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Abstract

Embedded systems are usually composed of deeply integrated hardware and
software components. They are often used in domains where a failure results
in high financial losses or even in serious injury or death. As a consequence, it
is indispensable to ensure the correctness of the digital components that con-
trol these systems with systematic and comprehensive verification techniques.
To model and simulate complex HW/SW systems, the system level design lan-
guage SystemC is widely used. However, the co-verification techniques used
for SystemC are mostly ad-hoc and non-systematic. With that, it is either
very expensive to verify a given design, or the results are not reliable.

In this thesis, we present an approach to overcome this problem by a sys-
tematic, comprehensive, and formally founded quality assurance process, which
allows automated co-verification of digital HW/SW systems that are modeled
in SystemC. The main idea is to apply model checking to verify that an abstract
design meets a requirements specification and to generate conformance tests to
check whether refined designs conform to this abstract design. With that, we
obtain guarantees about the abstract design, which serves as a specification,
and we can ensure the consistency of each refined design to that. The result
is a HW/SW co-verification flow that supports the HW/SW co-development
process continuously from abstract design down to the final implementation.

To establish a formal basis for our HW/SW co-verification approach, we de-
fine a formal semantics for SystemC. To this end, we present a mapping from
SystemC to UPPAAL timed automata, which have a formally well-defined se-
mantics. Using this mapping, we can automatically transform a given SystemC
design into a semantically equivalent UPPAAL model. Furthermore, the result-
ing UPPAAL model allows the application of the UPPAAL model checker. With
that, we can verify important properties of a SystemC design fully automati-
cally, for example, liveness, safety, or the compliance with timing constraints.
These properties are guaranteed for all possible input scenarios.

In addition to the formal semantics that allows model checking, we present
a novel test algorithm for SystemC. The algorithm uses the UPPAAL model
of a given high-level SystemC design to generate conformance tests for lower
abstraction levels. Existing algorithms for the generation of conformance tests
from timed automata models either support only deterministic subclasses of
timed automata or compute expected results online during the test execu-
tion. The first is inacceptable because SystemC designs are inherently non-
deterministic. The latter makes it impossible to reuse the conformance tests
in multiple refinement steps. The algorithm presented in this thesis generates
conformance tests offline and it can cope with non-deterministic systems. The
result is a set of SystemC test benches that can be used to check automatically
whether a refined design conforms to a given abstract design.

Together with our model checking approach for abstract SystemC designs,
we obtain a framework for the automated HW/SW co-Verification of SystemC
designs using Timed Automata (VeriSTA). The framework is fully automati-
cally applicable and continuously supports the whole HW/SW co-design pro-
cess. We implemented the complete VeriSTA framework and demonstrate its
performance and its error detecting capability with experimental results.






Zusammenfassung

Eingebettete Systeme sind in der heutigen Welt allgegenwirtig. Sie werden
zunehmend auch in Bereichen eingesetzt, in denen ein Fehler zu hohen fi-
nanziellen Verlusten oder sogar zu Verletzungen und Todesféllen fiithren kann,
zum Beispiel im Automobilbereich. Als Folge davon wird es immer wichtiger,
die Korrektheit eingebetteter Systeme mit systematischen und umfassenden
Verifikationstechniken sicher zu stellen. Eine besondere Herausforderung ist
dabei, dass in eingebetteten Systemen Hardware- und Software-Anteile eng
miteinander verflochten sind. Um solche heterogenen Systeme zu modellieren
und zu simulieren wird héufig die Systembeschreibungssprache SystemC einge-
setzt. Die Verifikationstechniken, die fiir SystemC eingesetzt werden, sind
jedoch iiberwiegend ad hoc und unsystematisch. Die Verifikation ist daher
entweder sehr teuer oder die Ergebnisse sind nicht zuverléssig.

In dieser Arbeit stellen wir einen Ansatz zur Losung dieses Problems vor.
Wir présentieren einen systematischen, umfassenden und formal fundierten
Qualitéatssicherungsprozess, der die HW/SW Co-Verifikation durchgéngig iiber
den gesamten Entwurfsprozess ermoglicht. Die iibergeordnete Idee ist, eine
Kombination von Model Checking und Konformitétstesten anzuwenden. Model
Checking verwenden wir um zu zeigen, dass ein abstrakter Entwurf eine gegebene
Anforderungsspezifikation erfiillt. Anschlieend erzeugen wir Konformitét-
stests um zu priifen, ob ein verfeinerter Entwurf konform zu diesem abstrak-
ten Entwurf ist. Mit diesem Ansatz erhalten wir Garantien iiber bestimmte
Eigenschaften des abstrakten Entwurfs und stellen gleichzeitig die Konsistenz
verfeinerter Entwiirfe iiber den Entwurfsablauf hinweg sicher. Das Ergebnis ist
ein Qualitatssicherungsprozess, der den Entwicklungsprozess von der abstrak-
ten Spezifikation bis zur finalen Implementierung unterstiitzt.

Um eine formale Basis fiir unseren Ansatz zu etablieren, definieren wir
eine formale Semantik fiir SystemC. Zu diesem Zweck bilden wir die informell
definierte Semantik von SystemC auf die formal wohl-definierte Semantik von
UprpPAAL Timed Automata ab. Basierend auf dieser Abbildung kénnen wir
einen gegebenen SystemC Entwurf automatisch in ein semantisch dquivalentes
UprPAAL Modell transformieren. Dies ermoglicht auch die Anwendung des
UprpPAAL Model Checkers. Damit konnen wir wichtige Eigenschaften, zum
Beispiel Lebendigkeit, Sicherheit oder die Einhaltung von Zeitschranken, voll-
automatisch verifizieren. Neben dem Model Checking bildet die von uns definierte
formale Semantik fiir SystemC auch eine Basis fiir Konformitatstests. Wir
stellen einen Algorithmus vor, der aus einem abstrakten Modell alle moglichen
(zeitbehafteten) Ausgaben berechnet und aus diesen automatisch SystemC
Test Benches erzeugt. Diese konnen einen beliebigen verfeinerten Entwurf
ausfithren und automatisch priifen, ob die Ausgaben dieses Entwurfs in der
Spezifikation erlaubt sind oder nicht, also ob der verfeinerte Entwurf konform
zum abstrakten Enwturf ist.

Mit der Kombination aus Model Checking und Konformitétstesten erhal-
ten wir ein Framework fiir die automatisierte HW/SW Co-Verifikation von
SystemC Entwiirfen mit Hilfe von Timed Automata (VeriSTA). Das Frame-
work ist voll-automatisch anwendbar und unterstiitzt den gesamten HW/SW
Co-Design Prozess. Wir haben das VeriSTA Framework vollstdndig umgesetzt
und demonstrieren seine Leistungsfahigkeit mit experimentellen Ergebnissen.
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Introduction

Embedded systems are usually composed of deeply integrated hardware and
software components, and they are developed under severe resource limitations
and high quality requirements. In connection with the steadily increasing
demands on multi-functioning and flexibility, the analog control components
are more and more replaced by complex digital HW/SW systems. To meet
the high quality standards and to satisfy the rising quantitative demands,
the automatization of quality assurance processes for such systems is gaining
more and more importance. A major challenge is to develop automated quality
assurance techniques that can be used for the integrated verification of complex
digital HW/SW systems.

1.1 Problem

SystemC [IEEQ5] is a system level design language that supports design space
exploration and performance evaluation efficiently throughout the whole design
process even for large and complex HW/SW systems, and thus it is widely used
in HW/SW co-design. SystemC allows the description of both hardware and
software, and the designs are executable on different levels of abstraction. As a
consequence, co-simulation, i.e., the simultaneous execution of hardware and
software, can be used for validation and verification throughout the whole
design process. For quality assurance, however, simulation is necessary but
not sufficient. This has three reasons: First, simulation is incomplete. It can
neither be applied to all possible input scenarios (in particular for real-time and
non-terminating systems), nor can it be assured that all possible executions are
covered in the case of non-deterministic systems. Second, although HW/SW
co-designs are developed in a refinement process where an abstract design
is stepwise refined to the final implementation, it is very difficult to ensure
consistency between different abstraction levels, or to reuse verification results
in later development stages. Third, simulation alone is not sufficient for a
systematic and comprehensive quality assurance approach because the degree
of automation is limited. The evaluation of simulation results has to be done
manually by the designer, e.g., by inserting assertions about the expected
behavior all over the design.
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14 Introduction

1.2 Objectives

The aim of this thesis is to establish a framework for the automated HW/SW
co-verification of SystemC designs. We require the framework to fulfill the
following criteria:

1. The proposed co-verification techniques must be suitable for both hard-
ware and software parts of a given digital control system, and they have
to be able to cope with the main co-design concepts, namely concurrency,
time, reactivity, hierarchical modeling and abstract communication. Due
to the implementation of concurrency in the SystemC scheduler, this in-
cludes the requirement to support non-deterministic system designs.

2. The quality assurance process should be comprehensive and continuous,
i.e., it should support the complete system design flow from an abstract
design down to the final implementation. In particular, we want to ensure
consistency between different abstraction levels in a refinement process
and to reuse verification results from high abstraction levels on lower
abstraction levels.

3. We require the co-verification techniques used in the proposed framework
to be automatically applicable and efficient. To give evidence for that,
the framework should be completely implemented. It should be applied
to case studies that demonstrate its efficiency in terms of performance
and of error detecting capability.

A vital precondition for automated verification techniques is a formal se-
mantics for SystemC. This is due to the fact that automated verification tech-
niques require a clear and unique understanding of how to interpret a given
design or model. Unfortunately, the semantics of SystemC is only defined in-
formally in [IEEO05]. As a consequence, we derive as a subgoal that we have to
address the problem of defining a formal semantics for SystemC. We require
our formal semantics to fulfill the following criteria:

(i) The behavioral semantics of SystemC informally defined in [IEE05] must
be completely preserved.

(ii) To maintain comprehensibility, the structure of a given SystemC design
has to be preserved.

(iii)) We want the formal model of a given SystemC design to be generated
automatically.

(iv) The formal semantics must be suitable for automated verification.

(v) For debugging purposes, there should be tool support to edit, visualize
and simulate the formal model of a given SystemC design.
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1.3 Proposed Solution

To achieve the objectives defined above, we propose a quality assurance pro-
cess based on a combination of model checking and conformance testing. We
assume that the HW/SW co-design process starts with an abstract design that
is stepwise refined down to the final implementation. We propose to use model
checking to verify that the abstract design meets its requirements, and to gener-
ate conformance tests to verify that refined models or the final implementation
conform to the abstract model. This approach yields a formally founded and
comprehensive assurance process that

m continuously supports the HW/SW co-design flow throughout the whole
design process,

m ensures consistency between different development stages,
m allows reusing verification results and

m has the potential to be fully automatically applicable.

Model checking is an automatic verification technique. With model check-
ing, it can be proven that a model of a finite-state concurrent system (described
by a system specification) fulfills certain requirements. In contrast to simu-
lation or testing, model checking is complete, i.e., it covers all possible input
scenarios and all possible execution paths. With that, it is possible to guaran-
tee important properties such as liveness, safety and compliance with timing
constraints. The precondition for the application of model checking is a formal
model of the specification. In our approach, the specification is given as an
abstract SystemC design, whose semantics is only informally defined.

To obtain a formal semantics for SystemC designs, as required for the au-
tomatization of verification techniques, we propose to map the semantics of
SystemC to the formally well-defined semantics of UPPAAL timed automata
[BLL'95]. Using this mapping, we present an approach to automatically trans-
late a given SystemC design into a semantically equivalent UPPAAL model.
This allows the application of the UPPAAL model checker to verify safety,
liveness and timing properties. Furthermore, UPPAAL timed automata have
the expressiveness to represent most of the SystemC language constructs and
execution semantics. The only exceptions are dynamic process and object cre-
ation and the restriction that only bounded integer data variables are used.
As we will see, these are minor restrictions. More important is that inter-
actions between parallel processes, including dynamic sensitivity and timing
behavior, can be naturally modeled. Compared to other state based model-
ing languages, UPPAAL is especially well-suited to model and to verify timing
behavior. This is vital because system designs often contain synchronous hard-
ware and asynchronous software. In both the SystemC design and the UPPAAL
model, systems are regarded as networks of communicating processes. In our
transformation approach, we map SystemC processes to UPPAAL processes.
The execution of these processes is controlled by a timed automaton that
models the SystemC scheduler. We use parameterized timed automata for
events and for primitive channels. The timed automata modeling SystemC
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processes, events, channels and the scheduler are synchronized by UPPAAL
channels. All automata that are necessary to represent a given design are
generated separately and composed into a system using the UPPAAL template
mechanism. This makes the generation process highly scalable and the gen-
erated UPPAAL model compact, comprehensible, and flexible towards design
evolution. To ensure the correctness of the transformation, we first ensure that
the transformation of SystemC processes into timed automata processes pre-
serves their informally defined behavior. Second, we ensure that the semantics
of interactions between processes is preserved. The resulting transformation
from SystemC to UPPAAL preserves the informally defined semantics of Sys-
temC and the structure of a given design, can be applied fully automatically,
and yields direct access to the UPPAAL model checker.

The aim of conformance testing is to determine whether an implementation
of a system conforms to its specification. To this end, it is necessary to define
the notion of conformance precisely. In formal testing theory, this is defined
by a formal implementation relation. Widely used and well-established in
the context of model-based testing of labeled transition systems is the input
output conformance (ioco) relation introduced by Tretmans [Tre96]. Based
on the toco relation it is possible to evaluate test results automatically by
comparing the outputs of the implementation with those of the specification.
If the implementation sends an output that is not foreseen by the specification,
the test verdict is fail. If the implementation sends all expected outputs for
a given input trace, the test verdict is pass. The automatic generation of
conformance tests based on the ioco relation consists of the computation of
all possible outputs of the specification for a given input trace. The resulting
set of expected output traces can then be used as a test oracle. This allows
the automated evaluation of test executions by comparing the output traces
produced by the implementation with the expected ones.

The main challenge in the generation of conformance tests for SystemC
designs is that they are inherently non-deterministic due to the semantics of
the SystemC scheduler defined in [IEE05]. Furthermore, SystemC designs are
usually developed in several refinement steps. Thus, it is desirable to have
test cases that can be applied repeatedly in each refinement step. As a con-
sequence, we require our conformance test generation approach to meet two
important requirements: First, it should be applicable to non-deterministic
systems, and second, the expected simulation or test results should be com-
puted offline, such that they can be easily reused in later development stages.
To generate conformance tests under these requirements, we first use our map-
ping from SystemC to UPPAAL to translate an abstract SystemC design into
a semantically equivalent UPPAAL model. Then, we use the UPPAAL model to
statically compute all possible output traces for a given test suite consisting
of a set of input traces. When the test suite is executed on a refined design or
on the final implementation, we can compare the output traces produced by
the refined design with the output traces computed from the UPPAAL model
of the abstract design. To decide whether the refined design conforms to the
abstract design, we use the relativized timed input/output conformance (rtioco)
relation presented by Larsen et al. [LMNO05]. Based on that, we can use the
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output traces from the UPPAAL model as a test oracle to test the conformance
of the refined designs to the abstract design fully automatically.

1.4 Motivation

Embedded systems are ubiquitous in today’s everyday life. They help us mak-
ing breakfast, buying a ticket at the ticket machine, and provide daily enter-
tainment with radios, DVD players, TVs and video games. However, these
applications are only the tip of the iceberg. On top of that, we also confide
our lives to embedded systems which control our cars, trains and airplanes,
traffic lights, and medical equipment. The latter class of embedded systems
is a particularly severe challenge for their engineers, as they move between
the conflicting priorities of safety, performance, and resource requirements. A
field where those conflicting priorities are extremely hard to reconcile is the
automotive sector. Automotive systems are safety-critical, as their failure may
result in death or serious injury, the resource limitations are rigorous due to
large quantities of production and the high cost pressure. At the same time,
the quantity of digital hardware and software is heavily increasing, and already
accounts for up to 30% of the overall cost of a car [Bro05].

To achieve design solutions with maximal performance at minimal cost,
it is indispensable to explore the whole design space. In an application area
where hardware and software persistently interact with each other and are to a
great extent interchangeable, this requires an integrated design methodology.
The demand for such an integrated design methodology has led to the idea of
HW/SW co-design. In HW/SW co-design, a detailed high-level description of
the complete behavior is made prior to design selection and HW/SW partition-
ing. This behavioral description then serves as an input to an optimization
procedure that uses performance estimations to select the overall design and
partitioning. This allows the evaluation of different design alternatives, and
at the same time leads to an early consideration of HW/SW interfaces and
thereby eases system integration. While co-design techniques have become
comparatively mature, not least due to the development of powerful languages
for the design of digital HW/SW systems such as SystemC and System Verilog,
co-verification techniques still lack to keep pace with the advancements. In
particular, the degree of automatization of co-verification techniques is lim-
ited. Although co-designs have become executable on different abstraction
levels, and co-simulation is extensively used in every design stage, simulation
results are still evaluated manually or semi-automatically by inserting asser-
tions about the expected behavior all over the design. Although the concept of
HW/SW co-design requires a behavioral abstract description of the system that
serves as a specification for the following refinement steps, this description is
still not used to automatically assure quality and conformance of subsequently
developed designs. On top of that, the techniques to ensure the quality of the
behavioral description are also premature and insufficiently automated, at least
in case of a timed description. Together, this makes HW/SW co-verification
an expensive, time-consuming, and error-prone task.
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With this thesis, we contribute to this field with a framework for automated
HW/SW co-verification of digital SystemC designs. Our approach allows both
the automated verification of a given high-level design as well as the automated
evaluation of the conformance of refined designs to the abstract design through-
out the whole design process. SystemC became our language of choice because
it permits to use a single language for specification, architectural analysis, test
benches, and behavioral design. SystemC provides all of the substantial con-
cepts of HW/SW co-design languages, such as concurrency simulation based
on delta-cycles, time, reactivity, hierarchical modeling and abstract communi-
cation. With a solution that can cope with all of this, we are confident that
our approach can also be transferred to other co-design languages (such as
SystemVerilog).

1.5 Research Area

The issue of HW/SW co-verification establishes a point of intersection of many
research areas. HW/SW co-design taken by itself is already an interdisci-
plinary field, which brings together the hardware world and the software world,
communication and network experts, mechatronics and control engineers, and
many others. HW/SW co-verification adds the dimension of topics connected
with quality assurance. Analysis techniques, formal verification, testing and
simulation can all be made applicable to co-verification with appropriate adap-
tations. Furthermore, the very different techniques from the area of hardware
verification have to be combined with those from the area of software verifi-
cation. For this thesis, the main research areas in which it is embedded are
HW/SW co-design, formal verification, and testing. With respect to HW/SW
co-design, we use current research results from system level design, trans-
action level modeling, and HW/SW co-simulation. With respect to formal
verification, the relevant research fields can be narrowed to model checking,
formal specification and semantic-preserving transformations. In the field of
testing, our work can be classified as research belonging to the areas of con-
formance testing, in particular input/output conformance testing, black-box
testing, real-time testing, and automated test generation.

1.6 Main Contributions

The main contributions of this thesis are:

m A formally founded and comprehensive HW/SW co-verification
process for digital HW/SW systems modeled in SystemC, which con-
tinuously supports the HW/SW co-design flow throughout the whole de-
sign process. The proposed process is based on a combination of model
checking and conformance testing, ensures consistency between differ-
ent development stages, allows reusing verification results and is fully
automatable. We published this approach in [HFG09, Her10].
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m A formal semantics for SystemC that is defined by a mapping from
SystemC to UPPAAL timed automata. This allows the application of
the UPPAAL model checker to verify that an abstract SystemC design
meets its requirements. In particular, a given SystemC design can be
automatically translated into a semantically equivalent UPPAAL timed
automata model. This exempts the designer from the time-consuming
and error-prone task of developing a formal specification manually. We
published this approach for model checking SystemC designs in [HFGO0S|.

m An algorithm for offline conformance test generation for SystemC
designs. The algorithm uses a UPPAAL model, which was automatically
generated from a high-level SystemC design, to compute all possible out-
put traces. SystemC designs are non-deterministic. We mitigate the state
space explosion problem by exploiting specifics of the SystemC seman-
tics to drastically reduce the number of states that have to be kept in
memory. From the resulting output traces, we generate SystemC test
benches that evaluate the conformance of a given low-level design fully
automatically. We published the basic algorithm in [HFG09).

m A Framework for Automated HW/SW Co-Verification of SystemC' de-
signs using Timed Automata (VeriSTA), which shows the applicability
of our approach. With an Anti-Slip Regulation and Anti-lock Braking
System (ABS/ASR) as case study, we demonstrate that the complete
framework can be applied fully automatically to digital HW/SW sys-
tems. Using the ABS/ASR example, we furthermore demonstrate both
the efficiency and error detecting capability of our framework.

1.7 Outline

This thesis is structured as follows: In Chapter 2, we give an introduction
to HW/SW co-design and co-verification, to model checking and conformance
testing, and to SystemC and UPPAAL. Then, in Chapter 3, we review related
work on HW/SW co-verification, in particular approaches that target SystemC,
and related work on conformance testing for timed systems, in particular for
UprPAAL. In Chapter 4, we present our approach for a comprehensive and
continuous quality assurance of digital SystemC designs. The proposed quality
assurance process is based on a combination of model checking and testing. In
Chapter 5, we present our approach to transform a given SystemC design into
a semantically equivalent UPPAAL model, which can then be verified using the
UpPPAAL model checker. In Chapter 6, we present our approach for automated
conformance test generation and conformance evaluation for SystemC designs.
To show the practical applicability of our approach, we have implemented the
complete VeriSTA framework and applied it to three case studies. In particular,
we use an Anti-Slip Regulation and Anti-lock Braking System to demonstrate
both the performance of the framework and its error detecting capability. The
main characteristics of the implementation are summarized in Chapter 7. The
experimental results are presented in Chapter 8. We conclude in Chapter 9
and give an outlook on further research topics.






