membranes). The main
disadvantages of the batch fermentation are its lower productivity, longer fermentation times
and higher capital investment (Reimelt, 2002) when compared to the continuous schemes.
In spite of the advantages of the continuous fermentation configurations in terms of
productivity, some new plants are still being designed for batch production, especially due to
the high risk of contamination. This main disadvantage of the continuous process can be
overcome using a CSTR with cells recycle configuration, such as the technology used in the
industrial Biostil® process (Chematur engineering, Sweden) (Ehnstréom et al., 1991). Yeast
recycle increases the cell density, leading to a higher ethanol concentration and low
substrate concentration in the fermentor (Ehnstrom et al.,, 1991; Maiorella et al.,
1984). Another continuous fermentation technology of industrial use is the MULTICONT®

process (Vogelbusch, Switzerland), in which a train of CSTR fermentors is employed.
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Figure 4.6 Continuous fermentation with cells recycle configuration: fermentor-yeast filter-yeast

treatment tank-flash vessel. Valves in red correspond to potential manipulated variables. The

dynamics of the filter, treatment tank, flash and condenser are neglected in the model (steady state).

The bio-ethanol process considered in this work is based on the continuous fermentation
with cells recycle configuration, as shown in Figure 4.6. As it can be seen, a flash vessel is
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also considered as part of the fermentation stage, which has two different tasks: first, the

rapid extraction of ethanol for avoiding product inhibition, and second, the removal of the

CO, still present in the process. Such scheme has been often denoted in the literature as

extractive fermentation (Da Silva et al.,, 1999; Costa et al., 2001; Meleiro et al.,

2009), but it should be noticed that it is not related to solvent extractive fermentation,

which uses a liquid extractant for improving the removal of ethanol from the fermentation

broth.

4.1.3.2. Model

The model was developed according the process shown in Figure 4.6, considering the

following assumptions:

The effect of nutrients and vitamins on the fermentation kinetics is neglected.

The dynamics of the filter, treatment tank, flash and condenser are neglected as their
dynamics are much faster than the dynamics in the fermentor (and also than the
dynamics in other equipment involved in the whole process). Therefore those units
were modeled at steady state.

Although a typical yeast treatment tank includes the addition of sulfuric acid for
adjusting pH, this is neglected in the model, and the treatment tank is just
considered as a mixing tank for yeast recycle.

The temperature in the fermentor is assumed to be kept constant at the optimal set
point value (i.e. 32°C for the yeast to be used in the process®). A typical control
scheme uses the cooling flow rate through the jacket as manipulated variable for
regulating the temperature.

pH is assumed to be kept constant at the optimal set point value for the particular
yeast strain.

The density is assumed to be constant and the same for all the streams.

The fermentor is an ideal continuous stirred tank reactor (CSTR).

Ideal vapor-liquid equilibrium is assumed in the fermentor.

For the operating conditions in the flash vessel, only ethanol, CO, and water are
evaporated from the liquid feed stream.

The filter involved in the yeast recycle loop, which in a real process consists on a
bent-sieve for separation of the fiber, and a centrifuge for separating the yeast to be

recycled, is assumed here as a filter in which only the yeast is retained to be

* Optimal temperature and pH are factors that depend on the yeast strain and should be investigated
for each particular case.
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recycled, whereas all other components pass through the filter to the downstream

section of the process.

The feed to the fermentation stage (stream F£;) is a saccharified mash containing mainly
glucose (G), which is the only fermentable sugar considered. Fermentation is carried out by
the action of the yeast Saccharomyces cerevisiae which can be fed to the fermentor through
the fresh yeast stream (F5) and/or the recycle stream (F;;). Total Biomass (X;) comprises a
viable (X;) as well as a dead phase (X;). The output stream of the bioreactor (F) is filtered
for retaining all the yeast (viable and dead), which is then sent to the yeast treatment tank
(F9) and recirculated to the fermentor (F;;). The yeast-free stream (F;3) is fed to the flash
vessel, where the remaining CO, is released. The stream from the bottom of the flash (F.,) is
then sent to the distillation unit, with the possibility of being partially recirculated to the
fermentor as stream F;5 The stream from the top of the flash (F;,) is mixed with the vapor
output from the fermentor (£;;), and passed through a condenser, where water and ethanol
are condensed and sent to the top of the rectification column (Fi), in the purification
Section. The relevant state variables at this stage of the process are X, - ,X;s Gr Er and
CO,r~ The mass balances for the other variables (e.9. Singr, Sorr Mk kF, WE, ELf, &) are

only influenced by the dilution effect and for that reason they are not shown here.

The mass balances for the viable (X, ), death (XGr) and total (X ) biomass are presented in
Equations (4.32) — (4.34).

dXv,F _ FlsXv,ls +F11Xv,11 +F5Xv,5 _F6Xv,F +ry Ve =1,V _ Xv,F dv,

dt Ve V. dt
(4.32)
dX, _ Fis X s + Fp Xy —F Xy p 1,V _ Xyp dVy (4.33)
dt Ve Ve dt '
dX,rp dX,rp dX,p
> — > + 2 .
dt dt dt (434)

where A5 is the recycle flow from the bottom of the flash, X 15 and Xj 15 are the viable and
dead yeast concentrations in the recycle stream 15. A; is the recycle flow from the yeast
treatment tank and £ is the fresh yeast feed flow (which only contains viable yeast). £ is

the output flow from the fermentor calculated according to the control law (4.35), where the

80



Plantwide Optimizing Control for the Continuous Bio-Ethanol Production Process

Fesss M and s, terms correspond to the steady state value for £, the actual liquid level in

the fermentor and its corresponding set point.
F6:F6,SS +Kc(HF_HF,sp) (435)

The liquid volume in the fermentor (l£) can be calculated from the overall balance in the

liquid phase given by Equation (4.36),

dv,
7;=F4+F5+F11+1715_F12_F6 (4.36)

The ry and r, variables in equations (4.32-4.34) are the biomass growth and death rates

respectively, given by equations (4.37) and (4.38), as reported by Costa et al. (2002):

A4 %)
E X, F GpX, F
= 1-| =L 1-| —= : -K,G 4,37
ry /umax[ (EmJ ][ ( Xm J J[KS N GF exp( i F) ( )

vy =kg eXp(deEF )XV,F (4.38)

It is important to notice that although kinetic expressions (4.37) and (4.38) were taken from
Costa et al (2002), the parameters values used in this work (summarized in Appendix C.1)
were identified as described in the Appendix C.2.

According to Monbouquette (1987), when high-biomass-density fermentations with cell
recycle processes are considered, it is necessary to take into account that the biomass
volume fraction is not part of the reaction volume. Models including this effect are called
intrinsic and have shown to provide a more accurate prediction of the substrate and product
concentrations. Following the guidelines by Monbouquette, the balances for Glucose and
Ethanol take into account the reaction volume correction X.4vx, Where yy is the ratio of dry
weight cell per wet cell volume. Therefore, the Glucose (Gg) and Ethanol (Ef) mass balances

in the bioreactor are given by:
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X,
dG, 7X(F4GS +FsGs + F, G, — FGy _rSVF)+GF TVF G, dv,
dr Vol —X./) v, dt
(4.39)
X, .
dEF Y x (F4ES +F15E15 +F11E11 _F6EF _EzElz +VPVF)+EF TVF EF dVF
dt Vilyy - X, ) V. dt
(4.40)

where Gis, £s, Gi; and £ are the glucose and ethanol concentrations in the recycle streams
15 and 11 (G1;=0 and E;;=0, if a yeast filter with a 100% separation efficiency is assumed),
respectively. rs and r, are the substrate consumption and ethanol production rates
respectively, which according to Costa et al. (2002), are given by equations (4.41) and
(4.42).

r

re =2 +myX,p (4.41)
Xs

v, =Ypyry +mpX, (4.42)

Finally, the mass balance for the CO, is given by (4.43).

rchonF
dCOz’F - WE+F15C02’15 +FuC02,11 _F6CO2,F _F12C02,12 B COZ,F dVF

dt v, V. dt
(4.43)

where weo; and me are the CO, and ethanol molecular weight, respectively. A, and COs 12

are the vent gas flow and carbon dioxide concentration in the vent gas from the fermentor.

Fermentation is a complex process involving living microorganisms which is still not
completely understood. This makes modeling a challenging task, especially regarding the
description of the reaction rates (ry, r,, rsand ry). Several kinetic models have been proposed
in the literature but there is still no consensus on which of them is the best. In any case, a

key factor for improving the modeling of the process has been the incorporation of substrate
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and product inhibition effects into the growth kinetics (7x). A comparison of different kinetic
models proposed for the continuous ethanol production with cell recycle was presented by
Nishiwaki and Dunn (1999). In this work, the kinetic expressions (Equations 4.37, 4.38,
4.41, 4.42) used were taken from the model presented by Costa et al (2002). The kinetic
parameters were identified (see Appendix C.2) using experimental data reported by
Jarzebski et al. (1989).

Before concluding this section, a brief mention about the filter, yeast treatment tank and
flash models should be done. First, since the dynamics of these equipments are much faster
than the dynamics of the saccharificator, fermentor, distillation and rectification columns,
they were simulated using steady-state models. In the case of the filter, the model used
assumes a 100% efficiency for yeast separation (i.e. all yeast, including death cells, is
retained in the filter). Therefore, yeast is only involved in the recycle loop to the fermentor
(F1z), and not downstream. Additionally, as recommended by Maiorella et al. (1984), the
total biomass concentration in the recycle loop (X::;) should be kept at a convenient fixed
value (which is done using a ratio control loop as explained in Section 6.1.1), for avoiding
pumping problems if the viscosity of the recycled slurry is too high. A recycle biomass
concentration of 180 kg/m® is set in order to calculate the ratio set point for keeping the
viscosity of the biomass slurry in a suitable value. A purge stream (Fg) is also considered for

avoiding accumulation of death cells in the fermentor.
A steady state mass balance for total biomass in the filter leads to

Fo( X, p+X, 1)
F = 6\ Ay F d,F (4.44)
Vx

whereas a total mass balance in the filter yields
Now, taking into account that part of F; is purged (through Fg) for avoiding dead biomass

accumulation, the input flow to the yeast treatment tank (Fo) is calculated from a mass

balance in the splitter
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Finally, a total mass balance in the treatment tank allows the calculation of the recycle flow

from the treatment tank to the fermentor (Fy;):

Fi =Fy + F (4.47)

where stream F;, is the flow of fresh water required to adjust the biomass concentration in
the recycle loop. The flowrate F;, is determined by a ratio controller as described in Section
6.1.1.

The flash vessel operates under vacuum at the same temperature of the fermentor,
separating a vapor mixture of ethanol, CO, and water from the liquid feed stream. The flash
is modeled assuming non-ideal vapor-liquid equilibrium. The Antoine parameters correspond
to those reported by Gmehling et al. (1990), whereas the activity coefficients were taken

from Wang et al. (2007).

The steady state balance equations in molar flow rates for the flash vessel (including the

condenser) are presented next. From a total balance in the flash
Fl4=F3—Fy (4.48)

where A3 and £ are the flash feed molar flow and the vapor output flow, respectively.

A mass balance for CO; in the flash yields the following equation:

Yco2,13
Fp = Fy =221 (4:49)
Yco2,17

where CO; is considered to be the only non-condensable component.

A mass balance for CO, in the condenser leads to

Fig =Ycor12F12 + Ycor1717 (4.50)
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Equation (4.51) and (4.52) are obtained from the vapor-liquid equilibrium of ethanol and

water in the flash vessel.

PvE
YE171 =XE14VE (4.51)
Pﬂash
P,
Vw7 =Xy 14V w (4.52)
Pﬂash

where y and x represent mole fractions in the vapor and liquid phases of the each stream,
respectively. ye and vy, are the activity coefficients for ethanol and water respectively. P, and
P.w are the vapor pressures for ethanol and water, and Pg.s is the pressure in the flash

vessel.

Now, from the summation equation, the molar fraction of CO, in the vapor is obtained

Yco2,17 =1—yE,17 — Vw17 (4.53)

Now, from an ethanol mass balance in the flash, Equation (4.54) is obtained,

Fisxpys —F1YE 17
xE,14 = - F - (4.54)
14

and from the summation of fractions in the liquid phase in the flash:

Fi3x; 13
X4 =1=Xp4 — Z — (4.55)

i#w,E F14

where / accounts for all other components different than ethanol and water (e.g. glucose,

starch and non-fermentable material).

Now, from a total balance in the splitter at the flash bottom:

Fe=Fa4—Is (4.56)
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and from a total balance in the condenser:

Fiog=Fj7+F,—Fy (4.57)

Finally, the vapor pressure for each component is obtained from Antoine’s Equation:

B:

1

10 " Thash+Ci

Pi=— 4.58
= (4.58)

4.1.4. Purification Section

In this section, the last stage in the bio-ethanol continuous process from starch is described,
namely, the purification section, which comprises distillation, rectification and adsorption by
molecular sieves. First a general description is given, and then the dynamic model for the

columns and the sieves bed is developed.

4.1.4.1. Description

Over the years, many different downstream purification technologies have been proposed for
ethanol dehydration, in order to obtain the desired purity for using it as a fuel (i.e. >99.8%
wt.). Since the ethanol-water mixture forms an azeotrope at around 95.5% wt. of ethanol at
a pressure of 1.013 bar (with a boiling point of 78.2°C), distillation at reduced pressure is
not economically viable for reaching fuel grade purity. In the beginnings of the bio-ethanol
industry, the preferred method for separating the ethanol-water mixture was azeotropic
distillation (AD) which involves the addition of a third volatile component (usually benzene or
cyclohexane) to form a ternary azeotrope at a more convenient composition. The high
energy requirements, large capital costs and health and safety concerns of AD have widely
reduced the application of this technique in the bio-ethanol industry. Over the years AD has
been replaced by extractive distillation (ED) and adsorption technologies. In ED, a third
component (solvent) is also involved, which increases the relative volatility of the
components to be separated without forming a ternary azeotrope as is the case in AD.
Different solvents have been reported in the literature of ethanol purification by ED, ranging
from liquid solvents like ethylene glycol, to dissolved salts such as potassium and sodium
acetate, to hyperbranched polymers, and many others. On the other hand, adsorption using

molecular sieves is the technology most widely used today for ethanol dehydration. In this
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case, the ethanol-water mixture at a composition close to the azeotrope is passed through a
bed of zeolites in which the water is trapped and adsorbed whereas the ethanol molecules
flow around them, as a consequence of the different size of ethanol and water molecules,
4.52 A and 1.23 A, respectively (Daubert et al., 1989). Other technologies that have been
proposed for ethanol purification include membrane pervaporation and Pressure Swing
Distillation (PSD). Pervaporation involves the preferential passage of ethanol through a
dense membrane matrix. However, systems involving membrane separation have not been
industrially applied because they are claimed to have low maximal capacity and high
replacement costs, which impact negatively the economy of the process (Szitkai et al.,
2002). On the other hand, pressure swing distillation has been recently evaluated and
reported to result in a 44% of the reduction costs in the downstream process, by taking
advantage of heat integration between the high and low pressure columns (Arifeen et al.,
2007). However, industrial applications of PSD in the bio-ethanol process have not been
reported yet. A more detailed description of these technologies can be found in the works by
Huang et al. (2008) and Vane (2008). Independently of the technology used, a typical
purification section in a bio-ethanol production plant includes a first distillation step (usually
two or more columns, including rectification) obtaining an ethanol concentration below the
azeotrope. In this work, the configuration of the purification stage (which is currently the
preferred configuration in Europe) includes: distillation, rectification and molecular sieves

adsorption, as shown in Figure 4.7.

7
2 : —~ F19

< —
From Condeser
P-304 at the Flash top
HE-303
= . F16 ,m\ Yeast free
et w} - X stream from
T-303/304 HE-203  Flash

F2o

utter water to Fuel Ethanol :
Liquefaction |
Fas T .

[% F22 F21 L

Fresh Water

itter water
——

Figure 4.7 Purification section configuration including level and pressure control loops for the

distillation and rectification columns (red valves indicate potential manipulated variables)
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The feed to the purification stage comes from the flash through two different streams. The
main stream (F;), fed to the distillation (beer) column, is a liquid phase stream coming from
the bottom of the flash with an ethanol purity of around 4% - 8% wt. The second feed
stream (F;4) enters directly into the top of the rectification column, as this is a higher ethanol
concentration stream (>60% wt.) coming from the top of the flash after passing the
condenser where the CO, is completely released. The purpose of the first distillation column
is to separate the heavy components and some water from a volatile water-ethanol mixture
vapor stream leaving the column at the top. Depending on the yeast strain used in the
fermentation, fusel oil (i.e. @ mixture of higher alcohols) may also be produced, which can be
separated as a side-stream in the distillation column. The purpose of the rectification column
is to obtain an ethanol-water mixture close to the azeotropic composition. The coupling of
distillation and rectification at different operating pressures, mainly vacuum-atmospheric (or
higher) respectively, has been identified as an excellent alternative for saving steam
consumption in the purification section (Dias et al., 2009b; Reimelt et al., 2002). In this
work, the distillation column has been considered to operate under vacuum (0.3 atm)
whereas the rectification column operates at atmospheric pressure. Besides the operating
pressures, distillation and rectification columns differ mainly in the number of trays and the
type of condenser used. In the distillation case, a lower number of trays may be required
and a total condenser is used. In the rectification, a partial condenser is used because the
feed to the molecular sieves should be a vapor stream. In order to obtain the required fuel-
grade ethanol purity, usually two or more zeolite-type molecular sieves beds are used for
adsorption of water (one bed is used for adsorbing the water while the others are
regenerated). For simulation purposes, in this work only the model for adsorption is
considered. Regeneration of the bed is assumed to take place at a predetermined frequency,
resulting in a return of the bed to its initial state (i.e. water-free). Finally, the bottom of the
rectification column is partially recirculated to the liquefaction section (through stream 23), in
order to reduce the fresh water consumption in the process (Reimelt, et al., 2002). In the

following, the dynamic model of the purification section is presented.

4.1.4.2. Model

The purification Section shown in Figure 4.7 is modeled considering the following
assumptions:

e Perfect mixing in the liquid hold-up of each tray.

e Non-ideal vapor-liquid equilibrium in each tray, described by the UNIQUAC model.

e Negligible vapor hold-up.
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e No energy losses from the columns.

e Negligible heat capacity of the trays and columns construction material.

e Total condenser without sub-cooling in the distillation column. Partial condenser in
the rectification column.

e The distillation column is modeled as a ternary system: water, ethanol and a heavy
phase (containing glucose, starch, non-fermentable matter and all other non-volatile
components). The rectification column is modeled as binary ethanol-water system.

e Constant pressure drop across the trays.

Distillation Column

The model for the distillation columns comprises the equations for each tray, the reboiler and
for condenser. The trays are numbered from the reboiler (/= 1) to the condenser (/ = Nj). At
each tray, the compositions for each component ( = 1 to A,) in both phases, temperature,

liquid hold-up, and vapor and liquid flows are calculated.

1. Trays model: For any tray in the column (Figure 4.8), different from the reboiler

and condenser, the dynamic model is described by the following equations:

Fi, z;,i

lLi, Xji T
Vi1,Yji1

Figure 4.8 Schematic representation of a distillation column tray

Overall mass balance for tray /(for 7= 1,/N)

( 7 ]:Li+l_l’i+Vi—1_Vi +F (4.59)
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Mass balance for component j (for j=1,2,...,/N,)

)
r J =L Xj i —LiXy +Viy e =ViyvitFiz; (4.60)

where the Vapor flow rate (/) leaving tray / is given by:
Vi = Vi—l +E(1_qi)+revap,i (461)

where the first term account for the vapor flow rate coming from below (V;), the
second term is the vapor coming with the feed stream to the tray where g; is the
liquid fraction in the feed flow, and the last term (7.4, represents the evaporation
rate (or vapor absorption rate) on tray / According to Beverley et al. (1999), the
evaporation/absorption rate depends on the pressure and temperature conditions of
the system and the molecular weight. For a multicomponent mixture, the evaporation

rate on tray /can be expressed as follows:

7 —;.NC ;A (P - P ) 4.62
evap i 3600 “~ 27ZWJRT“ J\ v t,i ( . )

where reyap,; is given in kmol/h, P,;;is the vapor pressure of pure component jin tray /
(in Pa), P.;is the pressure at tray /(in Pa), w;is the molecular weight of component j
(in kg/kmol), R is the universal gas constant (=8314 in J/kmolK), 7, is the
temperature at tray 7/ and A; is the tray area covered by component j which is
calculated according to Equation (4.63). If A, ; >P., evaporation of component j

occurs whereas, in the contrary case, component jis absorbed by the liquid phase.

Ay = Ay -l
J ~ “tray NG (4.63)

2%

k=1

where A, is the tray wet area, a,is the molecular area of component J, x;is the mole

fraction of component jin the liquid phase.

90



Plantwide Optimizing Control for the Continuous Bio-Ethanol Production Process

The liquid flow rate leaving each tray in kmol/h, neglecting the contribution of

weeping, is calculated according to the Francis-weir formula (Vora and Daoutidis,
2001):

L T4, (s Ve )

i (4.64)
Wi

where v;; and vy, are the volume of liquid (in m®) and the weir volume (in m?) in
tray j respectively. Therefore, v;; - vuer; represents the volume of liquid over the
weir. p,; is the density of the liquid mixture in tray /in kg/m?, and wj,is the average

molecular weight of the liquid in tray /7in kmol/kg.

Assuming thermodynamic equilibrium between the liquid and vapor phases, the vapor

compositions y;; (component jon tray /) are calculated as:

yib
Vii=Xii\ N
> > C (4.65)

Zxk I

k=1

The activity coefficients y and the vapor pressures were calculated using the
UNIQUAC model and the Antoine Equation, respectively. The equations and

parameters used in the VLE model are shown in the Appendix C.3.

Finally, the sum of fractions in both phases must be equal to unity:

Nc Nc
ij,,- =1 Zyj,,- =1 (4.66)
j=1 j=1

The energy balance at tray /is given by:

(i),

W =Ly +Viyh, o =Vh, +Fqh  +F(1-q )h,

dt i+1
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(4.67)

where A, and A, are the enthalpies for the liquid and vapor on tray / given by

Equations (4.68) and (4.69), respectively.

Nc Nc T
by = Z"jhzj,ref + ij Icp,,de (4.68)
j=1 j=1 Tref
Nc Nc Uy Nc
T
hy; = Zyjh.liaref + ny J‘Cp,’de+Zyj/1j b (4.69)
J=1 =L T J=1

where /1 ris the enthalpy of liquid of component j at the reference temperature, G,

%" is the molar

is the molar heat capacity of component jin the liquid phase, and A;
enthalpy of evaporation of component j at temperature 7. The expressions for
calculating the molar heat capacity and the molar enthalpy of evaporation for each

pure component as a function of temperature are given in Appendix C.3.

Since a constant pressure drop across each tray has been assumed, the pressure at

each tray is calculated as:

P,; =PFB,, + (N, —DAF, (4.70)

where P, is the pressure at the top of the column (pressure in the condenser) and A;
is the total number of trays in the column. The trays are numbered from the bottom
(/=1) to the top (/= N).

2. Reboiler model: The reboiler is modeled as an equilibrium stage, and it is

considered to include the bottom of the column, as shown in Figure 4.9.
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\

N
2

oy}

X

Figure 4.9 Schematic representation of the reboiler section including level control

The reboiler model comprises the mass and energy balances as well as the VLE

model described in Appendix C.3. The total mass balance is written as:

M,
—=L,-V;-B 4.71
7 2 =N (4.71)

The balance for component jis:

—dt =LoXi, =) —bX;g 4.72)
The calculation of the thermodynamic equilibrium is done using equation (4.65) as in

the case for the tray model. Also the summation equation (4.66) is required.
The energy balance is given by:

d(Mlhl,l)

7 = Lyh, =Vih,, —Bhy, + Qg (4.73)
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where heat losses from the column have been neglected.

The reboiler duty (Qk) is equal to the enthalpy increase of the boil-up as a result of

evaporation:
Or =4 VB (4.74)

where L, is the heat of vaporization of the mixture at the bottom of the column, and

is a function of temperature and composition (see Equation C.12 in Appendix C.3)
In addition, the following equality holds:

V,=VB (4.75)

Finally, as shown in Figure 4.9, the level at the bottom of the column (Hp) is
controlled by manipulating the bottoms flow rate B as a function of the error between

the measured level (Hg) and the desired set point value (Hg,sp)-
1

B =Kc |:(HB _HB,sp)+z__J-(HB _HB,sp) dti| (4.76)
I

where K. and 1; are the gain and integral time of a PI controller.

4. Condenser model: The condenser is modeled as an equilibrium stage, including the

reflux drum as depicted in Figure 4.10. For the distillation column, a total condenser

without sub-cooling is considered.
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VNT-1

Mni-1

Figure 4.10 Schematic representation of the condenser section for the distillation column including

level and pressure control

The mass balance around the condenser is expressed as:

dM y;,
dt

=V —R-D (4.77)

The balance for component jin the condenser is:

d(MN XN )
% =Vynie1Vj et —Rx; yy —Dx; (4.78)

Again, the calculation of the thermodynamic equilibrium is done using equation (4.65)
and the mole fraction summation using equation (4.66) as in the case of the tray

model.

The energy balance is given by:

d\M,,h,
(#J,N) - VNtflhv,szl - Rhl,Nz - Dhl,Nz - Qc (4.79)
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where the heat losses were neglected.

Since the condenser duty determines the vapor hold-up at the top of the column, it is
possible to control the pressure of the column by manipulating the condenser duty,
as it is shown by the pressure loop in Figure 4.10. For the purpose of controlling the

pressure, the condenser duty (Qc) is calculated according to the following control law:

1

1
Qc = 2’Nl‘—l VNt—l + KC (Pop o Ptop,sp) + Z'_ '[ (Ptop - Ptop,sp) dt
1
(4.80)

where the first term in equation (4.80) is a feedforward compensation, whereas the
second term is a feedback action calculated as a function of the error between the

measured pressure (Pywp) and its corresponding set point value (Piop, sp)-

Finally, level control in the reflux drum can be implemented by manipulating the
distillate (D) or reflux (R) rates. In this work, the distillate flow rate is used for
controlling the level (H)p) at the reflux drum in the distillation column; therefore, Dis
calculated as a function of the error between the measured level value (Hp) and its

set point (Hp,sp):
1
D:Dss+Kc|:(HD_HD,sp)+T_J.(HD_HD,sp)dt:| (4.81)
I

where Dy is the value of the distillate flow at steady state.

Rectification Column

The model for the rectification column is similar to that presented for the distillation column.

The basic differences are:

In the rectification, a second liquid feed stream is fed to the top of the column (tray
N;-1)
The condenser is partial.

A different control scheme for the reflux drum is used.
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As the main differences are at the top of the column, only the model of the condenser

(including reflux drum) will be described. The model is based on the scheme presented in
Figure 4.11.

VNT-1

)

Mpt-1

F1g
(from Flash)

Figure 4.11 Schematic representation of the condenser section for the rectification column including

level and pressure control

The balances around the dotted black region in Figure 4.11 are given by:

Ve —R-D
7 Ni-1 (4.82)
d(Myx; )
a:t Sl VRRVREY STV LYY (4.83)
d(M it )
dt = VNt—lhv,Nt—l - Rhl,Nt B DhVaNf—l (4.84)

The thermodynamic equilibrium is calculated according to Equation (4.65). Also the
summation Equation (4.66) is required for solving the model.

As in this case the distillate flow rate (D) is a vapor stream, it has no effect on the level (H))
at the reflux drum. Therefore, the level in the reflux drum can only be controlled by

manipulating the reflux rate (R) or the partial condenser duty (Q,).

From a total molar balance in the liquid zone in the reflux drum (green dotted region),
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dM y,
dt

=Lc—R (4.85)

where L. is the flowrate of liquid from the condenser to the reflux drum, and is given by

_ 0
Le= P (4.86)
Nt—1
Replacing Equation (4.86) in Equation (4.85), results:
dMNt — Qc —R (4.87)
dt Ani—1 '

Now, from an overall total mass balance around the vapor space in the reflux drum (red

dotted region):

vat dPlOp
Mo =Vy_~Lo—D=0 .
RTNt( dr j Niet ~ Le (4.88)

where Ty: and v, n: are the temperature and the volume occupied by the vapor in the reflux
drum respectively. Notice that in Equation (4.88), constant pressure Py, in the reflux drum

was assumed, thus, from Equation (4.86) and Equation (4.88) results:
Ani-1 (VNt—l -D ) -0, =0 (4.89)

Therefore, from a theoretical point of view, pressure can be kept constant by calculating the
condenser duty or the distillate flowrate from equation (4.89). Thus, for controlling level and
pressure at the top of the column, we have three possible manipulated variables, R, D and
Q. That means that there is only one degree of freedom, which in this work (unless
otherwise is stated) is the reflux rate R. As it has been shown in Figure 4.11, in this work,
the pressure Py, is controlled by manipulating the distillate flow rate D, which is done

according to the control law:
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1
D= |:VNt1 _%:| +Kc |: (})to - })top,sp ) + T_I(Bop - })top,sp) dtj|
1

Nt-1

(4.90)

where the first term accounts for a feedforward compensation which is derived from
equation (4.89). The second term is a feedback control action calculated as a function of the
error between the measured pressure (Pwp) and its corresponding set point value (Piop, sp)-
On the other hand, the level H) is controlled by manipulating the condenser duty, as a

function of the error between the measured level (Hp) and its corresponding set point (Hp,s5),
according to the following control law:

1
OQc =0 +Ke | (H)p _HD,sp)+_I(HD —Hp,,)dt

7, (4.91)

where Qcss is the condenser duty at steady state.

Finally, for concluding the modeling of the purification Section, the molecular sieves model is
presented in the following section.

Molecular sieves

The last step in the purification stage of the bio-ethanol process corresponds to the
molecular sieves unit (Figure 4.12).
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In this work, a simple model is used in the sieves unit. A single bed unit has been simulated,
assuming that the mass of water adsorbed per hour of sieve operation (M.s) is given by
(Karuppiah et al., 2008):

ads -m
M = t—MS (4.92)

reg

where my;s is the mass (in kg) of molecular sieves in the bed, ads (kg water/kg molecular
sieves) is the adsorption potential of the sieves and ¢, is the time of sieve operation without
need for regeneration. However, the maximum rate of water adsorption is determined by the

equilibrium separation efficiency of the sieves (7.4), as given by:

*
Mads =1—(XW’2° J (4.93)

Xy,D2

where x,, »0* is the equilibrium mass fraction of water in the ethanol-phase.

From a steady-state mass balance in the ethanol-phase,
Fyy=D,-M (4.94)

where D, is the mass flow rate of distillate in the rectification column and £ is the outlet
mass flow rate of dehydrated ethanol. From a balance of water in the ethanol-phase,

M 4 = D2xw,D2 - onxw,zo (4.95)

Combining equations (4.94) and (4.95) and rearranging, the following expression is

obtained:

xw _xw,
M, = 2{%} (4.96)

At equilibrium, the mass fraction of water in the outlet flow is x,, >/*. Now, considering that

Xu,20¥<<1, equation (4.96) becomes
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Mads,max = DZ (‘xw,DZ - xw,20 *) (497)

From the definition of the separation efficiency (4.93), the following expression is obtained:

Mads,max = D2'xw,D277ads (498)

Finally, the mass fraction of ethanol in the product stream F;, can be calculated as:

DZXWDZ B min(Mads > M
FZO

ads ,max )

Xpy =1— (4.99)

The main operating conditions and design parameters used in the model of the purification
section are presented in Appendix C.1. The design parameters for the distillation and
rectification columns were obtained using a sensitivity analysis as it is shown in Appendix D,

whereas those for the molecular sieves were taken from Karuppiah et al. (2008).

Finally, it is important to consider the overall and component mass balance in a splitter and a
mixer located after the bottom of the rectification column, which are used for recycling a
fraction of the lutter water, mixed with fresh water for maintaining a constant flow of water

to the liquefaction tank.

Fy + B, +VBy =L, (4.100)
Xi21 =X g2 (4.101)
Fy3 =F + Fy) (4.102)
Fy3Xi 03 = F1X; 01 + FapX; 20 (4.103)

4.1.5. Plantwide degrees-of-freedom analysis

In this section, a degrees-of-freedom analysis is carried out in order to check the consistency
of the model for the whole plant. This analysis, indicating the dependent variables, the

equations of the model and the degrees of freedom, is presented in Table 4.1.

101



Plantwide Optimizing Control for the Continuous Bio-Ethanol Production Process

Table 4.1 Plantwide analysis of degrees of freedom for the ethanol production process

Dependent Variables Quantity Equation Quantity
Composition in liquefaction Nc Component mass balances in Nc
tank (R-101) liquefaction R-101 (4.7, 4.9-
4.13)
Composition in N¢ Component mass balances in N¢
saccharification tank (R-102) saccharification R-102 (4.19,
4.22-4.28)
Composition in fermentation Nc Component mass balances in Nc
tank (R-201) fermentation R-201 (4.32-
4.34,4.39,4.40,4.43)
Composition in trays of 2*N71*n, Component mass balances in (N71+N7)*(n-1)
distillation column (T-301) - 2 trays of columns (4.60, 4.72,
phases 4.78, 4.83)
Composition in trays of 2*Np*n, Overall mass balances in Nri + Ny
rectification column (T-302) - trays of columns (4.59, 4.71,
2 phases 4.77, 4.82)
Temperature in trays of Nt + Np Energy balances in trays of Nt + N
distillation and rectification columns (4.67, 4.73, 4.79,
columns 4.84)
Liquid hold-up in trays of Nri + Npa Vapor-liquid equilibrium in (N71+Np2)*n,
distillation and rectification trays of columns (4.65)
columns
Volume of reactors (V, Vs, Vi) 3 Overall mass balance in 3
reactors (4.14, 4.21, 4.36)
Level of reactors (H,, Hs, Hg), 7 Geometric relations (4.15) 7
reflux drums (Hp;, Hpz) and
reboilers (Hgi, Hgy)
Rates of reaction (rg, mit, raes 8 Kinetic expressions (4.16- 8
Fmitss M, Far sy Tp) 4.18, 4.29, 4.37, 4.38, 4.41,
4.42)
Input flows of starch slurry, 6 Summation equations (4.66) Nr; + Ny
enzymes, yeast and water (F,
Fi, F3, Fs, Fio, F22)
Liquid output flows from 3 Level control laws (4.8, 4.20, 7

reactors (F,, Fs, Fe)

4.35,4.76, 4.81, 4.91)
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Table 4.1 (cont.) Plantwide analysis of degrees of freedom for the ethanol production process

Dependent Variables Quantity Equation Quantity
Output flows from distillation 4 Pressure control laws (4.80, 2
and rectification columns (B;, 4.90)

Dy, By, D7)
Flow and composition of purge n.+1 Equilibrium separation in Ne
stream (stream 8) filter (4.44)
Flow and composition of cell n.+1 Overall and component mass 2N+ 2
recycle stream (stream 11) balance in flash V-202 and
condenser HE-202 (4.48-
4.50, 4.54, 4.56-4.57)
Flow and composition of vent n.+1 Vapor-liquid equilibrium in 3n¢
gas (stream 12) flash, fermentor and
condenser HE-202 (4.51-
4.52)
Flow and composition of yeast- n.+1 Overall and component mass 2n.+ 2
free stream (stream 13) balances in filter F-201 and
yeast treatment tank V-201
(4.45-4.47)

Flow and composition of n.+1 Equilibrium separation in Ne
recycle stream from flash to molecular sieves (4.93)

fermentor (stream 15)

Flow and composition of ne+ 1 Overall balance in molecular 1

stream from flash to distillation sieves units (4.94)
(stream 16)

Flow and composition of n.+1 Vapor mass balance in top of 2

stream from flash to scrubber the columns (4.88)
(stream 18)

Flow and composition of ne+1 Reboiler duty (4.74) 2

stream from flash to

rectification (stream 19)

Flow and composition of ne+ 1 Liquid and Vapor flow rates 2*(N71+N1;)

product (stream 20) from trays of columns (4.61,
4.64)
Flow and composition of lutter n.+ 1 Overall and component mass 2nc+ 2

water (stream 21)

balance in rectification
bottoms splitter and lutter
water mixer (4.100 - 4.103)

103




Plantwide Optimizing Control for the Continuous Bio-Ethanol Production Process

Table 4.1 (cont.) Plantwide analysis of degrees of freedom for the ethanol production process

Dependent Variables Quantity Equation Quantity
Flow and composition of water n.+1 Water adsorption in 1
to liquefaction (stream 23) molecular sieves units (4.92)
Pressure in the top of 2

distillation and rectification
columns (Py, Py)
Condenser and reboiler duties 4
in distillation and rectification
(Qc1, Qe2r Qr1y Qr2)
Reflux and boilup streams in 4
distillation and rectification (R;,
VBy, Ry, VB,)
Liquid and vapor flows from 2*(Nty + N1p)
the trays of the distillation and
rectification columns (L, V)
Operation time of molecular 1

sieves unit before regeneration

(treg)

TOTAL VARIABLES 14*n, TOTAL EQUATIONS 14*n,
+2*(Nr1+Nr2)*n, +2*(Nr1+Nr2)*nc
+4*(Nt1+Nr)+53 +4*(Nt1+Nr)+39

For n.=10 and Nt;+Nr,=80 2113 For n.=10 and Nt;+Np»,=80 2099

DEGREES OF FREEDOM = 14

According to Table 4.1, there are 14 degrees of freedom in the whole process, a result
consistent with the number of available manipulated variables after closing the local level
and pressure loops. This set of available manipulated variables includes: Fy, Fi, F3, Fs, Fg, F1o,
Fis, F21, F22, Ry, VBy, Ry, VB, and treg.

By far, a complete model of the continuous bio-ethanol production from starchy raw
materials has been presented. The complete dynamic model has been implemented using
MATLAB's Simulink as described in Section 4.2. The validation of the fermentation, distillation
and rectification sections is presented in Appendix C. In contrast to those models which are
part of the state of the art in the (bio)-chemical engineering field, the model developed in
this work for the molecular sieves unit is a new approach. For this reason, in the next section
the validation of the molecular sieves model described by Equations (4.92) — (4.99) is
presented.
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Molecular Sieves model validation

The molecular sieves model described by Equations (4.92) — (4.99) is validated in this
section. Initially, the model was developed assuming a constant adsorption capacity ads;
however, during validation it was observed that a best fit to the experimental data was
attained considering a variable adsorption capacity as a function of the sieve operation time
(<), as described by Equation (4.104):

ads,

2

treg

ads = (4.104)

Figure 4.13 shows a comparison between experimental data reported by Al-Asheh et al.
(2004) for 3A-type molecular sieves (green points), the model predictions using a constant
adsorption capacity (red line) and model predictions using a variable adsorption capacity
(blue line) described by Equation (4.104). The data are plotted as water content in the
effluent stream (xu20) divided by the inlet water content (xwpz), versus time. In this particular
case, the data correspond to an inlet water content of 5% wt. As it can be seen, the model
using a variable adsorption capacity fits very well the experimental data, in contrast to the
model assuming a constant adsorption capacity. Therefore, it was decided to include in the
molecular sieves model the expression given by Equation (4.104) for taking into account a
variable adsorption capacity. The new model was validated by using a different set of

experimental data, this time for 4A- type molecular sieves, which is shown in Figure 4.14.

As it can be observed in Figure 4.14, the new model considering the variable adsorption
capacity also fits very well the new set of experimental data for the molecular sieves 4A-
type. Finally, from the validation results presented in this section and in Appendix C, it can
be concluded that the dynamic model developed in this work, based on the mass and energy
balances presented in Section 4.1, provides a good approximation for predicting the behavior
of the process variables in the fermentation and purification steps (distillation, rectification

and adsorption) of an ethanol production process, which are the core units of the process.
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Figure 4.13 Model validation for 3A-type Molecular sieves: Experimental data for 3A. (green points),
Simulink model predictions considering a constant adsorption capacity (red line), and Simulink model

predictions considering a variable adsorption capacity (blue line).
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Figure 4.14 Model validation for 4A-type Molecular sieves: Experimental data for 4A (red points), and

Simulink model predictions considering a variable adsorption capacity (blue line).
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4.2. Simulink Dynamic Model for the Bio-ethanol

Process

The case study addressed in this work is based on the continuous alcoholic fermentation of
glucose to ethanol, sometimes referred in the literature as extractive fermentation (Costa et
al., 2001; Meleiro et al., 2009) in which fermentation, cells recycle and a flash separation
are considered as part of the fermentation stage. As one of the main purposes of this work is
to propose a Plantwide Control (PWC) strategy for the ethanol continuous process from
starch (typical raw material in the European countries) towards reaching maximal
profitability, the process considered in this work (as described in Section 4.1) also includes
liquefaction, saccharification and purification sections, similar to those of the Biostil® 2000
process (Chematur Enginering AB, Karlskoga, Sweden). The nonlinear dynamic model of the
process, consisting of a nonlinear DAE system comprising 311 differential states and
approximately 1800 algebraic equations, was simulated using Mathwork’s Simulink®. The

scheme of the Simulink model developed is shown in Figure 4.15.
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Figure 4.15 Scheme of the Simulink model: The model for each section is included as an embedded
MATLAB function block. Cyan step blocks are the manipulated variables denoted as plantwide
manipulated in Chapter 6.
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In the developed Simulink model, each section of the process, namely, liquefaction,
saccharification, fermentation, distillation, rectification and molecular sieves, corresponds to
an embedded MATLAB function block. In total, the Simulink model considers 26 input
variables that are described and pre-classified in Table 4.2. As a rule, the variables that
cannot be manipulated by any means in the process are considered as disturbances, as it is
the case of the feed concentrations of starchy slurry and enzymes, whose concentrations
correspond to those provided by the suppliers of the raw materials. As it can be seen, 23 of
the input variables are considered as potential manipulated variables, which in Chapter 6
(Section 6.1.1) will be classified into local manipulated and plantwide manipulated variables.

The remaining three inputs on Table 4.2 are considered as disturbances.

In order to test the plantwide control methodology from an optimization perspective, an
important step is the development of an optimal process design for the case study
addressed. The design procedure based on a sensitivity analysis of a cost design function
with respect to the main process design parameters is presented in Appendix D, considering
a nominal production of 100.000 Ton ethanol/year (12.63 Ton/h for 330 days of operation
during 24h/day) using a mash of starchy material as feed. After the process design, the
Simulink model was used for studying the sensitivity of the process with respect to the main
input variables. Such sensitivity analysis is an important tool for understanding the effect of
the inputs on the process, which provides highly valuable information for implementing a

suitable control system in the process.

Table 4.2 Input variables considered in the Simulink Dynamic Model for Bio-ethanol production:

Potential manipulated vs. disturbances®

Input Variable Classification Meaning

Fo Potential manipulated Starch slurry feed flow to
the process (m*/h)
Fy Potential manipulated Alpha-amylase input flow
to Liquefaction (m>/h).
F, Potential manipulated Output flow form
Liquefaction (m>/h).
F3 Potential manipulated Glucoamylase input flow

to Saccharification

(m3/h).

¥ A sensitivity analysis is presented in this section for the variables in bold face.
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Table 4.2 (cont.) Input variables considered in the Simulink Dynamic Model for Bio-ethanol

production: Potential manipulated vs. disturbances

Input Variable Classification Meaning
F4 Potential manipulated Output flow from
Saccharification (m’/h).
Fs Potential manipulated Fresh yeast flow (m*/h).
Fs Potential manipulated Output flow from
Fermentation (m*/h).
Fg Potential manipulated Cells purge flow (m>/h).
Fio Potential manipulated Water input flow to the
mixing tank (m?/h).
Fis Potential manipulated Recycle flow from the
flash to the fermentor
(m*/h).
Fas Potential manipulated Fresh Water input flow to
the process(m’/h)
F., Potential manipulated Stillage Recycle from the
bottom of the
rectification (m>/h).
R, Potential manipulated Reflux rate in the
distillation (kmol/h).
VB, Potential manipulated Boilup rate in the
distillation (kmol/h).
B, Potential manipulated Bottoms flow rate in the
distillation (kmol/h).
Qcy Potential manipulated Condenser heat flux in
the distillation (3/h).
D, Potential manipulated Distillate flow rate in the
distillation (kmol/h).
R, Potential manipulated Reflux rate in the
rectification (kmol/h).
VB, Potential manipulated Boilup rate in the
rectification (kmol/h).
B, Potential manipulated Bottoms flow rate in the
rectification (kmol/h).
Qc, Potential manipulated Condenser heat flux in
the rectification (3/h).
D, Potential manipulated Distillate flow rate in the

rectification (kmol/h).
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Table 4.2 (cont.) Input variables considered in the Simulink Dynamic Model for Bio-ethanol

production: Potential manipulated vs. disturbances

Input Variable Classification Meaning
tieq Potential manipulated Regeneration cycle period
(h)
Sung,0 Disturbance Starch content on the
feed (kg/m?)
e Disturbance Alpha-amylase

concentration (kg/m?®)
€3 Disturbance Gluco-amylase

concentration (kg/m®)

In this section, the Simulink model (Figure 4.15) is used for carrying out the sensitivity
analysis of the process with respect to the main input variables. This analysis is done after
closing some basic local control loops for the process, including: the level loops for the
liquefaction, saccharification and fermentation tanks; the levels in reboiler and condenser in
the distillation and rectification columns, as well as the pressure in each column. After
closing these basic local loops, there are still 14 potential manipulated variables available in
the process, for control purposes. These variables are shown in bold in Table 4.2, and in the
following, their impact on the process profitability is studied through a sensitivity analysis.

For this purpose, the profitability function presented in Equation (4.105) is used.

to+AL to+At to+At to+At to+At
O =w IFZO dt —w, J.FOSung,OdtJr w3 IxEDzdt— Wy J.F6dt — Ws IVBldt
lo fo fo lo fo
tg+At tg+At to+At to+At
- Wg J.VBzdt - ws .[xEBIBldt—wg IXEBZBzdt — Wy J.el,lFldt (4.105)
f0 10 f0 f0
to+At to+At to+AL
— Wi jez,3F3dl_W11 Iprzzdt — Wi J.(l/treg)dt
10 10 10

The first term in the objective function (4.105) accounts for the incomes obtained from
selling the ethanol produced; the second term penalizes the raw material consumption; the
third term is a quality soft constraint included for promoting a high ethanol concentration at
the top of the rectification column (xgp2) and reducing the risk of production of ethanol out of
specifications; the following three terms are used for penalizing the energy consumption in

the process (pumping power and steam consumption). The terms weighted by w; and wg
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penalize the economic losses due to the presence of ethanol in the streams leaving the
process at the bottom of the columns. The next three terms penalize consumption of
enzymes (alpha-amylase and glucoamylase) and fresh water, whereas the last term accounts
for regeneration costs in the molecular sieves. The At is the optimization horizon, which in

the case study addressed here was taken as 25 hours.

Table 4.3 Sensitivity analysis of the main process inputs

Sub-optimal .
Optimal
. « Nominal Variation initial value from .
Input Variable . operating

value Interval sensitivity N

) point

analysis
Fo (m°/h) 30 15-45 33 27.3
Fi (L/h) 20 0.2-23 1.3 1.55
F2 (m®/h) 35 28 — 49 42 44.4
F5 (L/h) 45 22 - 67 45 38.2
Fo1/L4 rect 0.8 0-1 0.8 0.933
Fs/F7 0.015 0-0.05 0.02 0.025
Fs (m°/h) 0 0-1 0 0

Fis/Fi4 0 0-0.09 0 0.011
R1 (kmol/h) 4170 3760 — 4600 4100 3907.1
VB, (kmol/h) 5250 4720 - 5770 5250 4987.3
R, (kmol/h) 1845 1750 - 1880 1845 1854.7
VB, (kmol/h) 2100 2015 - 2120 2070 2047.6
treg (h) 0.1 0.05-1 0.4 0.466

The sensitivity analysis was carried out as follows. After identifying the design parameters as

described in Appendix D, the Simulink process model was run setting the inputs at their

" The analysis of recycle and purge flows (F,;, Fis and Fg) was performed considering the
corresponding flow ratios, in order to gain a better understanding of the process.

" The optimal operating point was determined by solving the optimization problem stated in Equation
(4.106) using the MIPT algorithm described in Chapter 3.
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nominal values until a steady state was found. Then, each process input was changed

between the allowed variation intervals around the nominal point, and the process was

simulated starting from the steady state condition previously found.
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Figure 4.16 Sensitivity analysis of the main input variables of the process. a) Starch slurry flowrate, b)

alpha-amylase flowrate, c) Rectification bottoms recycle ratio, d) Glucoamylase flowrate, €) Flash

recycle ratio, f) Fresh water flowrate
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Figure 4.16 (cont.) Sensitivity analysis of the main input variables of the process. g) Distillation reflux

rate, h) Distillation boilup rate, i) Rectification reflux rate, j) Rectification boilup rate, k) Biomass purge

ratio, 1) Molecular sieves regeneration period.

The optimal value selected for each input was the one returning the highest profitability

while at the same time satisfying the following constraints:

Ethanol production rate > 80.000 Ton ethanol/year. The process was designed for a
100.000 ton ethanol/year capacity, and in order to operate a profitable process, the
production rate should be higher than the 80% of the total capacity.
Ethanol purity > 99.8% wt.
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After finding the optimal value for the first input, this was taken as the new nominal value,
and the procedure was sequentially repeated for the other inputs. Table 4.3 shows the
variation interval used for each input variable, and the sub-optimal value obtained after
performing the sensitivity analysis. The detailed results of the sensitivity analysis are shown
in Figure 4.16. For some variables, infeasible points are sometimes found, corresponding to
operating conditions that do no satisfy the minimum production rate and/or the minimum

ethanol concentration in the final product.