2 Background

In this chapter, we give a brief introduction to the main topics that are con-
nected to this thesis. First, we introduce the concepts of HW/SW co-design.
To this end, we describe the HW/SW co-design flow and the idea of trans-
action level modeling. Second, we identify the main challenges in HW/SW
co-verification and review common co-verification practice. Then, we give a
general overview over verification and validation techniques and define some
important terms we use in this thesis. We also introduce the verification tech-
niques that are most relevant for our approach, namely model checking and
conformance testing. Finally, we introduce the two languages that are in the
center of our approach for automated HW/SW co-verification, i.e., the system
level design language SystemC and the formal modeling language UPPAAL
timed automata.

2.1 HW/SW Co-Design

Embedded systems are usually composed of deeply integrated hardware and
software components. In some systems the hardware part is fixed, but the
increasing demands on performance and quality requires more and more that
the hardware fulfills very special requirements and that it is precisely adjusted
to the embedded software. As a consequence, it is often no longer sufficient to
use prefabricated hardware components. When dedicated hardware has to be
developed for an embedded system, the development of the embedded software
depends on the progress in hardware development. The classical design flow
for such hardware/software systems is shown in Figure 2.1. It starts with an
abstract specification, e. g., the algorithm or another functional description of
the desired system behavior. The specification is then partitioned into hard-
ware and software modules. The decision which parts of the systems should be
implemented in hardware and which in software is often guided by experience.
For example, in video processing applications, the transformation of single
frames (e.g., redundancy reduction and quantization) must be performed in
high-speed and is usually implemented in hardware, while the composition of
the frames is usually done in software. After the HW/SW partitioning, the
design flow diverges and hardware and software parts of the system are de-

21
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Figure 2.1: Classical Design Flow

veloped separately and independently. The integration of the hardware and
software modules is not done until the last development step.

The separation of hardware and software design flows severely increases
the system integration effort and makes it difficult and error-prone. For exam-
ple, if the HW/SW interface definitions show deficits or if the communication
between hardware and software designers is insufficient, system integration re-
quires a lot of debugging and re-design. Furthermore, the later defects are
revealed, the more expensive is their removal. If they were injected in early
development phases, the designers often have to go back through the complete
design cycle to detect and to mend them. Besides the cost and quality issues,
a major drawback of the separated development of hardware and software
is the issue of performance. The early HW/SW partitioning does not allow
the evaluation of different design alternatives, and thus sacrifices significant
optimization potential. HW/SW co-design is an approach to overcome these
problems.

2.1.1 Design Flow

The idea of HW/SW co-design came up in the early 1990s [PP92, EHB93,
GM93, KL93|. The central point is that hardware and software are developed
together in an integrated system design process. The resulting co-design flow
is shown in Figure 2.2. As before, it starts with an abstract specification, but
now, the HW/SW partitioning is not fixed at the beginning. Instead, it is part
of an iterative process, where different design alternatives are evaluated and
compared. As a consequence, it is possible to explore the whole design space
and to find an optimal HW/SW architecture. Furthermore, it allows an early
analysis of HW/SW interfaces and thus reduces the cost of integration and
defect removal.
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An essential component of co-design methods is HW/SW co-simulation,
which is necessary to evaluate and compare different design alternatives. In a
HW/SW co-simulation, hardware and software parts of a system are simulated
together. For example, an Instruction Set Simulator (ISS) is executed together
with a VHDL (VHSIC! Hardware Description Language) module. This pro-
vides an integrated way to simulate the interactions between hardware and
software. At the same time, it allows performance evaluation if performance
parameters like the delay of each module and the timing relations among events
are simulated.?

The main challenge in HW/SW co-simulation is that hardware and software
designers talk in different languages. They use different abstraction levels,
different models of computation, different programming languages and different
tools. These differences make it complicated to bring the design processes
together and to unify them in a single co-simulation framework. To promote
unifying frameworks, it is vital to gain insights into the relationship between
different models of computations [Lee02]. An important question is how to
combine synchronous and parallel hardware modules with asynchronous and
sequential software models correctly and efficiently. As the software is finally
executed on hardware, a simple approach to maintain correctness is to simulate
both hardware and software on the lowest level of abstraction, on register
transfer level. This is a feasible solution, but it exhibits the drawback of
very slow simulation speed. In particular, if the processor design and the
compiler are not part of the optimization target, but merely input parameters,
the low-level simulation produces a huge unnecessary overhead. To solve this
problem, there exist two (complementary) approaches: multi-level simulation
and transaction-level modeling. Multi-level simulation means that modules on
different abstraction levels are simulated together. Transaction level modeling

'VHSIC was a 1980s U.S. government program to develop very-high-speed integrated cir-
cuits.

20ther performance parameters could be for example energy consumption, memory usage,
and space requirements.
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tries to subsume hardware and software modeling under a common model of
computation. At the same time, it provides abstractions that are suitable
to speed up simulation without sacrificing correctness. The transaction level
modeling design methodology can be easily extended to include multi-level
simulations. In the following, we briefly introduce the principles of transaction
level modeling.

2.1.2 Transaction Level Modeling

Transaction level modeling (TLM) [Ghe05, KI1i05, CGO03] was introduced by
Synopsis around 2000.3 The general idea of TLM is the rigorous separation
of computation and communication. A system is regarded as a set of commu-
nicating processes, which can be structured in modules. The processes model
functional processing units, i.e., the computations. The communication ar-
chitecture is modeled by channels, which interconnect processes and modules.
Data exchange is modeled by transactions. The concept of transactions is the
heart of the TLM approach. A transaction is an abstraction of any possible
information exchange between processes. For example, a transaction could
represent the exchange of an abstract data type, but also of a concrete signal
on a physical wire. At the same time, the processes can also be modeled on
different abstraction levels. As a consequence, the transaction model can be
instantiated with different models of computation. For example, a data flow
model could be instantiated by using purely functional processes and FIFO
(first in first out) channels for the exchange of abstract data types. At the
lowest level, a register transfer level (RTL) model could be instantiated by
modeling combinational circuits as processes and data exchange with regis-
ters.

To obtain a systematic design methodology, TLM defines a set of abstrac-
tion levels, which guide the way through the stepwise refinement process from
an abstract behavioral specification down to the final implementation. The
abstraction levels can be classified according to their modeling accuracy. The
dimensions of modeling accuracy can in turn be divided into functional accu-
racy and timing accuracy.

The TLM design flow used in HW/SW co-design is depicted in Figure 2.3.
Figure 2.3(a) illustrates the structural view, where emphasis is put on the ar-
chitecture definition, Figure 2.3(b) illustrates the behavioral view, where em-
phasis is on the behavioral refinement, e. g., data and time refinements. Both
views are conceptually different, but complementary in the design process, as
a structural refinement always refines the behavior and vice versa.

Both from a structural and a behavioral view, the first step is to derive a
functional model from the system specification. To this end, algorithms and
functions are selected that are suitable to implement the purpose of the system.
This model is used to define and to validate the functionality of the system. As

3The term transaction level modeling is a little bit misleading because TLM is not a single
level, but a modeling technique covering different levels of abstraction.
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Figure 2.3: TLM Refinement Flow

time plays an important role in nearly all kinds of embedded systems, the first
step after defining and validating the functionality of a system is usually to add
approximate timing information to processes and channels. This yields a first
impression about the timing behavior. To that end, from a behavioral view,
an untimed functional and a timed functional model are distinguished. In this
early design phase, time is usually over-approximated because an important
goal is to assess the feasibility of the design and to get preliminary performance
estimations. The resulting timing constraints on processes and channels can
be regarded as time budgets for later design phases because they constitute the
upper bounds that must be obeyed to meet the system timing requirements.

When the functional model of the design is validated and the preliminary
performance estimation turns out to be satisfactory, the next step is to map it
to an abstract architecture. To this end, the functional model is partitioned and
mapped to abstract hardware and software components. From a behavioral
view, this mapping is the transition to the programmer’s view. Now it is
possible to add more realistic timing information, depending on the HW/SW
partitioning. Still, the timing information is over-approximated, such that
timing constraints can be interpreted as time budgets for later design phases.

In the next design phase, the abstract architecture is mapped to a wvir-
tual architecture. To this end, each partition (or component) is either refined
manually or existing modules (Intellectual Properties, IPs) are used as imple-
mentation. The manual refinement includes refinement of the data granularity
and timing behavior. On the software side, the modules are implemented in a
high-level programming language, and real-time operating system functionality
is added where necessary. The compilation of the software components yields
an instruction accurate model. On the hardware side, communication channels
and protocols are chosen, and hardware data types are defined. This yields a
bus cycle accurate model (e.g., a VHDL design). From the bus cycle/instruc-
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tion accurate model, a cycle-accurate model can be derived. The result of the
iterative refinement phase is a cycle-accurate, synthesizable system design.

In the last step, the final implementation is synthesized, which is pin- and
cycle-accurate. This is usually done automatically by electronic design au-
tomation (EDA) tools.

2.2 HW/SW Co-Verification

In the last decade, embedded systems have become omnipresent in everyday
lives. At the same time, they are increasingly used in cost-critical and life-
critical applications, for example in the automotive sector or in the medical
sector. This has led to a drastically heightened significance of design correct-
ness of these systems. Unfortunately, conventional verification and validation
techniques are difficult to use for quality assurance of embedded systems. Har-
ris [Har05] attributes this to the high complexity of these systems, which stems
from their size and their heterogenity. The considered systems are timed and
have to meet strict real-time requirements. They often consist of a large set
of concurrent or parallel processes exhibiting non-deterministic behavior. A
particular problem is the composition of synchronous and asynchronous sub-
systems. Last but not least, verification techniques are usually designed either
for hardware or for software, and conveying them to the other is not trivial.
Nonetheless, several co-verification techniques evolved over the last few years.

In general, one can distinguish between formal co-verification as a static
and complete technique, and simulation and testing as dynamic and incom-
plete techniques. Formal co-verification approaches either use abstract formal
specifications which are suited for the description of both hardware and soft-
ware parts of a system, such as finite state-machines (e. g., [BCGT97, Lee03]),
or they try to combine formal verification methods for hardware and software,
e.g., bounded model checking and inductive proofs [GKDO06]. Most of these
approaches focus on functional verification and do not consider non-functional
properties such as real-time behavior. However, exactly those properties gain
more and more importance in recent developments, in particular in the embed-
ded system domain. Naturally, non-functional properties such as the abidance
of real-time constraints and dependability are vital in safety-critical embedded
systems. As it is difficult to formally verify non-functional properties, simula-
tion and testing are more popular in the HW/SW co-design and co-verification
community. Following Harris [Har05], simulation and testing for HW/SW co-
verification involves three major steps:

(i) input selection
(ii) co-simulation or test execution
(iii) evaluation of simulation or test results

The co-simulation or test execution involves the common execution of hard-
ware and software components and their interactions. Typically, a test bench
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is used to provide the system with inputs and to observe its outputs. To this
end, it usually consists of an input generator and an output monitor as shown
in Figure 2.4. The aim of automatic test generation techniques for HW/SW co-
simulation is the automatic construction of test benches, i. e., the construction
of input generators and output monitors. Ideally, the output monitor does not
only observe the outputs, but also evaluates their validity. In the following, we
discuss input selection, co-simulation and the evaluation of simulation results
in more detail.

2.2.1 Input Selection

An important task to make co-simulation systematic and to allow automatiza-
tion is input selection. The term input selection denotes the selection of inputs
from the set of possible inputs. This includes the selection of input events, the
determination of points in time where they should be sent to the design under
test, and test data generation. Together, these constitute an input trace. In
case of embedded systems, the real inputs are later provided by a technical
environment. In general, the number of possibilities to provide an embedded
system with inputs is infinite. This has several reasons: first, as these systems
are often non-terminating, the length of an input trace is generally infinite.
Second, as these systems are timed, and time is real-valued, their exists an
infinite set of possibilities at which points of time inputs could be send. Third,
also the input data may be real-valued and thus infinite. The infinity of in-
put scenarios makes erhaustive or complete simulation and testing generally
impossible. Thus, input selection is a vital task for simulation and testing of
embedded systems.

In the co-simulation setting, the environment is replaced by a test bench,
which provides inputs and observes outputs. In our context, the test bench can
be regarded as an environment model. In this terminology, one can distinguish
open environments, which may provide arbitrary inputs at arbitrary times
(e.g., randomized), and restricted environments, which only provide inputs
at certain times, orders and ranges. It is important to note that knowledge
about the environment can be used to limit the number of test scenarios, and
to concentrate on possible or likely inputs. Of course, for robustness or fault
tolerance testing, an open environment model is preferable.
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Regardless of whether a test bench corresponds to an open or to a closed
environment, there exist different strategies to select simulation or test inputs
from the infinite set of possible inputs. The basis for assessing the quality of
a given set of inputs (i.e., a test suite), and thus for the selection of a "good”
test suite, is a fault model. A fault model allows the concise representation
of the set of all possible design errors of a given system. With that, the
coverage of a test suite with respect to a given design can be evaluated. For
example, a popular fault model in the software domain is statement coverage,
where a potential fault is associated with each line of code. Using this fault
model, the coverage of a given test suite with respect to a given design can be
evaluated by computing the ratio of statements executed by the test suite to
all the statements in the design. Other typical fault models from the software
domain are control- and data flow based like branch coverage, path coverage
or domain coverage. In the HW/SW co-design domain, state machine based
fault models like state coverage or transition coverage are widely used. In the
hardware domain, the most popular fault models are stuck-at coverage and
toggle coverage. In general, one can distinguish randomized, coverage-directed,
and fault-directed input selection.

For randomized input selection, test inputs are chosen randomly. At arbi-
trary times, a random event is taken from the set of input events, and test data
is generated randomly. It is also possible to define probability distributions for
input events and test data. To determine the delays between input events,
it is reasonable to use exponential distributions. Randomized input selection
allows the fast generation of large test suites, but no conclusions about how
much of the design is tested can be drawn.

For coverage-directed input selection, the test generation technique heuris-
tically modifies an existing test suite and evaluates fault coverage to decide
whether the modification yields an advantage. A popular technique for coverage-
directed input selection is the use of genetic algorithms together with a cost
function which is used to evaluate new test sequences. It is also possible to use
randomized input selection together with a cost function to achieve a certain
coverage. Coverage-directed input selection is potentially less time-consuming
than fault-directed techniques because efficient heuristics may be used to mod-
ify the test suite. However, the quality of the resulting test suite depends on
the used heuristics.

For fault-directed input selection, the test generation technique targets a
specific fault and constructs a test sequence to detect that fault, e.g., using
path conditions. The resulting fault coverage is evaluated to decide whether
the test generation process should be terminated. Popular techniques for fault-
directed input selection are constraint solving at constraint and data flow graph
(CDFGQG) level for software, and BDD based techniques such as satisfiability
(SAT) solving for hardware. Fault-directed input selection allows the system-
atic derivation of minimal test suites with maximal coverage, but can be very
costly in terms of computation time.
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2.2.2 Co-Simulation

In HW/SW co-simulation, the design under test, including hardware and soft-
ware components, is executed in a simulator. Conventionally, there is a gap be-
tween the simulation techniques used for hardware and those used for software.
Typically, hardware is simulated by event-driven simulators with picosecond
accuracy, e. g., on register-transfer level or on gate level. Opposed to that, soft-
ware ‘simulation’ is usually performed by simply executing the code, possibly
together with a real-time operating system (RTOS), on any processor which
supports the RTOS and the interpreter of the language [Har05]. Co-simulation
techniques often bridge the gap between hardware and software simulation by
explicitly modeling the target processor, by compiling the software for it, and
by simulating the execution of the software on the processor model together
with the hardware components. An alternative to that is the approach of
executable system-level design languages such as SystemC or SystemVerilog.
There, hardware and software tasks are modeled in a common language and
run concurrently in the simulation. The expressiveness of these languages also
allows the explicit modeling of hardware/software interfaces and interactions.

The challenge of co-simulation is to be efficient and accurate at the same
time. These goals contradict each other. In general, a higher accuracy always
leads to lower performance. Thus, it is vital for co-simulation techniques to
choose the appropriate abstraction level. As we have seen in Section 2.1, the
TLM refinement flow defines a set of abstraction levels with ascending ac-
curacy. On the functional level, no data or timing details are modeled. As
a consequence, functional models can be executed with very high simulation
speed. At the further end, pin- and cycle-accurate models contain all data and
timing details needed for hardware and software synthesis. These models can
only be executed with very low simulation speed. The models in between, e. g.,
bus-cycle and instruction accurate models, are often referred to as transaction
level models. They are part of the TLM design paradigm, i.e., details of com-
munication among computation components are separated from the details of
computation components. For co-simulation, it is important that unnecessary
details of communication and computation are hidden in a transaction level
model and may be added later. As a consequence, transaction level models
speed up simulation drastically opposed to commonly used hardware models
such as RTL models. At the same time, they allow the evaluation and valida-
tion of design alternatives in HW/SW co-design at a high level of abstraction.

2.2.3 Evaluation of Simulation Results

The aim of the evaluation of simulation or test results is to inspect simulation
or test traces in order to decide whether the system behaved correctly for a spe-
cific input trace, or whether a defect was detected. One possibility to achieve
this is to inspect simulation or test traces manually. In most cases, this is not
only error-prone but also unacceptably time-consuming. A prerequisite for the
automated evaluation of simulation results is a machine-readable description of
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the expected or correct system behavior. To that end, it is necessary to formal-
ize the expected behavior somehow. For that, there exist two complementary
approaches: assertion-based and specification-based techniques.

Assertion-based techniques require the definition of a set of assertions,
which are dynamically checked during simulation or test execution. Assertion-
based techniques are particularly well-suited for validation purposes, because
system requirements can often be directly formalized as a set of assertions. In
addition, assertions are generally well-suited to formalize plausibility checks,
e.g., on variables representing physical data. A great advantage of assertion-
based techniques is that they can be directly derived from the requirements,
and no formal model of the system is required. A major drawback is that
the assertions that can be derived from the requirements are usually coarse-
grained. Manual effort is necessary to translate them into machine-checkable
assertions that are related to the concrete signals of the final implementation.
Furthermore, the assertions have to be inserted manually.

Specification-based techniques are based on a formal model, which is used
as specification of the expected or correct system behavior. The evaluation
of simulation results is done by comparing the behavior of the system imple-
mentation with the behavior of the formal specification. A specification-based
technique which is broadly elaborated in the literature is conformance testing,
introduced by Tretmans [Tre96]. There, a conformance relation is used to
decide whether the implementation conforms to the specification. There are
two major advantages of conformance testing: first, if an executable formal
specification is available, conformance testing can be applied fully automati-
cally. Second, conformance testing is especially well-suited to ensure consis-
tency when a design is refined from specification to implementation, as it is
for example the case in model-driven development processes or in the typical
HW/SW co-design flow.

Overall, assertion-based and specification-based techniques for the eval-
uation of simulation or test results are complementary and should be used
together. Assertion-based testing is especially well-suited to check whether a
system fulfills the requirements, specification-based testing is better suited to
ensure consistency between different models in a model-centric design flow. As
conformance testing plays a major role in this thesis, we give a more detailed
introduction to that in Section 2.3.3.

2.3 Verification and Validation Techniques

Verification and validation (V&V) techniques are used to check whether a sys-
tem conforms to the requirements and whether it satisfies its intended use.
Verification and validation techniques are used in all kinds of domains. How-
ever, the interpretation of notions and central concepts varies in different com-
munities. In this section, we first give a brief introduction to some basic ideas
and review the main characteristics of important V&V techniques. Then, we
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introduce the techniques that are most relevant for the approach of this thesis,
namely model checking and conformance testing.

2.3.1 Preliminaries

For software validation and verification, there exists an IEEE standard [IEE04],
which gives the following definitions:

m Validation: The process of evaluating a system or component during or
at the end of the development process to determine whether it satisfies
specified requirements. (Are we building the right thing?)

m Verification: The process of evaluating a system or component to de-
termine whether the products of a given development phase satisfy the
conditions imposed at the start of that phase. (Are we building the thing
rightly?)

Unfortunately, the IEEE classification of Validation and Verification is not
always in compliance to the use of the terms in different communities. For ex-
ample, an alternative interpretation that is wide-spread in software engineering
communities is to take the term verification literally. Then, it corresponds to
formal proof techniques that aim at yielding absolute guarantees about the
correctness of a given system, in contrast to falsification techniques such as
simulation and testing. In the HW/SW co-design community, the differenti-
ation between verification and validation is often abandoned, and the term
HW/SW co-verification is used for all kinds of V&V techniques. To simplify
things and to stay out of the debate, we follow this and use the term co-
verification for all kinds of V&V techniques applied to the HW/SW co-design
domain.

In general, one can distinguish static and dynamic V&V techniques. Static
V&V techniques are static analyses and formal verification, the most popular
dynamic V&V techniques are simulation and testing. In this thesis, we use for-
mal verification, simulation and testing. Formal verification provides a formal
proof that a formal specification satisfies a given property expressed as logic
formula, using formal methods or mathematics. The result is complete and
guarantees that the property is satisfied for all possible input scenarios. Im-
portant formal verification techniques are model checking and theorem proving.
In simulation and testing, experiments are performed before deploying the sys-
tem in the field. In simulation, the experiments are performed on a model or
abstraction of the system. Testing is similar to simulation, apart from that the
experiments are performed with the real implementation. The border between
simulation and testing becomes blurred in mixed HW/SW systems because
very often parts of the system are simulated while for others the implemen-
tation is executed. Common examples are Hardware in the Loop simulations,
where the real hardware is executed in a simulated environment, and Soft-
ware in the Loop simulations, where the software is executed on simulated
hardware. The main advantage of simulation and testing techniques is that
they do not require any prerequisites like a formal system model or formal
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requirement specifications, and that the effort is considerably lower than for
formal verification. The disadvantage is that the results are incomplete, yield-
ing only propositions with respect to the executed input scenarios. In other
words, simulation and testing can be used to show the presence of bugs, but
never their absence (Dijkstra [DHD72]). Note that all V&V techniques can
be used for both verification or validation. With formal verification, one can
prove that a system fulfills a given requirements specification or that a refined
formal model conforms to an abstract specification. Regarding simulation and
testing, one can check certain assertions during test execution, which are de-
rived from the requirements specification (assertion-based testing), or one can
compare the outputs of an implementation with the outputs of a specification
(specification-based testing). Checking whether the implementation conforms
to the specification is a special case of specification-based testing also termed
conformance testing.