From the sensitivity analysis results shown in Figure 4.16 it is possible to conclude that the
potential manipulated variables with a minimal effect on the profitability function (for the
range analyzed) are the input flows of alpha-amylase and glucoamylase, the fresh yeast flow
(Fs) and the fresh water flow (F,,). Therefore, those variables will not be considered as
plantwide manipulated variables (i.e. they are not included as decision variables in the
optimization problem that arises in the plantwide optimizing control), but will be considered
as part of the local control loops. For the case of alpha-amylase and glucoamlyase flow
rates, those will be used for keeping a constant ratio to the starch slurry feed flow rate, as
suggested by Karuppiah (2008). On the other hand, the fresh yeast flow will be used
together with the biomass purge flow in a local strategy for controlling the viable biomass in
the fermentor, and the fresh flow water F», will be calculated for achieving a constant total
recycle flow rate to the liquefaction tank (F,3). These loops will be presented as part of the

local control strategy for the ethanol process in Chapter 6 (see Section 6.1.1).

On the other hand, the values of the manipulated variables denoted as sub-optimal during
the sensitivity analysis were taken as starting point for finding the optimal operating point of
the process (in terms of the manipulated variables). For this, the model was run until a new
steady state was achieved, and then the optimization problem described by Equation (4.106)
was solved using the Molecular-Inspired Parallel Tempering (MIPT) optimization algorithm
presented in Chapter 3, in order to find the optimal operating point for the process inputs.

The optimal values found are listed in the last column of Table 4.3.

n%]in ()
st. F,, 280000 ton/ year (4.106)
Xp o0 20.998
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U=[Fo, F1, Fx, Fa1, F3, Fs, Fs, Fio, Fis, Ry, VBy, Ry, VBy, tregl, Fao is the flow of product of the
plant (in Ton/year) and xgis the mass fraction of ethanol in the final product (stream Fy).
The constraint used in Equation (4.106) corresponds to a minimum mass fraction of ethanol
of 0.998. Notice also that the objective function @ is the same profitability given by Equation
(4.105) evaluated for the same optimization horizon, and that the set of decision variables is
constituted by all the inputs catalogued as available potential manipulated variables. Finally,
it must be mentioned that the initial conditions of the main state variables in the Simulink
model obtained after solving the optimization problem (4.106), are given in Appendix C.5.

These conditions constitute the optimal initial steady state of the process.

Until now, the detailed model for the case study addressed in this work has been presented,
and the description of the dynamic simulation (including sensitivity analysis to the process
inputs) has been given. The dynamic model presented in this section will be used in Chapter
6 for applying the Plantwide Optimizing Control framework developed in this work, which is

introduced in the next Chapter.

4.3. Chapter conclusion

In this chapter, a dynamic nonlinear first principles model for the bio-ethanol continuous
process from starch has been developed. The model (simulated using Simulink®) comprises
the main sections in the bio-ethanol process, namely liquefaction, saccharification,
fermentation, distillation, rectification and dehydration (molecular sieves unit). The
implemented Simulink model consists of a nonlinear DAE system comprising 311 differential
states, approximately 1800 algebraic equations and a total of 14 degrees of freedom
(manipulated variables available after closing level and pressure control loops). The
developed model was used in this chapter for analyzing the sensitivity of the process
profitability with respect to the 14 available degrees of freedom. From this analysis, it was
observed that the variables F; F;, Fs and F», have a minimal effect on the profitability
function (for the range analyzed), and therefore those variables will be considered in Chapter
6 as part of the local control loops of the process, and not as plantwide manipulated
variables. Finally, a new, simple but reliable model for the molecular sieves unit was
developed and validated, which is adequate for the purpose in this work, i.e. to have a good

predictive capability whereas at the same time avoiding a high model complexity.
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5. Plantwide Optimizing Control Methodology

In the last 20 years the plantwide control problem in chemical processes has been addressed
from different perspectives, some of which were presented already in Chapter 2. Most of the
literature in this field is devoted to the formulation of decentralized plantwide control
architectures, following either heuristic or mathematical-based procedures. The decentralized
architecture can be convenient for processes with a small (or not) degree of interconnection
between different operating units, but definitively is not enough for successfully handling
dynamic processes that have a high degree of interconnection between different units. The
reason for this is that the very first principle of decentralization is to assume that each
operating unit is an isolated entity that is not affected by the other units. However, as a rule,
and with the purpose of operating with a high profit, industry has to build processes with
recycle loops which definitively represent a high degree of interconnection complicating the
control task. Despite of this drawback, decentralized architectures are still preferred for
solving the problem of controlling a complete process. The main reason for this preference
relies on the easiness of implementation and the use of PID controllers, which without doubt
are the most commonly used in the process industry. PID controllers are and will be the
basis of any control system in an industrial process because of its simplicity (for both,
implementation and understanding) and robustness. However, with the emerging of very
fast computers and communication tools, a new spectrum of possibilities has been opened
for improving the plantwide control strategies in the process industry, of course still using
PID controllers as a base but integrating online optimization tools for taking advantage of the
available control degrees of freedom using them to push the process towards maximum
profitability. Precisely, this is the purpose of this chapter, namely to propose a plantwide
control framework that keeps controlled the local control objectives in the process (i.e. safety
and environmental specifications, etc) by using SISO control loops (e.g. using PID
controllers), whereas at the same time, the available (non-local) control degrees of freedom
are used inside a dynamic real time optimization formulation to drive the process towards a
maximum profitability at each time. Such approach is denoted in this work as Plantwide
Optimizing Control (PWOC) because integrates the Plantwide and the Online optimizing

control concepts, as depicted in Figure 5.1.
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On-line Optimizing Control for the whole Plant

/\

Optimizing Control Plantwide Control
(based on D-RTO) (PWC)

+

!

Plantwide Optimizing Control
(PWOC)

Figure 5.1 Plantwide Optimizing Control Concept (Ochoa et al., 2010a)

Online optimizing control optimizes an economic objective function over a finite moving
horizon during plant operation based upon a rigorous nonlinear dynamic model (Kiipper
and Engell, 2008). Plant limitations and product specifications are included in the
optimization as constraints. This definition is used in this work as a key concept for
developing the basic steps of a Plantwide optimizing Control (PWOC) approach. PWOC
addresses Plantwide Control (PWC) as a nonlinear dynamic real-time optimization problem,
in which the available manipulated variables in the process (i.e. those not used in the local
control loops) are used for achieving maximum profitability in the plant in the presence of
disturbances. In this way, PWOC calculates optimal values for the set of selected
manipulated variables in order to maximize a Plantwide Profitability Objective function (@,)
instead of maintaining a set of controlled outputs at predefined set points. A key feature of
PWOC is that the input-output pairing is avoided (except for the local control loops), because
the output actually controlled in the process is the Plantwide Profitability and the available
manipulated variables are simultaneously used for satisfying that purpose. Online optimizing
control has been receiving increasing attention in the last years in different chemical process
applications (Engell, 2007). However, not much work has been reported in the open

literature about the on-line optimizing control of bioprocesses.

This chapter is organized as follows. In Section 5.1 the Plantwide Optimizing Control (PWOC)
methodology is proposed and a detailed description of the stages involved is given. Two
different PWOC approaches have been considered: A Single-Layer Direct Optimizing Control

approach, denoted in the following as PWOC-one-layer, and a Multi-Layer without
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Coordination approach denoted as PWOC-two-layer. Furthermore, as the PWOC framework is
based on the solution of a Dynamic Real Time Optimization problem (D-RTO) efficient
strategies should be used for solving the problem in real-time. Therefore, in Section 5.2 an
approach for shrinking the search region of the optimization problem is proposed, whose
main purpose is to reduce the search region of the optimization problem according to the

capability of each manipulated variable for rejecting both known and unknown disturbances.

5.1. Stages of the Plantwide optimizing Control (PWOC)

Procedure

The proposed PWOC approach comprises six main stages, as shown in Figure 5.2, in which
clearly two main different tasks can be identified. The first task (stages 1-3) is a local
control-oriented task because it is related to the identification and design of the necessary
local control loops. This task can be carried out using the decentralized control framework
employing for example PI or PID controllers. The second is a Plantwide control-oriented task
(stages 4-6), which can only be implemented after assuring the accomplishment of the
objectives established at the local control-task. The main purpose of this Plantwide oriented-
task is to use the available control degrees of freedom (i.e. after closing the local loops) for
accomplishing a unique objective: maximizing the process profitability. This means that,
excluding the local loops, no pre-defined set points will be either regulated or tracked. In the
following, a description of each stage considered in Plantwide optimizing Control is

presented.
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Figure 5.2 Stages of the Plantwide Optimizing Control Procedure

120



Plantwide Optimizing Control for the Continuous Bio-Ethanol Production Process

5.1.1. Identification of the necessary Local Control Objectives

Even though the goal of any chemical or biochemical process is the return of maximum
profit, there are additional control objectives that must be taken into account before
establishing a plantwide control structure for satisfying this economic goal. In this work, the
process control objectives are classified in two groups, local-control-oriented and plantwide-
oriented, as shown in Figure 5.3. The local control oriented objectives are necessary control
loops related to safe operation, environmental and equipment protection, and are
recommended to be the primary selected variables that must be locally controlled before
establishing the plantwide optimizing control structure, that is, they should be achieved (i.e.
kept within pre-defined bounds) independently of the economical performance of the plant,
by using local control loops. On the other hand, the Plantwide control-oriented objectives
include the maximization of the process profit, while at the same time assuring the product
quality and a smooth operation. Such plantwide control objectives should enter directly in
the objective function, or as constraints in the optimization problem formulated in step 4 of
the Plantwide Optimizing Control (PWOC) framework (Section 5.1.4).

Local Control Plantwide Control

oriented Process Control oriented
Objectives
e Safe Operation e Profit
e Enviromental Protection e Product Quality
e Equipment Protection e Smooth Operation

Figure 5.3 Process Control Objectives: Local vs. Plantwide oriented

5.1.2. Classification of the Manipulated variables

The available manipulated variables in the process can be used in the local control loops or
for the plantwide optimizing control of the process. Those manipulated variables used for
satisfying the local control set points will be denoted as Local manipulated (.., whereas
the Plantwide manipulated variables (upy) are those that remain available after selecting v,
and that are used for maximizing the plantwide profitability objective function. Selection of
the local manipulated variables involves heuristic knowledge of the causal relationship
between the process outputs and inputs, which should be accompanied by simulation

studies, especially when highly interacting processes are evaluated. Although in this stage
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only a pre-classification of the manipulated variables is done (without taking into account the
input-output pairing), in general it is desirable that each input classified as local manipulated
variable has a direct effect on only one output variable. Of course, in most situations this is
not the case, but it is desirable to select as local manipulated variables those inputs that

disturb the less other states in the process.

5.1.3. Design of Local Control Strategies

After identifying the necessary local control objectives in the process and the local
manipulated variables (u.c) required for satisfying those control objectives at the local
control loops, it is then necessary to address the design of those local loops. The design of
the local control loops includes mainly the pairing of manipulated-controlled variables, the
selection of the controller type and the tuning of the controller. Usually at this stage a
decentralized plantwide control structure can be used, based on the implementation of
multiple PI or PID SISO loops. The pairing problem is often solved by process insight,
although for difficult cases a RGA analysis is recommended (Araujo, 2007; Castro and
Doyle, 2004). On the other hand, the tuning of the PI or PID controllers can be addressed
in many different ways including the use of controller tuning relations, the use of computer
simulation for minimizing a performance objective function, and on-line tuning (Bequette,
2006; Luyben, 1990; Marlin, 2000; O'Dwyer, 2009; Seborg et al., 2003).

Until now, the stages involved in the local control-oriented part of the plantwide optimizing
control framework proposed in Figure 5.2 have been introduced. After designing the
necessary local control strategy, the remaining manipulated variables are available degrees
of freedom for control. These variables are denoted as Plantwide manipulated variables
(upw), and are used for fulfilling the main objective of the Plantwide-oriented part, namely

maximizing the profitability objective function for the whole process.

5.1.4. Objective function Statement

The next step in the Plantwide Optimizing control framework (Figure 5.2) is to establish a
plantwide profitability function @ and its constraints, in order to formulate a D-RTO problem.
The objective function @ depends upon the specific process addressed. However, it may
contain terms related to the productivity of the process, raw materials costs, energy
consumption, economic losses, etc. Constraints in the optimization problem can be

determined by plant and product specifications (e.g. minimal/maximal production rate
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according to the demand of the market, required purity of the end-product, etc.), and by
limitations in the state and input variables. Equation (5.1) shows a general form of the
profitability objective function, which considers a Mayer term (M), related to the state of the

process at the final time, and a Lagrange term (/)/ that represents an economical function

related to the dynamic behavior of the state variables during the transition from the initial
optimization time (t;) to the final optimization time (to+Atoy), Where A, is the prediction

horizon over which the profitability objective function and constraints will be evaluated.

© = M(x(t, + A, )+ | 0 (Ot ) (5.1)

fo

Since PWOC addresses the optimizing control problem for a complete plant over a finite
moving horizon during plant operation, it is very important to determine an adequate
prediction horizon A¢,,: depending on the specific process analyzed. It is suggested that A,
should not be shorter than the characteristic response time of the slowest relevant dynamic
in the process (to avoid unexpected long-term performance deterioration), while at the same

time it should be as short as possible to minimize computational load.

Once the profitability objective function has been formulated, the next step is to design the
optimization-based control strategy to be applied for the whole process. In this work, the
Single-layer direct optimizing control and Multilayer without coordination are suggested as
the selected architectures for the optimization-based control strategy, due to the fact that
they include the formulation of a dynamic real-time optimization problem, allowing the

explicit consideration of the process dynamics.

5.1.5. Design of the Optimization-Based Control Strategy

As it was previously mentioned, two different architectures are proposed in this work for
implementing the Plantwide Optimizing Control framework: the Single-Layer Direct
Optimizing Control and the Multi-Layer Control without Coordination, which have been
already introduced in Sections 2.1.4 and 2.1.3.2, respectively. The structures for both
approaches are shown in Figure 5.4 and a detailed description of the building blocks for each

framework is given in the following.
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Figure 5.4 General schemes of the Optimization-based Control Strategies for Plantwide optimizing
Control. Top: Single Layer Direct Optimizing (PWOC-one-layer). Bottom: Multi-Layer Control without
Coordination (PWOC-two-layer).

e Dynamic Real-Time Optimization (D-RTO) layer: This layer consists of a dynamic real-

time optimization problem in which the objective function is usually an economical
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function that should be maximized over a moving horizon (i.e. profitability described
by equation 5.1). Usually the D-RTO problem is subject to equality and inequality
constraints defined by restrictions on the states and input variables, purity
requirements, throughput, among others. The decision variables of the D-RTO
problem are the plantwide manipulated variables (Upw=Uqpt) used for maximizing the
economical objective function.

Real Plant: This block corresponds to the real process for which the Plantwide control
problem needs to be solved. In this work, only simulation studies (considering a
completely observable process) have been carried out for testing the Plantwide
optimizing Control framework (results are presented in Chapter 6). The real plant is
represented by the first principles model detailed in Chapter 4, incorporating some
noise on key process parameters as described in Chapter 6.

Estimation Block: In order to find the optimal operating point at each time, it is

necessary to estimate the main state variables (X ) that cannot be measured directly
in the process; this can be done by using software sensors which employ the
information of the available measured variables (Y). In this work, it is assumed that
all the state variables are known at every sample time; therefore no estimation block
is considered in the simulation studies presented in Chapter 6.

Trigger: As it can be seen in Figure 5.4, there are two different triggers: an
optimization-trigger and a controller-trigger. These trigger blocks act like switches for
re-calling the optimization layer (D-RTO trigger) and the control layers (MPC-trigger)
when a certain condition is met. An optimization trigger can work based on a time
criterion (e.g. the optimization is called periodically at a predetermined frequency),
based on the disturbances dynamics (after occurrence of a disturbance) or based on
the performance of the plantwide profitability objective function (when @ decreases
below a certain tolerance). On the other hand, the controller trigger can be based on
a time criterion or based on the controlled variables deviations from their optimal set
points. Figure 5.5 shows schematically the different criteria for activating the
optimization and controller triggers.

Model Predictive Controller (MPC) layer: This layer consists on a MPC (that can be
linear or nonlinear), in which the optimal values given by the D-RTO layer are used as
set points for the controller. In this work, a Nonlinear Model Predictive Controller

(NMPC) is used in the control layer.
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Figure 5.5 Summary of trigger activation conditions: a) Optimization trigger and b) Controller trigger

Comparing the schemes for the one-layer and two-layer frameworks (Figure 5.4), it can be
seen that both approaches have very much in common. For example, both approaches are
driven by a D-RTO layer, in which the objective function to be maximized is the plantwide
profitability @. The main difference between the two frameworks is that in the PWOC-one-
layer approach, the set of input variables applied to the real plant is given by the
optimization layer (Uew=U,p), Whereas for the PWOC-two-layer, the inputs applied to the
real plant are calculated by a control layer (Uesu=Unpc) that uses as set points, the optimal
values (Y, of the controlled outputs given by the optimization layer. In both cases, the
decision variables of the D-RTO problem are the set of plantwide manipulated variables Upy.
However, in the Two-Layer case a second layer (MPC controller) is applied which solves the
optimization problem for minimizing a performance-type objective function. This
performance-type function may contain three different terms: a penalization of the deviation
of the main output variables from their set points (Y, @ term that constraints the
manipulated variables to a small envelope around the reference trajectories (U, given by
the optimization layer, and a term that prevents large changes in the manipulated variables

from one sample time to the next, assuring smooth operation.

In chapter 6, the one-layer and the two-layer optimization-based control strategies will be
used inside the Plantwide Optimizing Control framework for the bio-ethanol case study.

Furthermore, as these optimization-based control strategies require the solution of a
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Dynamic Real-Time Optimization problem, the next stage considered in the Plantwide

optimizing control procedure is the solution of such D-RTO problem.

5.1.6. Dynamic Real-Time Optimization

The last stage in the Plantwide Optimizing control framework is to solve the nonlinear
dynamic large-scale optimization problem that arises when formulating the optimization
based control strategies of stage 5 of the PWOC framework in Figure 5.2, namely the one-
layer (Single-Layer Direct Optimizing Control) and the two-layer (Multilayer without
coordination). Efficient feasible optimization methods are needed in order to solve the
problem in real time. For this purpose, direct optimization formulations are usually employed,
which can be classified into sequential, simultaneous or hybrid approaches (e.g. multiple
shooting). Srinivasan et al. (2003) provide a detailed explanation of the mentioned
methods. The main features, advantages and disadvantages of the sequential, simultaneous

and multiple shooting formulations have been already presented in Section 2.1 (Table 2.1).

In this work, a sequential formulation using stochastic methods for solving the large scale
NLP problem is used. The reason for using the sequential formulation instead of
simultaneous or multiple shooting is that the sequential formulation provides a feasible path
in which the DAE system is satisfied at each step of the optimization (Srinivasan et al.,
2003). Ensuring a feasible path during the optimization is a very important fact for real plant
applications because in the event of an interruption of the optimization routine (e.g. because
the time limit for optimization is reached), it is highly probable that the partial results
obtained by an infeasible path approach will not satisfy the optimization constraints, since
they are satisfied only at the end of the optimization, posing serious risks to the operation of
the plant.

After defining the method for formulating the dynamic optimization problem, an efficient
optimization algorithm should be chosen for solving the optimization. In general deterministic
or stochastic approaches can be used. In this work, stochastic optimization algorithms are
suggested for solving the problem, because they are relatively simple to implement, have a
reduced computational load (there is not need of information about derivatives as required
by gradient-based methods), and can be easily connected to available simulation packages
(Egea et al., 2009; Faber et al., 2005). In Section 6.3, two different stochastic methods,
Localized Random Search (Spall, 2003; Zabinsky, 1998) and Molecular-Inspired Parallel
Tempering (Ochoa et al. 2009c, 2009d, 2010b) are used for solving a sequential
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formulation of the dynamic real time optimization problem that arises in the PWOC for the
bio-ethanol case study. According to Jezowsky et al. (2005), random search optimization
methods are efficient and robust for solving practical engineering problems although their
convergence to the global optimum can not be assured. Independently of the optimization
algorithm applied (deterministic or stochastic) or the solution approach (sequential,
simultaneous, etc.), the method will search for the optimal solution in the space of the
decision variables, i.e. the region bounded by the lower and upper limits of each manipulated
variable (which are the decision variables of the optimization problem). Sometimes this
search region may be too large, resulting in long computation times and making difficult the
solution of the PWOC problem in real time. In order to raise the efficiency of the optimization
routine for solving the D-RTO problem, in the following section a novel stochastic-based

approach for shrinking the search region of the optimization problem is presented.

5.2. An stochastic approach for shrinking the search

region of the optimization problem

When disturbances (known or unknown) occur in a process, the manipulated variables must
act in order to reject or compensate their effect. The main idea of new the stochastic-based
shrinking approach proposed in this work, is that the changes in each plantwide manipulated
variable (Aupy;) required for rejecting a disturbance can be calculated as a function of the
changes in the disturbances (Ad) and the profitability objective function (A®).

Mathematically, this can be written as shown in Equation (5.2).
A py; = Upyipenr —Upwiy = Ji(Ady,Ady,....Ad ;, AD) (5.2)

where / is the number of plantwide manipulated variables and j is the number of
disturbances that may be present in the process; 7 is a function that represents how much
the manipulated variable /7 should change for rejecting the disturbances. The general
expression given in Equation (5.2) considers both a feedforward contribution (that accounts
for measured disturbances occurrence) and a feedback contribution (in the sense that the
profitability function will decrease or increase after an unknown disturbance has upset the
process). Finding an analytical expression for the function £ (i.e. from the model of the
process) is a very complex task in a Plantwide Control context. Therefore, in this work an
approximation is proposed, in which a Gaussian distribution is used for describing the
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function £ This choice of function is made because Gaussian distribution functions are
suitable for representing many different real processes as can be evidenced from the Central
Limit Theorem (Gardiner, 1994). In this way, each plantwide manipulated variable (upy) is
allowed to change only inside a region described by a Gaussian distribution, as expressed by
Equation (2.6). Thus, the particular value of the change for each manipulated variable is
determined as a random number obtained from the Gaussian distribution as described in
Equation (5.3).

Aupy; = &;(0,0,,) (5.3)

£(0,0,) represents a random number obtained from a Gaussian distribution with zero mean
and standard deviation o, A zero mean value is fixed in the formulation, because it
corresponds to the current value for the plantwide manipulated variables, when the
optimization is called (i.e. when the known or unknown disturbances occurs and therefore
re-optimization of the plantwide manipulated variables is needed), preventing abrupt
changes. On the other hand, the standard deviation o,; can be calculated as the maximum
between different contribution terms, representing the capability of the manipulated variable
/ for rejecting the different known disturbances of the process and/or rejecting a decrease in
@ (that can be caused by both known and unknown disturbances) at time ¢ as shown in
Equation (5.4):

Gui = maX(WilAdl’WizAdZ""’WijAdj’WiCDZ(I)A(D) (54)

where wj; are gain factors that express how much a change in the manipulated variable upy;
can reject (or counteract) the occurrence of disturbance d, wi, is the gain factor for the
manipulated variable /rejecting the decrease in the profitability objective function @, and z,
is @ dummy variable that is only activated when the objective function @ decreases below a
given tolerance 70/ This is:
0, ®(t—At)—D(t)<Tol
o= (5.5)
I, O(t—At)-D(t) > Tol

Regarding the calculation of the gain factors (w;) used for obtaining the standard deviation
ou;, it would be desirable to calculate these gains from the nonlinear model of the process as

expressed in Equation (5.6)
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([ Ou; oOx;
Wij _Z[axk adj} (5.6)

k=1

where oujfox, represents the inverse of the open loop gain between state variable x; and
input u; and oxi/od; represents the open loop disturbance gain between x; and disturbance
d;. However, as the complexity of the process model increases, the complexity for calculating
the wj factors analytically also increases. For this reason, it is proposed to estimate these
gain factors by using digraphs, which are causal models that can be used to describe the
behavior of the process capturing the essential information flow in a cause-effect relationship
(Maurya et al., 2003). One of the most important advantages of using digraph-based
models is that they do not require much quantitative information and therefore have been

applied in different fields like hazard and operability analysis and fault diagnosis.

A graphical representation of the shrinking approach for a system with two manipulated
variables and two disturbances that occur at the same time is presented in Figure 5.6. The
left and right projections show the Gaussian distributions with standard deviation o;; and o>,
for describing the probability of change for the manipulated variables v; and u; respectively,
when disturbances occur in the process. The center figure shows the Shrunk Search Region
for the optimization problem, formed by the projections of the Gaussian distributions for v,
and u. It is important to notice that even though the maximum standard deviation is
selected for each case, a reduction of the search space, and thus a reduction in the
computational effort during the optimization, is achieved because the original search region
of the optimization problem was only bounded by the upper and lower bounds of v; and w..
The stochastic-based shrinking approach is used in Chapter 6 for reducing the search region
of the optimization problem that arises when the PWOC concept is applied to the continuous
bio-ethanol production case study. As it will be shown through this example, the PWOC
problem has been solved more efficiently by applying the shrinking approach than without

shrinking.
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Figure 5.6 Shrinking approach: Probability distribution projections, final shrunk search region and

original search region.