2.3.2 Model Checking

The aim of model checking is to check whether a model of a finite-state con-
current system (system specification) fulfills certain logical properties (require-
ment specification). A model checker is a tool that automatically checks
whether the properties are satisfied, and yields counter-examples if not (see
Figure 2.5). The counter-examples are given as traces of the system that vio-
late the postulated property. The following section gives a brief introduction
to model checking based on Clarke et al. [CGP99].

Formally, model checking is used to check whether a model .# satisfies a
property ¢:

M
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The model .# of the system is usually specified as a labeled transition
system (LTS), which can be represented as a Kripke structure. A Kripke
structure is a labeled transition graph, where the nodes represent the reachable
states of the system and the edges transitions from one state to another. Paths
in the graph model possible executions of the system. To model properties of
the system, a function is used that labels each state with a set of atomic
propositions that are true in this state. Formally, a Kripke structure .#Z can
be defined as follows:

Definition 1 (Kripke Structure). Let AP be a set of atomic propositions. A
Kripke structure .# over AP is a four tuple .4 = (S,So,R,L) where

m S is a finite set of states,
m Sy C S is the set of initial states,

m RC S XS is a transition relation that must be total, 1. e., for every state
s €S there is state s’ € S such that R(s,s'),

m L:S — 247 is a function that labels each state with the set of atomic
propositions true in that state.

A path in A is an infinite sequence of states T = s¢s153... such that R(s;,siy1)
for alli>0.

For the specification of logical properties of both hardware and software
systems, temporal logics have proved to be useful. With temporal properties, it
is possible to describe the ordering of events in time without introducing time
explicitly. Temporal logics use atomic propositions and boolean operations
to describe properties of states (such as “situation is critical”), and temporal
operators such as eventually or never to describe properties beyond states
(such as “a critical situation never arises”). A logic for specifying properties
of the state transition systems is the computation tree logic CTL*, which is
used to describe properties of computation trees. A computation tree can be
derived from a labeled transition system by taking the initial state as root,
and then appending all possible successor states of the system. To those,
again the successor states are appended until all (infinite) paths of the system
are unfolded. An example is shown in Figure 2.6. From the initial node a,
possible successor states are b and c¢. From state b, one can only go back to a,
from state ¢ to b or ¢, and so on.

CTL* formulae are composed of a state formula, which describe properties
of a state, temporal operators, which describe properties of a path, and path
quantifiers, which describe whether a property holds on all path or on some
path. There are two path quantifiers and five basic temporal operators in

CTL*:
m Path quantifiers:

e A: for all paths (Always)
e E: for some path (Exists)

m Temporal operators:
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X ¢: property ¢ holds in the next state (neXt)
F ¢: property ¢ will hold at some state in the future (Future)
G ¢: property ¢ holds at every state (Globally)

@1 U ¢,: property ¢; holds in all states until property ¢, holds
(Until), and ¢, holds eventually at some state

01 R ¢,: property ¢, holds in all states until property ¢; holds, or
¢, holds never (Release)

In CTL*, these operators can be freely combined. The most important
subsets of CTL* are the linear-time logic LTL and the computation tree logic
CTL. LTL is based on the assumption that time is linear and thus only a single
path is considered. As a consequence, no path quantifiers are used in LTL.4
In this thesis, we focus on CTL because the UPPAAL requirements language
is a subset of CTL.> In CTL, it is assumed that there are branches in the
computation tree, and temporal operators must be immediately preceded by
a path quantifier. This leads to the following rules for the structure of CTL
formulae:

m if p € AP, then p is a state formula

m if ¢1, ¢, are state formulae, then —¢;, @ A @, and ¢; V ¢ are state formulae

m if @1, ¢, are state formulae, then X ¢, F ¢, G ¢1, ¢; U ¢, and ¢; R
¢, are path formulae

m if ¢ is a path formula, then E ¢ and A ¢ are state formulae
Using CTL it is possible to specify important properties, in particular safety

properties (something bad will never happen), and liveness properties (some-
thing good will eventually happen).

The simplest model checking algorithm is to construct an explicit repre-
sentation of a Kripke structure .# = (S,R,L) as a labeled, directed graph, and

4LTL can nevertheless be applied to computation trees. Then, an implicit Always is
assumed and the given property must hold on all paths.

5In UPPAAL, nesting of path formulae is not allowed. As a consequence, complex properties
such as confluence cannot be verified.
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then to check which states in S satisfy a CTL formula ¢. The problem is
that the explicit representation of the Kripke structure yields an exponential
increase in the number of states, which is also referred to as the state space
explosion problem. Several techniques exist to face this problem, e.g., bi-
nary decision diagrams, symbolic model checking, partial order reduction, and
abstraction techniques. However, to elaborate these techniques is not in the
scope of this thesis. We refer the interested reader to Clarke et al. [CGP99].

2.3.3 Conformance Testing

The aim of conformance testing is to determine whether an implementation of
a system conforms to its specification. To this end, it is a necessary prerequisite
to define a formal implementation relation. Widely used and well-established
in the context of model-based testing of labeled transition systems is the input
output conformance (ioco) relation introduced by Tretmans [Tre96]. In this
section, we briefly review the ioco-theory. For more detail, we refer to Schmaltz
et al. [STO8] and Tretmans [Tre08].

An implementation relation relates an implementation to its specification.
Whereas a specification is a formal object taken from a formal domain SPEC,
the implementation is usually a real physical object. To relate such an im-
plementation to a formal specification is possible by assuming that any real
implementation can be modeled by some formal object i € MOD, where MOD
is the universe of all possible implementation models. This assumption is usu-
ally referred to as the test assumption. Based on the test assumption, a formal
implementation relation can be defined as imp € MOD x SPEC. An implemen-
tation i is than said to be correct with respect to a specification s if i imp s.

The implementation relation zoco is based on the assumption that both the
specification and the implementation can be described by labeled transition
systems (LTS) with inputs and outputs. The ioco relation defines that an
implementation i conforms to its specification s if any experiment derived from
s and executed on i leads to an output of i that is foreseen by s.

Definition 2 (Input-output conformance (ioco)). An implementation i con-
forms to a specification s if for all input traces ¢ that can be derived from s
the set of output traces of i is contained in the set of all possible output traces

of s:

i ioco s iff Vo € traces(s) : out(i after o) C out(s after o)

The domains of i and s, and also the semantics of traces(s) and out(s, o) are
defined by the type and interpretation of the labeled transition system used for
modeling implementation and specification. For now, we deliberately abstract
away from any specific semantics. In Chapter 6, we describe a more specific
conformance relation for UPPAAL timed automata.

Based on the 7oco relation it is possible to evaluate test results by comparing
the outputs of the implementation with those predicted by the specification. If
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the implementation sends an output not foreseen by the specification, the test
verdict is faul. If the implementation sends only expected outputs for a given
input trace, the test verdict is pass. A peculiar aspect of the ioco relation is that
the absence of outputs is also considered as an observable event, which is called
quiescence. This allows the definition of a timeout if the implementation does

not send any outputs for a certain time interval, after which the test verdict is
faal.

From the ioco relation, a general approach for the generation of confor-
mance tests can be derived. First, one has to compute all possible output
traces of the specification for a given input trace. Second, the implementation
is executed for the same input trace. The previously computed output traces
can then be used as a test oracle to check the correctness of the outputs of
the specification using the relation out (i after ) C out(s after o). This can be
done fully automatically. Tretmans [Tre08] showed that the generated tests
are sound, i.e., any failing implementation is indeed non-conforming and no
false detections of errors can be made.

2.4 SystemC

SystemC [IEE05] was introduced by the Open SystemC Initiative (OSCI) in
19995, The aim of the Open SystemC Initiative was to develop an open indus-
try standard for system-level modeling, design and verification. SystemC can
be seen as both a system level design language and a framework for HW/SW
co-simulation. It allows the modeling and execution of system level designs
on various levels of abstraction, including classical register transfer level hard-
ware modeling and transaction-based design. This allows system-level design
from abstract concept down to implementation in a unified framework. Note
that SystemC without extensions can only be used for digital HW/SW Sys-
tems. There also exists an extension for analog and mixed-signal components,
namely SystemC-AMS, but this is not in the scope of this thesis.

SystemC is implemented as a C++ class library, which provides the lan-
guage elements and an event-driven simulation kernel. The language comprises
constructs for modularization and structuring, for hardware, software and com-
munication modeling, and for synchronization and coordination of concurrent
processes. From a structural point of view, a SystemC design is a set of mod-
ules, connected by channels. The structure strictly separates between com-
putation and communication units (i. e., modules and channels) and is highly
flexible due to a communication concept that allows transaction level model-
ing and communication refinement. The event-driven simulation kernel regards
the SystemC design as a set of concurrent processes that are synchronized and
coordinated by events and communicate through channels.

6Corporate OSCI members are amongst others: ARM, Intel, Cadence, CoWare, NXP,
Synopsis, Mentor Graphics, and STMicroelectronics.
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Figure 2.7: SystemC Language Architecture

The SystemC language architecture is shown in Figure 2.7. The SystemC
language provides constructs for the modeling of concurrency, time, reactivity,
hardware data types, hierarchy and communication. As SystemC is imple-
mented as a C++ class library, the C++ language standard constitutes the base
of the language architecture. Above that, the core language of SystemC pro-
vides means to describe the structure and the behavior of a system. The
structure is described by using modules, channels, ports, and interfaces, the
behavior by using processes and events. Together with the event-driven sim-
ulation kernel, the core language defines the semantics of SystemC. Alongside
to that, the SystemC language provides a set of hardware data-types. On
top of the core language and the dedicated hardware data-types, a set of el-
ementary channels is defined, which can be used for more specific models of
computation, e. g., FIFOs for functional or signals for hardware modeling. The
topmost layer of the SystemC language architecture consists of design libraries
and models needed for more specific design methodologies or models of compu-
tation. Note that those are not part of the SystemC standard. The SystemC
standard [IEE05] comprises the core language together with the event-driven
simulation kernel, the dedicated data-types, and the elementary channels. The
aim of this section is to give a sufficient overview of SystemC to understand
the remainder of this thesis. For a more elaborated introduction to SystemC,
please refer to Groetker [Gro02] and Black et al. [BD05]. In the following, we
describe both the structure and the behavior of a SystemC design and briefly
review the simulation semantics.
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Figure 2.8: Structure of a SystemC Design

channel

2.4.1 Structural Modeling

From a structural point of view, a SystemC design consists of a set of modules,
connected by channels. An example is shown in Figure 2.8. The separation of
modules and channels allows the separation of computation and communica-
tion. Together with a flexible communication model based on channels, ports,
and interfaces, this allows transaction level modeling with SystemC. It also
enables the use of many different models of computation. In the following,
we first describe the basic structure of modules, and then the communication
model based on channels, ports, and interfaces. Then, we introduce two spe-
cial kinds of channels, namely hierarchical and primitive channels. Finally, we
describe how a design is composed by instantiating modules and channels and
by binding the module ports to the channels.

Modules Modules are the basic building blocks that allow a modular and
hierarchical design. Each module contains a set of ports, through which the
module communicates with other modules, a set of processes, which describe
the functionality and behavior of the module, and a set of data variables and
internal channels that can be used to store the module’s state and for internal
communication between the module’s processes. In addition, a module may
contain other modules.

Communication Model To interconnect modules, SystemC uses interfaces,
ports, and channels. The communication concept is shown in Figure 2.9. Ports
are used as communication interface of a module, i. e., they define entry points
for communication. Each port is bound to an interface, which defines a set
of virtual communication methods. This declares the communication meth-
ods that can be accessed via the port. Whereas ports and interfaces define
which communication methods a module may use, channels are used to imple-
ment the communication methods. A channel implements an interface, if it
provides an implementation for each virtual method declared in the interface.
The main advantage of the SystemC communication concept based is that the
structure is highly modular and supports communication refinement. Follow-
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Figure 2.9: SystemC Communication Concept

ing the idea of transaction level modeling, communication and computation
are strictly separated in SystemC designs. As a consequence, it is possible to
exchange a channel without touching the modules connected by the channel if
the ports and interfaces are unchanged. For example, the abstract read and
write methods declared in Figure 2.9 could be first implemented as a simple
copy operation on abstract data variables in an abstract design, and later be
replaced by a bit-accurate register transfer or a complex bus system. Note
that the abstract channel concept allows the implementation of many mod-
els of computation in SystemC. If transactors are used that translate between
different models of computations or different abstraction levels, the SystemC
communication concept can also be used for multi-level simulations.

Hierarchical and Primitive Channels There are two special types of chan-
nels: hierarchical channels and primitive channels. A hierarchical channel is
one which contains embedded modules or channels. Hierarchical channels al-
low the modeling of complex communication structures such as the on-chip
bus (OCB) or communication area network (CAN) buses. A primitive chan-
nel is defined as a channel which supports the request-update scheme. The
request-update scheme is closely related to the delta-cycles used by the Sys-
temC simulation kernel to simulate concurrency. The idea is that for the
simulation of concurrent activities on a single CPU, it is necessary to seri-
alize the activities. To impose a partial order on concurrent activities, the
execution is split into delta-cycles, which consist if an evaluate phase and an
update phase. Together with the request-update scheme supported by prim-
itive channels, this allows deterministic serialization of concurrent activities:
In the evaluate phase, processes are executed, but the results do not change
the internal state of primitive channels. Instead, a request_update function is
called to postpone the update of the channel state. The actual update is not
performed until the update phase, which is started only when all processes
are evaluated. This ensures that the order in which processes are executed
does not matter, assuming that no implicit communication (through shared
variables) is used and that all communications between concurrent processes
actually are implemented by primitive channels.

As an example for the structure of a SystemC design, see Figure 2.10. A
producer and a consumer module are connected through a FIFO channel. The
producer uses a write method to put tokens into the FIFO buffer, the consumer
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write
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Figure 2.10: Producer-Consumer Example

gets them using a read method. The SystemC code for the declaration of the
producer and consumer modules is shown in Listing 2.1 and Listing 2.2. Both
modules are equipped with two ports, one which is connected to a clock, and
one that is bound to the FIFO interface. A process SC_.THREAD is used to
implement the functionality.

A possible definition of the FIFO interface and the FIFO channel is given
in Listing 2.3. The interface fifo_if is derived from the abstract base class
sc_interface and defines the virtual read and write methods, in this case using
integers as data type. The channel implementation is derived from the abstract
base class sc_channel and the FIFO interface. Besides the constructor, it
contains internal variables and events, and the implementation of the read and
write methods.

Instantiation and Binding For simulation, modules and channels have to
be instantiated and ports must be bound to channels. This is usually done
either in a top-level design, or in the sc_main method, which also starts the
simulation. Listing 2.4 shows an exemplary main method for the producer-
consumer example. A clock clk is instantiated using the SystemC type sc_clock,
which is parameterized with the desired clock frequency (50 ns). The producer
and consumer modules and the FIFO channel are instantiated, and the ports
are bound to the clock and the FIFO channel. Finally, the simulation is run
for 1000 ms using the sc_start method. Note that generally all ports must be
bound, or a design cannot be executed. This implies that SystemC designs

SC_MODULE( producer) SC_MODULE( consumer )
{ {

sc_port<sc_clock> p_clock;
sc_port<fifo_if > fifo;

SC_CTOR(producer)

{
SC_.THREAD (main_method ) ;

sensitive << p_clock;

}
}s

sc_port<sc_clock> c_clock;
sc_port<fifo_if > fifo;

SC_CTOR(consumer )

{
SC_THREAD (main_method ) ;

sensitive << c_clock;

}s

Listing 2.1: Producer Module

Listing 2.2: Consumer Module
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class fifo_if

{

}s

virtual public sc_interface

public:
virtual void write (int c¢) = 0;
virtual int read(void) = 0;

class fifo

{

}s

public sc_channel, public fifo_if

// internal variables and events
private:

int buffer [SIZE];

int n, r_pos, w_pos;
public:

sc_event w_event, r_event;

// constructor
fifo (sc.module_name name)

sc_channel (name), n(0), r_pos(0), w_pos(0)

// implementation of read and write method

{)

Listing 2.3: FIFO Interface and Channel

in

{

t sc_main(int argc, charx argv][])

// clock generation
sc_clock clk(7clk”, 50, SCNS);

// module and channel instantiation
producer prod_inst(”producer”);
consumer cons_inst(”consumer”);

fifo fifo_inst (”fifo”);

// port binding
prod_inst.p_clock (clk);
prod_inst. fifo (fifo_inst );
cons_inst.c_clock (clk);
cons_inst . fifo (fifo_inst );

// run simulation for 1000 ms
sc_start (1000, SC_MS);

return 0;

Listing 2.4: Main Method
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that interact with their environment can only be executed together with a test
bench that provides the inputs and observes the outputs.

2.4.2 Behavioral Modeling

SystemC designs are executed in a discrete-event simulation. The basic execu-
tion unit are processes, which are triggered by events. Thus, from a behavioral
point of view, a SystemC design can be regarded as a network of concurrent
processes, which communicate through channels and synchronize on events. In
the following, we describe the main concepts of processes and events and how
they are used in the discrete-event simulation.

Processes Processes are contained in modules and use the ports of the con-
taining module to access external channels. SystemC provides two kinds of
processes: method processes and thread processes. A method process, when
triggered, always executes its body from the beginning to the end and does
not keep an internal execution state. It is not possible to suspend and resume
a method process. In contrast to that, a thread process can be suspended at
any time by calling a wait function. It keeps its internal execution state and
thus can be resumed at the point where it was suspended. Note that a thread
process is only started once at the beginning of simulation, whereas a method
process may be invoked arbitrary often.

The functionality of processes is described in methods, which contain the
executable code of a SystemC design. For execution, the methods are encap-
sulated into processes, which care for the interactions with the scheduler and
the events. As a consequence, methods are either invoked by the encapsulating
process, or called by other methods. This includes communication methods,
which are called as external methods through the port their channel is bound
to. In Listing 2.1 and Listing 2.2, the method main_method is encapsulated
into a thread process using the SC_THRFEAD macro. A similar macro exists
for method processes (SC_METHOD).

Events Both thread and method processes are triggered by events. An event
is an object that determines whether and when a process would be triggered.
The triggering of an event is called event notification. Whenever an event is
notified, this triggers the execution of all processes that are sensitive to the
event. A process may be sensitive to an event either statically or dynamically.
Static sensitivity is allowed for both method and thread processes, dynamic
sensitivity is only allowed for thread processes. A static sensitivity list is
attached to a process statically within the module constructor, as an example
see Listing 2.1 and Listing 2.2, where their static sensitivity lists consist in
each case only of the clock event. A static sensitivity list may also contain
multiple events. A method process is triggered, whenever an event from its
static sensitivity list is notified. While method processes are executed from
the beginning to the end whenever an event from their static sensitivity list
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wait(e walit for event e to be notified

wait(t wait for t time units to elapse

(e)

(t)
wait(t,e) wait for event e for maximally t time units
wait() wait for any event from the static sensitivity list
wait(el & e2 & e3) | wait for all three events to be notified

(

wait(el | e2 | e3) wait for any of the three events to be notified

Table 2.1: Variants of the wait Statement

occurs, thread processes may suspend execution by calling a wait function.
This overwrites their static sensitivity list temporarily and is called dynamic
sensitivity. For example, if a process calls wait(e), it becomes sensitive to the
event e and is resumed at the next occurrence (i.e., notification) of the event
e. A process can also be dynamically sensitive to multiple events or for the
elapsing of a certain amount of time. Table 2.1 shows the variants of wait
calls available in SystemC. As a thread process either runs or is suspended,
the only possibility to wait for an event from the static sensitivity list in a
thread process is to suspend it with an empty wait() statement. If an event
object e is notified by its owner, processes that are sensitive to the event start
resp. resume execution. SystemC supports three types of event notifications.
An immediate notification, invoked by e.notify(), causes processes to be
triggered immediately in the current delta cycle. A delta-delay notification,
invoked by e.notify(0), causes processes to be triggered at the same time
instant, but after updating primitive channels, i.e., in the next delta-cycle. A
timed notification, invoked by e.notify(t) with t > 0, causes processes to
be triggered after the given delay t. If an event is notified that already has
a pending notification, only the notification with the earliest expiration time
takes effect. That means that immediate notifications override all pending
notifications, delta-delay notifications override timed notifications, and timed
notifications override pending timed notifications if their delay expires earlier.

The behavior of the producer-consumer example is defined in four methods:
the main_methods of the producer and the consumer module, and the read
and write methods of the FIFO channel. Listing 2.5 and Listing 2.6 show the
main_methods. As thread processes are only started once at the beginning
of simulation, an unconditionally executed while-loop is needed for infinite
execution. Within the while loop, the processes wait to be triggered by events
from their static sensitivity list, i.e., p_clock and c_clock. Every time they are
triggered, the producer produces a token and writes it to the FIFO, while the
consumer reads a token from the FIFO and consumes it. Note that the read
and write methods of the FIFO are blocking, as can be seen in Listing 2.7 and
Listing 2.8. The read and write methods are synchronized using the events
r_event and w_event. Whenever the FIFO buffer is full (n == SIZE), the write
method calls wait(r_event). By this, the calling process (i.e., the producer)
is blocked until the event r_event is notified. This is done by the read (i.e.,
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void main_method (void) void main_method (void)

{ {
int ¢ = 0; int ¢ = 0;
while (true) while (true)
{ {
wait (); wait ();
// produce c¢ ¢ = fifo—>read ();
fifo—>write(c); // consume c
} }
} }

Listing 2.5: Producer Method Listing 2.6: Consumer Method

the consumer) method by calling r_event.notify(), whenever a token is read
from the buffer . On the other hand, the read method is blocked whenever the
buffer is empty (n == 0) and released by the event w_event which is notified
by the producer whenever a token is written.

2.4.3 Simulation Semantics

The execution of a SystemC design is controlled by the SystemC scheduler.
It controls the simulation time, the execution of processes, handles event no-
tifications and updates primitive channels. Like typical hardware description
languages, SystemC supports the notion of delta-cycles. Delta-cycles are used
to impose a partial order on simultaneous actions and split the concurrent ex-
ecution of processes into two phases. In the first phase, concurrent processes
are evaluated, i.e., their method body is executed. This may include read
and write accesses to primitive channels, which store changes in temporary
variables. In the second phase, the actual channel state is updated. A delta-
cycle lasts an infinitesimal amount of time, and an arbitrary, finite number of
delta-cycles may be executed at one point in simulation time. Note that the

void write(int c¢) int read(void)

{ {
int c;
if (n = SIZE) if (n = 0)
wait (r_event ); wait (w_event );
buffer [w_pos] = c; ¢ = buffer|[r_pos];
n=mn-+ 1; n=mn-— 1;

w_pos = (w_pos + 1)%SIZE;

w_event.notify ();

r_pos = (r_pos + 1)%SIZE;

r_event.notify ();
return c;

Listing 2.7: Write Method

Listing 2.8: Read Method
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Figure 2.11: SystemC Scheduler

order in which processes are executed within a delta-cycle is not specified in
[IEE05], i.e., it is inherently non-deterministic. The same holds for the order
of the updates of primitive channels.

The simulation semantics can be summarized as follows:

(1) Initialization: each process is executed once,

(ii) Ewaluation: all processes ready to run are executed in arbitrary order,
if there are immediate notifications, the corresponding processes become
ready to run as well and are immediately executed,

(iii) Update: primitive channels are updated,

(iv) if there are delta-delay notifications, the corresponding processes are trig-
gered and steps 2 and 3 are repeated,

(v) if there are timed notifications, simulation time is advanced to the earliest
pending timed notification and steps 2 — 4 are repeated,

(vi) if there are no remaining notifications, simulation is finished.

Figure 2.11 illustrates the behavior of the SystemC scheduler. For a more

comprehensive description of the SystemC simulation semantics, we refer to
Groetker [Gro02], Miiller et al. [MRRO03], and Ruf et al. [RHGT01].

2.5 Uppaal Timed Automata

Timed Automata were introduced by Alur et al. [AD94] as a timed exten-
sion of the classical finite state automata. A notion of time is introduced by
clock variables, which are used in clock constraints to model time-dependent
behavior. Systems comprising multiple concurrent processes are modeled by
networks of timed automata, which are executed with interleaving semantics
and synchronize on channels. UPPAAL [BLLT95, BY04, BDLO04] is a tool set
for the modeling, simulation, animation and verification of networks of timed
automata. The UPPAAL model checker enables the verification of temporal
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properties, including safety and liveness properties. The simulator can be used
to visualize counter-examples produced by the model checker. In the following,
we first introduce the semantics of Timed Automata and Networks of Timed
Automata. Then, we review the main concepts used for a symbolic seman-
tics of timed automata, and introduce difference bound matrices. Finally, we
describe some specialties and extensions of the UPPAAL modeling language.

2.5.1 Timed Automata

As typical state automata, timed automata consist of a set of nodes, which
are called locations and which are connected by edges. A notion of time is
introduced by a set of real-valued clock variables C: R>¢. They are used in
clock constraints to model time-dependent behavior. The clocks are initialized
with zero and then run synchronously with the same speed. As an effect of
a transition, a clock may be reseted, i.e., set to zero. A clock constraint is
a conjunctive formula of atomic constraints of the form x ~n or x —y ~ n for
x,y€C,~e{<,<,=,>,>},neN. B(C) denotes the set of clock constraints. In
Timed Biichi Automata, clock constraints are assigned to edges and are inter-
preted as enabling conditions for the corresponding transitions. They cannot
force the transition to be taken. As a consequence, a Timed Biichi Automaton
may stay an infinite amount of time in the same location. Alur et al. [AD94]
solved this problem by Biichi acceptance conditions. A subset of locations
is marked as accepting, and only executions passing through an accepting
location infinitely often are considered as valid behaviors. A more intuitive
solution to the problem of infinite idling is given by Henzinger et al. [HNSY94]
by introducing Timed Safety Automata. In Timed Safety Automata, one can
distinguish two kinds of clock constraints: Guards are assigned to edges and
yield conditions, under which the corresponding transition may be taken. In
other words, they enable progress. Invariants are assigned to locations and
yield conditions, under which one may stay in the corresponding state. The
invariants must not be violated, i. e., the location must be left before its invari-
ant is invalidated. In other words, invariants ensure progress. In the remainder
of this thesis, we refer to Timed Safety Automata whenever we use the term
timed automata.

A simple example for a timed automaton is shown in Figure 2.12. It consists
of two locations Iy and [; that are connected by two edges from [y to [;. To [
and [, the same invariant x < 1 is assigned. That means that in both locations,
the automaton may stay at most for one time unit. The upper edge from [y to
1 has a guard x == 1, and the clock y is reseted, whenever this edge is taken.
The lower edge from [y to [} has a guard x < 1 and no effect. As a consequence,
there are two possibilities to come from location [y to location /: during time
x € [0,1], the lower edge may fire without effect, and at x = 1, the upper edge
may fire and y is reset.

More formally, a timed automaton can be defined following Bengtsson et
al. [BLLT95] and Behrmann et al. [BDLO04]:
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Figure 2.12: Example: A Simple Timed Automaton

Definition 3 (Formal Syntax of a Timed Automaton). A timed automaton is
a tuple (L,lo,C,A,E,I), where

m L is a set of locations, ly € L the initial location,
m C is a set of clocks, A a set of actions,

m [: L — B(C) assigns invariants to locations, and

m ECLXB(C)XAxXPC XL is a set of edges. We use the notion [ 25 1/
for (I,g,a,r,l') €E.

The semantics of a timed automaton is defined as a transition system where
a state (I,u) consists of a location [ and a clock valuation u. The clock valuation
u maps all clocks in C to non-negative real values. We use the term u € g to
denote that all clock values satisty the guard g, and the term u+d with d € R>¢
to denote a mapping of all clocks x € C to u(x) +d. Furthermore, we denote
reseting of clocks with u’ = [r+— 0Ju, where all clocks in r C C are set to zero.
Based on that, we can define the operational semantics of a timed automaton:

Definition 4 (Operational Semantics of a Timed Automaton). The seman-
tics of a timed automaton (L,ly,C,A,E,I) is defined as a transition system
(S,s0,—), where S C L X RLC(L is a set of states, so = (lp,up) the initial state,
and —C S x (R>ogUA) x S the transition relation. A semantic step of a timed
timed automaton can either be a time step (1) or a discrete transition (2) along

an edge in the graphical representation:

(1) (Lu) S (Lu+d) iff Yd':0<d <d=u+d eI(l)
(2) (Lu) S (') iff IS such that ue gnu' =[r— Olunu € I(I)

Based on the operational semantics, we can define a run of a timed au-
tomaton as a sequence of transitions. A run of a timed automaton is defined
over a timed trace. A timed trace is a (possibly infinite) sequence of timed
actions. A timed action is a pair (¢,a), where the action a € A is taken by a
timed automaton after + € R>o time units after the automaton was started.
The absolute time ¢ is also called time stamp of a.

Definition 5 (Timed Traces). A timed trace is a (possibly infinite) sequence
of timed actions:

tr = (t1,al)(tz,az)...(ti,ai)...

where t; <tjyq for alli>1.
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Using the notion of a timed trace, we can define a run of a timed automaton.

Definition 6 (Run of a Timed Automaton). A run of a timed automaton over
a timed trace ttr = (t1,a1)(t2,a2)(t3,a3)... is a sequence of transitions:

(lo,uo) g (I1,ur) g (lr,u) G (I3,u3)...

where t; =t;_1 +d;, to =0 for all i > 1.

Based on the definition of the syntax and semantics of a single timed au-
tomaton, we can define the semantics of networks of timed automata.

2.5.2 Networks of Timed Automata

Networks of timed automata are used to model systems with concurrent pro-
cesses. The state of a network of timed automata is defined as a vector of the
current locations of all timed automata in the network and all clock valua-
tions. For synchronization, the automata may interchange events. An event is
sent over a channel ¢, and ¢! and ¢? denote sending resp. receiving an event.
Formally, the semantics of a network of timed automata is given by Bengtsson
et al. [BY04] as follows:

Definition 7 (Semantics of a Network of Timed Automata). A network of
timed automata (NTA) consists of n timed automata of; = (Li,l?7C,A,Ei,Ii).
The semantics of NTA is defined by a transition system (S,so,—). Each state
s €S is a tuple (I,u), where [ is a location vector and u a clock valuation.
S=(L; x...xLy) X RLC(L denotes the set of states, so = (ly,uo) the initial state,
and — C S xS the transition relation. Furthermore, T denotes an internal
action, c!,c? sending resp. receiving an event, g a clock guard, and u' = [r — Olu
denotes a clock valuation where all clocks from r are reset to zero. A semantic
step can be either a time step (1), an independent step of a single automaton
(2), or a synchronization between two automata (3):

(1)

(lu) = (Lu+d) iff ¥d':0<d' <d=u+d €I()
(2) (
I

,u

)
[u) —

l;_u (_[lzl/ll]au/) Zﬁ Elll Tﬁ: ll/ such that u € g/\u/ — [l" . 0]”/\1/[/ c
({[7;/1])
(3) (Lu) — AW/ L /1) iff 305 AL 2

such that u € (giAgj) A =[r;Ur;— Olunu € I(I")

2.5.3 Symbolic Semantics of Timed Automata

The semantic state space of timed automata is infinite due to the real-valued
clock variables. This makes it impossible to apply automatic verification tech-
niques such as model checking, which explore the whole semantic state space.
To solve this problem, the symbolic semantics presented by Bengtsson et
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al. [BLL1T95] abstracts from certain points of time and uses clock zones in-
stead. As a consequence, a state is then a tuple (I,D) where D is a difference
bound matrix representing a clock zone. The resulting abstract model has a
finite state space and can be model checked.

The foundation for a symbolic semantics of timed automata was laid by
Alur et al. [AHH93]. There, the notion of region equivalence was introduced.
The idea is that two clock assignments can be considered equivalent, if they
have no influence on the possible transitions the timed automaton can take. If
only integer variables are used in clock constraints that means that two clock
assignments can be considered equivalent, when for each clock

m both are greater than a given maximal constant, also called clock ceiling
m their integer part is equal and both have a fractional part of zero, or

m their integer part is equal and both have a fractional part greater than
Zero.

In any case, the two clock assignments have to be in the same relation to
all other clocks. This can be formalized as follows:

Definition 8 (Region equivalence). Let k be a function, called a clock ceiling,
that maps each clock x € C to a natural number k(x). Furthermore, let {d}
denote the fractional part of a real number d, and |d| denote its integer part.
Two clock assignments u,v are region-equivalent u ~ v, iff

(i) their integer part is equal or both are greater than a given maximal con-
stant, also called clock ceiling:

for all x, |u(x)] = [v(x)] or u(x)>k(x)Av(x) > k(x)

(11) both have a fractional part of zero or both have a fractional part greater
than zero:

for all x, if u(x) < k(x) then {u(x)} =0 iff {v(x)} =0

and

(111) both are in the same relation to all other clocks:

for all x,y,
if u(x) <k(x) Au(y) <k(y) then{u(x)} <{u(y)} off {v(x)} <{v(y)}

Alur et al. [AD94] showed that for a fixed number of clocks and a given
maximal constant, the number of regions is finite. Furthermore, u ~ v implies
that two states (I,u) and [,v are bisimilar w.r.t. the untimed bisimulation for
any location or location vector of a timed automaton or a network of timed
automata. As a consequence, region equivalence can be used for a finite-state
partitioning of the infinite state space of timed automata. The finite-state
model is called region automaton or region graph. Although the number of
states in a region graph is finite, it is still exponential in the number of clocks.
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Figure 2.13: Zone Graph Example

A more efficient abstraction for timed automata is based on the notion of
zones and zone graphs. A zone is a convex conjunction of a set of regions. If
it is irrelevant for two possible semantic steps of a timed automation in which
of a few regions a clock lies, these can be abstracted into one zone. In other
words, a zone is the solution set of a clock constraint, i.e., the maximal set of
clock assignments satisfying the constraint.

As an example, see the light switch controller in Figure 2.13 (taken from
Bengtsson et al. [BLL795]). The light switch controller waits for a press event.
If the light switch is pressed twice within 10 time units, the light is dimmed.
If the light switch is pressed only once, the light is switched on (location
bright). Initially, the timed automaton in Figure 2.13a is in location off, and
the clock x is zero. From that, there are two possible successor states: the
automaton can perform a time step while staying in the same location or take
the edge labeled with press? to the dim location. In the former case, there
are infinitely many possibilities for the length of the delay. But, as the only
possible discrete transition is along the edge labeled with press?, and as there is
no clock constraint on that condition, it is irrelevant for the next semantic step
how long the delay actually is. Thus, all possible successor states reached by
a clock delay can be abstracted into one symbolic state with x > 0. From such
abstractions, the zone graph can be constructed, as shown in Figure 2.13b.
Each state in the zone graph consists of a location and a clock constraint
representing a clock zone. Note that the region graph for the same example
would range over more more than twenty clock regions and would be too large
to be depicted here.

Based on the notion of clock zones and the corresponding definition of
symbolic states as a pair (I,D) consisting of a location / and a clock zone D,
the symbolic semantics of a timed automaton can be defined.

Definition 9 (Symbolic Semantics of a Timed Automaton). The symbolic se-
mantics of a timed automaton (L,ly,C,A,E,I) is defined as a transition system
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(S,50,—), where S C Lx B(C) is a set of symbolic states, so = (lp,Do) the initial
symbolic state, and ~~C S X (B(C)UA) x S is the symbolic transition relation
over symbolic states. We denote an arbitrary delay with D' = {u+d|u € D,d €
R>o} and the reset function on a clock zone r(D) = {[r — Olulu € D}. We
denote the restriction of a clock zone with a set of constraints R with DAR. A
semantic step of a timed timed automaton can still either be a time step (1),
now with an arbitrary delay that is allowed by the invariant of the current loca-
tion, or a discrete transition (2) along an edge in the graphical representation.

(1) (1,D) ~ (I,D' AI(1))
(2) (I,D) ~~ (I',r(DAG) NI(I)) if 15571

Note that the symbolic semantics is sound and complete, as shown by
Bengtsson et al. [BLL"95]. That means that for u € D, u' € D', (I,D) ~ (I',D)
implies (I,u) — (I',u’) for all ' € D’ (soundness) and that (I,u) — (I,u) implies
(1,D) ~ (I',D') for some u € D (completeness).

Based on the definition of the symbolic semantics of a timed automaton,
we can define symbolic timed traces as follows:

Definition 10 (Symbolic Timed Traces). A symbolic timed trace is a (possibly
infinite) sequence of timed actions, where the time is specified as a clock zone
D:

TTr = (D1,al)(Dz,az)...(Di,ai)...

Using the notion of a symbolic timed trace, we can define a symbolic exe-
cution of a timed automaton.

Definition 11 (Run of a Timed Automaton). A symbolic execution of a timed
automaton over a symbolic timed trace TTr = (Dy,a1)(D2,a3)(D3,a3)... is a
sequence of transitions:

(lo, Do) g (I1,Dy) g (I, D) s (lz,D3)...

where Di = D;_1+d;, Do =0 for all i > 1.

2.5.4 Difference Bound Matrices

The symbolic semantics of timed automata is based on the notion of clock
zones. An efficient representation of clock zones are difference bound matrices
(DBMs), presented by Bellman [Bel03]. Recall that a clock zone is the maximal
set of clock assignments satisfying a given clock constraint. If a reference clock
0 with the constant value 0 is introduced, each clock constraint can be rewritten
as a conjunction of atomic constraints of the form x —y ~ n. Note that two
constraints referring to the same two clocks variables can be merged because
only their intersection is relevant. As a consequence, each clock constraint can
be rewritten as a conjunction of at most (n+ 1)? atomic constraints. Thus,
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it is possible to store a clock zone in a (n+1) x (n+ 1) matrix, where each
element represents an atomic constraint. Since each element in such a matrix
corresponds to a bound on the difference between two clocks, they are named
Difference Bound Matrices (DBM).

To construct a DBM, all clocks in C are indexed from 1 to n, and the index
for 0 is 0. Then, in the DBM, the row i is used for the lower bounds on the
difference between the clock with index i and all other clocks. Correspondingly,
each column i is used for upper bounds on the difference between the clock
with index i and all other clocks. In other words, for each constraint x; —x; ~ n,
the element D;; is set to (n,~). To complete the DBM, for unbounded clock
differences D;; is set to . Furthermore, the implicit constraints that all clocks
are positive and that the difference between a clock and itself is zero are added
by setting Do; = (0,<) and D; = (0,<). As an example, consider the clock
constraint D =x <20 Ay <20Ay—x<10Ay—x>5Az>5. This can be
rewritten as D=x—0<20Ay—0<20Ay—x < 10Ax—y<5A0—z< —5.
The resulting matrix representation is:

0,<) 0,2) (-5.<)
(20,<) (0,<) (5,9)
(20,<) (10,<)  (0,<)

Note that one clock zone can be represented by an infinite number of DBMs.
However, to yield a unique representation of clock zones, it is possible to use
the tightest constraint on each clock difference. To compute the tightest con-
straints, a shortest path algorithm can be used, e.g., the Floyd-Warshall al-
gorithm presented by Floyd [Flo62]. The resulting unique DBM is called a
canonical DBM.

2.5.5 Uppaal

UPPAAL [BLLT95, BY04, BDL04] is a tool set for the modeling, simulation,
animation and verification of networks of timed automata. The UPPAAL model
checker enables the verification of temporal properties, including safety and
liveness properties. The simulator can be used to visualize counter-examples
produced by the model checker.

Modeling Language

The UPPAAL modeling language extends timed automata by introducing pa-
rameterized timed automata templates, bounded integer variables, binary and
broadcast channels, and urgent and committed location. Timed automata
templates provide the possibility to model similar timed automata only once
and to instantiate them arbitrary often with different parameters. Timed au-
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tomata are modeled as a set of locations, connected by edges. The initial
location is denoted by ©. Invariants can be assigned to locations and enforce
that the location is left before they would be violated. Edges may be labeled
with selections, guards, updates, and synchronizations. Selections are used
to non-deterministically bind a given identifier to a value in a given range.
Updates are used to reset clocks and to manipulate the data space, i.e., they
provide the actions the automaton may perform. Processes synchronize by
sending and receiving events through channels. Sending and receiving via a
channel c¢ is denoted by ¢! and c?, resp. Binary channels are used to syn-
chronize one sender with a single receiver. A synchronization pair is chosen
non-deterministically if more than one is enabled. If no communication partner
is available, both the sender and the receiver are blocked if they synchronize
on a binary channel. Broadcast channels are used to synchronize one sender
with an arbitrary number of receivers. Any receiver that can synchronize must
do so. In contrast to binary communication, a process sending on a broadcast
channel is never blocked. Urgent and committed locations are used to model
locations where no time may pass. Urgent locations are graphically depicted
by the symbol ©, committed locations by the symbol ©. Leaving a committed
location has priority over leaving non-committed locations.

A UpPPAAL model comprises three parts: global declarations, parameter-
ized timed automata (TA templates) and a system declaration. In the global
declarations section, global variables, constants, channels and clocks are de-
clared. The timed automata templates describe timed automata that can be
instantiated with different parameters to model similar process. In the system
declaration, the templates are instantiated and the system to be composed is
given as a list of timed automata.

Query Language

The query language, which is used in UPPAAL to express requirements speci-
fications, is a restricted version of CTL [BDL04]. Like in CTL, the query lan-
guage consists of path formulae and state formulae. State formulae describe
individual states, whereas path formulae quantify over paths of the model.
Path formulae can be classified into reachability, safety and liveness.

State formulae are expressions that can be evaluated for a given state with-
out looking at the rest of the model. This includes boolean expressions on
variables (e.g., x <4) and tests whether a particular process is in a given loca-
tion (e.g., P1.init). A deadlock is expressed using the special state formula
deadlock.

Path formulae express either reachability, safety, or liveness properties. The
reachability property that some state satisfying a given state formula ¢ is
expressed by E<> ¢. The safety properties that a state formula ¢ is always
true is expressed by A[] ¢, whereas A[] ¢ says that there exists a path where
¢ is always true. The classical liveness property that something good will
eventually happen is expressed by A<> ¢. Additionally, there exists a leads to
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Figure 2.14: Example: The Four Vikings

or response property ¢ —--> y, which expresses that whenever ¢ is satisfied,
v will eventually be satisfied.

Uppaal Example

An example for a UPPAAL model taken from the demo models included in the
free UPPAAL distribution is the riddle of the four vikings. The riddle is as
follows: four vikings want to cross a bridge at night, but they have got only
one torch and the bridge can only carry two of them. Thus, they can only cross
the bridge in pairs and one has to bring the torch back to the other side before
the next pair can cross. The vikings have different speeds, the fastest needs 5
minutes, the slowest 25 minutes, and the other two 10 and 20 minutes. The
question is whether it is possible that all the vikings cross the bridge within
60 minutes.

To model this problem in UPPAAL, we need two timed automata templates,
one for the vikings which is instantiated with the different delays, and one for
the torch, see Figure 2.14. The representation of timed automata is a usual
automata representation with locations connected by edges. In addition, we
have two channels take and release, which model the interaction between the
vikings and the torch. Furthermore, we have a data variable L. which serves as
a semaphore to ensure that the torch can only be on one side of the bridge at
a time, and we have a clock variable y and a clock constraint y > delay which
models the time it takes the vikings to cross the bridge. A viking is on the
other side of the bridge if it is in its safe location.