5.3. Chapter conclusion

In this chapter, a Plantwide Optimizing Control (PWOC) methodology has been proposed
based on the Optimizing Control concept. The PWOC methodology consists on two main
tasks: a local control-oriented task, which is usually carried out using typical PID
decentralized schemes; and a plantwide control-oriented task, whose main purpose is to
maximize the process profitability. Furthermore, a new stochastic-based shrinking approach
for reducing the search space of the D-RTO that arises in PWOC has also been developed.
The main purpose of the shrinking approach is to use the qualitative relationship between
the disturbances and the manipulated variables to constraint the search space of the
decision variables according to their capability for rejecting each disturbance. Such shrinking
is important for online applications (where very short times are required for finding a solution
of the optimization problem), because by reducing the search space, the optimization
algorithm does not lose time in changing manipulated variables that are not able to reject a

particular disturbance.
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6. Plantwide control of the Bio-ethanol Process.

In this chapter, the Plantwide Control (PWC) problem for the continuous bio-ethanol process
introduced and described in Chapter 4 is investigated. The organization of this Chapter is as
follows. First, the Plantwide Optimizing Control (PWOC) methodology proposed in Chapter 5
is used in Section 6.1 for designing the plantwide control structure of the whole bio-ethanol
process using the two different PWOC approaches presented in Section 4.5, namely, the
PWOC-one-layer and the PWOC-two-layer. Then, in Section 6.2, a typical decentralized
plantwide control scheme for the process is presented, which is a multi-loop formulation that
will be used in Section 6.3 for comparing the performance of the Plantwide Optimizing
Control architectures. Finally, in Section 6.3, the performance of the PWOC approach is
evaluated under three different scenarios. First, a known disturbance in the feed
concentration (starch composition) is applied to the process. Second, an unknown
disturbance into the kinetic parameters of the fermentation section is introduced in the
process (i.e. in the real plant model), which also introduces a model mismatch in the PWOC
schemes. And third, a known disturbance in the price of the starch raw material is
introduced. The performance of PWOC facing these challenges is compared to the
performance when the decentralized Plantwide architecture (i.e. multiple single PID loops) is

used, which up to now is the typical configuration in industry.

6.1. Plantwide Optimizing Control (PWOC) for Bio-

ethanol production

In this section, the Plantwide optimizing control methodology proposed in Chapter 5 is
applied to the case study. First, the steps related to the Local control-oriented task are
explained (Section 6.1.1), and then, the steps involved in the Plantwide Control-oriented task
are addressed (Section 6.1.2-6.1.4).

133



Plantwide Optimizing Control for the Continuous Bio-Ethanol Production Process

6.1.1. Stages 1-3: Identification and design of the Local Control
Strategy

According to the guidelines given in Chapter 5, the local-oriented process control objectives
are those related mainly to safe operation, environmental and equipment protection. These
control objectives must be accomplished, even if they adversely affect the process
profitability. From process insight, and in order to assure safe operation, the following loops
are identified as necessary local control loops:

e Liquid levels for the liquefaction, saccharification and fermentation tanks.

e Liquid levels for the reflux drum and reboiler in the distillation and rectification

columns.

e Pressure control for the distillation and rectification columns.

It must be remarked that in addition to the above-mentioned loops, there are other
important loops that should be taken into account as part of the necessary local control
strategy (i.e. temperature and pH control for the liquefaction, saccharification and
fermentation, and pressure and level control for the flash vessel), due to their
unquestionable importance for assuring safe operation and equipment protection. However,
in an attempt to reduce the complexity of the simulation task, in this work, the simulation
studies were carried out taking into account only the local necessary control loops shown in
Figure 6.1. All other local variables were assumed to be constant during the simulation (i.e.
ideally regulated at their predefined set point values), either because they have a very fast
response and are quickly and easily controlled, or because they do not influence significantly

the performance of the plant.

On the other hand, besides the local loops already identified as necessary for safety reasons,
five additional control loops are locally implemented (also included in Figure 6.1). The first
two loops (blue lines) control the ratio between the flow of enzymes (alpha-amylase and
glucoamylase, fed to the liquefaction and saccharification tanks respectively) and the starch
slurry feed flow. These control loops have predetermined set points values Rgyrosp and
Re3/r0sp, COrresponding to the flow ratios F1/Fy and F3/F, respectively. The set point values for
these local control loops, were calculated according to the recommendations provided by
Karuppiah et al (2008), and are listed in Table 6.1, where also the set points for all the
other local loops are given. Additionally, after several simulation studies of the dynamics of

the fermentation section (including the flash vessel and cells recycle), it was decided to
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implement a new local biomass control strategy (Ochoa et al, 2009b) for controlling the
biomass concentration in the fermentor. This new biomass control strategy comprises two
internal control loops as shown in Figure 6.1 (green and purple lines). The first loop
corresponds to a split-range controller (green lines), which is used for tracking a viable
biomass concentration set point (Xvrsp) in the fermentor (which may be given by the D-RTO
layer as Xvropt). In this way, the split range controller is in charge of calculating (e.g. by
using a proportional control law) the proper values of the manipulated variables Fs and Fg
(fresh yeast feed flow to the fermentor and purge flow in the recycle loop respectively)
required for tracking the optimal set point for the viable biomass in the fermentor. For
example, if the viable biomass concentration in the fermentor (Xyf) is above its set point
value Xyrsp, the split range controller should increase the purge flow (Fs). In the opposite
case, when Xyr<Xvrsp, the controller will reduce the purge and open the fresh yeast valve
(for feeding fresh yeast) if necessary. The second loop (purple lines in Figure 6.1)
corresponds to a ratio controller for achieving a suitable viscosity in the biomass recycle
slurry. This controller calculates the actual flow ratio between streams Fy and F;o (which are
the free-yeast and water streams fed to the cells treatment tank, respectively) and adjusts
Fio in order to fulfill the ratio set point (Rrioresp) required for keeping the biomass
concentration in the recycle loop in a suitable value (X.r= 180 kg/m?, according to the
recommendations by Maiorella et al. 1981). Finally, it is important to mention that there
are two main reasons that motivate the proposal of this biomass control strategy as a local
control strategy. The first one is that an optimal biomass concentration in the fermentor
should be always guaranteed in order to avoid a misuse of the substrate (which can be
quickly consumed for cells maintenance and growth instead of metabolite production) if a
higher concentration than the optimal is available. Additionally, if the biomass concentration
is below the optimum, a slower metabolite production rate will occur, affecting the
productivity of the process. The second reason is that the yeast is only involved in a closed
mass-loop comprising fermentation, filtration and cells recycle, and thus, no biomass is found
on the streams up the fermentor nor downstream the filter (after F3). Finally, the last
control loop considered as local is the flow control of stream F,; (by manipulating the fresh
water flow F»,), which is the recycle of lutter-water to the liquefaction tank (orange lines in
Figure 6.1). The main purpose for keeping constant this flow is to reduce the variability
introduced by the recycle stream. As already mentioned, the control loops identified as
necessary local loops in the bio-ethanol continuous process from starch are shown in Figure
6.1, whereas in Table 6.1 a description for each loop (e.g. controlled and manipulated
variables and set point values) is provided. The tuning parameters of these loops can be

found in Appendix C.1.
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Figure 6.1 Local control loops implemented for the Continuous Bio-ethanol production Process from

starch. Level and pressure control loops are shown in black, Enzymes flow ratio control in blue, Viable

biomass control in the fermentor in green, Ratio control in the cells recycle loop in purple and lutter

water flow control in orange. Available manipulated variables after closing the local loops are shown in

red.
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Table 6.1 Local control strategy: Variable pairing and set points

Controller Controlled Manipulated Set point
ID variable variable
LC-1 H. F Hisp=6 m
LC-2 Hs F4 Hssp=11 m
LC-3 He Fe Hrp=12 m
LC-4 He1 B, Heisp=5 mM
LC-5 Hos Dy Hpisp=3 M
LC-6 Hez B He2sp=3 M
LC-7 Hp> Qc, Hp2sp=2 M
PC-1 Py Qcy Pusp=225 mmHg
PC-2 P D, Pusp=760 mmHg
FC-1 Ratio F/Fqy Fy RFi/Fosp= 5.7€-5
FC-2 Ratio F3/F Fs Res/rosp= 0.0014
FC-3 Ratio Fi/Fo Fio Rr10/Fosp=5-33
FC-4 Fas F2 F23=62.86 m*/h
AC-1 Xv,F Fs and Fs Xy,F-sp= Xy,F-opty IS @

variable SP given by
the D-RTO layer

An important part of the Plantwide Optimizing Control procedure at this stage is to classify
the available manipulated variables between local and plantwide manipulated. The
classification of the variables for the present case study is given in Table 6.2. Notice that the
variables denoted as plantwide manipulated are shown in Figure 6.1 in red, which are the
available degrees of freedom for accomplishing the aim of the Plantwide Optimizing Control,

to maximize the process profitability.

As it was already mentioned, the process has 23 manipulated variables, and only 15 of them
are used as local manipulated variables in the local control strategy described in Figure 6.1.
Therefore, the remaining 8 manipulated variables (Fo, Fis, VB1, Ri, VBy, Ry, treg, F21) Which
are the starch input flow, recycle flow from the flash to the fermentor, boilup and reflux
rates for each column, the regeneration time of the molecular sieves unit, and the recycle
flow from the rectification to the liquefaction, are the manipulated variables denoted in the
following as Plantwide manipulated variables (upy). These variables will be used as decision
variables of the D-RTO problem that arises in the Plantwide Optimizing Control formulation,

as it will be shown in Section 6.3.
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Table 6.2 Description and classification of input variables

# Input Variable Classification Meaning
1 Fo Plantwide manipulated Starch slurry feed flow to
the process (m®/h)
2 F, Local manipulated Alpha-amylase input flow
to Liquefaction (m>/h).
3 F, Local manipulated Output flow from
Liquefaction (m>/h).
4 Fs Local manipulated Glucoamylase input flow
to Saccharification
(m3/h).
5 F4 Local manipulated Output flow from
Saccharification (m3/h).
6 Fs Local manipulated Fresh yeast flow (m>/h).
7 Fe Local manipulated Output flow from
Fermentation (m>/h).
Fs Local manipulated Cells purge flow (m3/h).
Fio Local manipulated Water input flow to the
mixing tank (m%/h).
10 Fis Plantwide manipulated Recycle flow from the
flash to the fermentor
(m3/h).
11 Fa1 Plantwide manipulated Stillage Recycle from the
bottom of the
rectification (m>/h).
12 Fy Local manipulated Fresh Water input flow to
the process(m®/h)
13 Ry Plantwide manipulated Reflux rate in the
distillation (kmol/h).
14 VB, Plantwide manipulated Boilup rate in the
distillation (kmol/h).
15 B, Local Manipulated Bottoms flow rate in the
distillation (kmol/h).
16 Qc; Local Manipulated Condenser heat flux in

the distillation (3/h).
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Table 6.2 (cont.) Description and classification of input variables

# Input Variable Classification Meaning

17 D, Local Manipulated Distillate flow rate in the
distillation (kmol/h).

18 R, Plantwide manipulated Reflux rate in the

rectification (kmol/h).
19 VB, Plantwide manipulated Boilup rate in the

rectification (kmol/h).
20 B, Local Manipulated Bottoms flow rate in the

rectification (kmol/h).

21 Qc, Local Manipulated Condenser heat flux in
the rectification (J3/h).
22 D, Local Manipulated Distillate flow rate in the

rectification (kmol/h).
23 treg Plantwide manipulated Regeneration cycle period

(h)

After designing the local control strategy, the next step in the Plantwide optimizing control
procedure is the statement of the plantwide profitability objective function, which is the first

step related to the plantwide-oriented task.

6.1.2. Stage 4: Statement of Plantwide Profitability Function (@)

The following profitability objective function (Equation 6.1) is formulated as the function to

be maximized for the bio-ethanol process studied in this work:

) +At0pt to JrAlopt o +At0pt to +At0pt
(DZWI J‘F2O dt_Wz J‘FoSung,odt‘i‘ Wy J-xEDzdt_ Wy J.F6dt
1y o to to
t0+Atopt 1o +Atopt to +At0pt t0+Atopt
— Ws J‘VBldt - Wg J‘VBzdt — Wy J.XEBlBldt_WS J‘xEBszdt (6_1)
to o o to
to +Atopt to +At0pt ZO+At0pt 0 +Atopt
— Wy Iel,lFldf Wi I62,3F3dt_wll Iprzzdf Wiy I(l/treg)df
1o ) to ty

where w; are pure economical weight factors, which are listed in Table 6.3. The first term in
Equation 6.1 is related to the productivity of the process expressed as the product flow rate
(i.e. ethanol fuel-grade); the second term penalizes raw material consumption and the third
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term is a quality soft constraint used for promoting a high ethanol concentration at the top
of the rectification column, before entering the molecular sieves unit. The following three
terms (weighted by ws, ws and wg) are used for penalizing the energy consumption in the
process (pumping power and steam consumption). The terms weighted by w; and wg
penalize the economic losses due to the presence of ethanol in the streams leaving the
process at the bottom of the columns. The next three terms penalize consumption of
enzymes (alpha-amylase and glucoamylase) and fresh water. Finally, the last term penalizes
the costs involved in the regeneration of each molecular sieves unit. ¢, is the initial time for
the optimization routine and At is the prediction horizon over which the objective function
and constraints are evaluated. Af,,~=25 hours has been selected taking into account the

slowest dynamic response of the process to changes in its inputs.

Table 6.3 Weight factors used in the profitability objective function

Weight factor Value Description
Wi 33.7 €/kmol Ethanol selling price
W, 0.16 €/kg Starch price (e.g. from corn)
W3 3000 €/h Soft constraint
Wy 11.57 €/m? Energy cost due to pumping
Ws 0.257 €/kmol Vapor consumption price
We 0.257 €/kmol Vapor consumption price
Wy 33.7 €/kmol Ethanol price
Wg 33.7 €/kmol Ethanol price
Wg 5 €/kg Alpha-amylase price
Wig 3.5 €/kg Gluco-amylase price
Wig 4.1x10” €/kg Fresh water price
Wi 37 €/regeneration cycle Price for regenerating a

molecular sieves unit.

Most of the weighting factors shown in Table 6.3 are prices taken from Franceschin et al.
(2008). ws is a soft constraint that was tuned during the preliminary simulation studies. wy
was assumed to be 2% of the ethanol price and w;-wg were considered to be equal to the
ethanol price. Finally, wi; was determined considering that the regeneration of a molecular
sieves unit consumes 0.84 GJ/m> of ethanol dehydrated (source: NPPBCO). The nominal
production of the plant is 100.000 ton ethanol/year (15.8 m*/h) and therefore, 13.3 GJ/h are
required for dehydrating the product. Assuming a cost of 14.0 €/G] (source: NPGA) and

considering a regeneration period of 0.2 h (Kempe, 2008), each cycle costs around €37.
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6.1.3. Stage 5: Design of the Optimization-Based Control

Strategy
In order to compare the one- and two-layer Plantwide Optimizing Control schemes, in this

Section, the design of the optimization-based control strategy is carried out using both

PWOC schemes, as shown in Figures 6.2 and 6.3.

Dynamic Real Time Optimization XU
(D-RTO) 2

Equation (6.2)

A

Xy F-sp=Xv,F-opt Upw=Uopt Triggerp.rto
' . Equation (6.6)

Local
Setpoints

\ / ) J A

Local ULocaI Real d
Controllers ™ Plant
(including Biomass)
| X,U

Figure 6.2 Plantwide Optimizing Control-One-Layer scheme
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Figure 6.3 Plantwide Optimizing Control-Two-Layer scheme
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In the following, the most important features for the two addressed optimization based

control plantwide schemes are summarized:

1. The viable biomass control (AC-1 in Figure 6.1) loop is running in cascade with the D-

RTO layer (in both frameworks), from which it receives the optimal set point value
(Xy,r-opt) that should be locally tracked.

. In both cases, the profitability objective function to be maximized in the D-RTO layer

is given by Equation (6.1). The complete formulation of the optimization problem

addressed in the D-RTO layers is given in Equation 6.2.

min (—D(x,u,t,,At))

pyy =[FosFis VBy R VBy Ryt oy |
st. f(%,x,u,d,t)=0
x(ty) = Xy,
U, SUpy SU
opt s Upp ) =0.998 (6.2)

X oo (8, + At
F,, (t, + At up, )>80000

opt >

Xipy () + Atopt’uPW)ZxEDZ (¢ + Atopt’uPW)

As it can be seen, the decision variables of the optimization problem are the values
for the upw (Upw=[Fo,F15,VB1,R1,VB2,Ry,treq,F21]). The first constraint in Equation (6.2)
accounts for the fulfillment of the dynamic model. The second constraint assigns the
initial conditions of the state variables in the dynamic model. The third constraint
bounds the values of the set of plantwide manipulated variables (upw) between the
minimum (Umin) and maximum (umax) allowed (which are given by design and
operating specifications). The fourth constraint is included for assuring a final product
quality equal or higher than the specification for fuel-ethanol (i.e. 0.998 mass fraction
of ethanol). The fifth constraint accounts for a product flow rate equal or higher than
80.000 Ton/year (the nominal value is 100.000 Ton/year), in order to assure a
minimal throughput for keeping a good profit. Finally, the last inequality constraint is
used inside the optimization loop for assuring that the solution of the optimization
problem will guarantee a long-term ethanol concentration at the top of the

rectification column (xgpz). This is done by forcing the optimization towards values of
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Xepz at the end of the optimization horizon equal or greater than the concentration
obtained if the plantwide manipulated variables were kept constant at wp,* (which

are the values of the manipulated variables at the time £).

3. The performance-type objective function in the NMPC layer of the PWOC-two-layer
approach penalizes deviations of the main state variables in each equipment from
their optimal set point values given by the D-RTO layer during a prediction horizon
Atmpc=2 hours. As stated in Equation (6.3), the state variables whose performance is
penalized are the following: the maltotriose in the liquefaction tank (my.), glucose in
the saccharification tank (Gs), ethanol in the fermentor (Eg), top and bottoms ethanol
concentration in the distillation column (Xgp; and Xgs;, respectively), top and bottoms
ethanol concentration in the rectification column (Xep, and Xgs», respectively), and
finally, ethanol concentration at the molecular sieves output, which is the final

product concentration (i.e. Xgx)

mj

pc
2 2 2 2
Q [(mlt,L - mlt,Lopt) + (GS - GSopt) + (EF a EFOPt) + (xEDl - xEDl opt) +

1o, mpe +AL

tO .mpc

2 2 2 2
+ (X, _xEBlopt) +(Xgp, _xEngp,) + (X g, _xEBzgp,) + (X g0 _xEZOOpt) ]dt

(6.3)
! 0 0 0 0 0 0 0
mlt,Lopt
0 ! 0 0 0 0 0 0
GSopt
0 0 ! 0 0 0 0 0
EFopt
0 0 0 ! 0 0 0 0
_ XEDlopt
0= 1
0 0 0 0 0 0 0
XEBlopt
0 0 0 0 0 ! 0 0
xEDZopt
0 0 0 0 0 0 ! 0
xEB2opt
0 0 0 0 0 0 0 !
L XE200pt |
(6.4)
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where Q is a diagonal matrix given by Equation (6.4). @ was defined as a
normalization factor for each term in the objective function 7, with the purpose of
having the same weight value for each contribution term in the performance-type
objective function.

. The specific optimization problem solved in the NMPC layer of the PWOC-two-layer

scheme is given by Equation (6.5).

min —I'(x,u,t At
uPWz[F09FiSaVBl9R19V323R23tregaF21] ( ( >%5%0,mpc » mpc))

st f(x,x,u,d,t)=0
x(Z =X

( O,mpc) 0 (6.5)
u(tO,mpc) = uopt
Umin < Upwy < U max
Constraints given in Equation (6.5) for the MPC-layer have the same meaning that
those already explained for the D-RTO problem, except for the third constraint, which
assigns the optimal decision variables values found by the D-RTO layer, as initial

condition for the decision variables in the NMPC layer.

. The estimation block has been neglected in both schemes under the assumption of a

completely observable system (i.e. all state variables are assumed to be known).

. The D-RTO layer in both schemes is recalled using a trigger based on the detection of

disturbances and on the deterioration of the plantwide performance (detection of a
decrease in the profitability objective function). This means that the D-RTO layer will
be activated when a known disturbance enters the process or when a decrease in the
profitability objective function takes place (e.g. caused by the occurrence of an
unknown disturbance). The trigger condition for recalling the D-RTO layer is activated
according to Equation (6.6).

on, maX(dl,dz,...dj) > dthreshold \ CD(t - At) —cD(t) >Tol
Trigger DRTO =
off, otherwise

(6.6)
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where d, @,...,d are normalized deviation values of known disturbances that enter
into the process, Atis the sampling time and 70/is the maximum decrease allowed in

the profitability objective function during the sampling time.

Similarly, the trigger condition for the NMPC layer is given by Equation (6.7).

on, ‘xSP,i —X; (t)‘ > €; threshold
Trigger NMPC = (6.7)
off, otherwise

where xsp,is the set point value of state j x(?) is the value of state /at time ¢ and
€, threshold 1S the maximum error allowed for state /. The evaluation of the NMPC trigger

is performed at a predefined frequency, in this particular example, every 0.2 hours.

Finally, the real plant block is represented in this work by the Simulink model
(described in Chapter 4). The real plant model incorporates white noise signals for
three different kinetic parameters (one for each reaction section). These parameters
are the rate constant of maltotriose production in the liquefaction (ky:), the rate
constant of maltotriose consumption in the saccharification (k;), and the maximum
specific growth rate of yeast in the fermentation (Umax). The noise power considered
was 107, 10®° and 10, respectively. On the other hand, the local set points entering
to the local controllers block are those given in Table 6.1, with exception of X, r-s,

which is given by the D-RTO layer.

So far, the five first steps in the plantwide optimizing control methodology have been

implemented to the bio-ethanol continuous process from starch, going from the local control

loops design up to the design of the optimizing control strategy (using both, the PWOC-one-
layer and the PWOC-two-layer). In the final step of the PWOC methodology, the D-RTO
problem that arises in PWOC (Equation 6.2) is solved, returning as solution the optimal

values for the decision variables of the PWOC problem, that is, the optimal values for the

plantwide manipulated variables that lead the process to maximal profitability.

The PWOC strategies were implemented in MATLAB and the models of the process employed

in the simulation, named, start-up, real plant, optimization and NMPC, were developed in
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Simulink. All these Simulink models are based on the dynamic nonlinear process model
developed in Chapter 4. The start-up model is used for loading the nominal steady state
values of the state variables, and the corresponding input variables. The real plant model is
the one already described, in which white noise signals have been incorporated. The
optimization and NMPC models use a prediction horizon of 25 h and 2 h, respectively. The
interaction between MATLAB and the different Simulink models for the One-Layer and Two-

Layer strategies is schematically represented in Figures 6.4 and 6.5, respectively.
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Figure 6.4 PWOC-one-layer implementation in MATLAB and Simulink

146



Plantwide Optimizing Control for the Continuous Bio-Ethanol Production Process

Main Program

.m | I h ‘ Start-up
: Model
|

1 -
Yes
No
ot e
, A
/ MATLAB

B No
Yes
Real Plant
Model
Optimization code ¥ NMPC code ¥
.m .m

— 4\ — 4

L Yes X Yes
vt Ik ] g
No No
Optimization NMPC
Model Model
OPTIMIZATION NMPC

Figure 6.5 PWOC-two-layer implementation in MATLAB and Simulink

6.1.4. Stage 6: Solution of the D-RTO problem

As already mentioned in Section 2.1.4, the D-RTO problem can be solved using different
formulations, namely, sequential, simultaneous or multiple shooting. In this work, a
sequential formulation using stochastic methods for solving the large scale NLP problem is
used. The reasons for implementing the sequential formulation (instead of simultaneous or
multiple shooting) and solve it using stochastic algorithms (instead of deterministic), already
mentioned in Section 5.1.6, are mainly that the sequential approach is a feasible path
formulation, and that stochastic optimization algorithms are simpler to implement, do not
require derivative information, usually demand a reduced computational load and can be
easily connected with available simulation packages. The D-RTO problem is then solved in

this work using two different algorithms, as follows:
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1. The Molecular Inspired Parallel Tempering algorithm (MIPT), which was introduced in
Section 3.2, and whose performance was evaluated through different case studies in
Section 3.3. When compared with other stochastic methods, MIPT proved to be a
suitable optimization algorithm for solving specially Dynamic Real Time Optimization
problems, and problems involving many local minima. Therefore, the D-RTO problem
that arose in the application of the PWOC methodology will be solved using the MIPT
algorithm. The MIPT algorithm used in this work is based on follows the flowchart
shown in Figure 3.5, and was implemented using the MIPT-toolbox described in
Appendix A.

2. The Localized Random Search algorithm introduced in Section 2.2.1, which is a
stochastic method with a very simple formulation (i.e. does not need derivative
information) and easy to implement, and therefore, it can be attractive for any
potential application at industrial level. The Localized Random Search (LRS) algorithm

used is based on the flowchart given in Figure 2.8.