The question if they all can cross the bridge in 60 minutes can be formalized
as an existential quantification over a state where all vikings are in their safe
location and time is less or equal than 60 minutes:

E<> Vi.safe A V2.safe A V3.safe A V4d.safe A time < 60

Note that the example of the four vikings is comparable to the question if a
packet can reach its receiver in a given time limit in a communication network.
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2.6 Summary

In this section, we presented the relevant background for our approach. To
this end, we gave an introduction to HW/SW co-design and co-verification, in
particular to some verification and validation techniques that are commonly
used in HW/SW co-design. Finally, we presented the system level design lan-
guage SystemC that is widely used for modeling and simulation in HW/SW
co-design of digital systems, and the formal language of UPPAAL timed au-
tomata, which comes with a tool suite for modeling, simulation and animation
of timed automata and a model checker.






3 Related Work

The spectrum of related work in the area of HW/SW co-verification is very
broad. However, most of the existing work is non-formal and based on co-
simulation and testing. For example, the SystemC Verification Standard [SCV]
provides features for transaction-based test bench development, for example
data introspection, randomized data generation, and callback mechanisms to
observe activities at transaction level during simulation. All of these mecha-
nism ease the development of test benches, but do neither provide support for
formal specification or verification, nor for automated conformance evaluation.
Similarly, in SystemVerilog [Acc03], the only supported co-verification tech-
nique is through the use of assertions, which are checked during the execution
of a given design.

Only few attempts have been made to apply formal verification methods
to HW/SW co-designs. In the following two sections, we first elaborate related
work on formal verification for SystemC, and then related work from the area
of automated test generation and conformance testing.

3.1 Formal Verification of SystemC Designs

The formal verification of SystemC designs was mainly propelled by Grofle et
al. [DG02, GD04, GD05, GKD05, GKD06] and by Kroening et al. [KCY03,
KC04, KS05, BKS08, BK08]. Grofle et al. focus on SystemC designs on the gate
level, i. e., hardware models, and apply typical hardware verification techniques
like bounded model checking and satisfiability solving. The work of Kroening et
al. targets mixed hardware/software systems and uses counter-example guided
abstraction refinement to enable efficient handling of both parts of a given
design. In the following, we briefly present both approaches and discuss their
scopes and limitations.

57
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Formal Semantics for SystemC

There have been several approaches to give SystemC a formal semantics. A
definition of the simulation semantics based on abstract state machines is given
by Miiller et al. [MRR03] and Ruf et al. [RHG'01]. The purpose of their work
is to provide a precise description of the SystemC scheduler. However, the sys-
tem design itself, as built from modules, processes and channels, is not covered
and therefore cannot be verified with this approach. Salem [Sal03] presented a
denotational semantics for the SystemC scheduler and for SystemC processes,
but only for a synchronous subset. Habibi et al. [HT05, HMT06] proposed pro-
gram transformations from SystemC into equivalent state machines. In these
approaches, time is ignored, and the transformation is performed manually.
Besides, the state machine models do not reflect the structure of the under-
lying SystemC designs. Traulsen et al. [TCMMO07] proposed a mapping from
SystemC to PROMELA, but they only handle SystemC designs at transac-
tion level, do not model the non-deterministic scheduler and cannot cope with
primitive channels. Zhang et al. [ZVMO07] introduced the formalism of SystemC'
waiting-state automata. Those SystemC waiting-state automata are supposed
to allow a formal representation of SystemC designs at the delta-cycle level.
However, the approach is limited to the modeling of delta-cycles, the scheduler
and complex interactions between processes are not considered and the formal
model has to be specified manually. Man [Man05] presented the formal lan-
guage SystemCF, which is based on process algebras and defines the semantics
of SystemC processes by means of structural operational semantics style de-
duction rules. SystemCF does not take dynamic sensitivity into account, and
considers only simple communications. The concept of channels is neglected.
A tool to automatically transform SystemC to SystemCFL is presented by Man
et al. [MFM™07]. However, it does not handle any kind of interaction between
processes. Karlsson et al. [KEP06] verify SystemC designs using a petri-net
based representation. This introduces a huge overhead because interactions
between subnets can only be modeled by introducing additional subnets.

With our approach to define a formal semantics for SystemC, we can han-
dle the most relevant SystemC language elements, including process execution,
interactions between processes, dynamic sensitivity and timing behavior. The
informally defined behavior and the structure of SystemC designs are com-
pletely preserved. The mapping from SystemC designs into UPPAAL timed
automata is fully automated, introduces a negligible overhead, produces com-
pact and comparably small models and enables the use of the UPPAAL model
checker and tool suite.

Checkers for SystemC Designs

There has been some work on checkers for SystemC designs. For example, an
approach to check temporal assertions for SystemC has been presented by Ruf
et al. [RHaRO01]. More related to our work is the work of Drechsler, Grofle
and Kiithne [DG02, GD04, GD05, GKD05, GKDO06]. In [DG02], they describe
how to convert a gate-level model given in SystemC into BDDs. The BDD
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is used for forward reachability analysis. In [GDO04], they present a method
which allows checking of temporal properties for circuits and systems described
in SystemC, not only during simulation. A property is translated into a syn-
thesizable SystemC checker and embedded into the circuit description. This
enables the evaluation of the properties during the simulation as well as after
the fabrication of the system. In [GD05, GKDO05], they present an approach to
prove that a SystemC model satisfies a given property using bounded model
checking and show the applicability of the approach with the co-verification
of a RISC CPU implemented in SystemC. In [GKDO06], they use a 3-step ap-
proach. First, they verify the functional correctness of the underlying hardware
using bounded model checking. Then, they verify the HW/SW interface. This
means that they verify, that each instruction through which the software can
access the hardware has the specified effects on all hardware blocks involved.
Finally, assembler programs are verified by constraining the instructions of
the program as assumptions in the proof. In other words, the instructions
of a given assembler program are translated into assumptions and the known
effects on the hardware are used for the proof.

The main limitation of the work of Drechsler, Grofie and Kiihne is that
their approaches are all restricted to synchronous and cycle-accurate models
on register-transfer level. As a consequence, they can, in particular, not ver-
ify models using SystemC channels, necessary for transaction-level modeling
(TLM), nor can they handle dynamic or timing sensitivity. With our approach,
we can handle SystemC design on low abstraction-levels as well as designs on
high abstraction-levels and thus we can support the whole design-process.

Abstraction Refinement for SystemC Designs

Also closely related to our work is the work of Kroening et al. In [KCY03], an
approach to check consistency of C and Verilog using bounded model checking
is presented. Both the circuit and the program are unwound and translated into
a bit vector equation. This formula is then checked using a SAT solver. The
C program has to be sequential, purely functional code, Verilog is restricted
to the subset of synchronous RTL. In [KC04], an alternative approach for the
same issue based on predicate abstraction is presented. In [KS05, BKS08], a
labeled Kripke structure-based semantics for SystemC is proposed and pred-
icate abstraction techniques from these structures are used for verification.
They treat every thread as a labeled Kripke structure and then define a par-
allel composition operator to compose the threads. Thereby, they provide a
formal semantics for SystemC. They furthermore present how the labels of
the Kripke structures generated per process can be used to identify hardware
and software parts and to automatically partition a given system description
into synchronous (hardware) and asynchronous (software) parts. This parti-
tioning is used to simplify verification by computing an abstract model of the
SystemC design. The abstract model is then used for counter-example guided
abstraction refinement verification.
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The approach to use abstraction techniques together with model checking
is also used by Blanc et al. [BKO08]. There, the authors present a novel com-
piler for SystemC that integrates a formal and scalable race analysis. The
compiler produces a simulator that uses the race analysis information at run-
time to perform partial-order reduction, thereby eliminating context switches
that do not affect the result of the simulation. The static computation of the
race conditions relies on the Model Checking engine of SATABS (Clarke et
al. [CKSYO05]), a SAT-based model checker implementing predicate abstrac-
tion.

The automatic hardware/software partitioning presented by Kroening et
al. allows a very efficient formal verification of SystemC designs. However,
their approach does not take either timing or signal aspects into account, and
complex communication is not considered. Furthermore, the scheduler is not
explicitly modeled, which could pose some difficulties on further extensions of
their work. With our approach, we yield formal semantics and a verification
technique that supports most relevant SystemC language elements. In con-
trast to the approach presented by Blanc et al. [BKO08|, our framework is not
restricted to the verification of race conditions. With our framework for auto-
mated HW/SW co-verification for SystemC designs using timed automata, we
are able to verify all kinds of safety, liveness and timing properties that can be
expressed in the UPPAAL subset of CTL.

3.2 Test Generation for SystemC Designs

There also exists some work on automated test generation for SystemC. Emek
et al. [ENO3] presented a test generation approach that generates different
schedulings of transactions. With that, different execution orders of concur-
rent processes can be systematically covered by a test suite. The approach
is extended by randomized input generation by Nahir et al. [NZE106]. Silva
et al. [dASMAPO4] presented a testbench generation tool that automatically
generates testbench templates for SystemC. The tool allows the definition of
constraints and coverage criteria and uses the SystemC Verification Library
(SCV) for constraint-based random-test generation. Standard code coverage
criteria is used to determine when test generation is finished. Coverage criteria
for SystemC is also analyzed by GroBe et al. [GPKDO0S]. There, untested parts
of a given SystemC designs are identified using dedicated coverage criteria.
Junior et al. [JCAS07] use code coverage analysis for automatic test vector
generation. A coverage flow graph is constructed, and numerical optimization
is used to find input vectors that force a given path. Patel et al. [PS08] pro-
posed a model-driven validation approach for SystemC. There, directed tests
are generated from ASM models. Similarly, Bruschi et al. [BFS05] generate fi-
nite state machines (FSM) from SystemC designs by performing static analysis
on the source code very much like Habibi et al. [HMT06]. The FSMs are used
to generate test sequences for the system under investigation. Kirchsteiger et
al. [KTST08] proposed automatic test generation for SystemC designs based
on manually specified use cases. All of these approaches focus on the test in-
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put generation problem and do not use a specification to evaluate test results
automatically.

3.3 Conformance Testing using Timed Automata

There have been several approaches to generate conformance tests for real-
time systems from timed automata models, and in particular to generate such
tests from UPPAAL models. However, most of them either consider only a
restricted subclass of the timed automata model, or they do not allow static
(offline) test generation. Springintveld et al. [SVDO01] presented an approach
to generate minimal test suites with complete path coverage from timed au-
tomata models. They prove that exhaustive testing is possible for real-time
systems by reducing the dense-time model to a discrete model using equiva-
lence classes. However, the authors only consider a deterministic subclass of
the timed automata model. Furthermore, the size of a complete test suites is
highly exponential. Cardell-Oliver [CO00] uses a similar approach, extended
by a technique called hiding. This technique allows an abstraction of the timed
automata model in order to hide parts of the system that are not relevant with
respect to the test purpose. This reduces the size of a complete test suite, but
the approach still cannot cope with non-deterministic specifications. Nielsen
et al. [NSO1] presented a technique for the automatic generation of real-time
black-box conformance tests for non-deterministic systems, but only for a de-
terminizable subclass of timed automata specifications with restricted use of
clocks, guards or clock resets. Krichen et al. [KT04] proposed an algorithm for
real-time test case generation for non-deterministic systems, but it is based on
an on-the-fly determinization of the specification.

There also exists some work on test generation from UPPAAL models.
Hessel et al. [HLNT03, HLM*08] presented the CoVer tool. CoVer allows
coverage-driven conformance test generation for UPPAAL models. The test
cases are generated statically and a relativized timed input output conformance
(rtioco) relation is used to evaluate test results. However, the approach is
again restricted to deterministic timed automata models. In contrast to that,
the TRON (Testing Real-time systems ONline) tool developed by Larsen et al.
[LMNO05, HLM"08] can also be applied to non-deterministic systems. How-
ever, it uses an online test generation algorithm and thus can not be used to
generate repeatable test cases. The rtioco relation is used again to evaluate
test results.

For conformance testing in HW /SW co-verification processes, it is vital to
generate conformance tests offline. Particularly in the context of HW/SW co-
design processes based on SystemC, it is indispensable to repeatably execute
test cases on each refinement stage, and thus to ensure consistency between
different abstraction levels. Furthermore, SystemC designs are inherently non-
deterministic. Thus, the approaches described above are not sufficient, as they
either generate test cases online, or they do not support non-deterministic
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specifications. With our approach, we can generate conformance tests for non-
deterministic systems offline.

3.4 Summary

There has been a considerable amount of work in the area of HW/SW ver-
ification, and in particular on the formal verification of SystemC designs.
However, all of the presented approaches have their limitations. They are
either restricted to subsets of SystemC that preclude them from the applica-
tion during the whole design process, or they lack formal foundation, or they
require a lot of manual effort. With respect to the test generation for Sys-
temC designs, existing approaches focus on automated input selection and do
not support automated conformance evaluation. Thus, they can be ideally
combined with our framework, but do not solve the problem of a continuous
HW/SW co-verification process. To the best of our knowledge, a comprehen-
sive co-verification framework that supports the whole design process of digital
SystemC designs with fully automatic verification techniques and yields a high
degree of reliability due to the use of formal methods does not exist. With our
approach, we provide such a framework.

Another contribution of this thesis is the conformance test generation from
timed automata. For this challenging task, several approaches have been pre-
sented here. However, none of those provides a technique that allows the
generation of conformance tests offline and supports non-deterministic system
specifications at the same time. Both is necessary for a conformance test
generation technique that could be embedded in the HW/SW co-verification
process. With our approach, we can generate conformance tests offline from
non-deterministic specifications.



4 Quality Assurance Approach

As embedded systems are often employed in safety-critical domains, the quality
assurance of such systems is crucial. In particular, the digital control compo-
nents of these systems have to be verified. In HW/SW co-verification, the most
popular quality assurance techniques is HW/SW co-simulation. This has the
advantage to be easily applicable, but lacks reliability if applied ad hoc or un-
systematically. To solve this problem, we propose a continuous, comprehensive,
and formally founded quality assurance process for digital SystemC designs.
We obtain such a quality assurance process by a combination of model check-
ing and conformance testing. The SystemC development process starts with
an abstract design, which is stepwise refined down to the final implementation.
We propose to use model checking to verify that the abstract SystemC design
meets its requirements, and to generate conformance tests to verify that re-
fined models or the final implementation conform to the abstract model. This
approach yields a formally founded, comprehensive, and automated quality
assurance process that continuously and naturally supports the HW/SW co-
design flow throughout the whole design process. The integration of static
and dynamic techniques is a particularly promising approach, as it combines
the significance of formal verification with the efficiency and convenience of
testing. In the remainder of this chapter, we first present a general approach
for the combination of model checking and testing, and then we describe our
framework for the automated HW/SW co-verification of SystemC designs.

4.1 Combining Model Checking and Testing

Static and dynamic verification techniques have both their advantages and
disadvantages. Dynamic techniques, such as simulation and testing, have the
advantage to be applicable without prerequisites. Furthermore, they can be
applied on all development stages, including the real implementation, as long
as an executable representation exists. The major drawback is their incom-
pleteness together with the fact that test cases are often selected ad hoc and
non-systematically. As testing can be used to detect defects, but not to show
their absence, it is difficult to draw conclusions from a error-free test run. We
never know if the design is free from defects or if the test suite is just not
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Figure 4.1: Architecture of an Anti-lock Braking System

able to detect them. In contrast to that, static techniques are complete and
yield absolute guarantees about certain properties for all possible input sce-
narios and execution paths. Of course, this comes with a price: the effort of
formal verification is much higher in terms of man power and computation
time, and it can only be applied to models of the system under verification
and not to the real implementation. As a prerequisite for the application of
formal verification techniques, we need a formal model, which has to be manu-
ally specified by the designer or automatically generated from another model.
Then, to accomplish formal verification, either a high manual effort is required
if an interactive theorem prover is used, or the whole state space of a given
system has to be elaborated if an automatic model checker is applied. This
is particularly expensive for concurrent designs due to the combinatorial state
space explosion problem. To overcome the problems that each of both kinds of
verification techniques carries along, we propose to take the best of both worlds
by applying formal verification in early development stages and conformance
testing throughout the remaining design flow.

As a starting point, we assume a HW/SW co-development process that
starts with an abstract model and refines this model down to the final im-
plementation. This corresponds to the transaction level modeling (TLM) ap-
proach (cf. Section 2.1.2) and is common in HW/SW co-design. As an example,
consider the development of a typical application from the automotive domain,
an Anti-lock Braking System (ABS). An ABS monitors the speed at each wheel
and regulates the brake pressure in order to prevent wheel lockup and improve
the driver’s control over the car. It consists of dedicated wheel speed sensors,
a hydraulic modulator to control the brake pressure, an electronic control unit
that runs the control algorithm, and a CAN bus that yields a fault-tolerant
communication platform to connect the distributed components. An exem-
plary architecture of such a design is shown in Figure 4.1.

The typical HW/SW co-design flow for the development of such an ABS
starts with an abstract design where processes communicate over first in first
out (FIFO) channels and where timing is only coarsely estimated. This ab-
stract model allows the validation and verification of the control algorithm
without coping with the high complexity of the complete system, in particular



4.1 Combining Model Checking and Testing 65

Requirements
Specification R

conformance Abstract Model satisfied
relation //V Design S Checking not satisfied

1 \ conformance

\ I evaluation
\ \ 4
A /
s Refined Conformance % .Test .
Design [ Testing Specification T'S

]
(1)

pass fail

Figure 4.2: Combining Model Checking and Testing

by abstracting from communication, data and timing details. Then, the de-
sign is step-wise refined. For example, a high-speed CAN bus could be used for
communication and an interrupt layer could be added to the electronic control
unit. When these refinements are conducted, this requires detailed data and
timing information. For example, modeling the CAN bus requires to refine
the previously exchanged abstract transactions into bit- and cycle-accurate
transactions, where each frame is transferred bit-wise in realistic transmission
times.

In general, a refined design can be regarded as the implementation of an
abstract design, whereas the abstract design serves as the specification. We
propose to use model checking to verify that the abstract model meets its
requirements. As the abstract model is relatively small compared to the im-
plementation, the state space explosion problem can be handled on this ab-
straction level. Then, we propose to generate conformance tests to verify that
the refined model or implementation conforms to the abstract model. This
allows fully automatic conformance evaluation and can be applied throughout
the whole design process down to the final implementation. The proposed idea
to obtain a continuous quality assurance process for HW/SW co-designs by a
combination of model checking and testing is shown in Figure 4.2. First, we use
model checking to check whether an abstract design S fulfills the requirements
specification R expressed in temporal logics. This yields the result satisfied or
not satisfied. When the abstract design S is manually refined into a refined
design I in the next development step, we assume a conformance relation be-
tween § and I and generate conformance tests to evaluate this conformance
relation for a given test suite T'S. The execution of the conformance tests on
the refined design yields for each test case the test verdict pass or the test
verdict fail. In case of the verdict fail, the implementation deviates from the
specification and a defect has been detected.

Applied to the example of the ABS, our quality assurance approach would
start with the verification of the abstract design where concurrent processes
communicate through FIFO channels. Then, we use model checking to verify
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safety, liveness and timing properties of such a design. These properties are
expressed in temporal logics and should capture all relevant design properties,
in particular safety-critical properties. Example properties for the ABS are:

m the system never deadlocks

if the wheels tend to block, the ABS eventually intervenes

the ABS always intervenes within a given time limit

the wheel slip never deceeds a given limit

if the wheel deceleration exceeds the maximally possible deceleration,
brake pressure is reduced within a given time limit.

All of these properties can be verified automatically using model checking.
Subsequently, conformance tests can be generated to check whether the imple-
mentation conforms to the abstract design. Of course, while model checking
yields guarantees for all possible input scenarios and all possible execution
paths of the abstract design, the conformance of refined designs is only shown
for a certain test suite and for the paths that were eventually executed during
test execution. As a consequence, test cases should be repeated several times
and the test suite should be carefully chosen. A complete test suite would
yield the guarantee that the system was implemented correctly, but cost in-
acceptable effort. A test suite that covers only a few input scenarios is not
sufficient to assure the quality of the system. By choosing the size of the test
suite and its coverage, the best possible trade-off between computational effort
and significance of the results can be achieved.

4.2 HW/SW Co-Verification Framework VeriSTA

Based on our approach for a formally founded, comprehensive, and automated
quality assurance process, we developed our framework VeriSTA (Verification
of SystemC designs using Timed Automata) that puts the proposed approach
into practice. The framework VeriSTA and its verification flow is shown in
Figure 4.3. The aim of VeriSTA is to support the whole HW/SW co-design
flow with SystemC, which consists of a sequence of refinement steps. In each
development stage, we have an abstract SystemC design that is manually re-
fined to a refined SystemC design. This is shown on the left in Figure 4.3 and
is the basis for the proposed verification flow. For clarity, we only consider one
development step here, but the verification techniques are meant to be repeat-
edly applied in each development step to yield quality assurance throughout
the whole design flow.

A prerequisite for the application of both model checking and conformance
test generation to SystemC designs is a formal semantics for SystemC. We
achieve this by a mapping from the semantics of SystemC to the well-defined
semantics of UPPAAL timed automata. Using this mapping, it is possible
to translate a given SystemC design into a semantically equivalent UPPAAL
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Figure 4.3: VeriSTA Framework

model. As shown on the top of Figure 4.3, in VeriSTA the abstract Sys-
temC design is translated into a UPPAAL model using our transformation tool
STATE (SystemC to Timed Automata Transformation Engine). The result-
ing UPPAAL model is fed into the UPPAAL model checker, together with a
requirements specification expressed in temporal logics. The model checker
tries to verify that the UpPPAAL model fulfills the properties defined in the
requirements specification. As a result, it yields satisfied or not satisfied. If
a property is not satisfied, the UPPAAL model checker additionally generates
a counter-example, which can be used for debugging purposes. Note that the
counter-example can also be visualized and animated in the UPPAAL tool suite.
This greatly supports the designer in understanding where the problem arose
from.