Before concluding this section, it should be emphasized that in order to improve the strategy
of solution for the D-RTO problem, the shrinking approach introduced in Section 5.2 is used
for reducing the search region of the optimization problem, according to the capability of
each plantwide manipulated variable for rejecting both, known and unknown disturbances,
while keeping a maximum profitability for the whole process. The shrinking approach was
then included in the solution of the PWOC-one-layer and the PWOC-two-layer, for reducing
the search space of the D-RTO problem in each case. Recalling the basic ideas already
exposed in Section 5.2, the implementation of the shrinking approach is carried out as
follows. First, the gain factors wj; and wj, in Equation (5.4) —which represent how much a
change in the manipulated variable wpy; can reject (or counteract) the occurrence of
disturbance d, and a decrease in the profitability objective function @, respectively— should
be calculated for each plantwide manipulated variable (upy;). Then, the standard deviation
oy Of the Gaussian distribution that will describe the probability of change of each
manipulated variable for rejecting the disturbances is calculated as the maximum between
different contributions terms (see Equation 5.4). Afterwards, each method explores randomly
the shrunk search space according to their respective algorithms. The gain factors for each
plantwide manipulated variable with respect to two potential process disturbances (Syng,0 and
e;1) and the profitability objective function are shown in Table 6.4. Furthermore, as an
example, the digraph showing the graphical relationship between S,ng0 and each plantwide
manipulated variable through the state variables in the process, is shown in Figure 6.6. The

values of the weights w;; shown in Table 6.4 for S y,g0 Were obtained from this digraph.
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Table 6.4 Manipulated variable-disturbance gain factors obtained from digraphs

Gain factor wy (relationship upw; —a))
Fo Fis Fau Ry VBi Ry VB, teg

Sungo | 1/2 1/7 1/11 1/10 1/10 1/11 1/11 1/12
€, (1/5 15 13 1/9 1/9 1/10 1/10 1/11
AD | 1/1 12 11 12 11 12 11 11

(]

ung,0

VB,

t

reg

Figure 6.6 Sample digraph showing the relation between the manipulated variables (inside a
rectangle) and the disturbance in starch feed concentration. Notice that such relationship comes from
the reciprocal of the number of relational steps between the disturbances and manipulated variables

through the state variables (in ovals).

So far, the step by step application of the Plantwide Optimizing control methodology
proposed in Chapter 5 to the Bio-ethanol continuous process form starch has been carried
out. In order to compare the performance of the PWOC methodology, the plantwide control
problem for the bio-ethanol case study is also addressed in this work using a decentralized

architecture, which is presented in the next section.
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6.2. Decentralized Plantwide Control Architecture for

the Bio-ethanol process

In this section, a plantwide decentralized control scheme is described, which was
implemented for comparison purposes. The decentralized scheme (Figure 6.7) uses seven PI
control loops, in addition to the Local Control strategy (Section 6.1.1). This scheme
comprises the following loops (pairings controlled-manipulated variable): F.-Fy, GFF15 Xepr
Ry XesrVey XeorRs XesrVez and Xexteg. It should be noticed that, following the
recommendations given by Araujo (2007), and in order to make an objective comparison
of the PWOC results, the selected controlled variables for the distillation and rectification
columns in the decentralized scheme are concentrations and not temperatures (or
temperature differences), which are usually the real controlled variables used in industry.

The corresponding tuning parameters for each loop are reported in Table 6.5.

Table 6.5 Decentralized control strategy: Variable pairing, set points and tuning parameters

Controller ID Controlled Manipulated Set point Tuning
variable variable parameters**
FC-5 Fao (kg/h) Fo (m*/h) F0sp=257.94 Foss=27.3
K=0.2; I=0.5
AC-2 Gr (kg/m®) Fis (m3/h) Grsp =0.831 Fises=2.16
K=-0.4; I=0.5
AC-3 Xep1 R; (kmol/h) Xepisp =0.1885 R1=3907.1
K=1500; I=10
AC-4 XeB1 VB, (kmol/h) Xep1sp=8.6E-16 VB,ss=4987.3
K=-7E9; I=10
AC-5 Xep2 R, (kmol/h) Xep2sp=0.8874 Rass=1854.7
K=2000; I=20
AC-6 Xego VB, (kmol/h)  Xeppsp=7.3E-15 VB,ss=2047.7
K=-7E9; I=10
AC-7 X£20 treg (h) Xe20sp=0.999 tregss=0.466
K=-50; I=10

* The tuning parameters were determined as follows: First, an initial set of parameters was found
according to Shinskey’s correlations given in O’'Dwyer (2009). Then, each parameter was
sequentially fine-tuned by using dynamic simulations of the plant and guidelines given by McMillan
(2005).
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Figure 6.7 Decentralized control scheme (blue) for the ethanol production process (Local control loops

described in Section 6.1.1 are also included).
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6.3. Results and Discussion: Comparison of Plantwide

Optimizing Control Architecture vs. Decentralized

The performance of the Plantwide Optimizing Control methodology proposed in this work is

evaluated and compared with the performance of a typical Decentralized scheme, in three

different scenarios, as follows:

1. Scenario 1: In this case, a known disturbance in the ungelatinized starch feed

concentration (Sung0) is applied to the process after 5 hours of continuous steady
operation. The disturbance is done as a step change of a 20% decrease, which
means that Syngo changes from 833.17 kg/m’ to 666.53 kg/m’ (see Figure 6.8 left).
Results obtained for the PWOC-one-layer and the PWOC-two-layer are presented and
discussed in Section 6.3.1, where also a comparison with the Decentralized scheme

described in Section 6.2 is given.

. Scenario 2: In this case, the response of the different PWC architectures to an

unknown disturbance on the fermentation kinetics is investigated. The disturbance
consists on a step change introduced into the maximum specific biomass growth rate
(Mmax), Which is a key parameter in the fermentation section of the process. This kind
of disturbance can take place, for example, when there is a contamination in the
fermentor that causes inhibition of cellular growth. This step-type disturbance is
introduced into the “Real plant” block of both PWOC schemes, which represents the
real process, but neither the model used by the D-RTO layer nor the model used by
the NMPC layer are able to detect such disturbance due to the fact that there is no
update of the model parameters. Thus, for both PWOC approaches this unknown
disturbance causes a model mismatch between the optimization models and the
real plant. In order to test the performance of the PWC approaches in a worst-case
scenario, the step change applied into the maximum biomass growth rate is a 90%
decrease, meaning that pmex changed from 0.423 h™ (at time 5 hours) to 0.0423 h™
(see Figure 6.8 right).

. Scenario 3: A raw material price change is introduced, which tests the

performance of the different Plantwide Control architectures for facing a pessimistic
scenario with market prices fluctuations. Therefore, the third scenario analyzed
considers a worst-case in which the raw material price is increased in a 100% of its
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current value. Although such disturbance appears to be exaggerated, in recent years,
the corn raw material experienced an increase of around 70% in the period 2005-
2007. (Leibtag, 2008). Such increase in the price was introduced as a known step

disturbance in the PWOC architectures.
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Figure 6.8 Step disturbances considered in Scenarios 1 and 2. Left: Scenario 1 - Known disturbance,
20% decrease in ungelatinized starch concentration in starch slurry feed; Right: Scenario 2 - Unknown
disturbance, 90% decrease in maximum specific biomass grow rate. Both disturbances take place at
time t=5 h.

The results obtained of applying the Plantwide Optimizing Control schemes for dealing with
the three disturbances scenarios already described, are presented in the following sections,
where the comparison with the performance obtained using the pure decentralized scheme is

also discussed.

6.3.1. PWOC Performance Evaluation: Scenario 1 - Known
Disturbance

In this section, results for the PWOC-one-layer and PWOC-two-layer for the case in which a
known disturbance enters to the process (Scenario 1) are discussed and compared to those
obtained when the typical decentralized scheme described in Section 6.2 is used. Before
presenting the results obtained using the different approaches for solving the problem stated
in Scenario 1, it is important to remark that all simulation studies in this work were carried
out using the nonlinear model of the process (Chapter 4) as the real plant, considering some
noise as already mentioned in Section 6.1.3. The results presented in this Section correspond
to the simulation of the system starting at an optimal steady state operating point. After 5
hours of operation at this steady state, a known step disturbance in the starch feed

concentration enters the process. At this moment, the optimization trigger (in both PWOC
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schemes) is switched on and the D-RTO layer is called for first time, in order to calculate the
new values of the plantwide manipulated variables that drive the process to optimal
operation (maximal profitability). Then, the optimization algorithm (MIPT and/or the LRS)
solves the D-RTO problem stated in Equation 6.2. For the PWOC-one-layer case, when a
solution is found (i.e. when any stopping criterion is met) the optimal values of the plantwide
manipulated variables are applied to the “real plant”, and then, the trigger conditions are
checked, which if activated, will recall the D-RTO layer. On the other hand, for the PWOC-
two-layer, the NMPC layer is also activated after solving the D-RTO problem, which is used
and recalled according to the defined NMPC-trigger. The process is run for a total horizon of
50 h.

Figures 6.9 — 6.20 show the simulation results obtained by applying the different Plantwide
control schemes to the bio-ethanol process under Scenario 1. The results obtained using the
PWOC-one-layer are presented in blue, those for the PWOC-two-layer in green, and the
results for the decentralized scheme in red. At this point it is important to remark that all the
control approaches compared in this section used the Local Control Strategy described in

Section 6.1.1 (see Figure 6.1).
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Figure 6.9 Profitability function values for Scenario 1. Blue: PWOC-one-layer. Green: PWOC-two-layer.

Red: Decentralized scheme.
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Analyzing the results for the profitability objective function (Figure 6.9), it is possible to
observe that after the disturbance occurs the PWOC-one-layer (blue) leads the process to
higher profitability than the PWOC-two-layer (green) and the decentralized scheme (red).
The cumulative profitability achieved by each Plantwide Control scheme is presented in Table
6.6. It can be observed that the PWOC-one-layer has the highest cumulative profitability

(1.769x10° €), proving to be the best scheme for facing the disturbance in Scenario 1.

Table 6.6 Cumulative Profitability Comparison in Scenario 1: PWOC vs. Decentralized

Plantwide Control Scheme Cumulative Profitability (€)
PWOC-one-layer 1.769x10°
PWOC-two-layer 1.719x10°

Decentralized 1.696x10°

According to Table 6.6, the second best performance is given by the PWOC-two-layer with a
cumulative profitability value of 1.719x10° €. In contrast, the decentralized architecture
resulted in the lowest cumulative profitability and also showed the slowest response to the
disturbance. The poor performance (in terms of profitability value) showed by the
decentralized plantwide control scheme is due to the fact that the main objective of this
decentralized architecture is to maintain the controlled variables at their corresponding set
point values, without considering that the disturbance may change the optimal operating
point impacting negatively the profitability. In contrast, both PWOC schemes aim to increase
the profitability by searching for the best values of the manipulated variables after the
disturbance takes place. However, the second layer of the PWOC-two-layer (i.e. the NMPC
controller layer) has an additional objective which is to minimize the tracking error of the
state variables from their optimal set points given by the optimization layer, neglecting the
effect of the manipulated variables on the profitability. In this way, the PWOC-two-layer
applies control actions that might differ from the optimal values calculated in the D-RTO
layer, which minimize the tracking error but do not maximize the profitability. On the other
hand, the PWOC-one-layer has a unique objective, which is the maximization of the process
profitability, and as it can be seen in Figure 6.9, it is able not only of rejecting the
disturbance, but also of achieving a profitability value much better than the nominal
operating point before the disturbance took place. On the other hand, the slow response of
the decentralized scheme to the disturbance is caused by the large time delay between the

occurrence of the disturbance and its effect on the final product (flow rate and composition).
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Figure 6.10 shows the flow rate of anhydrous ethanol leaving the molecular sieves unit. It
can be evidenced that for the decentralized scheme the product flow rate (Fy) remains
almost constant for approximately 4 hours after the disturbance occurred, whereas the
change in product flow rate for the PWOC schemes was immediate. This is due to the fact
that the PWOC schemes take plantwide decisions against the disturbance immediately after
it occurs considering a long-term prediction horizon (25 hours), and thus, the time delay of

the process for counteracting the disturbance is significantly reduced.
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Figure 6.10 Mass flow rate of anhydrous ethanol leaving the molecular sieves units for Scenario 1.

Blue: PWOC-one-layer. Green: PWOC-two-layer. Red: Decentralized scheme.

Given that there is a reduction in the concentration of ungelatinized starch in the starch
slurry feed, the rate of ethanol production can only be sustained by an increase in the starch
feed flow rate, as it is done by all PWC schemes considered. At this point it is important to
notice that in the decentralized scheme, the product flow rate is controlled (flow control FC-5
in Figure 6.7) by manipulating the flow rate of starch slurry (Figure 6.11). However, the
increase in starch flow rate after the disturbance for the PWOC-one-layer was the largest,
whereas for the decentralized scheme it was the smallest. In addition, in Figure 6.10, it is
observed that the PWOC approaches increased the product flow rate while the decentralized

approach reduced it.
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Figure 6.11 Starch slurry volumetric flow rate entering the liquefaction section for Scenario 1. Blue:

PWOC-one-layer. Green: PWOC-two-layer. Red: Decentralized scheme.

In general, increasing the flow rate of starch slurry has at least three different effects on the
operation of the plant. On one hand there is an increase in the net raw material flow rate for
producing ethanol, which can also lead to inhibition of ethanol production by accumulation of
ethanol in the fermentor. Second, there is a decrease in residence times in the reactors
leading to lower conversion of the raw material (especially in the liquefaction and
saccharification stages) and to inhibition of ethanol production if there is an accumulation of
unreacted glucose in the fermentor. The third is a dilution effect caused by the additional
water and/or non-fermentable compounds entering the system through the starch slurry
feed. As a result of the dilution, the inhibition effect by ethanol concentration can be reduced
but at the same time, the rate of ethanol production is reduced by the decrease in biomass
and glucose concentration in the fermentor. As it can be seen, even without considering
additional effects on the separation stage, the simple compensation of raw material for
rejecting the disturbance in starch feed composition does not necessarily lead to optimal
operation. The advantage of the PWOC-one-layer is that it is able to identify the adequate
starch flow rate which maximizes the profitability of the plant, overcoming the compromise
imposed by the inhibition and dilution effects. The PWOC-two-layer approach finds a
different balance between the profitability and control performance (almost constant product

flow rate) objectives. The result is an intermediate behavior between the pure economical
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objective (PWOC-one-layer) and the pure control performance objective (decentralized
approach). Finally, it is important to mention that the decentralized approach presented a
negative offset in ethanol flow rate which can be explained by the slow dynamic response
and the long time delays of the plant. For this control configuration, any effort exerted in
removing the offset led to controller instability with large and sometimes divergent

oscillations.
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Figure 6.12 Biomass concentration (solid lines) and Biomass concentration setpoint (dashed lines) in
the fermentor for Scenario 1. Blue: PWOC-one-layer. Green: PWOC-two-layer. Red: Decentralized

scheme.

In the following, an analysis of the main state variables as well as the profiles for the main
plantwide manipulated variables in the process is presented. First, the analysis is focused on
the fermentation section (Figure 6.12 — 6.14) and then on the purification section, including
the rectification and molecular sieves units (Figures 6.15 — 6.20). Figure 6.12 shows the
dynamic behavior of the viable biomass concentration in the fermentor. As it can be seen,
after the disturbance enters the process, the viable biomass for the PWOC schemes first
decreases slightly and then increases reaching values of 84.5 kg/m® and 83 kg/m? for the
PWOC-one-layer and the PWOC-two-layer, respectively, 25 hours after the disturbance
occurrence. On the other hand, the decentralized scheme kept the viable biomass at its set

point value of 82.4 kg/m*®, which corresponds to the nominal steady state. The optimal
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biomass profiles applied by the PWOC schemes drive the ethanol concentration in the
fermentor to slightly higher values when compared to the decentralized scheme, as it is

shown in Figure 6.13.

Even thought the differences in viable biomass and ethanol concentration in the fermentor
may seem small, analyzing Figure 6.14, which is the total ethanol mass flow rate entering to
the purification section (ErxFg), it is possible to observe that using a combination of higher
ethanol concentration and larger starch flow rates (see Figure 6.11), the PWOC-one-layer
drives the process operation towards the highest productivity in the fermentation section,

contributing very positively to increase increasing the process profitability.
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Figure 6.13 Ethanol concentration (solid lines) and ethanol concentration setpoint (dashed line) in the

fermentor for Scenario 1. Blue: PWOC-one-layer. Green: PWOC-two-layer. Red: Decentralized scheme.
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Figure 6.14 Ethanol mass flow rate to the purification section for Scenario 1. Blue: PWOC-one-layer.

Green: PWOC-two-layer. Red: Decentralized scheme.

Following the analysis, in the next, the results obtained for the distillation and rectification
sections are presented. Figure 6.15 and Figure 6.16 show the results for the ethanol
concentration at the top of the distillation (xgp;) and at the top of the rectification (Xep2),
respectively. It can be observed that the strategy applied by the PWOC-one-layer (blue line)
relies on increasing the purity of the ethanol concentration that leaves the distillation
column, whereas allowing a slightly decrease in the ethanol concentration leaving the
rectification column. The reason behind this strategy is that, by doing so, the optimizer finds
an operating point with lower total energy consumption for the distillation-rectification
system, without deteriorating the quality requirements of the final product (Figure 6.19).
Such total energy consumption correlated to the sum of the vapour boil-up rates of both
columns, is shown in Figure 6.17. At this point, it is important to remark that in this example,
the optimum operating conditions for the purification and fermentation sections shifted from
their initial nominal values as a consequence of the presence of the disturbance, and this is

not considered by the decentralized scheme.
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Figure 6.15 Ethanol mole fraction at the top of the distillation column for Scenario 1. Blue: PWOC-one-
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Figure 6.16 Ethanol mole fraction at the top of the rectification column for Scenario 1. Blue: PWOC-

one-layer. Green: PWOC-two-layer. Red: Decentralized scheme. Dashed: Ethanol concentration set

point at the top of the rectification column.
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Following with the analysis of the purification section, it must be also noticed that the PWOC-
two-layer does not allow large deviations in composition at the top of the distillation and
rectification columns (as a result of the control performance objective), while at the same
time reduces the operating costs in the purification section (economic objective).
Unfortunately, the tight control in composition is accomplished by abrupt changes in the
distillate flow rates (Figure 6.18) which ultimately affect the operation of the molecular
sieves unit (Figure 6.20), increasing regeneration costs and reducing the plantwide
profitability, and eventually compromising the quality of the final product by reaching values

close to the specification limit from time to time (Figure 6.19).
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Figure 6.17 Boil-up molar flow rates in the purification section for Scenario 1. Distillation column (top-
left), Rectification column (top-right), Sum of boil-up molar flow rates of the distillation and
rectification columns as a measure of their energy consumption (bottom). Blue: PWOC-one-layer.

Green: PWOC-two-layer. Red: Decentralized scheme.
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Figure 6.18 Distillate flow rates for Scenario 1. Blue: PWOC-one-layer. Green: PWOC-two-layer. Red:

Decentralized scheme.
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Figure 6.19 Ethanol mass fraction in the final product leaving the molecular sieves unit for Scenario 1.
Blue: PWOC-one-layer. Green: PWOC-two-layer. Red: Decentralized scheme. Set point: 0.999;
specification limit: 0.998.
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Figure 6.20 Operation time before regeneration of the molecular sieves units for Scenario 1. Blue:

PWOC-one-layer. Green: PWOC-two-layer. Red: Decentralized scheme.

By far, the comparison of the different Plantwide Control schemes for dealing with the
known disturbance in Scenario 1 has been presented. After analyzing the results taking into
account not only the dynamic behavior of the main state variables in the process, but also
the plantwide manipulated variables profiles applied by the PWOC-one-layer, the PWOC-two-
layer and the decentralized scheme, it is possible to conclude that the three plantwide
schemes applied resulted in different performance due to the fact that they pursue different
objectives: a pure economical objective for the PWOC-one-layer, a pure control performance
objective for the decentralized, and a good balance between the pure economical and the
pure control performance for the PWOC-two-layer. As it was evidenced in this section, if the
aim of a process production plant is to operate at maximal profitability, the PWOC-one-layer
scheme is the best option. However, as stated by Engell (2009), stability of the Direct
Optimizing Control has not be proven yet, as it has been done for the integration between
the RTO-MPC (i.e. two-layer architecture) and for the conventional decentralized schemes.
Therefore, it is possible to think that still much work is needed for convincing the industrial
sector about relying on the Plantwide Optimizing Control- One-Layer approach instead of
using the second layer that introduces the MPC controller, or the pure decentralized
architecture. Finally, it is important to mention that the intention of this work, as it will be

shown also in Scenario 2 and Scenario 3 (sections 6.3.5 and 6.3.6 respectively), is to show
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that besides of being successful in leading the process to maximal profitability where a
known disturbance enters the process, the PWOC-one-layer is a very suitable and successful
architecture capable to overcome even worst-case scenarios in which the pure decentralized

scheme appears to be weak.

Before presenting the comparative results of the performance of the different Plantwide
control schemes for facing the next disturbance scenario (in Section 6.3.5), denoted as
Scenario 2 (i.e. unknown disturbance + model mismatch), additional results are presented in
the following sections. First, in Section 6.3.2, representative results are shown, in order to
demonstrate the advantages of using the Shrinking approach proposed in Section 5.2 as part
of the strategy for solving the D-RTO problem that arises in the PWOC formulation. Then, in
Section 6.3.3, three different replicas for solving the PWOC-one-layer using the MIPT
algorithm are compared, in order to show the reproducibility capacity of the method despite
the fact of being stochastic in nature. Finally, in Section 6.3.4, the performance of the MIPT
and the Localized Random Search (LRS) algorithms in the PWOC-one layer and PWOC-two

layer formulations is compared for dealing with the disturbance in Scenario 1.

6.3.2. PWOC-one-layer: Comparison of Shrinking vs. No
Shrinking for Scenario 1

The Shrinking approach proposed in Section 5.2 has the purpose of reducing the search
space of the D-RTO problem according to the capability of each plantwide manipulated
variable for rejecting known and unknown disturbances that negatively impact the process
profitability. The main advantage of using the shrinking approach is that the probability of
change for each manipulated variable is a function of their capability for rejecting each
disturbance; in other words, by implementing the shrinking approach, the optimization
algorithm does not waste time testing large changes in the manipulated variables that just
reject in a weak manner (or are not able to reject) the disturbances. In the case without
shrinking, each manipulated variable is allowed to change from its lower to its upper bound,
without any other restriction, whereas the shrinking approach bounds the search region
according to the standard deviation calculated for each manipulated variable. Precisely, this
standard deviation contains the information about the cause-effect relationship between
each manipulated variable and each disturbance. In order to evaluate the performance of
the shrinking approach, several simulation studies applying the PWOC with and without
shrinking the search region of the optimization problem were carried out. Figures 6.21 — 6.23
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show representative results obtained for the PWOC-one-layer using the shrinking approach
(blue line), compared to the results obtained when the same problem was solved without
implementing the shrinking (black line). In both cases the optimization algorithm used was
the MIPT, using as stopping criteria the maximum number of function evaluations (Nfeya
=30) and/or a maximum time for running the optimization routine (timopt=0.4 h). For
comparison purposes, in Figure 6.21, besides the profitability objective function, also the
profiles for the main plantwide manipulated variables (£, R; Vs, R>and Vj,) are presented
in Figures 6.22 and 6.23
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Figure 6.21 Profitability objective function PWOC-One-layer: Shrinking vs. No Shrinking for Scenario 1.
Blue: PWOC-one-layer implementing search region shrinking. Black: PWOC-one-layer without

shrinking.

As it can be seen in Figure 6.21, when the shrinking approach (blue line) is implemented in
the solution strategy for solving the D-RTO problem, the process is led to a much higher
profitability than when no shrinking is applied, being capable of successfully rejecting the
disturbance that affected the process. In contrast, when no shrinking is used, the process
profitability decreases considerably. This poor performance obtained when no shrinking is
used can be understood analyzing the profiles of the main plantwide manipulated variables.
It can be seen that when no shrinking is used (black line) each manipulated variable changes

in a step-type policy with higher amplitude and longer period than when using shrinking
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(blue line). Therefore, due to the wider search region where the algorithm must look for the
optimal values of the decision variables, the optimization algorithm is not able of finding
suitable movements of the plantwide manipulated variables, in a reasonable time, i.e. before
meeting any stopping criterion, and it gets stuck in local minima that lead the process to
lower profitability. In fact, in the ideal case where the shrinking and no shrinking approaches

where run unlimitedly, both approaches would achieve the same performance.
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Figure 6.22 Starch slurry volumetric flow rate PWOC-One-layer: Shrinking vs. No Shrinking for
Scenario 1. Blue: PWOC-one-layer implementing search region shrinking. Black: PWOC-one-layer

without shrinking.

Finally, it is possible to conclude that when the shrinking approach is used as part of the
solution strategy of the Plantwide Control problem for online applications (in which usually a
stringent limit time exists for running the optimization), a very important improvement in the
performance of the solution strategy is achieved. For the particular case analyzed, this
improvement in optimization allowed the achievement of a much higher profitability.
Furthermore, it has been also shown that when using the shrinking, smoother changes in the
control actions are applied, which is also a very important issue regarding process stability

and equipment protection.
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Figure 6.23 PWOC-One-layer: Shrinking vs. No Shrinking for Scenario 1. Reflux molar flow rate in the
distillation column (top-left), Boil-up molar flow rate in the distillation column (top-right), Reflux molar
flow rate in the rectification column (bottom-left), and Boil-up molar flow rate in the rectification
column (bottom-right). Blue: PWOC-one-layer implementing search region shrinking. Black: PWOC-

one-layer without shrinking.

6.3.3. PWOC-one-layer: Replicas Comparison of MIPT for
Scenario 1

Given that the MIPT algorithm used for solving the D-RTO problem in the PWOC-one-layer is
a stochastic method, the purpose of this section is to show that in spite of the random
nature of the method, the results obtained by applying MIPT for solving the PWOC problem
are reproducible following almost the same path and converging to almost the same optimal
value at the end of the simulation period (i.e. 50 hours). The results presented in Figure 6.24
compare the profitability objective function for three different replicas in which the MIPT
optimization algorithm was used in the application of the PWOC-one-layer scheme for facing
a known disturbance (Scenario 1). Furthermore, Table 6.7 shows a comparison of the

cumulative profitability value achieved in each case.
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Figure 6.24 Profitability Objective function PWOC-one-layer: Comparison of different MIPT replicas.

Table 6.7 Cumulative Profitability Comparison in Scenario 1: Analysis of different Replicas

Plantwide Control Scheme Cumulative Profitability (€)
PWOC-one-layer-Replica#1 1.769x10°
PWOC-one-layer-Replica#2 1.746x10°
PWOC-one-layer-Replica#3 1.753x10°

As can be seen in Figure 6.24, the different replicas do not converge to exactly the same
point due not only to the stochastic decisions made by the method, but also to the fact that
the optimization problem solved is a multivariable problem (involving 8 decision variables)
and may exhibit many local minima. However, it should be noticed that all replicas achieved
almost the same cumulative profitability value (Table 6.7). Also, it is important to mention
that the optimization stopped in most cases by the time criterion imposed. For this reason,
the optimal value found may not be the global optimum but an operating point close to the
optimum, obtained before the time limit was reached. From the comparison of the different
replicas, it is possible to conclude that the results obtained by the MIPT algorithm are
reproducible. This is an important fact that, together with the global character of the

method, potentiates the use of MIPT for Plantwide Control applications.
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All results shown until now for solving the problem stated in Scenario 1 were obtained using
the MIPT algorithm described and evaluated in Chapter 5. In the following section, the MIPT
is compared to the Localized Random Search (LRS) method, which is a stochastic local
optimization algorithm, whose main advantage is the easiness of application, being very
intuitive without requiring much programming effort, and therefore it might be of interest for

industrial applications.

6.3.4. PWOC-one-layer: Comparison between MIPT and LRS for
Scenario 1

In order to compare the performance of the MIPT and the Localized Random Search (LRS)
algorithms, in this section the results obtained using both methods in terms of the
profitability objective function are presented. Figure 6.25 shows the comparison between the
profitability obtained with the PWOC-one-layer using the MIPT algorithm (blue line) and the
PWOC-one-layer using the LRS algorithm (red line). Furthermore, the comparison of the two
optimization algorithms is also made for the PWOC-two-layer case (Figure 6.26). In Figure
6.26, the differences obtained applying the PWOC-two-layer using the MIPT algorithm (blue
line) and the PWOC-two-layer using the LRS algorithm (red line) can be clearly appreciated.
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Figure 6.25 PWOC-one-layer: Comparison of the Molecular Inspired Parallel Tempering (MIPT)

Algorithm (blue line) and the Localized Random Search (red line) for Scenario 1.
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Figure 6.26 PWOC-two-layer: Comparison of the Molecular Inspired Parallel Tempering (MIPT)

Algorithm (blue line) and the Localized Random Search (red line) for Scenario 1.

Analyzing the results presented in Figure 6.25 and Figure 6.26 it is possible to derive two

main conclusions:

Comparing the performance obtained for the PWOC-one-layer and PWOC-two-layer,
it can be seen that the PWOC-two-layer scheme presents an unstable and aggressive
behaviour (especially when the LRS algorithm is used), which is due to the conflict
between the different objectives in the D-RTO and NMPC layers of the PWOC-two-
layer approach. It is important to recall that for the D-RTO layer the main objective is
to maximize the profitability in the process, but for the NMPC layer, the ultimate
objective is to minimize a performance objective function which penalizes deviations
of the state variables from their set points. So, although the profitability is also taken
into account, the plantwide manipulated variables applied to the process are finally
determined by the NMPC layer. It is also important to notice that both layers (the D-
RTO and the NMPC) used the same process model, which discards any conflict as a
result of model mismatch.

Comparing the MIPT and LRS optimization algorithms in terms of the cumulative
profitability achieved when facing the problem stated in Scenario 1 (Table 6.8), it can

be seen that both methods have a very similar performance and that none of them
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outperforms the other. According to the results presented in this section, it is possible
to conclude that independently of the optimization algorithm used, the Plantwide
Optimizing control methodology proposed in Chapter 4 is a very efficient and
successful plantwide control architecture, capable of successfully rejecting known

process disturbances.

Table 6.9 Cumulative Profitability Comparison in Scenario 1: MIPT vs. LRS

Plantwide Control Scheme Cumulative Profitability (€)
PWOC-one-layer-MIPT 1.769x10°
PWOC-one-layer-LRS 1.751x10°
PWOC-two-layer-MIPT 1.719x10°
PWOC-two-layer-LRS 1.753x10°

Although the LRS optimization algorithm proved to be suitable for solving the problem stated
in Scenario 1, in the following sections it is demonstrated that the main feature of the MIPT
that outperforms LRS, namely its global character, is very useful for facing more challenging
scenarios where the optimal operating point for the process moves further away from the
nominal or previous optimal, as is the case addressed in Scenario 2 (Section 6.3.5) and
Scenario 3 (Section 6.3.6).

6.3.5. PWOC Performance Evaluation: Scenario 2 - Unknown
Disturbance with Model Mismatch

In this section, a comparison between the MIPT and LRS algorithms is presented when the
PWOC-one-layer scheme (including shrinking of the search region) is used for counteracting
the disturbance of Scenario 2, which is an unknown disturbance in the maximum biomass
growth rate in the fermentation section that impact negatively the process profitability. The
disturbance for this Scenario takes place at time t=5 hours, and the total time considered
was 40 hours. As it can be observed in the process profitability of MIPT (green line) and LRS
(magenta line) shown in Figure 6.27, the optimal operating point of the process moves
further away from the profitability values reached in Scenario 1. The displacement of the
system to a new global optimum due to the appearance of the disturbance can be better
appreciated taking a look at the biomass control profiles shown in Figure 6.28 (optimal
profile for Scenario 1 shown in blue). Comparing the optimal biomass behavior for Scenario 1
and Scenario 2 it is possible to observe a displacement of the optimal operating point of the
system. For Scenario 1, the optimal operating point was displaced to a higher biomass
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concentration than the nominal steady state. In contrast, due to the disturbance in the
biomass growth rate, the optimal operating point in Scenario 2 is found at much lower

biomass concentrations.
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Figure 6.27 PWOC-One-Layer: Profitability Comparison of MIPT vs. LRS algorithms for Scenario 2.
Green: MIPT. Magenta: LRS.

Figure 6.29 shows the behaviour of ethanol concentration in the fermentor using both
algorithms. It is observed that the concentration of ethanol during fermentation was higher
when the LRS algorithm was used compared with MIPT. However, a high concentration of
ethanol in the fermentor does not necessarily leads to higher profitability values as it is seen
in Figure 6.27, evidencing that the problem of maximizing the profitability in a chemical
process not only requires to take into account the interactions between the different
operating units, but also that the strategy for solving the corresponding optimization problem
must consider an algorithm that assure an efficient exploration towards finding the global (or

getting close to the global) optimum operating point.
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Figure 6.28 PWOC-One-Layer: Viable Biomass concentration in the fermentor. Comparison of MIPT vs.
LRS for Scenario 2. Green: MIPT. Magenta: LRS. Blue: PWOC-one-layer MIPT for Scenario 1. Dashed:
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Figure 6.29 PWOC-One-Layer: Ethanol concentration in the fermentor. Comparison of MIPT vs. LRS
algorithms for Scenario 2. Green: MIPT. Magenta: LRS.
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A better understanding of the differences found in the profitability objective function when
applying the MIPT and LRS algorithms for solving the PWOC problem can be obtained by

analyzing the profiles of the main manipulated variables (Figure 6.30 and 6.31).
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Figure 6.30 PWOC-One-Layer: Starch slurry feed flow rate. Comparison of MIPT vs. LRS algorithms for
Scenario 2. Green: MIPT. Magenta: LRS.

It can be observed that even though the profile for Fy shown in Figure 6.30 is very similar in
both cases, the profiles for the other manipulated variables differ significantly. For example,
analyzing in detail the profile for R; and VB; it is possible to see that both methods, MIPT
(green line) and LRS (magenta line) found very different optimal values for those decision
variables. Analyzing the profile for R; it is possible to appreciate the global character of the
MIPT algorithm. In this case, both algorithms started increasing the R-value in order to
reject the disturbance. However, whereas the MIPT (green line) was able to surpass a local
optimum at around 3910 kmol/h, the LRS was unable to overcome the attraction exerted by
that local minimum. A similar behavior is observed for the VB, profile, where once more the
global feature of the MIPT is able to drive the system further away from the local optimum in
which the LRS stays stalled (around 2030 kmol/h). Finally, it should be noticed that the
problem is not the magnitude of the steps in the manipulated variables between different

trials, because both methods are able to combine small and large step changes when
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needed. This effect can be observed in the profile of VB, (Figure 6.31). As it can be seen for
this manipulated variable, the LRS moves VB, beyond its nominal value, and also beyond the
optimum operating point found by the MIPT algorithm, which on the contrary, and in spite of
having explored also larger changes for VB;, it was able to come back to the region where

the global optimum is located.
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Figure 6.31 PWOC-One-Layer for facing Scenario 2: Plantwide manipulated variables in the separation
section. Top-left: Reflux rate in distillation column. Top-right: Boil-up rate in distillation column.
Bottom-left: Reflux rate in rectification column. Bottom-right: Boil-up rate in rectification column.

Comparison of MIPT vs. LRS algorithms. Green: MIPT. Magenta: LRS.

For concluding this section, it is important to remark that although the LRS algorithm showed
almost the same performance than the MIPT algorithm for facing Scenario 1, a very big
different performance was obtained for both methods when they were used for
implementing the PWOC-one-layer problem for facing the disturbance in Scenario 2. This is
due to the fact that in the case of Scenario 2, a more challenging worst case disturbance
was evaluated, which tested the global character of the algorithms.

Finally, in order also to show the advantages of the PWOC architecture over the

Decentralized scheme, Figure 6.32 shows a comparison between the profitability objective
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function when the PWOC-one-layer (green line) and the Decentralized 1 (black line) schemes
are used for dealing with the disturbance Scenario 2. It can be seen that the PWOC-one-
layer architecture (green line) is capable of leading the process to a high profitability value,
even in the worst-case analyzed in this Section. In contrast, the Decentralized scheme (black
line) leads the process to a very low cumulative and negative profitability value (see Table
6.9), and shows to be unable and unsuitable for dealing with the analyzed disturbance.
Therefore, through this example, it has been demonstrated not only the global character
and suitability of MIPT algorithm for dealing with such challenging disturbances, but also, it
has been proved once more that the PWOC-one-layer architecture surpass the performance
obtained by a typical decentralized scheme, demonstrating the advantages of the PWOC

methodology proposed in this work.
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Figure 6.32 PWOC-One-Layer vs. Decentralized architecture: Profitability performance comparison for

Scenario 2. Green: PWOQOC-one-layer-MIPT. Black: Decentralized.

Table 6.9 Cumulative Profitabilty Comparison in Scenario 2: PWOC vs. Decentralized

Plantwide Control Scheme Cumulative Profitability (€)
PWOC-one-layer-MIPT 1.125x10°
PWOC-one-layer-LRS 1.074x10°
Decentralized -8.464x10°
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6.3.6. PWOC Performance Evaluation: Scenario 3 - Increase in
the Raw Material Price

Nowadays, the economical feasibility of the bio-ethanol industry strongly depends on the
taxes exemption policy applied by the governments. In the particular case of Germany, a
study by the Kiel Institute for World Economics (Henke et al., 2003) concludes that the
industry of bio-ethanol in the country is not competitive at all without tax exemption. Such
situation would get dramatically worst if the raw material prices increase as a result of the
competition between food consumption and bio-fuels production. As such scenario will
jeopardize even more the economical feasibility of the industry, the purpose of this Section is
to show the potential use of the Plantwide optimizing control architecture for dealing with
such worst-case scenario. The scenario analyzed here considers a very pessimistic situation,
in which the starch raw material price increases in 100%, varying from 0.16 €/kg to 0.32
€/kg. This disturbance takes place at time t=5 hours, and the total time considered for the
process was 40 hours. Results for this case study are shown in Figure 6.33 - 6.37, where the
performance of the PWOC-one-layer (blue) using the Molecular Inspired Parallel Tempering
(MIPT) algorithm is compared with the performance obtained when the Decentralized
plantwide architecture (black) is used, and also using the PWOC-one-layer, but solving the

D-RTO problem by the Localized Random Search optimization algorithm (red).
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Figure 6.33 Comparison of profitability objective function values for Scenario 3: price change in the

raw material. Blue: PWOC-one-layer-MIPT. Black: Decentralized approach. Red: PWOC-one-layer-LRS.
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Table 6.10 Cumulative Profitabilty Comparison in Scenario 3: PWOC vs. Decentralized

Plantwide Control Scheme Cumulative Profitability (€)
PWOC-one-layer-MIPT 626.32
PWOC-one-layer-LRS -3.659x10°
Decentralized -9.479x10°

Figure 6.33 shows the profitability objective function when a worst case in the price change
impacts the process. In this very pessimistic scenario, the objective function for the different
plantwide architectures analyzed decreases considerably, as expected, even leading the
process to a non viable operation from an economical point of view, just after the change in
the raw material price was introduced. As the Decentralized Plantwide Control architecture
does not take explicitly into account the process profitability, and as in this scenario the
analyzed “disturbance” does not affect the state variables in the process (i.e. the controlled
variables stay at their nominal steady state values), the decentralized scheme is not “aware”
of its effect on the plantwide performance of the process. Therefore, the decentralized
scheme does not take any action on the manipulated variables in order to reject the
disturbance, as it can be appreciated in Figure 6.34 for Fy, which is kept constant at its
nominal steady state value (i.e. with a small oscillation around the nominal value due to the
noise effect). Of course, it can be argued that the plant manager and/or plant operators are
aware of such disturbance, and thus, they would have the chance to adapt the process
conditions to this price fluctuation, for example, by changing the set points and re-tuning the
PID parameters of the decentralized scheme. However, such adaption will depend on the
operators own experience and will also require not only to set the product flow rate to a
different value, but also to re-tune all other decentralized loops which is not an easy task in
a highly interconnected process as the bio-ethanol case study. In contrast to the
Decentralized scheme, the PWOC-one-layer architecture shows to be able of dealing with the
challenging disturbance for this scenario. As it is shown in Table 6.10, the PWOC-one-layer
that implemented the MIPT algorithm for solving the D-RTO problem presents the best
performance, leading the process to a cumulative profitability of 626 €, meaning that for the
analyzed operating period, the PWOC-one-layer architecture was able to avoid economical
losses. The strategy followed by the PWOC-one-layer consisted in decreasing the raw
material flow rate (Figure 6.34); however, this was not the only plantwide manipulated
variable that changed. In fact, the other 7 plantwide manipulated variables also changed in
order to synergistically reject the disturbance. Although the profiles for all other Plantwide

manipulated variables is not shown, it is possible to observe in Figure 6.35, where the
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efficiency of ethanol production in terms of kg ethanol produced/kg ungelatinized starch
consumed is presented, that the optimal profile applied for the manipulated variables by the
PWOC-one-layer leads the process to a much better use of the raw material in the process

for accomplishing the main task, which is producing ethanol while maximizing profitability.
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Figure 6.34 Comparison of starch slurry feed flow rates for Scenario 3: price change in the raw

material. Blue: PWOC-one-layer-MIPT. Black: Decentralized approach. Red: PWOC-one-layer-LRS.

Finally it is also important to notice, that despite of the lower feed flow rate used to
maximize the profitability, the PWOC-one-layer still satisfies the constraint imposed on the
minimal flow rate of product of F,;>=80000 Ton/year (i.e F,o >=10.1 Ton ethanol/h), as it
is shown in Figure 6.36. Furthermore, it is important to observe that even though the
decentralized scheme (black line) in this Scenario maintained the maximum product flow rate
(when compared to the PWOC schemes), which is an important term that contributes very
positively in the calculation of the profitability objective function (Equation 6.1). This
behavior does not assure good profitability, because as it is evidenced once more, the
problem of leading the process to maximal profitability is a plantwide control problem that
should not be addressed from a decentralized perspective in which the different operating

units are considered as isolated entities.
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Constraint: Flow rate=10.1 Ton/h.
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For closing this section, a brief mention about the comparison between the results obtained
using the Molecular Inspired Parallel Tempering (MIPT) Algorithm and the Localized random
Search (LRS) for solving the D-RTO problem in the PWOC-one-layer, should be done. As it
can be seen in Figure 6.33, the LRS algorithm was the first to respond after the price change
(at around 7 hours of operation, whereas the MIPT responded at around 9.5 hours).
However, at time 17 h the profitability suddenly decreases and it cannot be restored for the
rest of the period. Sudden drops in profitability are usually caused by relatively short-term
improvements achieved during the optimization. In these cases, the profitability initially
increases but after some hours (usually close to the optimization horizon) it starts to
decrease again because the operating condition can not be sustained. Then, the optimizer
must find new actions that drive the process again towards high profitability values. If the
optimizer is able to reach the global optimum from the beginning, it will lead to a long-term

sustainable increase in profitability.

6.4. Chapter conclusions

PWOC has been applied to the bio-ethanol process, showing much better results from an
economical point of view than when the process is only controlled by a conventional
decentralized control scheme. It has been demonstrated that PWOC is a very promising
alternative for controlling a complete chemical or biochemical processes in which the

economical feasibility is at risk when disturbances appear.

The novel shrinking approach was successfully tested resulting in an improvement of the
solution of the D-RTO problem, which was evidenced by obtaining higher productivities (for
the same number of function evaluations and/or limit time for the optimization routine) than

when no shrinking was used.

Additionally, comparing the PWOC-one-layer and the PWOC-two-layer, it is possible to
conclude that the former achieves higher profitability. However, its success strongly depends
on the model accuracy, and its main drawback is that stability issues have not been proved
yet. On the other hand, the PWOC-two—layer case, tracks very well the state variables in the
process, but does not guarantee good profitability. However, its main advantage is that it is

more robust due to the presence of the MPC-layer.
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Finally, it was corroborated that the MIPT algorithm has an excellent performance, and that
it is a suitable optimization algorithm for solving the optimization problem that arises in
PWOC. MIPT showed to be capable of finding an optimal solution in the three different
disturbance scenarios analyzed, even in the worst cases (unknown disturbance and price
increase of the raw material), and in doing so, allowed the PWOC strategy to lead the

process to the highest cumulative profitability values.
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7. Final Conclusions and Outlook

The fuel Bio-ethanol industry is currently a very important part of the worldwide economy,
which has experienced an accelerated growth in the last years, because bio-ethanol, as an
environmentally friendly fuel, is considered an attractive alternative energy source with the
potential of having a much lower contamination impact that the one caused by the use of oil-
based fuels. However, despite the growing market and favorable predictions, ethanol
industry is at risk because the process is claimed to be economically infeasible, non-
sustainable without governmental subsidies, and non-competitive with today’s fuel oil prices.
In order to contribute for assuring the economical feasibility of the bio-ethanol industry from
a process system engineering point of view, in this work, the plantwide control problem of
the bio-ethanol process has been addressed as an optimizing control problem based on
Dynamic Real-Time Optimization (D-RTO). The main reasons that motivated this are: the
process is highly nonlinear and characterized by the coupling of slow and fast dynamics;
there exist interactions between different operating units which cannot be neglected; the
quality and availability of the raw material change often introducing disturbances into the
process; and finally, the economical feasibility of the process can be effectively assured only

if this is the main control objective of the plantwide strategy.

In spite of having been studied for more than 40 years, the plantwide control problem of
chemical and biochemical processes is still a top problem for academics but also for the
industry. Thanks to the advances and the emerging of very fast computers and
communication tools during the last decades, a new spectrum of possibilities has been
opened for improving the plantwide control strategies in the process industry. Some recent
issues, namely, the integration of optimization and control layers in @ multilayer architecture
and the formulation of the plantwide problem as a single layer scheme, appear to be not
only realizable for a whole process, but also have proved to be more suitable for addressing
the plantwide control problem when the objective is not only to regulate the process at fixed
predefined set points, but to drive the process to the fulfilment of an economical objective
stated by the particular process. However, the decentralized architecture continues to be the

most frequently used alternative for addressing the control problem of a complete process.
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The main reason for this preference relies on the easiness of implementation and
understanding of the operation of the PID controllers. However, it must be noticed that even
if regulation of the controlled variables at fixed set points (as done by the typical
decentralized architecture) results in a good performance in terms of error deviation, it might
deteriorate the profitability of the process, because when a disturbance enters the process,
the optimal operating point may also move. How much this point moves can not be
generalized because it depends on the process and the nature of the disturbances. If well it
is completely true that over the years the process industry has been operating under fixed
set point policies relying on PID-SISO loops without reporting enormous economical losses, it
is also true as stated by Prett and Garcia (1988), that the apparent savings in doing so
(i.e. minimization of both design effort and maintenance) are in the majority of cases
nonexistent and in the long run result in more costs than the use of multivariate techniques.
Therefore, the main purpose of this work has been to solve the plantwide control problem

for the bio-ethanol production process from an optimizing control perspective.

This work presents a novel contribution to the research in plantwide control, proposing a
methodology for solving the problem of controlling a whole process, the continuous bio-
ethanol process from starch, towards reaching maximal profitability. In summary, the main

contributions of this thesis are the following:

e The proposal of a novel methodology for plantwide control, denoted as Plantwide
Optimizing Control (PWOC): This methodology, based on the optimizing control
concept, has as main objective to provide the steps required for designing the control
system of a complete process, which leads the process to maximal profitability even
in the presence of disturbances. The PWOC methodology is divided in two main
tasks. First, a local control-oriented task should be carried out, whose aim is the
design of the local control loops required for the fulfilment of the control objectives
related to safe operation and environmental and equipment protection. The second is
a plantwide-oriented task, in which the available degrees of freedom are used in
order to drive the process towards maximal profitability. The novel plantwide
optimizing control methodology was tested in three challenging scenarios in which
disturbances of different nature, namely, the change in the raw material quality,
change in the kinetics of the microorganism, and change in the raw material price,
affected the process. In these three scenarios, PWOC was compared with a typical
decentralized architecture and proved to be the best option in economic terms, that

is, it led the process to the highest cumulative profitability.
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The proposal of a novel algorithm for global optimization, denoted as
Molecular Inspired Parallel tempering (MIPT): Since the core of the PWOC
methodology proposed is the formulation and solution of a Dynamic Real Time
Optimization problem, in this work, the new MIPT stochastic optimization method was
developed. MIPT presented a very good performance (in terms of the number of
function evaluations and success ratio for reaching the global optimum) in solving
different types of global optimization problems. The MIPT algorithm was compared in
several case studies to other well-established stochastic algorithms, and in all cases
proved to be a very well suited method for global optimization. The strength of the
MIPT algorithm is that, when searching for an optimum, it combines very well the
global character with the local refinement. The global character is provided by the
explorer-type molecules, which allow the efficient exploration of a wider region of the
space of decision variables. Due to the presence of the refiner molecules, the
algorithm is also able to keep exploring promising local regions (i.e. local refinement).
The combination of these two effects enormously increases the capacity of the
algorithm for finding the global optimum. MIPT was used inside the formulation of
the PWOC for the three disturbance scenarios analyzed, demonstrating to be able of

finding an optimal solution in all cases and resulting in a more profitable operation.

The proposal of a new stochastic-based approach for shrinking the search
region of the optimization problem: The purpose of the shrinking approach was
to reduce the search space of the optimization problem, in order to have a higher
success ratio in finding the global optima solution (or close to the optimal), when
solving the D-RTO problem that arises in PWOC, in a short time. This is an important
fact that needs to be taken into account in online applications, because in such
applications, the time for reaching an optimal solution every time that the
optimization routine is called is short because the decision variables of the
optimization problem must be quickly applied to the process for ensuring maximal
profitability. The shrinking approach was also applied inside the PWOC methodology
for solving the control problem of the bio-ethanol process when facing three
challenging disturbance scenarios. Comparing to the case in which the PWOC was
implemented without shrinking the search region, it was concluded that the use of
the shrinking approach allows the optimization algorithm to find a much higher value
for the profitability objective function than when no shrinking is used. This result

confirms the advantages of the stochastic-based shrinking approach and shows that
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it is not a blind approach, but on the contrary, it is a guided approach that uses
information of the causal relationship between the disturbances and manipulated
variables (through the analysis of the effect that they exert on the state variables),
for taking the decisions on how much to reduce the search region according to the
capability of each manipulated variable for rejecting a particular disturbance or a

decrease in the profitability objective function.