Model checking of SystemC designs is very expensive due to the problem
of state space explosion. In particular, SystemC designs are inherently non-
deterministic, since the SystemC scheduler chooses the execution order of con-
current processes non-deterministically. As a consequence, model checking can
only be applied to small or abstract designs. To overcome this problem, and to
be able to also cope with more detailed and comparably large designs, we pro-
pose to generate conformance tests for refined designs. Like model checking,
the automatic generation of conformance tests also requires a formal model to
have a precise and unique interpretation of the specification. In our VeriSTA
framework, we again use the UPPAAL model to this end. From that, we stati-
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cally compute all possible timed output traces for a given test suite consisting
of a set of input traces. This is implemented in our ATENA tool (Automated
Test generation Engine for Non-deterministic Timed Automata). The re-
quired test suite has to be defined by the designer as a SystemC test bench
and is translated into a UPPAAL test model as part of the abstract SystemC
design. Note that the model checker ignores the test model and verifies the
requirements for all possible input scenarios. From the set of input traces (de-
fined by the test model) together with the timed output traces (allowed by
the specification), we generate SystemC test benches. This is implemented in
our tool TBGeneSys (Test Bench Generator for SystemC). The generated
test benches can be used to execute and evaluate conformance tests fully auto-
matically. This is achieved by monitoring the outputs of the refined SystemC
design during test execution respectively HW/SW co-simulation, and by com-
paring them with the timed output traces allowed by the specification. For
the comparison, we use the relativized timed input/output conformance relation
(rtioco) defined by Larsen et al. [LMNO5]. The result of the test execution is
a test verdict, which is either pass, fail, or inconclusive. In case of the test
verdict pass, the refined design conforms to the specification according to the
used conformance relation. In case of fail, an error was detected. The test ver-
dict inconclusive is added for the special case that the specification contains
non-terminating internal loops. In such cases, the conformance test generation
is aborted when a given limit of computation steps is exceeded and the test
verdict is inconclusive.

Altogether, our framework yields a fully automatic verification flow that
supports the whole HW/SW co-design process of digital HW/SW systems mod-
eled in SystemC. However, neither the semantics-preserving transformation
from SystemC to UPPAAL timed automata, nor the automatic generation of
conformance tests for SystemC designs are trivial. In the next two chapters, we
first present the transformation, which allows the application of the UPPAAL
model checker, and then the conformance test generation method.
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For quality assurance, simulation is necessary but not sufficient because it is
usually impossible to cover all possible input scenarios. As a consequence, de-
fects can be defected, but it is impossible to show their absence. It requires
formal verification techniques such as model checking to guarantee important
properties, e. g., liveness, safety, and the abidance of real-time constraints, of
a given system. A vital precondition to formally verify such properties is a
formal semantics. Unfortunately, the semantics of SystemC is only informally
defined in [IEE05]. This makes it difficult to analyze SystemC designs, and
even impossible to apply automatic formal verification techniques like model
checking. To solve this problem, we first present a formal semantics for Sys-
temC. Second, we present how our formal semantics can be used to model
check SystemC designs.

The general idea to obtain a formal semantics for SystemC is that we map
the informally defined semantics of SystemC to the formally well-defined se-
mantics of UPPAAL timed automata [BLL195]. To this end, we define a seman-
tically equivalent UPPAAL representation for all relevant executable SystemC
language elements, e. g., for simple assignments, method calls, events and the
wait-notify mechanism. Then, we present a transformation procedure to con-
struct a complete UPPAAL model from a given SystemC design using these
representations. The overall transformation preserves the informally defined
semantics of SystemC completely. To ease debugging, it also keeps the struc-
ture of the original SystemC design transparent to the designer in the UPPAAL
model. Furthermore, the mapping we present allows the automatic generation
of a formal UPPAAL model from a given SystemC design. This in turn facili-
tates the application of the UPPAAL model checker to SystemC designs. Note
that the UPPAAL tool suite enables simulation and animation of the generated
model and thus allows the visualization and animation of counter-examples if
the verification fails.

In the following, we first state a few assumptions that define the subset of
SystemC supported by our approach. Second, we present our general approach
for the representation of SystemC in UPPAAL. Then, we present the complete
transformation procedure. We conclude the chapter with an illustration of the
verification flow that allows model checking of SystemC designs.

69
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5.1 Assumptions

SystemC is a language that allows the modeling of digital hardware and soft-
ware components on different levels of abstraction. To this end, SystemC
supports a very diverse set of models of computation. At the same time, as an
extension of C++ | it inherits the full semantic scale of the C++ language. To-
gether, this illustrates that SystemC is an outstandingly expressive languages.
To make it nonetheless possible to transform SystemC designs into the more re-
stricted UPPAAL modeling language, we assume that a given SystemC design
fulfills the following restrictions. First of all, UPPAAL supports no dynamic
variable or process creation. Thus, dynamic object or process creation are also
forbidden in the SystemC design, i.e., a static structure is required. This is
a minor restriction because dynamic object or process creation is rarely used
in the considered application domain of safety-critical embedded systems. Dy-
namic process creation is not even part of the SystemC language definition
and can only be used through the corresponding C++ functions. Since the
UPPAAL model is statically composed at transformation time, all statements
that are used for instantiation and binding must be evaluable at transformation
time. As a consequence, only instantiations and initializations are allowed in
constructors and in the sc_main method. This again is an unimportant restric-
tion. While SystemC allows hierarchical scopes, the possibility to define scopes
is limited to global and local variables in UPPAAL. To avoid name conflicts,
we assume that no variables are shadowed (i.e., each variable has a unique
identifier in its scope). Similarly, we assume that no overloading of methods
is used. These are assumptions that do not restrict the set of possible input
designs but requires some renaming and code duplication at the most. Finally,
the UPPAAL modeling language only provides the data types int and bool.
Most complex data types can be mapped to integers, but the use of pointers
is generally impossible in UPPAAL. Thus, we assume that the SystemC design
does not use any pointers. As a consequence, dynamic memory management is
also excluded. Again, this is non-essential, as dynamic memory management
is rarely used in the considered application. Overall, the assumptions on the
input SystemC design hardly narrow the applicability of our approach and are
fully acceptable in the considered domain of digital control systems that are
often safety-critical.

5.2 Representation of SystemC Designs in Uppaal

Figure 5.1 shows how we represent SystemC designs in UPPAAL. The gen-
eral idea is that each method is mapped to a single timed automata template.
Process automata are used to encapsulate these methods and care for the in-
teractions with events and the scheduler. The scheduler is explicitly modeled,
and we use a predefined template for events and other SystemC constructs
such as primitive channels. The interactions between the processes and the
scheduler are modeled by two synchronization channels, activate and deacti-
vate. The interactions between processes and event objects are modeled by
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Figure 5.1: Representation of SystemC Designs in UPPAAL

wait and notify. The interactions between the event objects and the scheduler
are used to synchronize their timing. The scheduler informs the event objects
when a delta-cycle is completed to release delta-delay notifications, and con-
versely, the event objects inform the scheduler when time is advanced due to
a timed notification.

To allow compositional transformation, that is to make it possible that each
SystemC module can be translated separately, we perform the mapping from
SystemC to UPPAAL in three steps:

(i) We define a (general) timed automata representation for each SystemC
language construct, such as methods, processes, and events.

(ii) Using these general representations, we translate each given SystemC
module into a set of parameterized timed automata.

(iii) We perform instantiation and binding. This requires to instantiate the
parameterized timed automata, to add the variables and channels that
are necessary to connect them, and to build the system declaration.

Note that with the help of the template parameters, we can instantiate
the modules an arbitrary number of times without having to perform a new
translation. When we compose a design, we instantiate the modules including
their events and processes and connect them using synchronization channels.
Using this compositional approach, we are able to translate large designs in
reasonable time. The generated models are structure-preserving and thus easily
comprehensible to the designer. We can handle all relevant SystemC language
elements, including process execution, interactions, dynamic sensitivity and
timing behavior. In the following sections, we first outline a few assumptions
we pose on the input SystemC design to make sure that it can be completely
transformed into a semantically equivalent UPPAAL model. Then, we present
the transformation of all important SystemC language constructs and show
how a design is composed using instantiation and binding.

5.3 Design Transformation

In this section, we describe how we map SystemC language elements to timed
automata representations and how these mappings are embedded in the com-
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plete design transformation. The transformation preserves the (informally de-
fined) behavioral semantics and the structure of a given SystemC design. It
can be applied fully automatically and the resulting models can directly be
fed into a model checker. In the following, we first present the transformation
of sequential control flow, i.e., methods and regular C/C++ statements. Sec-
ond, we describe the transformation of the SystemC elements that allow the
modeling of concurrent processes and their interactions, i.e., the scheduler,
processes, events and time. Third, we describe how the structural elements,
i.e., channels and modules, are transformed. Finally, we present how a design
is composed by instantiation and binding.

5.3.1 Method Transformation

The basic building blocks to structure sequential code are methods. They
contain all executable statements and thus constitute the executable part of
the design. In our transformation approach, methods are translated into timed
automata templates, which are then embedded in process automata that care
for the interaction with events and the scheduler. This allows the independent
and separate transformation of methods.

Methods contain lists of statements. Our general transformation procedure
for a method is as follows: Initially, we generate an empty timed automata
template, the only location is the initial location. We append a transition
labeled with a synchronization that can be used to transfer control flow to
the method, and a target location for this transition. This location is the
starting point for the executable statements contained in the method. Then,
we process the method statement by statement, and for each statement, we
append locations and transitions labeled with the corresponding actions. When
we reach the end of the method, we append a transition that leads back to the
initial location and transfers control flow back to the caller.

The transformation of methods is shown in Figure 5.2. The SystemC code
of a method declaration and the corresponding method call is shown in Fig-
ure 5.2a, the resulting UPPAAL elements are shown in Figure 5.2b and Fig-
ure 5.2c. A method transfers the control flow from the caller to the callee. The
callee executes the method body and returns the control flow back to the caller.
To model call-return semantics, we use a synchronization channel ctrl. The
caller, depicted in Figure 5.2c, hands control over to the callee, depicted in
Figure 5.2b, with ctrl!. Then, the caller waits until the method body of the
callee is executed, and resumes execution when receiving ctrl?. The method
template waits for ctrl? in its initial location and executes its method body
when it receives the ctrl signal. Then, it executes its method body and sends
ctrl! back to the caller. For the transfer of arguments to a method, dedi-
cated global variables param_p for each parameter p of a method are declared.
Figure 5.2 illustrates how two arguments arg_a and arg_b are passed to the
method. The first argument arg_a is passed by value, and thus its value is
copied into the variable param_a. The second argument arg_b is passed by ref-
erence. Thus, its value is copied into the variable param_b before the method
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Figure 5.2: Method Transformation

execution and back to arg_b afterwards. Similarly, a return value is trans-
ferred from the method to the caller using a dedicated variable return. The
control transfer channel and the input and output parameters of a method are
visible as parameters of the timed automata templates of the method and the
caller. This enables multiple instantiations of a method and the connection
with different callers in the system declaration. Local variables of a method
are adopted as local variables of the template.

In the following, we describe which locations and transitions have to be
appended for each kind of statement. The statements can be of type method
call, return, assignment, if-else, switch-case, while, continue or break. We
use the term current location to refer to the lastly appended location in each
transformation step. We also keep a reference to the initial location, and to
the beginning of blocks. Note that time may only pass within a method if a
wait function is called or if the control flow is passed to another method that
possibly calls a wait function. As a consequence, we use urgent locations in
all other cases. Non-urgent locations are only used when a method waits for a
synchronization. This ensures the correct timing behavior of methods.

Return statement If we reach a return statement, we connect the current
location with the initial location and label this transition with ctrl! and
possibly with the assignment of the return value as shown in Figure 5.2. A re-
turn statement aborts the transformation of the current block, and subsequent
statements are dead code.

Assignment transformation We adopt assignments as updates at transitions
in the timed automata template. An assignment may contain arithmetic oper-
ations and method calls. Arithmetic expressions in SystemC are syntactically
equivalent to those in UPPAAL, as UPPAAL supports updates in C notation.
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Thus, they can be adopted without further handling. If an assignment con-
tains a method call, the method call is transformed first as described above,
and its return value is used where the method is called. For the transformation
of an assignment, we make the current location urgent, append a transition
with the assignment as update label, and use a new location as target loca-
tion. An example is shown in Figure 5.3. In Figure 5.3a, two assignments,
a simple arithmetic expression and a complex assignment including a method
call are shown. The corresponding representations in UPPAAL are shown in
Figure 5.3b and Figure 5.3c.

If-else transformation To transform if-else statements, we append two out-
going edges to the current location as shown in Figure 5.4, one of them labeled
with the if-condition, the other with the negated if-condition. Again, we make
the current location urgent because the evaluation of the if-condition takes no
time. We recursively transform all statements of the then-block and append
them to the if-location. We also transform the statements of the else-block
and append them to the else-location. If there is no return statement in both
branches, they are joined in a new location which becomes the current loca-
tion. If there is a return statement in one of the branches, it is connected to
the initial location and execution of the method is finished for this branch. In
that case, we use the last node of the other branch as new current location.
If there are return statements in both branches, transformation of the current
block is finished.

Switch-case transformation A switch-case statement allows a case differen-
tiation dependent on a switch expression that evaluates to an integer value.
For the transformation of a switch statement, the switch expression is first
evaluated and stored in a temporary variable. Then, for each switch case, two
edges are appended to the current location. The first one is labeled with the
condition for the current case, the other one with the negated condition for the
current case. Then, the statements of the current case are appended to the first
transition, and the next switch case to the latter. If the conditions are false for
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Figure 5.4: If-Else Transformation

all cases, an optional default case is executed. In all cases, a break statement is
translated to an edge to the end of the switch statement. If a switch case does
not contain a break statement, the following case is executed without checking
its condition. An example for the transformation of a switch-case statement is
illustrated in Figure 5.5.

Loop transformation The transformation of loops is depicted in Figure 5.6.
Figure 5.6b shows the transformation of a while loop, Figure 5.6¢ the trans-
formation of a for loop. The conditions are transformed similar to those of
if-else statements. The transition that leads into the loop is guarded by the
condition itself, the other by its negation. The loop body is transformed and
appended to the location reached by the fulfilled condition. When the loop

switch_begin

switch (s) @
{ switchO = s
case O: o
// caselO block (u) switch0 == @
i /I case0
case 1: {(switch0 == 0) // statements
// casel block (u) switch0 == (u)
break; /I casel

I(switch0 == 1) // statements

default: (u) (u)

default block // default
} / d // statements /I break

©
switch_end
(b) Switch-Case in UPPAAL

(a) Switch-Case in SystemC

Figure 5.5: Switch-Case Transformation
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Figure 5.6: Loop Transformation

body is completely executed the condition is checked again and if it evaluates
to false, the loop is left, if it evaluates to true the loop body is executed again.
A for-loop is equivalent to a while-loop, but additionally contain an initializa-
tion part and an update part. The initialization part is executed before the
condition is firstly checked, the update part is executed at the end of each
execution of the loop body. For return statements, the current location is con-
nected with the initial location, as described above, and the execution of the
loop is therefore aborted. Within a loop, the continue statement can be used
to abort the current execution of the loop body, and the break statement can
be used to abort the execution of the loop completely. As a consequence, if we
have a continue statement, we connect the current location with the location
loop_begin, i.e., the loop is executed from the beginning if the loop condition is
still fulfilled. For a break statement, we connect it with the location loop_end,
i.e., the loop is left in any case.

In this subsection, we presented all transformations that are necessary to
transform methods, i.e., sequential control flow. Note that all of these trans-
formations can be applied independently without knowledge about the sur-
rounding system structure. This makes the whole transformation approach
modular, flexible, and easily extensible. In the next subsections, we present
the more sophisticated and more specific SystemC language constructs that
allow a discrete-event simulation of concurrent processes and the modeling of
time.
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5.3.2 Concurrency and Communication

SystemC events are executed in a discrete event-simulation, and the semantics
of SystemC is defined by the simulation semantics. The heart of the simulation
is the SystemC scheduler, which allows the concurrent execution of SystemC
processes. In this subsection, we present the transformation of the SystemC
elements that allow the modeling of concurrent processes and their interactions,
i.e., the scheduler, processes and events.

The Scheduler

The scheduler controls the execution of SystemC designs. The basic execution
units are processes. The simulation semantics of SystemC is described in
Section 2.4.3. The scheduler works in delta-cycles, i. e., in evaluate and update
phases. In the evaluate phase, processes that are ready to run are executed in
non-deterministic order. In the update phase, primitive channels are updated
by taking over new values. If there are no more processes ready to run when
a delta-cycle is finished, time is advanced to the next pending event.

The timed automaton we use to model the scheduler is shown in Figure 5.7.
Initialization is implicit in UPPAAL, i.e., processes and methods are executed
once before the main simulation loop. As a consequence, the scheduler starts in
the evaluation phase depicted by the location evaluate. If there are any pro-
cesses that are ready to run, the scheduler sends an activation event activate!.
Processes that are ready to run receive this event and resume their execution.
We use a binary channel for the activation to ensure that only one process
is executed at a time and that processes are executed in a non-deterministic
order. To ensure that the scheduler sends the activation event once for each
process that is ready to run, each process increments a counter ready_procs
when triggered, and decrements the counter when suspending itself. When

ready_procs > 0

deactivate? .
activate!

time_progress

advance time?

evaluate

ready_procs > 0
ready_procs ==

ready_procs == delta_count++

update

update_requests ==
delta_delay!

next_delta

update_requests > 0

?
update_end? update_start!

Figure 5.7: Timed Automaton modeling the Scheduler
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there are no more processes that are ready to run, i.e., ready_procs == 0,
the scheduler starts the update phase by going to location update. In the up-
date phase, update requests are executed in non-deterministic order using the
activation event update_start. Immediate notification is not allowed during the
update phase. If there are no more update requests, the scheduler starts the
next delta-cycle (see location next_delta). When leaving the update phase,
the scheduler informs event objects with pending delta-delay notifications that
a delta-cycle is finished by sending delta_delay!. If there are delta-delay no-
tifications, the corresponding processes are immediately triggered and become
ready to run. They will be executed in the next delta-cycle, which is started
by the scheduler without time progress. If there are no processes triggered
by delta-delay notifications, i.e., ready_procs == 0, simulation time must be
advanced to the earliest pending timed notification. There are two types of
timed notifications in SystemC: events may be notified with a delay by call-
ing e.notify(t), and processes may be delayed for a given time interval by
calling wait (t). In SystemC, the timing behavior is completely managed by
the scheduler. In the timed automaton, we have the possibility to wait locally
for a given time. Therefore, it is more suitable to model time within processes
and event objects. To wait for the earliest pending timed notification in the
scheduler, we let the processes and events with timed behavior send a broad-
cast synchronization advance_time! when their delay expires. The scheduler
receives advance_time? and starts a new delta-cycle, i.e., executes processes
that became ready to run through the timed notification.

The timed automaton modeling the scheduler behaves exactly like the Sys-
temC scheduler. The binary channels used to control process execution and
channel updates guarantee that the model checker considers every possible se-
rialization. The locations used for the execution of delta-cycles are urgent and
thus take no simulation time. We ensure that no scheduling phase is started
before the preceding phase is completed using the counters ready_procs and
update_procs and committed locations in event notifications. The counters
guarantee that pending executions are completed before the next phase is
started. The use of committed locations in event notification (as shown in the
next section) ensures that event triggering is prioritized over state changes in
the scheduler.

Events

If an event object e is notified by its owner, processes that are sensitive to the
event resume execution. SystemC supports three types of event notifications.
An immediate notification, invoked by e.notify(), causes processes to be
triggered immediately in the current delta cycle. A delta-delay notification,
invoked by e.notify(0), causes processes to be triggered at the same time
instant, but after updating primitive channels, i.e., in the next delta-cycle. A
timed notification, invoked by e.notify(t) with t > 0, causes processes to
be triggered after a certain delay t. If an event is notified that already has
a pending notification, only the notification with the earliest expiration time
takes effect. That means that immediate notifications override all pending
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Figure 5.8: Timed Automata Template for an Event Object

notifications, delta-delay notifications override timed notifications, and timed
notifications override pending timed notifications if their delay expires earlier.

We model event objects as shown in Figure 5.8. The timed automata
template is instantiated for each event object declared in a given SystemC
design. Its template parameters are the synchronization channels notify_imm,
notify and wait, and the integer variable t. Initially, the event just waits
to be notified. If it is immediately notified, it receives notify_imm?, and
immediately sends wait! on a broadcast channel. If the event object is notified
by a delta-delay or a timed notification, it receives notify? and copies the
parameter t to a local variable ndelay, which yields the notification delay. At
the same time, a local clock x is reset. The committed location that is now
reached is used to reinitialize ndelay and to reset x if a subsequent delta-delay
or timed notification overrides the notification delay. We then have to wait

until:

(i) an immediate notification overrides the current pending notification,
(ii) we receive delta_delay? from the scheduler if ndelay == 0, or

(iii) the current delay expires, i.e., x == ndelay && ndelay !'= 0.

Subsequently, we send wait! and go back to the initial location. When a
timed notification expires, we have to inform the scheduler to start the next
evaluation phase by sending advance_time!. Due to the use of a broadcast
channel advance_time!, only the first advance_time is received by the sched-
uler if the delays of multiple events expire at the same time. As mentioned
before, the preservation of the SystemC semantics requires that the scheduler
must not start the evaluation phase before event notification is completed.
To ensure this, event objects with pending timed notification also synchronize
with advance_time? as receivers. If they receive advance_time? and their
delay expires in the same time instant, i.e., if x == ndelay, they immedi-
ately trigger pending processes. Otherwise, nothing happens. The semantics
of broadcast synchronization ensures that events with expiring delays reach
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Figure 5.9: Process Templates

the committed location in the same semantic step as the scheduler reaches the
evaluation phase. The committed location ensures that events are prioritized
in the next semantic step.