Finally, some ideas for future work towards complementing the contributions given in this

thesis are the following:

The incorporation of the very important topics of data reconciliation, soft-sensors
development and on-line parameter identification into the PWOC methodology, in
order to close the gap between the theory developed here (tested in simulation
studies) and real applications.

To formulate a parallelized version of the MIPT algorithm, in order to take advantage
of its formulation (i.e. each molecule could be run in an independent processor) for
speeding up the convergence to the Global Optimum, reducing CPU time.

To extend the application of the shrinking approach for being used also in

deterministic formulations.
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Appendix A. MIPT Toolbox Developed in MATLAB

A.1. MIPT Toolbox Instructions

1. Creating the objective function

The objective function must be created as a .m file in MATLAB using the following structure:

[Fobj,feasible][=myfunctionname(decisionvariables)
Fobj=...

feasible = ...

Fobj is the value of the objective function to be minimized. feasible is a binary variable.
feasible should be set to 1 if the set of decision variables provides a feasible result (all
constraints are satisfied, i.e. linear, non-linear, equality, inequality); otherwise, feasible
should be set to 0.

The name of the .m file should correspond to the name provided to the function (i.e.,

myfunctionname.m)
2. Defining the optimization options

The following is a list of the most important options and their corresponding default values
for the MIPT optimization procedure:
NumberOfMolecules: Number of molecules used in the optimization.
[ positive integer | {'3*numberofvariables'} |
MaxlIter: Maximum number of iterations allowed.
[ positive scalar | {Inf} ]
TolFun: Termination tolerance on function value evaluated during a certain number
of stall iterations.
[ positive scalar | {l1e-6} ]
RepulsionForceConst: Value of the repulsion force constant.
[ positive scalar | {5} ]
RandomForceConst: Value of the random force constant

[ positive scalar | {Se-4} ]
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Metropolis: Type of Metropolis conditions used
[ 'none' | {'explorers only'} | 'refiners only' | 'both' |
MetropolisConstant: Value of the constant used for the Metropolis condition
[ positive scalar | {1e3} ]
MinFracExplorers: Minimum fraction of explorer molecules
[ positive fraction | {0.5} ]
InitNumberRefiners: Initial number of refiner molecules. It must be consistent with
the minimum fraction of explorer molecules!
[ positive integer | {1} ]
MinFrictionCoeff: Minimum value of the friction coefficient
[ positive scalar | {1e-9} ]
MaxFrictionCoeff: Maximum value of the friction coefficient
[ positive scalar | {1} ]
CutoffDist: Interaction force cut-off distance
[ positive scalar | {0.25*sqrt(numberofvariables)} ]
StalllterLimit: Number of iterations over which average change in objective function
value at current point is less than options.TolFun
[ positive scalar | {500*numberOfVariables} |
MaxFunEvals: Maximum number of function (objective) evaluations allowed
[ positive scalar | {3000*numberOfVariables} ]
TimeLimit: Total time (in seconds) allowed for optimization
[ positive scalar | {Inf} ]
ObjectiveLimit: Minimum objective function value desired
[ scalar | {-Inf} ]
Display: Controls the level of display
[ 'off' | 'iter' | 'diagnose' | {'final'} ]
DisplayInterval: Interval for iterative display
[ positive integer | {10} ]
AutoSave: Automatically save the results in a .mat file
[{loff} | 'on']
PlotType: Type of plot for final results.
numberfunceval plots the best value of the objective function vs. the number of function
evaluations.
iterations plots the best value of the objective function versus the number of iterations of the
algorithm.

[ {'none'} | {'numberfunceval' | 'iterations'} ]
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You can create and save the optimization options using the following commands:

myoptions=miptoptimset(‘param1’,valuel,’param2’,value2,...);

save myoptionsfile myoptions

Any unspecified parameters are set to the default value for that parameter. It is sufficient to
type only the leading characters that uniquely identify the parameter. Case is ignored for
parameter names. NOTE: For values that are strings, correct case and the complete string
are required. Additional information can be found typing help miptoptimset or help

miptoptimget in the command window of MATLAB.

3. Defining the optimization problem

The most important parameters of the optimization problem include:
Objective: Function handle of the objective function for minimization.
x0: Starting point
Ib: Lower bounds of decision variables
ub: Upper bounds of decision variables
options: Options structure

The optimization problem can be created and saved using the following commands:

myproblem = miptproblem(@myfunctionname,x0,lb,ub,myoptions);

save myproblemfile myproblem
x0, 1b and ub can be saved as variables before the definition of the problem, or they can be
typed as vectors during the definition of the problem. Type help miptproblem in the
command window of MATLAB for additional information.
4. Executing the optimization

You can execute the optimization using the following command:

mipt(myproblem)
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Depending on the selected display option, you will see the results of the optimization on the
command window of MATLAB, and depending on the plot option, you will also get a

graphical summary of the performance at the end of the optimization.
The results will be saved automatically after finishing the optimization in the current work

folder. The name of the file will contain the date and time at which optimization is finished.

Type help mipt in the command window of MATLAB for more information.

A.2. MIPT Algorithm Pseudo-Code

MIPT Algorithm

1 Call Initialization

2 while stop_flag = FALSE

3 iter = iter + 1 Update iteration number

4 gamma = exp(log(gmin)+(log(gmax)-log(gmin))*(nm-molrank)/(nm-1))
Update friction coefficients of molecules

5 frep =0 Variable initialization for summation
6 fori=1tonm
7 forj=1tonm
8 d(i,j) = norm(x(i)-x(j))  Intermolecular distance
9 if 0 < d(i,j) < dcutoff and molclass(i) = 1 then
10 frep(i) = frep(i) - (x(j)-x(i)/(d(i.))"3)
Intermolecular repulsion force

11 end
12 end
13 fom(i) = normal_random(ndv) Random force vector
14 dx(i) = (K1*frep(i) + K2*fbm(i))/gamma(i) Molecular displacement
16 xnew(i) = x(i) + dx(i) New molecular position
16 Fobjnew(i) = objfunct(xnew(i)) New objective function evaluation
17 nFeval = nFeval + 1 Update number of function evaluations
18 dG(i) = (Fobjnew(i) — Fobj(i))/(max(Fobj)-min(Fobj))

Calculation of normalized free energy change
19 P(i) = exp(-K3*gamma(i)*dG(i)) Acceptance criterion
20 end

21 Call Molecules_update subroutine
22 mopt = index of feasible molecule with best objective function value
23 if objfunct(x(mopt)) < Fopt then

24 Fopt = objfunct(x(mopt)) Optimal value of the objective function
25 xopt = mopt Position of the optimal molecule
26 end

27 evaluate stop conditions
28 if any(stop_conditions) = TRUE then

29 stop_flag = FALSE
30 end
31 end

32 print Fopt, xopt, iter, nFeval
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Initialization procedure
Input Data:
ndv = Number of decision variables
nm = Number of molecules
niter = Number of maximum iterations
tol = Tolerance in the objective function
objfunct(x) = Objective function evaluated at position x
oad Parameters:
gmin = Lowest friction coefficient
gmax = Largest friction coefficient
K1 = Repulsion force constant
K2 = Stochastic force constant
10 K3 = Constant used in the Metropolis criterion
11 minfexp = Minimum fraction of explorers during optimization
12 dcutoff = Cut-off distance for intermolecular forces
Initialization of variables:
13 iter=0  Number of iterations
14 nFeval=0  Number of function evaluations
15 stop_flag = FALSE Status of stopping conditions
Initialization of molecules:
16 fori=1tonm

O©CoOoONOO IO~ WON-

17 molclass(i) = 1

Classification of molecules (0 = Refiner, 1 = Explorer)

18 X(i) = uniform_random(ndv)

Setting initial position vector of molecules

19 Fobj(i) = objfunct(x(i)) Initial objective function evaluation

20 nFeval = nFeval + 1 Update number of function evaluations
21 end

22 R = set of indices of refiner molecules

23 molrank = sort index of molecules according to feasibility (descending) and
objective function (ascending)

24 mopt = index of feasible molecule with best objective function value

Molecules_update_subroutine procedure

1 fori=1tonm

2 if molclass(i) = 1 and P(i) > uniform_random then

3 x(f) = xnew(i) Update molecular position

4 Fobj(i) = Fobjnew(i) Update objective function value
5 if feasible and Fobj(i) < max(Fobj(r)) then

6 molclass(i)=0 Molecule set as refiner

7 if sum(molclass) < nm*minfexp

8 r = index of refiner molecule with highest Fobj

9 molclass(r) =1 Set molecule as explorer

10 end

11 end

12 elseif feasible and dG(i) < 0 then

13 x(f) = xnew(i) Update molecular position

14 Fobj(i) = Fobjnew(i) Update objective function value
15 end

16 end

17 molrank = sort index of molecules according to feasibility (descending)
and objective function (ascending)
18 fori=1tonm

19 if molrank(i) < nm-sum(molclass) then

20 molclass(i) = 0 Update refiners
21 else

22 molclass(i) = 1 Update explorers
23 end

24 end
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Appendix B. Global Optimization Problems

B.1. Dixon-Szego Test Functions

Dixon and Szego (1978) proposed a set of challenging set functions for testing global

optimization algorithms. Some of these functions (all of them showing multiple local minima)

were selected for testing the performance of MIPT vs. other well-established optimization

methods. The details of the selected functions are presented here.

Easom function

Number of variables: 2

Search region: -10 < x < 10,j =1, 2.

Definition:

Sty (6122) = —c08(xy) c0s(x, ) expl (x, = )2 = (x - )7 ) (B.1)

Global minimum: x* =, x* =, fp* = -1

Goldstein and Price function

Number of variables: 2

Search region: -2 < x<2,j=1, 2.

Definition:

Jowj (X1,X2) = a(xy,x5) - b(xp, x5)

a(x;,x,) =1+ (x; +x, +1)% - (19-14x, +3x, - 14x, + 6x,x, +3x,7) (B.2)
b(x;,x,) =30+ (2x, -3x,)2 *(18-32x; +12x,” +48x, - 36x,x, +27x,%)

Global minimum: x* = 0, %* = -1, f,* =3

Shubert function

Number of variables: 2
Search region: -10 < x < 10,j =1, 2.

Definition:

5 5
Fopy (X1%3) = (Zicos((i +1)x; + i)}[z jeos((j+1)x, + j)} (B.3)

i=1 j=1

Multiple global minima: f£* = -186.7309
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Hartmann-3 function

Number of variables: 3

Searchregion:0< x<1,j=1,2,3.

Definition:

i=l1

4 3
foy(0=-¢; exp[— Y aylei - py )

j=1

Global minimum: x* = 0.114614, x*

1

Table B.1. Parameters of Hartmann-3 function

(B.4)

= 0.555649, x3* = 0.852547, fp* = -3.862782

i ajj o Pi
= J= j=3 J=1 =2 J=
1 3.0 10 30 1.0 0.6890 0.1170 0.2673
2 0.1 10 35 1.2 0.4699 0.4387 0.7470
3 3.0 10 30 3.0 0.1091 0.8732 0.5547
4 0.1 10 35 3.2 0.0381 0.5743 0.8828
Hartmann-6 function
Number of variables: 6
Searchregion:0< x<1,j=1, ..., 6.
Definition:
6
fob_,-<x>=—2c exp{ > a;x; - py ] (B.5)
i=1 Jj=1
Global minimum: x* = 0.201690, x* = 0.150011, x* = 0.476874, x* = 0.275332,
x5* = 0.311652, x* = 0.657300, fop;* = -3.32237
Table B.2. Parameters of Hartmann-6 function
; aj o Pijj
j=1 j=2 j=3 j=4 j=5 j=6 j=1 j=2 j=3 j=4 j=5 j=6
1/ 10 3 17 35 10 30|1.0/0.1312 0.1696 0.5596 0.0124 0.8283 0.5886
21005 10 17 0.1 10 35|1.20.2329 0.4135 0.8307 0.3736 0.1004 0.9991
3| 3 35 17 10 10 30 |3.0|0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
4| 17 8 0.05 10 10 35|3.2|0.4047 0.8828 0.8732 0.5743 0.1091 0.0381
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Shekel functions

Number of variables: 4

Search region: 0 < % <10,j=1, ...,

Definition:

Obj m (X) i 4 !

i= 2
=+ (xl-—a,-j)

J=1

Global minimum: x;* = 4, x*

~-10.1532, m=5
fobj,m *=g— 104029, m= 7
-10.5364, m=10

=4, x%*

4.

=4, x* =

4,

Table B.3. Parameters of Shekel functions

, ajj
l j=1 j=2 j=3 j=4 “
1 4 4 4 4 0.1
2 1 1 1 1 0.2
3 8 8 8 8 0.2
4 6 6 6 6 0.4
5 3 7 3 7 0.4
6 2 9 2 9 0.6
7 5 5 3 3 0.3
8 8 1 8 1 0.7
9 6 2 6 2 0.5
10 7 3.6 7 3.6 0.5

(B.6)

B.2. Nonlinear Steady-State Model of a Biochemical
Reaction Network

The complete model for the pathway of ethanol production by Saccharomyces cerevisiae,

and the corresponding optimization problem are presented by Xu et al.

optimization problem used as for testing the MIPT algorithm is the following:

(2008). The
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max Vpk
X1,X7,X3,X4, X5,

subject to:
Vin =Vug =0
Vik =Verxk =Vpor =0
Verk =Veapp —0.5VGo =0
2Vapp —Vpx =0

2VGAPD +VPK _VHK _VPol _VPFK _VATPase =0
V, —Y,+3.7X, =0

8.25
Vol 14| == LI ha3|-117, -0
X, 07X,

1.0832V,, (R22 +164.084L3T5 )— Y7X4ADP(2.5 19R, +0.656T, L5 ): 0
X\ XY, =V (6.2><10_4 +0.11X5 +0.1X, +X1X5): 0
50X, XsRYs =V ppy (R12 +3342L3 T )= 0

0.25 0.18 AMP ADP X, 0.25 NADH
Vourp| 1+ + 1+ + +—= || 1+ 1+ -Y, =
X; NAD 1.11 1.5 2.5 X, 0.00029433
YSVGol _Y7 Vpg =0
Y3 Xs =V grpase =0 (B-7)
Vpg <2V,

Yio <Y £50Y,0, k=1,2,3,4,5,8

with
Yy =14.31; Y; =203; Yy = 0.042
2
Yo +1
2Y,
Yy +1

ADP = %(,/12)(5 —3X7 - XSJ

AMP =3 - X5 — ADP
_1+0.76AMP
© 1+404MP
R =1+0.3X, +16.67X5 +50X, X5
T =1+1.5x107* X, +16.67X 5 +0.0025X, X5
R, =1+125.94X 4#0.24DP +2.519X ;, ADP
T, =1+0.02X, +0.24DP +0.004.X , ADP
1+0.05.X5
27 1y 54, (B.8)

NAD* =

NADH =

1
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B.3. Unstructured model of Ethanol Production

The system considered by the unstructured model is composed of three main state variables:
Glucose (G), Cells (X) and Ethanol (E) concentrations. The cells concentration in the batch

depends on the cell’s growth and cell’s death rates as follows:

—=uX - K;X B.9
% 2.4 d (B.9)
G E
H= | ———x [I—E—] (B.10)
k,+G +—— "
‘ K

u is the specific growth rate in h™, Ky is the cell’s death rate in h'}, ks is the saturation growth
constant in g/L, K is the substrate growth inhibition constant in g/L, and E, is the ethanol
inhibition constant for growth in g/L. Besides substrate limitation, the cell's growth
expression shown in Equation (B.10) includes inhibition caused by both substrate (glucose)

and product (ethanol).

Glucose produced during the saccharification is given by the first term on Equation (B.11).
The second and third term represent the fraction of glucose that is used for cell growth

(including maintenance) and ethanol production respectively.

dG__[ﬂX_KdXJ_[ i j_KcmX (Bll)

dt Yyi6 Ypi6

q is the ethanol specific production rate in h™, Yy, is the yield coefficient of cell growth in
a/9, Yes is the yield coefficient of product in g/g and K, is the rate of glucose consumption

for cell maintenance in h™.
Finally, the ethanol is produced only by cells at the rate:

dE

E_x (B.12)
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G E
q=q, eE (1 — J (B.13)

am is the maximum specific production rate in h™, ks, is the saturation production constant in
g/L, Ksp is the substrate production inhibition term in g/L, and En, is the ethanol inhibition

constant for production in g/L.

The objective function for this problem was defined taking into account the normalized mean
of the squared error (MSE) for the X, S, Gand £, as:

m}(n(Fobj )=min(MSE y, + MSEg + MSE + MSEy;) (B.14)
p

where py represent the 12 parameters of the model to be identified: pm, ks, Kss, Em, Kg, 0, Ksp,
Ksspl Empr Kcm, YXG and YEG-

The normalized MSE for each variable is described as:

n 2
1.~ Yexpi = Vi
MSE, =—*Z[L)J (B.15)

n S max(yeyp;

where y .. and y, (for /=1,2..,n) are respectively the experimental data reported and the

value predicted by the model for the variable y; and n is the number of available

experimental data used for identification.

The initial conditions of the fermentation are: 220 g/L of glucose and 0.2 g/L of biomass.
The simulation time is 72 hours. The model is solved using Euler’'s method with a step of 0.1

hours.
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B.4. Ethanol fed-batch fermentation

The dynamic model for fed-batch production of ethanol by means of Saccharomyces

cerevisiae, using glucose as raw material is given by:

dv

—=F B.16

= (B.16)
70,4 FX

—= - B.17

a M (8.17)
dS _—uX  F(S,-S) (B.18)
dt Y |14

dP FP

—=gX ——— B.19

a Ty (8.19)

Where I, X, S and P are the state variables Volume, Biomass, Substrate (glucose) and
Product (ethanol) concentration respectively. F is the substrate flow rate and S, is the
concentration of substrate in the feed. The kinetic expressions for cells’ growth and ethanol
production are given by:

_ Ko ( S J
n= (B.20)
1+ 2 \Kg+8
p
| q ( S j
q= , (B.21)
1+L K, +S
p

The parameters of the model are given in Table B.4. The initial conditions for the state
variables and the constraints for the states (in this case only for the volume) and for the

control variables are given in Table B.5.

The substrate flow feed rate profile is described by a cosine parameterization:
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F(t) =a, +a1cos(wl [tt __tto )+¢1)+a2 cos(w2 (tt __tto Jﬂbz} (B.22)

The objective function to be maximized is the productivity of the process defined as:

max [Productivity]=  min oo [ P(t)V(t,)] (B.23)

F(t) 29,81,85,W],Wp,

The total fermentation time considered was 54 hours.

Table B.4 Model parameters for the ethanol fermentation process taken from Hong (1986)

Parameter Description Value
1y (1/h)  Maximum Biomass growth rate 0.408
gp(1/h)  Maximum Ethanol production rate 1
Ks(g/l)  Monod Constant 0.22
K:'(g/l)  Monod Constant 0.44
K, (g/l)  Substrate Inhibition Constant 16
K,'(g/l)  Product Inhibition Constant 71.5
Y(gX/gS) Yield Factor 0.1
Sin(g/l)  Substrate Input Concentration 150

Table B.5 Initial conditions for the ethanol fermentation process taken from Hong (1986)

Bounds Initial
Variable .
Lower Upper Condition
40 0 200 10
X(g/l) 0 - 1
S(g/l) 0 - 150
P(a/) 0 - 0
F(I/h) 0 12 -
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Appendix C. Additional information of the bio-

ethanol production process model

C.1. Model parameters and operating conditions

The model parameters, including the kinetics and the operating conditions used in the model

of the hydrolysis stage are shown in Table C.1.

Table C.1 Model parameters and operating conditions for the starch hydrolysis stage

Parameter/
Operating Description Value Units
condition
k, Kinetic factor for gelatinization 1.116x10"® ht
Esy Activation Energy for gelatinization 1.083x108 J/kmol
Kot Kinetic constant for dextrins 421.2 kg/Uh
production
Koe Kinetic factor for alpha-amylase 2.484x10* ht
deactivation
Eace Activation Energy for denaturation 2.242x10°8 J/kmol
Gact Specific Alpha-amylase Activity 5x10’ U/kg
7; Liquefaction temperature 365 K
oL Density 1037 kg/m?
Az, Cross section of the liquefaction tank 12.5 m?
K Kinetic constant 7.56x107 kg/Uh
Ky Michaelis-Menten constant 0.45 kg/m?
ki Product inhibition constant 0.52 kg/m?
Goc Specific Gluco-amylase Activity 7x107 U/kg
Ars Cross section of the saccharification 45.45 m?
tank
Ts Saccharification temperature 333 K
P Liquefaction pressure 1.2 atm
Ps Saccharification pressure 1.2 atm

12 Specific activity of alpha-amylase and gluco-amylase from Bacillus subtillis and Aspergillius niger, respectively.

Table C.2 shows the kinetics parameters and operating conditions considered for the

fermentation stage.
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Table C.2 Model parameters and operating conditions for the fermentation stage

Parameter/
Operating Description Value Units
condition
Hmax Maximum specific growth rate 0.4233 1/h
En Inhibition constant by product 80 kg/m?
Xn Biomass concentration when cell 330 kg/m?
grows ceases

A; Constant in equation 4.37 1

A; Constant in equation 4.37 1

K. Monod constant 4.074 kg/m?
K Inhibition constant by substrate 4.218%x1073 m’/kg
Yxs Limit cellular yield 0.1204 kg/kg
M, Maintenance coefficient 0.2548 ht
Yox Yield of product 4.7135 kag/kg
M, Ethanol production associated to 0.1 h?

growth
Kyr Coefficient of death by temperature 2.48x10 ht
Kqp Coefficient of death by ethanol 0.3928 m>/kg
Ix Ratio of concentration of intracellular 390 kg/m?
to extracellular ethanol

Are Cross section of the Fermentor tank 75 m?
Tr Fermentor temperature 305 K
Pr Fermentor pressure 1.2 Atm

The operating conditions and design parameters of the distillation and rectification columns
are summarized in Table C.3. In addition, each adsorption unit (T-303/304) consists of a bed

of 1000 kg of molecular sieves with a pore size of 3 A.

In Table C.4, the level-, pressure- and composition-control loops implemented in the plant as
local control strategy (Section 6.1.1) are presented including their corresponding set point

values and tuning parameters.
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Table C.3 Operating conditions and design parameters for the purification section

Parameter Distillation Rectification
Feed trays 30 20, 42
Feed temperature (K) 368 368, 358

Top pressure (atm) 0.3 1
Number of trays 37 43
Tray diameter (m) 3 2

Weir height (cm) 0.03 0.02
Tray pressure drop (mm Hg) 5 5

Table C.4 Local control strategy: Set points and tuning parameters

Controller ID Set point Tuning parameterss®
LC-1 Hisp=6 m F2ss=90.16 m*/h
K=50 m%*h
LC-2 Hssp=11 m F4ss=90.2 m*/h
K=100 m?/h
LC-3 Hep=12 m Fess=222.52 m*/h
K=200 m?/h
LC-4 Hpisp=5m B1ss=7762 kmol/h
K=-5000 kmol/m h
LC-5 Hpisp=3 m Diss=1347.2 kmol/h
K=-5000 kmol/m h
LC-6 Heasp=3 M B,ss=1089.8 kmol/h
K=-5000 kmol/m h
LC-7 Hpasp=2 M Quss=7.2%10' J/h
K=5x10° J/m h
PC-1 Prsp=225 mmHg Quis=2.2x10" J/h
K=2.5x10% J/m h
PC-2 Pisps=760 mmHg D»s=290.37 kmol/h
K=2 kmol/ mmHg h
AC-1 Xy,r-sp= Xu,F-opty IS @ Fsss=0 m*/h
variable SP (given by Kes=-0.001 m%/ kg h
the D-RTO layer). Fss=0.576 m*/h

Kes=0.5 m®/ kg h

% The tuning parameters were determined as follows: First, an initial set of parameters was found
according to Shinskey’s correlations given in O’'Dwyer (2009). Then, each parameter was
sequentially fine-tuned by using dynamic simulations of the plant and guidelines given by McMillan
(2005).
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C.2. Parameter identification and structural validation

of the fermentation model

The model of the fermentation stage was introduced and described in Equations (4.32) —
(4.58). The fermentation kinetics was modeled as reported by Costa et al. (2002). In this
section, the fermentation model is used to describe two different sets of fermentation
experimental data in order to i) identify the best set of parameters for describing the kinetics
of the process considered, which is a continuous fermentation with high biomass
concentration and cells recycle; and ii) to assess the adequacy of the model structure
(Equations 4.32 — 4.43), by using the model structure for describing a completely different
set of data. The model structure validation is carried out using experimental data of batch

fermentation with low biomass concentration and no cells recycle.

Parameter identification

The parameter identification was carried out using experimental data reported by Jarzebski
et al. (1989). The objective function minimized for parameter identification was the Mean
Square Relative Error (MSRE) for the state variables in the fermentor, namely: Viable yeast
(X,), total biomass (Xz), glucose (G) and ethanol concentrations (£), as shown in Equation
(C.1). The optimization method used was the Molecular-Inspired Parallel Tempering (MIPT)
algorithm presented in Chapter 3.

& {(Xm =Xy ot (' ))T . Nz{(x ~Xomotalt ))T .

MSRE =
20 () S max(X,)

(C.1)

Nl (G, = Grogu(t )] %[ (E, = Eppgu(t )]’
lzﬂ:{ max(G ) +IZ=1: max(E)

where A is the number of experimental data and t; is the time at which each experimental

data was taken.

Results of parameter identification are presented in Figure C.1, showing the comparison
between the model used in this work (red line) and the experimental data reported by
Jarzebsky et al. (1989), for the total biomass, viable biomass, glucose and ethanol
concentrations. The objective function value in the parameter identification for the model

used in this work was MSRE=0.0193, indicating a very good fit between the experimental
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data and the model, which is confirmed by an analysis of Figure C.1. Predictions for Biomass
(total and viable) and glucose presented the best fit to experimental data, whereas ethanol
predicted by the model presents a higher deviation from the data, which can be caused by
the high dispersion of the experimental data after 50 hours. The best set of parameters

identified has been already presented in Table C.2.
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Figure C.1 Comparison of experimental data and the model used in this work after parameter
identification for continuous ethanol fermentation with cells recycle and high biomass. Top left: Total
biomass; Top right: Viable biomass; Bottom left: Glucose concentration; Bottom right: Ethanol
concentration. The data points are the Experimental data from Jarzebsky et al (1989) and the red

line describes the model predictions.

Model Structure Validation

In order to validate the model structure, experimental data from a batch fermentation
process were used. For that purpose, batch fermentation experiments were performed using
the yeast Saccharomyces cerevisiae 46 EDV and a culture medium with the following
composition: 118.4 g/l glucose, 2 g/l (NH4),SO4, 2.72 g/l KH,PO4, 0.5 g/l MgSO,4-7H20 and 1
g/l yeast extract. Temperature and pH were controlled at 28 °C and 4.5 respectively. The

bioreactor used was a 2-Liter glass cylinder (1.7 liters working volume) equipped with a six-

220



Plantwide Optimizing Control for the Continuous Bio-Ethanol Production Process

blade turbine stirrer and an Applikon control system. Yeast inoculum concentrations of 2%
(w/v) were used corresponding to an initial population of living cells of approximately 10’
CFU/mL. Ethanol and glucose concentrations were determined from density measurements
using an Anton Paar DMA 4500, whereas the biomass was measured spectrophotometrically
at 620 nm wavelength using a Spekol 11. It is important to notice that these experimental
data were taken in a batch lab-scale bioreactor without cells recycle, and with a low biomass
concentration, in contrast to the experimental data by Jarzebky et al. (1989) that were
used for parameter identification, where a continuous fermentation with cell recycle at high
biomass concentration was evaluated. Therefore, the purpose of using the new set of batch
experimental data is to validate only the model structure (Equations 4.32 — 4.43), for which

new parameters should be identified.”

The error function to be minimized in this case is the same than that described by Equation
(C.1), but without the viable yeasts term, because the set of experimental data only include
data for total biomass, glucose and ethanol. Figure C.2 shows the comparison between the
model and the new set of experimental data, for the total biomass, glucose and ethanol
concentrations. As it can be observed, the model is in good agreement with the experimental
behavior (MSRE = 0.00435), especially for the glucose and ethanol predictions. The highest
deviation is observed in the biomass concentration, which can be explained by the accuracy

of biomass determination.

It is observed that the model structure used in this work for the fermentation model, which
was taken from Costa et al. (2002), is a reliable structure for representing the ethanol
fermentation from glucose for a wide range of operating conditions: either batch or

continuous mode, with or without cells recycle, and high or low biomass concentration.

sokok

The parameters of the model change as a result of the different operating conditions (biomass
concentration, substrate concentration, etc.), different microorganism strain and also different
substrate quality.
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Figure C.2 Comparison of experimental data and simulation models after parameter identification for
batch ethanol fermentation without cells recycle and low biomass concentration. Top: Total biomass;
Top right: Glucose concentration; Bottom Ethanol concentration. Data points: Experimental data; Blue

Red line: Model used in this work.

C.3. Phase equilibrium calculation and additional

constants and model parameters

The Vapour-Liquid equilibrium in the trays of the distillation and rectification columns is

described by Equation (4.65), rewritten in Equation (C.2).

;b

Yii =Xji*| e
Zxk ViBo i
k=1

(C.2)

i
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where y; and P, ; are the activity coefficient and the vapor pressure, respectively. The activity

coefficients are calculated using the UNIQUAC model as given by Equation (C.3)
yi=expliny, . +Iny,) (C.3)

where vy and y;, are the combinatorial and residual activity contributions, which are given

by Equation (C.4) and (C.5), respectively.

Iny, = ln(ﬁj +1- (ﬁ] (C4)
X, X,

0.7
Iny, =0.|1-1 T |- 4 7 .
1'1]/[’,, Q, n(z HJT‘/,] ; 202_ (C 5)

where @Q; is a molecular area parameter for component /, whereas ¢, 6, and t; are the
molecular volume fraction and molecular area fraction of component i and temperature-

dependent interaction parameters, given by Equations (C.6) — (C.8).

R’x,
__R7x C.6
b5 c6)
j
0, 2% (€7)
Zijj
J
+b (T-T
T, = exp[—Wj (C.8)

where R;, a; and by are the molecular volume parameter and the UNIQUAC interaction
constants for component i, and T and T, are the system temperature and the reference

temperature.

The vapor pressure in Equation (C.2) is calculated according to Antoine’s equation:
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B
’ T+C,;

Table C.5 and C.6 show the parameters used for the phase equilibrium calculations for the
three-component system: Ethanol-water-glucose. The parameters for the calculation of the
activity coeffcients were taken from Macedo and Peres (2001), whereas the Antoine
parameters are those reported by Gmehling et al. (1990). The vapour pressure of the
heavy components (i.e. glucose, starch, non-fermentable) was assumed to be zero for the

whole range of temperatures considered.

Table C.5 UNIQUAC interaction parameters for the system ethanol-water-glucose taken from Macedo
and Peres (2001)

Parameter Value Units
Ry 2.5755
R, 0.92
Rs 8.1528
Q: 2.588
Q. 1.4
Qs 7.92
ai 0 K
ax 0 K
ass 0 K
an 249.06 K
Ay -132.51 K
an 178.83 K
as 9.1123 K
ax 96.5267 K
as -68.6157 K
bi1 0
ba, 0
bs3 0
b1 0
b1 0
bis 0
bs1 0
b3 0.277
b3, -0.069
To 298.15 K
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Table C.6 Antoine Parameters (Temperature in K, Pressure in mm Hg) taken from Gmehling et al.

(1990)
Parameter Value
Ae 8.1122
Be 1592.864
Ce -46.966
A, 8.07131
Bw 1730.63
Cw -39.574

On the other hand, the expressions used for calculating thermodynamic variables of mixtures
are the following:

hi=2x,Cp T, (C.10)
J
h,, = Zyjcpl,j,iTt,i +4; (C.11)
J
ﬁ“z’ = zyjﬂ’j,i (C.12)
J
where
Cpl,w,i = acp,w +bcp,w];,i + ccp,WT;,zi (C13)
2 3
16 = Aopp M L=—— 14D, p| L=\ +C, p T, p| | FtCpr| 77| T Jope| 7
! ! T x ! T.x : "N\ Lp "\ Le "\ Le
(C.149)
ﬂ’w,i = al,w + bl,wz—;,i (C.15)
hlE
ﬂ, 1 Tt i ' Cﬂ. th i (C 16)
=a - exp| =L )
E,i A,E T, p T,

The parameters for the calculation of specific heat and vaporization enthalpy of water were
taken from Smith et al. (2005). The corresponding parameters for ethanol were taken
from Henke et al. (2009). These are presented in Table C.7. Additional physicochemical
properties are included in Table C.8.
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Table C.7 Additional thermodynamic parameters taken from Smith et al. (2005) and Henke et al.

(2009)

Parameter Value units
Acpw 7.243x%10* J/kmol K
Bep,w 10.3925 J/kmol K?
Copw -1.4965x10 J/kmol K
A w 5.5968x10’ J/kmol
by.w -4.0387x10" J/kmol K
Acp 1.28x10° J/kmol K
Bep,e 2.986x10° J/kmol K
CopE 7.779x10" J/kmol K
depe 2.1405x10° J/kmol K
[ -3.4487x10° J/kmol K
fep,e 6.6786x10° J/kmol K
ae 5.043x10’ J/kmol
bs.e 0.4989
G 0.4475
Tee 513.92 K

Table C.8 Physicochemical properties of components

Parameter Value units
Weo2 44 kg/kmol
WE 46 kg/kmol
Wy 18 kg/kmol
We 180 kg/kmol
Ws 342 kg/kmol
PE 790 kg/m?
Pw 1000 kg/m?

C.4. Distillation Model Validation

Before validating the model for the distillation columns, it is necessary first to verify that the
vapor-liquid equilibrium (VLE) model adequately describes the system. Figure C.3 shows a
comparison of the UNIQUAC model used to describe the VLE (Appendix C.3) versus reported
experimental data (Green and Perry, 2008). As it can be seen, there is a good agreement
between the experimental data and the UNIQUAC, with an average absolute error of 2.1% in
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ethanol composition and a maximum absolute error of 3.5%. It can be noticed that the
largest deviations are observed in the range of 30-70% ethanol (molar basis), and that the
UNIQUAC model satisfactorily predicts the azeotrope at around 89%mol of ethanol.
Therefore, it is concluded that the UNIQUAC model and its corresponding parameters can be

used to predict equilibrium data in the ethanol-water system.

Ethanol vapor mole fraction

4
/ [ ] Experimental data
01 ———  UNIQUAC model
00 T T T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Ethanol liquid mole fraction

Figure C.3 Ethanol-water Vapor-Liquid Equilibrium. Experimental data (Green and Perry, 2008) vs.
UNIQUAC model (Gmehling et al., 1990).

The distillation and rectification models were validated using simulated data obtained from
Aspen Plus. The validation procedure was the following. Both columns were separately
simulated in:
e Aspen Plus using Radfrac columns under the conditions identified as optimal (See
Table C.3)
e Simulink using the dynamic model of the columns presented in Section 4.1.4.2,
until it reached a steady state, for the same optimal design parameters (Table
C.3) and input values (Table 4.3.).

The comparison between the validation data (e.g. Aspen simulated data) and the Simulink
model for the temperature profiles across the column, and the profiles for the ethanol
concentration in the liquid phase, for the Distillation and rectification columns is shown in
Figures C.4 and C.5, respectively. Table C.9 shows the average and maximum deviation of
these variables between the Aspen model and the model presented in Chapter 4. The
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deviation in composition is the absolute value expressed as %mol. The deviation in

temperature is presented relative to the temperature obtained in Aspen Plus.

Table C.9 Comparison of distillation and rectification models presented in 4.1.4.2 versus Aspen Plus

Average Maximum
deviation deviation
Composition 0.05% mol 0.58% mol
Distillation column
Temperature 0.16% 3.89%
Composition 0.44% mol 4.93% mol
Rectification column
Temperature 0.16% 1.57%
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T O~ Simulink model
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£
0.10 —
5 ¢
S [}
®
& 0.08 5
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o 006+ g
3 s,
= o
S 0044 =
<
o]
s
w 0.02 + 330 —o— A.sper) simulation
O-- Simulink model
0.00 - 325 + T T T T T T T T T T T
1 4 7 10 13 16 19 22 25 28 31 34 37 1 4 7 10 13 16 19 22 25 28 31 34 37

Tray number (1: Top - 37: Bottom) Tray number (1: Top - 37: Bottom)

Figure C.4 Comparison between the distillation column model presented in Chapter 4 and results

obtained using Aspen Plus. Left: Ethanol molar fraction; Right: Tray temperature.

09 —@— Aspen simulation —®— Aspen simulation
O+ Simulink model O+ Simulink model L

0.8 4
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0.6 4
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0.0

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 1 4 7 10 13 16 19 22 25 28 31 34 37 40 43
Tray number (1: Top - 43: Bottom) Tray number (1: Top - 43: Bottom)

Figure C.5 Comparison between the rectification column model presented in Chapter 4 and results

obtained using Aspen Plus. Left: Ethanol molar fraction; Right: Tray temperature.
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As can be seen in Table C.8 and Figure C.4, for the distillation case, the model developed in
this work and implemented in in Simulink is in excellent agreement with the Aspen Plus
results for most of the trays in the column. The main deviation between the model and the
Aspen data lies on the temperature of the condenser stage, basically because of the
assumption of no sub-cooling in the total condenser for the Simulink model. On the other
hand, for the rectification case, analyzing results shown in Table C.8 and in Figure C.5 it is
possible to conclude that the Simulink model used in this work is in very good agreement
with the Aspen plus model, and that the maximum deviation between the model predictions
and the Aspen simulated data is observed for the concentration profile at the bottoms of the

column (trays 40-43).

After comparing the simulink model for the distillation and rectification columns with total
and partial condenser respectively, it is possible to conclude that the model described in
Chapter 4 for the Distillation and Rectification is a suitable model for being used in the

simulation studies.

C.5. Initial conditions of the process

A summary of the initial (optimal steady-state) conditions of the process are summarized in
Tables C.10 and C.11.

Table C.10 Initial values of state variables in reactors

Variable \ Equipment Liquefaction Saccharification Fermentor
quip tank (R-101) tank (R-102) (R-201)
Level (m) 6.00 11.00 12.00
Ungelatinized starch
concentration (kg/m?) 0.86 0.85 0.83
Gelatinized starch
concentration (kg/m°®) 0.19 0.19 0.08
Maltotriose concentration 260.57 6.20 551
(kg/m?) ' ' '
Alpha-amylase
concentration (kg/m?) 0.00 0.00 0.00
Non-fermentables
concentration (kg/m?) 109.38 109.34 44.32
Glucose concentration 0.00 72.32 0.83
(kg/m?) ' ' '
Glucoamylase
concentration (kg/m°®) 0.00 0.34 0.14
Ethanol concentration 0.00 0.00 64.39
(kg/m?) ' ' :
Viable biomass
concentration (kg/m?) 0.00 0.00 82.39
Total biomass
concentration (kg/m?) 0.00 0.00 119.23
CO, concentration (kg/m?) 0.00 0.00 1.22
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Table C.11 Initial values of state variables in columns

Distillation Rectification
Tray % mol %mol Holdup Temp %mol Holdup Temp
Ethanol Water (kmol) (K) Ethanol (kmol) (K)

1 (Bottom) 0 0.99638 278.4 356.15  7.26E-15  166.7 379.94
2 0 0.99771 36.8 356.15 | 3.65E-14 13.2 379.94
3 7.51E-16  0.99770 36.8 355.83 | 1.74E-13 13.2 379.79
4 3.23E-15  0.99770 36.8 355.52 | 8.18E-13 13.2 379.64
5 1.04E-14 0.99770 36.7 355.19 @ 3.84E-12 13.2 379.49
6 3.14E-14  0.99770 36.7 354.87  1.80E-11 13.2 379.34
7 9.33E-14  0.99770 36.7 354.54 8.47E-11 13.2 379.18
8 2.76E-13  0.99770 36.7 354.20 @ 3.98E-10 13.2 379.03
9 8.14E-13  0.99770 36.7 353.87 | 1.87E-09 13.2 378.87
10 2.41E-12  0.99770 36.7 353.52 | 8.82E-09 13.2 378.72
11 7.11E-12  0.99769 36.7 353.18 | 4.15E-08 13.2 378.56
12 2.10E-11  0.99769 36.7 352.83 | 1.96E-07 13.2 378.41
13 6.23E-11  0.99769 36.7 352.48 | 9.22E-07 13.2 378.25
14 1.84E-10  0.99769 36.7 352.12 @ 4.35E-06 13.2 378.09
15 5.47E-10  0.99769 36.7 351.76 @ 2.05E-05 13.2 377.93
16 1.62E-09  0.99769 36.6 351.39 | 9.69E-05 13.2 377.74
17 4.81E-09 0.99769 36.6 351.02 . 0.00046 13.2 377.48
18 1.43E-08  0.99769 36.6 350.64 | 0.00215 13.1 376.83
19 4.25E-08  0.99768 36.6 350.26 ;| 0.00998 13.0 374.68
20 1.26E-07  0.99768 36.6 349.87 i 0.04318 12.5 368.91
21 3.76E-07 0.99768 36.6 349.48 i 0.11270 8.9 363.23
22 1.12E-06  0.99768 36.6 349.08  0.31731 7.6 357.93
23 3.34E-06  0.99768 36.6 348.68 | 0.53574 6.8 356.01
24 9.98E-06  0.99767 36.6 348.27 . 0.65428 6.4 355.33
25 2.98E-05 0.99765 36.5 347.85  0.71927 6.3 354.96
26 8.90E-05 0.99758 36.5 347.41 . 0.75925 6.2 354.68
27 0.00027  0.99741 36.5 346.93 | 0.78608 6.1 354.46
28 0.00079  0.99688 36.5 346.36 | 0.80524 6.1 354.25
29 0.00236  0.99531 36.4 345.52 i 0.81955 6.1 354.06
30 0.00688  0.99078 36.2 344.29 @ 0.83061 6.0 353.88
31 0.00688  0.99312 22.7 343.59 . 0.83938 6.0 353.70
32 0.00687  0.99313 22.7 343.13 = 0.84649 6.0 353.53
33 0.00687  0.99313 22.7 342.66 @ 0.85234 6.0 353.36
34 0.00706  0.99294 22.7 342.14 . 0.85723 6.0 353.19
35 0.00906  0.99094 22.6 341.22 | 0.86136 6.0 353.02
36 0.02870  0.97130 22.0 337.48 | 0.86488 6.0 352.85
37 0.18854  0.81146 129.0 337.48 | 0.86791 6.0 352.69
38 0.87053 6.0 352.52
39 0.87281 6.0 352.35
40 0.87480 5.9 352.18
41 0.87654 5.9 352.01
42 0.87808 5.9 351.85
43 0.88743 46.1 351.75
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Appendix D. Process Design

In order to test the plantwide control methodology from an optimization perspective, the first
step was the development of an optimal process design. For this purpose, the model
developed in Section 4.1 was used. The process was designed to achieve a nominal
production of 100.000 Ton ethanol/year (12.63 Ton/h for 330 days of operation during
24h/day) using a mash of starchy material as feed. The following aspects were considered
during the process design stage:

1. For the conversion of starch to ethanol, a yield of only 90% was considered. Thus,
the theoretical mass flow of ungelatinized starch required is 24.7 Ton/h. The raw
material is considered to consist of: nonfermentable matter (25%), ungelatinized
starch (60%) and water (15%).

2. According to Karuppiah (2008), the amount of alpha-amylase and glucoamylase
needed in the liquefaction and saccharification steps is 0.05% and 0.12% the weight
of starch slurry, respectively. That is, flow rates of 20.6 kg/h alpha-amylase and 49.5

kg/h glucoamylase are required.

The main design parameters were obtained using sensitivity analysis, minimizing a pure
economic objective function related to the capital and operating costs in the process. The

economic objective function used for the sensitivity analysis is given in Equation (D.1):

10
CTotal = ZCLiq + CSac + CFer + CDistil + CRecti + CRawMaterial B Pl"Oﬁt (D.1)
year=0

where the total cost in Euros (Crory) Was evaluated for a period of 10 years of operation. G,
Coao Cren, Cpisty @and Crew are the costs in the liquefaction, saccharification, fermentation,
distillation and rectification sections, respectively. Crawmateriz @and Profit is the difference
between the costs related to raw material consumption and the incomes generated from the
commercialization of the product. The costs for the liquefaction, saccharification and
fermentation tanks consider only the capital costs related to the size of each tank (assuming
L/D =1.5, and vertical cylindrical vessels), as shown in Equations (D.2) — (D.4) (Hoch and
Espinosa, 2008).
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0.7
4V
Cp, =17330 —& D.2
Liq [1.57:) ¢ (b-2)
0.7
cSac=17330(4V5] a (D.3)
1.5=@
4V 0.7
C, =17330 —=| a (D.4)
1.5=#

where ais the annualized cost of the equipment, calculated as:

o i) D.5
(1+i) -1 (0-5)

y represents the years of operation considered (10 years), and /is the annual interest rate.
For this process, the annual interest rate used was 42% (Franceschin et al., 2008).

The capital costs for the distillation and rectification columns were calculated using the
expressions reported by Hoch and Espinosa (2008) (D.6 — D.7), which take into account
the cost for the shell (Cies) and the cost of the trays (Cisys) in the columns. The operating
costs for each column consider the energy consumption of the reboiler (Qres) and the

condenser (Qeona)-

CColumn = CShell + CTrays + CReb + CCond (D6)

087 123 22146
CColumn =1190 FBM fq L D +1044 FBM,trays fq fNT NT D + Csteam Qreb + CCool Qcond

(D.7)

where L is the height of the column, D s the column diameter and Nris the total number of
stages. The parameters Fay, Famtays f; and fyrare the bare module and the contingency for
the shell and the stages, respectively. Considering steel as construction material and
assuming a height equal to L=N7*D/2, the following expressions for the total cost in the

columns are obtained:

0.87
Nt 2.1 22146
CD[stil = 12190( 2D j DD +1044 NtD DD + Csteam Qreb + CCoochond

(D.8)

232



Plantwide Optimizing Control for the Continuous Bio-Ethanol Production Process

0.87
Nt 2.1 22146
CRecti =121 90( 2R j DR +1044 NtR DR + Csleam Qreb + CCoochond

(D.9)
Steam (Cseam) and cooling costs (Co0), taken from Hoch and Espinosa (2008), are
Cstear=22.62 €/MW and Cr,0,=3.82 €/MW.

In total, seven design parameters were selected for sensitivity analysis, namely the liquid
volume of the liquefaction, saccharification and fermentation tanks, and the number of trays
and feed tray location for the distillation and rectifications columns. The sensitivity analysis
for process design was carried out as follows. Each parameter was changed between the
lower and upper bounds shown in Table D.1, while keeping all other parameters at their
nominal values (initial estimates) if they have not been analyzed yet, or at their optimal
values if they have already been analyzed. The procedure was sequentially solved in the
order presented in Table D.1. The results of the sensitivity analysis that led to the optimal

design of the process are shown in Figure D.1.

Table D.1 Design parameters and their values considered for sensitivity analysis

Nominal value
Design Parameter Variation Interval Optimal Value
(initial estimate)

Liquefaction Tank Volume

VL (m?) 40 - 100 50 90
Saccharification Tank
Volume V. (m?) 40 - 1000 70 600
Fermentation Tank
Volume Vs (m?) 400 - 1500 700 1080
Number of trays in 30-38 36 37
Distillation column
Feed Tray in Distillation 5_35 20 30
column
Nun_1|_3er _of trays in 4_47 39 43
Rectification column
Feed Tray in Rectification 240 a4 20

column

Table D.1 shows the range of values considered for each design parameter and the optimal
value obtained after analyzing the sensitivity of the economic objective function with respect
to these parameters.

233



Plantwide Optimizing Control for the Continuous Bio-Ethanol Production Process

4624 5400
L]
—~ 4623 4 = 5200
< <
e 5 *
E: g
T 4622 4 S 5000 e
> >
S . 8 .
ks B
S 46214 c 48001 o
=] =]
[ w ]
O 4620 O 4600 . 600 m
< 90m® c .
i) b o .
0 0 L]
ol ° o) ° °
0O 4619 L] . QO 4400 - L] ° ] L]
hd .
L] ° ° L]
4618 T T T T 4200 T T T T T T
40 60 80 100 120 140 0 200 400 600 800 1000 1200 1400
a) Liquefaction Tank Volume (m:’) b) Saccharification Tank Volume (ma)
9000 10000
L]
- 1 9000 +
£ 8000+ @ =
@ @
3 2 8000 4
g 7000 1 3
8 ° § 7000 .
2 6000 8
=] =]
bt L 6000 -
8 . 1080 m* . 3
O 5000 m . 3 37
5 . S, 5000 4
% [ ] . (] g
Q4000 - C e ° s}
4000 A L[] [ L]
3000 T T T T T T T 3000 T T T T T
400 600 800 1000 1200 1400 1600 1800 2000 28 30 32 34 36 38 40
C) Fermentation Tank Volume (ma) d) Number of trays in Distillation Column
5000 5200
L]
5000 o
£ 4800 4 ] 3
Y v
2} O 4800 4
T 4600 3
> > L]
S & 4600 -
2 4400 4 g
=] =]
= L 4400 4
1] 17
o L] Q
O 4200 2 o 43 .
5 5 42001
0 73
& . l &
4000 . 4000 4 e o
° ° o L4 °
3800 T T T T T T T 3800 T T T T
0 5 10 15 20 25 30 35 40 38 40 42 44 46 48
e) Distillation Column Feed Tray f) Number of trays in Rectification Column
5600
L]
5400 4
§ 5200 4
S 5000 |
©
>
c 4800
S
2 4600 A
=]
w
% 4400 o
3 . 20
c 4200
K=y
3 4000 { l
(=] o
L]
3800 - % o . . . . . (]
3600 T T T T
0 10 20 30 40 50

Rectification Column Feed Tray

9)

Figure D.1 Sensitivity analysis of the main process design parameters. a)Liquifier volume, b)
Saccharificator volume, c)Fermentor volume, d)lmber of trays in distillation column, e)Distillation

column feed tray, f)ldmber of trays in rectification column, g)Rectification column feed tray
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