Processes

Processes are the basic execution unit in SystemC. Each process is associated
with a method to be executed. There are two types of processes: method
processes and thread processes. A method process, when triggered, always ex-
ecutes its method body from the beginning to the end. It is triggered by a set
of events given in a static sensitivity list. The timed automata template we
use to wrap a method process is in Figure 5.9a. It waits for any of the events
from the sensitivity list by synchronizing on sensitive?. If one of the events
from the sensitivity list occurs, it marks itself as ready to run by incrementing
ready_procs and by waiting for the activate event. Then, it transfers control
to its associated method. When the method returns, it deactivates itself by
sending deactivate! to the scheduler and by decrementing ready_procs. Then,
it returns to the initial position and waits until it is triggered by one of the
events from the sensitivity list again. A thread process may suspend its exe-
cution and dynamically wait for events or a given time delay. It is triggered
only once at the beginning of the simulation and runs autonomously from that
time on. The timed automata template we use to start a thread process is
given in Figure 5.9b. It just waits to be activated, transfers control flow to its
associated method and deactivates itself if the method returns. Note that the
control transfer channel is a parameter of the process templates, and thus the
same template can be instantiated for arbitrary many process declarations.



5.3 Design Transformation 81

wait (e); wait (); sensitive << el ... en;
© ©
deactivate! deactivate! en wait?
ready_procs-- ready_procs-- —

) )

e wait? sensitive?
ready_procs++ ready_procs++ @h@
® ® )

activate? activate?
sensitive!
© ©
(a) Dynamic sensitivity ~ (b) Static sensitivity (c) Sensitivity list

Figure 5.10: Event Sensitivity

Static and dynamic sensitivity

SystemC designs are executed in a discrete-event simulation. This means that
concurrent processes are triggered by events at discrete times. A process that
listens to an event, i.e., waits for it to be triggered, is called sensitive to this
event. A process may be sensitive to multiple events at a time. In the following,
we describe how we model processes and their static and dynamic sensitivity
A thread process may suspend its execution by calling a wait function. If
wait () is called without parameters, it waits for one of the events in the static
sensitivity list. If the process calls wait(e) with an event e as argument, the
static sensitivity list is temporarily overridden by e. This is called dynamic
sensitivity. If the process calls wait (t), it is delayed by t time units. If the
process calls wait (t,e), it waits for event e for t time units. We model event
sensitivity in UPPAAL using synchronization channels as shown in Figure 5.10.

Dynamic sensitivity A process calling wait(e) is shown in Figure 5.10a.
It suspends its execution, i.e., it synchronizes with deactivate!, decrements
a counter ready_procs, and then waits to be triggered, i.e., it synchronizes
with the wait channel of the event object. When e_wait? is received, the
process increments the counter ready_procs and waits to be activated by the
scheduler. We can also handle waiting for composed events such as el & e2
orel | e2.

Static sensitivity Static sensitivity is very similar to dynamic sensitivity,
but when wait() is called the process waits for one of the statically known
events from the sensitivity list. We model sensitivity lists by a timed automa-
ton, which waits for one of the specified events and sends sensitive! on a
broadcast channel if one of them occurs, as shown in Figure 5.10c. To ensure
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Figure 5.11: Timed Waiting

that immediate event notifications take effect immediately, we use a commit-
ted location. Figure 5.10b illustrates how we model static sensitivity within
a sensitive process. Compared to dynamic sensitivity, e_wait? is replaced by
sensitive?.

Timed waiting We model timed waiting with a special timeout_event. Each
process has its own timeout_event. Calls to wait(t) are modeled as shown
in Figure 5.11a. First, a timed notification is released to start the time-
out. Second, the process waits for the timeout to expire by synchronizing
with timeout_event_wait?. Waiting for an event until a timing delay ex-
pires (wait(t,e)) requires to extend the timed automata model by a syn-
chronization on e_wait?, as shown in Figure 5.11b. To make sure that a
timeout_event does not override subsequent timed notifications, we override
it with an immediate event notification if event e occurs.

5.3.3 Channels and Modules

Channels and modules define the structure of a SystemC design. Channels de-
fine communication methods which may be used by processes, whose modules
are connected to them through ports.

Channels We transform the communication methods defined within a chan-
nel like ordinary methods as described above. The communication methods
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are connected to processes, which have access to the channel in the instanti-
ation and binding phase using the UPPAAL template mechanism. The overall
channel is transformed in the same way as a module. A special treatment is
required for primitive channels, because they support the request-update mech-
anism. Primitive channels have to implement an update ()-function. This
is called by the special function request_update() in the evaluation phase
if a communication method wants the update ()-function to be executed in
the update phase. We use a timed automata template to manage update re-
quests as shown in Figure 5.12. If request_update? is received, the update
method of the corresponding channel is called within the update phase of the
scheduler. Calls to request_update () in SystemC are modeled by sending re-
quest_update! in the timed automata template. The execution of the update
method is performed by the scheduler as described above.

Modules The transformation of a module or channel requires that we adopt
the member variables as global variables, allocate synchronization channels and
parameter declarations, and generate the necessary method templates. All of
these elements are prefixed with the module name to make the structure of
the original SystemC design transparent in the generated UPPAAL model. A
module or channel may be instantiated multiple times in a SystemC design. To
make method templates reusable, we take all declarations that are visible in the
module as template parameters. When a module or channel is transformed,
the corresponding templates are generated. Global and system declarations
are not added to the UPPAAL model until a module or channel is instantiated.

5.3.4 Instantiation and Binding

In the instantiation and binding phase, all generated UPPAAL elements are
composed into the final system. To this end, the method templates generated
from modules and channels are instantiated and connected through their pa-
rameters. Event and process templates are generated once for each module
or channel. Methods, however, may be used in multiple concurrent processes.
Therefore, all methods that are visible to a module must be instantiated once
for each process declared within the module. The corresponding global dec-

update_end!
update_requests--
v
update_ctrl?
request_update?
update_requests++
update_ctrl!
update_start?
v v

Figure 5.12: Timed Automata Template for Request-Update
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larations are prefixed with the module name and the process name. Member
methods of channels must be instantiated once for each process of each module
which is bound to the channel.

Although there is no structural hierarchy in UPPAAL, the module struc-
ture of the SystemC design is visible through prefixes. In combination with
a one-to-one mapping of SystemC to UPPAAL processes, the design structure
is completely transparent to the designer. This is very useful when the model
checker produces counter-examples.

5.4 Model Checking SystemC Designs

We presented an approach to translate SystemC designs into the UPPAAL
timed automata, whose semantics is well-defined. The translation enables the
usage of the UPPAAL tool suite on SystemC designs, including the UPPAAL
model checker to formally verify temporal properties of SystemC designs.

The main advantage of our approach is that once we have defined the
mapping from SystemC to UPPAAL, the transformation of a given SystemC
design can be performed automatically. We implemented this in our STATE
(SystemC to Timed Automata Transformation Engine) tool. This transfor-
mation tool makes it possible to verify temporal properties of SystemC designs
fully automatically. The automated verification flow is shown in Figure 5.13.
The STATE tool takes as input a SystemC design and a temporal property
formulated in the UPPAAL requirement language (which is a subset of CTL).
The SystemC design is translated into a UPPAAL model by our STATE tool
and can then be directly passed to the UPPAAL model checker. The model
checker tries to verify the property and generates a counter-example if it is
not satisfied. Note that the counter-example is given as a trace in UPPAAL
semantics. However, the transformation from SystemC to UPPAAL preserves
the structure by prefixing, such that it is transparent to the SystemC designer
where the problem arises from. In addition, UPPAAL can be used to animate
the counter-example graphically.



6 Conformance Testing

The aim of conformance test generation is to compute all possible output
traces of a high-level specification for a given set of input traces and to use
these output traces to automatically evaluate the conformance of a low-level
implementation. In our case, we want to generate conformance tests from
a high-level SystemC design and to use them to evaluate low-level SystemC
designs or the final implementation. To this end, the high-level SystemC design
is first automatically translated into a UPPAAL timed automata model. From
the UPPAAL model, we compute all possible output traces for each of the
given input traces. From each input trace together with its corresponding set
of possible output traces, we generate a SystemC test bench. The resulting set
of SystemC test benches can be used for automatic conformance evaluation of
low-level designs.

The automatic generation of conformance tests requires a clear definition
of both the semantics of the specification, from which the tests are generated,
and the conformance relation that is used for test evaluation. To this end,
we present a complete definition of the symbolic semantics of UPPAAL timed
automata, and give a formal definition of relativized timed input/output con-
formance relation. Based on these definitions, we present an efficient algorithm
for the computation of all possible output traces of a UPPAAL model for a given
input trace. Finally, we present how a SystemC test bench for automated con-
formance evaluation can be automatically generated from a given input trace
together with the corresponding set of possible output traces. Altogether, we
obtain a framework that allows fully automatic conformance evaluation in a
HW/SW co-design flow with SystemC. The framework is applicable to non-
deterministic systems and conformance tests are generated offline. With that,
it is ideally suited to support a HW/SW co-design flow where the SystemC
design is stepwise refined down to the final implementation. In such a design
flow, the conformance tests can repeatedly be executed in each development
phase. Thus, they can be used to ensure the consistency between the designs
on different abstraction levels.!

INote that the execution of the generated test benches requires the points of control and
observation, i.e., the interface between the test bench and the system under test, to be
of the same type on different abstraction levels. Otherwise, adapters may be required

85
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In the following sections, we first describe the basic test setting that we
require to make our conformance testing approach applicable. Then, in Sec-
tion 6.2, we give a complete definition of the symbolic semantics for UPPAAL
timed automata, and define the conformance relation in Section 6.3. In Sec-
tion 6.4, we present our algorithm for the computation of all possible output
traces for a given UPPAAL model. In Section 6.5, we describe how we generate
SystemC test benches from that.

6.1 Test Setting

Embedded systems closely interact with a technical environment. Because of
that, both SystemC designs and UPPAAL models comprise an explicit model
of the environment in addition to the system model. The environment model
provides the inputs to the system model and consumes its outputs. A test
case can be regarded as a specialized environment that provides a single input
trace. It is specified as a timed automaton that sends input events and data
at certain times and waits for system reactions for a given amount of time. A
particular location indicates the end of the input trace and can be used by the
test algorithm to terminate the state space exploration. We call the automaton
that provides the input trace a test automaton. Note that a SystemC input
generator that provides a single input trace can be automatically transformed
into such a test automaton.

On the output side, we want to observe all possible behavior the specifi-
cation could produce. Thus, we need an environment that accepts all possi-
ble outputs at arbitrary times. To this end, we use a generic tester compo-
nent that accepts all possible responses as proposed by Robinson-Mallett et
al. [RMHLO6]. Like the test automaton, the generic tester can also be gener-
ated automatically from a corresponding SystemC output monitor.? Together,
the test automaton and the generic tester constitute a test model that replaces
the environment model in the UPPAAL model used for the test generation
process, as shown in Figure 6.1.

From the test model together with the system model, conformance tests
are generated. The resulting test benches still contain the test automaton,
but the generic tester is replaced by an automaton that accepts exactly those
traces that were produced by the abstract system model or specification for
the given input trace. We call this automaton a checker automaton. If the
checker automaton reaches its final node during test execution, it received a
complete and correct output trace and the test verdict is pass. If it receives
an unexpected event, unexpected variable values or a clock bound is exceeded,
the test verdict is fail. If it receives a trace for which the correct output trace
could not be completely computed, the test verdict is inconclusive. In the

to translate, for example, a bit-accurate frame into an abstract data type before the
generated test bench can be used for automated conformance evaluation.

2As an output monitor must exist to make a SystemC design executable, it usually already
exists.
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Figure 6.1: Conformance Test Generation

following sections, we describe how such checker automata can be generated
automatically.

6.2 Symbolic Semantics of Uppaal Timed Automata

The first step to generate conformance tests from UPPAAL timed automata is
to compute the possible behavior of the model for a given input trace. To that
end, we have to explore the symbolic state space that is reachable with the
given input trace. As a prerequisite for that, we need a complete definition of
the symbolic semantics of UPPAAL timed automata. The symbolic UPPAAL
semantics is described by Bengtsson et al. [BY04]. However, the description
is incomplete. The extension of networks of timed automata with shared data
variables is only implicitly described, and binary and broadcast channels are
omitted. In the following, we give a complete symbolic semantics of UPPAAL
timed automata.

A network of UPPAAL timed automata is a transition system where sym-
bolic states are triples (I,D,v) with

m a location vector [,

m a difference bound matrix D representing a clock zone,

a vector of data variable evaluations v.

As UPPAAL provides the template mechanism to instantiate one automata
definition multiple times in a system, we use the term process to denote a con-
crete automaton in the system. We further define the following abbreviations:

m [.(I), I,(I) denote the invariants assigned to location 1, w.r.t. to clock
resp. data variables,

m [.(I), I,(I) denote the conjunction of all invariants assigned to locations
inl,

m D! denotes the operation up(D), i. e., removes upper bounds of all clock
variables,
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m 7% (I) is the set of urgent locations in /,

m %(I) is the set of committed locations in I,

® g, giy denote guards on clocks resp. data variables, as an abbreviation
we use g; = (gim giv)7

® 1., iy are sets of update operations on clock resp. data variables,

w u(D,ric), u(v,riy) denote the application of update operations on a clock
zone resp. the global data space, as an abbreviation we use r; = (ric, i),

m ¢!, ¢? denote sending and receiving on a synchronization channel c.

Initially, all clocks are set to zero and all processes are in their initial loca-
tion.

Definition 12 (Symbolic semantics of UPPAAL networks of timed automata).
A UPPAAL network of timed automata (UTA) consists of n processes o =
(L,-,l?,C,A,Ei,Ii) and a global data space consisting of a set of variables V. The
symbolic semantics of UTA is defined by a transition system (S,so,—). Fach
state s € S is a tuple (I,D,v), where [ is a location vector, D is a clock zone
and v a vector of variable values. A semantic step can be either

(i) a time step or delay,
(11) an independent step of a single process or internal transition,
191) a binary synchronization between two processes, or

b h tion bet t

(iv) a broadcast synchronization between one sender process and k of receiver
processes.

Delay A delay is a semantic step where the UTA stays in the same locations
and all variable values remain unchanged. Only the difference bound matrix
(DBM) representing the clock zone is changed by first removing upper bounds
and then intersecting with the conjunctive invariant of all current locations.
In other words, a delay denotes the expansion of the current clock zone to the
upper limit given by the invariants of the current locations. A delay is only
admissible if none of the locations of the current state is urgent or committed.

(I,D,v) ~ {[,D',v)
with D' = DI AL(])
if

U(D)=0AE () =0

Internal transition An internal transition is an independent transition of
a single process i. As effect of the transition, the location of this process [;
is replaced by a successor location I/ in the location vector, and the action
assigned to the corresponding edge is performed. This may include an update
of the variable vector u(v,r;,) and operations on clocks u(D,ri.). An internal
transition is only admissible if the guard assigned to the edge is satisfied and
if the invariant of the successor location is not violated. To obtain the clock
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zone where both conditions are fulfilled, the DBM is first conjuncted with the
guard, then possible clock operations are performed and, finally, the DBM is
conjuncted with the invariant. If the resulting DBM is non-empty, it represents
the clock zone of the successor state. An internal transition is only admissible if
the corresponding process is in a committed location or if the set of committed
locations is empty.

(I,D,v) ~ (I'\D',V)
with [’ = l_[ll{/li],D’ =u(DAgic,ric) NI(I),V = u(v, r3,)
if
L
D€ gic \Vv € giv,
D' # 0NV € L(l),

e eV E() =0)

Binary synchronization A binary synchronization is a conjoint transition of
two processes i and j that synchronize on the same binary channel ¢ with i as
sender and j as receiver. As effect of a binary synchronization, the locations
of both processes are replaced by a successor location in the location vector
and the actions assigned to the corresponding edges are performed. Note that
the actions assigned to the sender’s edge are performed first, and only then,
the actions assigned to the receiver’s edge are performed on the resulting data
and clock variables. Guards and invariants are used similar to an internal
transition, the only difference is that both guards and invariants have to be
considered. A binary synchronization is only admissible if one of the processes
is in a committed location or if the set of committed locations is empty.

(I,D,v) ~ (I',D' V)
with l_/:l_[ll{/li,l}/lj],D/:M(M(D/\gic/\gjc,ric),rcj)/\Ic(l_/),

Vo= u(u(v, riv),rjv)>

if
[N [ e
S AL STy
D€ (gic Ngje),V € v AV E gjv,
D' #0OAY € L(I),

eV ec)VE() =0)

Broadcast synchronization A broadcast synchronization is a conjoint tran-
sition of one sender i with all currently enabled k receivers j = ji,..., jx. The
effect is similar to that of a binary transition, all locations of participating
processes are replaced by a successor location in the location vector and the
actions assigned to the corresponding edges are performed. To determine the
order of these actions, the order of the processes in the system declaration is
used and all actions are performed successively. All guards and invariants of
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participating processes have to be considered for the effect on the clock zone
and to determine admissibility of the synchronization. Furthermore, a broad-
cast synchronization is only admissible if one of the processes is in a committed
location or if the set of committed locations is empty.

(I,D) ~ (I',D' V')
with l’:l[ll{/li,l;l/lj,,...,l;.k/ljk],
D' = M(M(D/\gic:ric) A (/\gjc)7Urjc) /\Ic(l/)a
Vi=u(u(v,ri),Urjy)
if
gi,C!Ji 8j 76?”’j 8j 7C?7rj
L Y e VNN PR )
D e /\(gjc) AVAS /\(ng)7
D' #A0NV € L(I),

(li € Cg(l) vV (Hlj € Cg(l)) \/(5(1) = @)

A deadlock occurs when there is no successor state for a given state. If
one or more of the guards of outgoing transitions split a given symbolic state,
the existence of successor states must be checked for each sub-zone.

With the above definitions, we have a clear and unique definition of the
behavior of a UPPAAL timed automata model and can compute all possible
behavior from a given model. Before we describe our algorithm for conformance
test generation, we present the conformance relation we use for automated
conformance evaluation.

6.3 Conformance Relation

The aim of conformance testing is to determine whether an implementation
of a system conforms to its specification. This requires to define precisely
what it means that an implementation conforms to its specification. For that,
a formal implementation or conformance relation is used [Tre96]. A confor-
mance relation relates an implementation with its specification. In our case,
both the implementation and the specification are SystemC designs and can
be described by timed labeled transition systems with inputs and outputs. As
a consequence, we can use the relativized timed input/output conformance (rti-
oco) relation defined by Larsen et al. [LMNO05, HLM™08]. The rtioco relation
was defined for UPPAAL timed automata and thus is ideally suited for our test
setting where we derive conformance tests from a UPPAAL model.

A prerequisite to relate an implementation to a specification is that the
implementation can be modeled by some formal object (cf. Section 2.3.3).
However, an implementation is usually a non-formal object. To solve this
problem, Bernot [Ber91] introduced the concept of a test hypothesis. Following
that, it is sufficient to assume that an implementation could hypothetically
represented by some formal model. In our case, we assume that the low-level
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design (or at least its observable behavior) could hypothetically be transformed
into a semantically equivalent UPPAAL model. With that, we can define timed
traces, a refinement relation on timed traces, and finally the relativized timed
input/output conformance relation with respect to UPPAAL timed automata
models and use it for the conformance evaluation of SystemC designs.

In Section 2.5, we introduced symbolic timed traces for timed automata
networks without data variables as sequences of actions and clock zones. For
timed automata networks with data variables, an action may be composed of
an event e and a manipulation of the global data space v. As a consequence,
when the system state changes, we can observe either an event e, a modified
data space v, or both. As we are only interested in the observable behavior,
we partition both the events and the data space into three disjoint sets of in-
put events/variables Evj, /V;,, output events/variables Evyy; /Vou, and internal
events/variables Eviy /Vip;. With that, a timed input or output trace can be
defined as follows:

Definition 13 (Timed input and output traces). A timed input (output) trace
of a state s is a (possibly infinite) sequence of observations, where each obser-
vation is a tuple (e,D,v) consisting of an event e € Evy, (e € Evyy ), a difference
bound matrix D representing the clock zone in which the event occurs, and a
vector v € Vi, (v € Vo) containing the values of data variables that are exter-
nally visible as inputs (outputs) at this time.

ttriso(s) = (eo,Do,vo)(e1,D1,v1)...(ei, Dis vi)...

Based on the definition of timed input and output traces, we can define the
refinement relation < on timed output traces:

Definition 14 (Refinement relation on timed output traces). A timed output
trace oy refines a timed output trace og if they contain the same events and
variable values, and if the clock zone of each observation on I is a subset of
the corresponding observation on S. We use the index set I over the elements
of oy and og.

or<os iff Viel: oj.e = og.e/\oé.D C og.D/\O}.v = og.v

Note that the number of elements in oy and os may be finite or infinite. If the
number of elements is finite for one of the timed output traces, oy < os if and
only if length(or) = length(os).

The set of timed output traces that can be observed on a system § un-
der environmental constraints & for a given input trace o are denoted by
TTry((1,£),0). The set of timed input traces that are provided by an envi-
ronment are denoted by TTr;(&).

Definition 15 (Refinement relation on sets of timed output traces). We define
the refinement relation T on sets of timed output traces with respect to a given
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environment & such that for each output trace of the implementation oy an
output trace of the specification og with oy < og must exist:

TTr,((I,8),0) C TTr,((S,8),0) iff
Yoy € TTTO((I,cg)),G) : (305 € TTTO((S,g),G) tor < OS)

Based on the definition of timed traces and the refinement on sets of timed
output traces, we can define relativized timed input/output conformance (rti-
oco) as follows:

Definition 16 (Relativized timed input/output conformance (rtioco)). I con-
forms to S under the environmental constraints & if for all timed input traces
o € TTri(&) the set of timed output traces of I is a refinement of the set of
timed output traces of S for the same input trace.

I rtioco S iff Yo € TTri(&): TTry((1,&£),0) C TTr,((S,&),0)

The rtioco relation is derived from the input/output conformance (ioco)
relation of Tretmans and de Vries [dVT00] by taking time and environment
constraints into account. Under the assumption of weak input enabledness,
i.e., if any input is accepted in any state, the rtioco coincides with timed trace
inclusion. Note that the definition ensures that the implementation may not
produce outputs that are unexpected by the specification and that it must
produce outputs whenever it is expected by the specification.

Together, the symbolic UPPAAL semantics and the conformance relation
yield the formal basis for our conformance test approach. With the above
definitions of timed output traces, refinement on timed output traces and con-
formance between an implementation and its specification, we can use the
following procedure to check whether a given implementation conforms to its
specification based on the observable behavior:

(i) compute all possible timed output traces of the specification for a given
timed input trace,

(ii) execute the implementation for the same timed input trace,

(iii) check whether the timed output trace of the implementation refines the
set of timed output traces allowed by the specification by comparing
output events, clock zones, and variable assignments.

In the following section, we first present an algorithm for the first task, i.e.,
for the computation of all possible timed output traces of the specification for
a given timed input trace. Then, we present how SystemC test benches can be
generated from that. These test benches allow both the execution of a given
implementation and for the automated conformance evaluation, i. e., they fulfill
the second and the third task.
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6.4 Conformance Test Generation

To generate conformance tests from a given UPPAAL timed automata model
and a given input trace, we have to explore the complete symbolic state space
that is reachable with the given input trace. To this end, the algorithm for test
generation explores the state space breadth-first until the end of the given input
trace or a deadlock state is reached. Central in the algorithm is the computa-
tion of all possible successor states for a given symbolic semantic state following
the symbolic semantics of UPPAAL timed automata. In the following, we first
describe a basic algorithm for offline test generation. Then, we present how
all possible successor states of a given symbolic semantic state are computed
within this algorithm. Finally, we describe extensions and optimizations to
make the algorithm efficient with respect to time and memory consumption.

6.4.1 Basic Algorithm

The aim of the algorithm for conformance test generation is to compute all
possible output traces from a given UPPAAL timed automata model for a given
input trace. Note that in our case, the input trace is part of the given UPPAAL
model. To compute the state space that is reachable with that input trace,
we perform a breadth-first search. This means that we start with the initial
symbolic state (I,D,V) consisting of a location vector I, a difference bound
matrix D representing a clock zone, and a set of global variables V. From that,
we compute all possible successors. Then, we compute all possible successor
states for each of the successors and so forth, until we reach the end of the
input trace specified in the test automaton (end location).

The overall algorithm is shown in Listing 6.1. It operates on a UPPAAL
network of timed automata. From that, it builds two state sets: The WAIT set
is used to store all states for which the successors are not computed yet, the
KNOWN set is used to store states that are completely processed, i.e., for which
all successor states are computed. The set STATESPACE is used to store the so
far explored state space, i. e., it holds tuples of states and their successor states.
As long as the WAIT set is non-empty, states are taken from it. If the selected
state is neither a deadlock state nor contains an end location and the limit of
computation steps is not exceeded, the successor states are computed. For each
of the successors, we check whether we have already visited it. If not, we add it
to the WAIT set. When all successor states of a state are computed, it is added
to the KNOWN set. The algorithm terminates when the end of the test case or a
deadlock state is reached. The result is a tree of all possible computation paths
for a given timed input trace. To get the observable behavior, we just have
to extract the outputs from the computation tree, including the corresponding
difference bound matrices and externally visible data valuations.

As the system may be non-deterministic, the result of the algorithm shown
in Listing 6.1 is a tree, where each path represents a possible timed output
trace. By joining all its end states into a final node pass, as shown in Fig-
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WAIT := {{o, Do, Vo) ;
KNOWN := 0;
STATESPACE := 0;
while WAIT #0 do
select s = (I;,Dy,Vs) from WAIT;
if lisEnd(s) and !isDeadlock(s) and !limitExceeded (s)
successors := getSuccessors (s);
for each successor € successors
if successor ¢ (KNOWN U WAIT) then
add successor to WAIT;
end if
end for
end if
add (s,successors) to STATESPACE;
add s to KNOWN;
end while
return getOutputs (STATESPACE);

Listing 6.1: Test Generation Algorithm

ure 6.2, the tree can be transformed into a checker automaton as described
in Section 6.1. Note that we limit the number of internal computation steps
between two output events to ensure termination of the algorithm in case of
infinite internal loops. If the limit is exceeded, the corresponding node in the
checker automaton is marked with the label inconclusive. If the checker au-
tomaton reaches this node, the verdict is inconclusive. That means that the
test generation algorithm was not able to predict the correct behavior for the
given input trace together with the previous observations. A fail node is not
explicitly contained in the checker automaton. The test verdict is fail whenever
something unexpected happens.

init

inconclusive

pass

Figure 6.2: Checker Automaton
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(a) Sender (b) Receiver 1 (c) Receiver 2

Figure 6.3: Communication Partners of a Broadcast Synchronization

6.4.2 Computation of Successor States

The heart of the test generation algorithm shown in Listing 6.1 is the get-
Successors function, which determines all possible successor states of a given
state. This function implements the symbolic semantics of UPPAAL timed au-
tomata and considers all four kinds of symbolic semantic steps that are defined
in Section 6.2. A precondition for that is to determine which semantic steps
are possible from a given state.

The first kind of a symbolic semantic step, i. e., a delay, is possible whenever
there are no urgent or committed locations in the location vector of the current
state. It is performed by expanding the clock zone to the maximum that is
allowed by the current invariants. We do this at first, to ensure that we use the
maximal clock zone for the following determination of possible discrete steps.

To obtain all possible discrete steps, we first determine all enabled outgo-
ing edges from the current location vector. An edge is enabled, if its guard
is satisfied. The possible internal transitions can be directly derived from the
set of enabled edges. The possible synchronizations depend on the number of
possible communication partners. Remember that in the case of more than
two communication partners for a binary transition, actual partners are non-
deterministically chosen. For the computation of all possible successor states,
that means that every possible combination has to be considered. The same
holds if there is a non-deterministic branch between multiple sending or receiv-
ing edges in one process. As a consequence, we have to compute all possible
sets of communication partners for each channel. As an example, consider
the three automata shown in Figure 6.3. The automaton shown in Figure 6.3a
synchronizes as a sender on a broadcast channel c¢. The automata shown in Fig-
ure 6.3b and Figure 6.3c synchronize as receivers. As both receivers implement
a non-deterministic choice between two branches, the sender can synchronize
with edge 1 of both receivers, with edge 2 of both receivers, or with edge 1
of one of the receivers and edge 2 of the other receiver. In other words, each
combination has to be considered to obtain the set of enabled synchronizations.
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s:=(I,D,v);
OUT:=outgoingEdges(I) ;
COMMIT: =committedEdges(l) ;
URGENT:=urgentEdges(l) ;
INTERNAL:=0;

SYNC:=0;

SUCCESSORS:=0;

Listing 6.2: Initialization

The required steps to compute all possible successor states of a given state
can be summarized as follows:

(i) collect all outgoing edges and all edges with urgent or committed source
locations (initialization),

(ii) expand the current clock zone to the maximally possible delay,
(iii) build the set of enabled edges,

(iv) from the set of enabled synchronization edges, build the sets of possible
communication partners,

(v) compute all successor states that are reachable by an internal transition,
a binary synchronization, or a broadcast synchronization.

In the following, we describe these steps in more detail. Altogether, they
constitute an algorithm for the computation of all possible successor states for
a given symbolic semantic state.

Initialization The initialization phase, where outgoing edges and all edges
with urgent or committed source locations are collected, is shown in List-
ing 6.2. The algorithm takes a symbolic state (I,D,v) as input. From that, it
builds the set of outgoing edges OUT, the set of edges with committed source
locations COMMIT, and the set of edges with urgent source locations URGENT.
Furthermore, the sets INTERNAL, SYNC, and SUCCESSORS are used to store the
set of internal edges, the set of synchronizing edges, and the set of successor
states, respectively. Initially, those sets are empty.

Delay The first semantic step performed on the input state is a delay. This
ensures that the clock zone of s is expanded to the maximum, before we com-
pute possible successor states. The delay(s) function used in Listing 6.3
implements the delay as defined in Section 6.2, i.e., it expands the current
clock zone as far as the invariants of the current locations permit. A delay is
only possible if both the set of committed and the set of urgent locations are
empty.

Determine Enabled Edges In the next step, we build the set of enabled
edges as shown in Listing 6.4. If the COMMIT set is non-empty, only internal
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if COMMIT = 0 and URGENT = 0 then
s = delay (s);
end if

Listing 6.3: Semantic Step: Delay

edges with committed source locations may be enabled. An edge is internal
if it has no synchronization label and enabled if its guard is satisfied. In
addition to the set of enabled internal edges, we need to compute the set of
enabled synchronization edges. A synchronization edge is enabled if its guard
is satisfied. Which synchronizations are enabled can not be determined until
all potential communication partners are known. To prepare the computation
of all possible sets of communication partners for each channel, we collect
enabled channels together with its potential senders and receivers in a channel
set CHAN.

Determine Enabled Synchronizations The set of possible binary and broad-
cast synchronizations depends on the set of enabled synchronization edges.
How we determine all possible combinations of communication partners to
compute the set of enabled synchronizations is shown in Listing 6.5. In the case
of binary synchronizations, one sender synchronizes with one receiver. If there
are more than two possible communication partners, the UPPAAL semantics
prescribes that pairs are non-deterministically chosen. For the computation of
the set of all possible successor states, this means that all possible pairs have to
be considered. As a consequence, we have to iterate over all receivers and com-
bine them with all senders that are not from the same process. If the COMMIT
set is non-empty, we have to take care that only pairs are chosen where one of
communication partners is in a committed location. In the case of broadcast
synchronizations, each sender synchronizes with all currently enabled receivers
that are not from the sender process. Care has to be taken to avoid that two
receivers from the same process are taken. If there are multiple receivers from
the same process, a synchronization is enabled for each alternative. The set of
enabled synchronizations is stored in the SYNC set.

Execute Discrete Semantic Steps The final step in the computation of all
possible successor states for a given state is to execute all possible discrete
semantic steps. As we have identified all enabled edges and enabled synchro-
nizations, we just have to perform the corresponding operations as described
in Section 6.2, i.e., to replace the source with the target locations, to perform
the actions assigned to the edges, and to constrain the clock zone according to
the guards and invariants of the target locations. Note that we check whether
the resulting clock zone is non-empty before we add successor states to the
SUCCESSORS set. With that, we ensure that we do not add states that violate
an invariant.
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(x if there are committed edges, only those may be enabled x)
if COMMIT #0 then

EDGES := COMMIT

else

EDGES := OUT

end if

(x edges are enabled if their guard is satisfied x*)
for each edge e EDGES
if edge has no sync then
if guard(edge) is satisfied then
add edge to INTERNAL;
end if
end if
end for

(x initialize active channel set x*)

CHAN := 0

(x collect all enabled synchronization edges *)
for each edgee OUT
if edge has sync then
if guard(edge) is satisfied then
if channel(edge) ¢ CHAN
add channel (edge) to CHAN;
end if
if edge is sender then
add edge to sender list of channel (edge);
end if
if edge is receiver then
add edge to receiver list of channel(edge);
end if
end if
end if
end for

Listing 6.4: Determine Enabled Edges
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for each channel € CHAN
if COMMIT = 0 or (channel has receiver or sender € COMMIT)
for each sender of channel
if channel is broadcast
RECV := get receivers from channel with
process(receiver) # process(sender) ;
PREV_RECV_SETS := {0};
for each proc € PROCESSES
PREV_RECV_SETS.NEW := 0;
PROCRECV := get receivers from RECV with
process(receiver) = proc;
(x append each receiver of the current process
to each previously computed receiver set x)
for each RECV_SET € PREV_RECV_SETS
for each proc_recv e PROCRECV
add RECV_SET U {proc_recv} to PREV_RECV_SETS NEW;
end for
end for
(* keep mew list of receiver sets x)
PREV_RECV_SETS := PREV_RECV_SETS NEW;
end for
for each SYNCRECV € PREV_RECV_SETS
if COMMIT = 0 or
sender € COMMIT' or
SYNC_RECV N COMMIT # 0
add (sender, SYNC_RECV) to SYNC;
end if
end for
else (x binary channel x)
for each receiver of channel
if process(receiver) # process(sender) then
if COMMIT = @ or sender € COMMIT or receiver € COMMIT
add (sender, {receiver}) to SYNC;
end if
end if
end for
end if
end for
end if
end for

Listing 6.5: Determine Enabled Synchronizations
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for each edge € INTERNAL
compute (I',D'V);
if D#0 then
add (z,(l',D',v')) to SUCCESSORS:;
end if
end for

for each synce SYNC
compute (I',D'}V);
if D40 then
add (sync,(l',D',V')) to SUCCESSORS;
end if
end for

Listing 6.6: Execution of All Possible Discrete Semantic Steps

Overall, we presented an algorithm with which all possible symbolic suc-
cessor states for a given symbolic state can be computed. Together with the
algorithm shown in Listing 6.1, we have a complete algorithm to generate con-
formance tests from a given UPPAAL model. However, although the presented
algorithm is fully operative, it leaves room for optimizations, which we present
in the following section.

6.4.3 Optimizations

The problem with the basic algorithm shown in Listing 6.1 is that it suffers
from the same state space explosion problem as model checking. The com-
putation is limited by the size of the input trace. Still, the non-deterministic
behavior of the SystemC scheduler leads to an explosion of semantic states in
the partial computation tree, which must be fully explored for the given input
trace to obtain all possible output traces. A well-established mean to reduce
the number of semantic states in a computation tree is to recognize semantic
states that have already been explored before. The disadvantage of this tech-
nique is that it requires to keep all states in the memory. This blows up the
memory usage and finally is the reason why large models cannot be handled
by standard model checkers. The main idea of our optimized algorithm for
conformance test generation is to make use of the specifics of the SystemC
semantics to drastically reduce the number of semantic states that have to be
kept in memory during state space exploration. To this end, we make use of
SystemC delta-cycles, the cooperative scheduler, and linear time progression.
Whenever we realize that we do not need to keep a set of states for further
computations, we can write the corresponding trace information out (to hard
disk), and delete it from the main memory. This reduces the computational
effort significantly and mitigates the out of memory problem considerably.

The primary source of non-determinism in SystemC designs is the sched-
uler semantics, which executes concurrent processes in non-deterministic order
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Figure 6.4: Non-deterministic Process Execution

within a delta-cycle. However, in most cases, e.g., in the case of primitive
channels using the request-update scheme, the result is still uniquely deter-
mined. In our partial computation scheme, this means that at the entry point
of a delta-cycle, we have many branches due to the non-deterministic sched-
uler behavior. However, if the program behavior is uniquely determined, all of
these branches lead to the same semantic state at the end of the delta-cycle.
An example is shown in Figure 6.4. At the beginning of the delta-cycle, one of
three processes is non-deterministically chosen. After that, one of the others
is chosen. In any case all three processes have been executed at the end of
the delta-cycle and the same semantic state is reached (i.e., the resulting ob-
servable behavior is uniquely determined). The first optimization of the basic
algorithm is to recognize such behavior and to delete all intermediate semantic
states from memory if all semantic states in a delta-cycle have a common and
unique successor state. This can be efficiently checked because we can identify
the states at the beginning and at the end of a delta-cycle. If we reach the state
at the end of a delta-cycle, we just have to check whether all states that are
successors of the state at the beginning of the delta-cycle are also predecessors
of its end state.

Another possibility to reduce the state space explosion is to remove in-
termediate states in processes. As SystemC uses a cooperative scheduler,
process execution always consists of a sequence of non-preemptive execution
steps. Since we can never start a process between non-preemptive statements,
we can delete all semantic states between a process activation and its deacti-
vation from memory. Care must be taken if the designer implemented infinite
loops without preemption. This is generally unwanted behavior because it
starves all other processes in the design. However, we can recognize such be-
havior and ensure termination of the test generation algorithm. To this end,
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Figure 6.5: Structure of Automatically Generated Monitor Modules

we detect cycles between process activation and deactivation. If we detect such
a cycle, we abort test case generation and give a corresponding error message.

Altogether, the presented optimizations, which make use of delta-cycles
and the cooperative scheduler semantics, reduce the memory consumption and
the computational effort significantly. In addition to that, we extended the
algorithm for conformance test generation by hashing, by a memory efficient
representation of the difference bound matrix, and by a strategy to store states
in swap files whenever the available heap space falls below a given limit. This
potentially increases computation time but solves the out of memory problem
and makes the approach applicable to all kind of models that are supported
by the transformation approach, given that enough computation time is spent
and that sufficient hard drive space is available.

6.5 Test Bench Generation

In this section, we present how we generate SystemC test benches for auto-
mated conformance evaluation from the previously computed set of expected
output traces. To this end, a checker automaton is constructed, which accepts
the expected outputs at the expected times and yields the test verdict pass if a
correct output trace is completely received, the test verdict inconclusive if an
output trace could not be completely computed, and the test verdict fail oth-
erwise. The main challenges for the generation of SystemC test benches from
such checker automata are to cope with output ports providing only blocking
read access, and to ensure that time limit exceedings are recognized.

The generated test benches consist of the originally used input generator
and an automatically generated monitor module, which reads the outputs of
the design under test, checks their correctness, and yields the test verdict. To
this end, all output channels of the design under test are used as inputs to
the monitor module. The structure of the automatically generated monitor
module is shown in Figure 6.5.

For the correctness check, a look-up-table (LUT) is constructed from the
previously computed possible output traces. It contains expected variable
values (vo,...,v,), lower and upper bounds on the global clock (g;,g,), and
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SC_METHOD (monitor_nb)
sensitive << il << i2 << ... << in;

void monitor_nb() {
bool verdict = false;
int locVars([n];

locVars[0] = il.read();

iééVars[n-l] = in.read();

if (inconclusive(s)) verdict = inconclusive;
if (locVars == vars(s)) verdict = true;

for(s’ : succ(s))
if(locVars == vars(s’)) {
s = s’; change.notify();
verdict = true;

}

if ('verdict) verdict = fail;

Figure 6.6: Generated Monitor for Non-Blocking Read Functions

possible successor states (s(, ..., s;,) for each semantic state s. Thus, each entry
of the LUT has the following form:

Lut(s) = (v, -, Vn), (81,8u) (505 -5 S1))

Within the monitor module, a member variable is used to hold the current
state. Note that a state in the monitor module is not equivalent to the se-
mantic state of the design under test, because we hide all variable and clock
assignments that are not visible to the environment. Thus, the LUT contains
only observable variable assignments and the global clock.

The output ports of a given SystemC design may provide blocking or non-
blocking read functions. If a port provides only non-blocking read functions,
a process reading from these ports is blocked as long as nothing happens on
the port. For non-blocking ports, the reading of the outputs of a given design
under test consists of a sequence of read functions. In the case of blocking
ports, we have to take care that the test verdict of the monitor module does
not depend on the order of events. We solve this problem by using multiple
monitor processes. One thread process is generated for each input port that
provides blocking read access. FEach of them contains a blocking read call
and subsequently uses the LUT to check whether a correct input was received.
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SC_THREAD (monitor_time)

void monitor_time() {
sc_time now;
while(true) {
1b = lower_bound(s); ub = upper_bound(s);
now = sc_time_stamp();
if(1b > now || now > ub) // test verdict fail
wait(ub - now, SC_NS, change);
if(sc_time_stamp() > ub) // test verdict fail}
1}

Figure 6.7: Generated Timing Monitor

Additionally, one method process is generated that is sensitive to all input ports
that provide non-blocking read access. Whenever triggered, this process also
uses the LUT to check whether a correct input was read. The general structure
of a method process that observes non-blocking ports is shown in Figure 6.6.
The thread processes that observe blocking ports are constructed very similar,
the only difference is that they have no static sensitivity list and that they
read only from one port each. In both cases, a correct input is received if one
of the expected successor states of the current state is reached or if the system
could still be in the current state. If the actual variable assignments do not
match to those of the current state or one of the successor states, test execution
is aborted and the test verdict is fail. All monitor processes notify a change
event whenever they change the current state. As there are multiple processes
controlling the current state in case of output channels that provide blocking
read access, the monitor processes allow the preserving of variable assignments
of the current state instead of reaching one of the successor states. To control
the timing, a timing monitor thread is generated as shown in Figure 6.7. This
thread reads the lower and upper bounds on the global clock from the LUT
on every change event and uses a wait statement with timeout to ensure that
the state is changed at the correct time. If the state change event occurs too
early or too late, test execution is aborted and the test verdict is fail.

6.6 Automated Conformance Evaluation

In this chapter, we presented an approach for the automated evaluation of the
conformance of a low-level SystemC design to its specification. The specifi-
cation is given as a UPPAAL model, which is automatically generated from a
high-level SystemC design. To establish a formal basis for that, we first pre-
sented a complete definition of the symbolic UPPAAL semantics as well as a
conformance relation that can be used to relate a SystemC implementation to
a UPPAAL specification. Then, we presented an efficient algorithm to compute
all possible output traces from a given UPPAAL model, and we described how
SystemC test benches can be generated from those traces. These test benches
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can be directly executed with the low-level design under test and provide the
test verdict pass, fail, or inconclusive for each input trace specified in the test
suite. Note that our conformance evaluation approach is applicable on multiple
levels of abstraction, as long as the corresponding adapters, which translate
between the abstraction levels, are provided. As a consequence, it can be used
for quality assurance throughout the whole design flow. As we generate the
test benches for automated conformance evaluation offfine, we can reuse them
in each development step. With that, we ensure the consistency between de-
signs on different abstraction levels with minimal computational effort. Most
importantly, the whole conformance evaluation approach we presented is au-
tomatically applicable. Solely the test suite must be provided by the designer,
but we are currently working on an approach for automatic input generation
as well.






Implementation

We presented a comprehensive and automatically applicable approach for the
HW/SW co-verification of SystemC designs using timed automata. The ap-
proach is put into practice with our VeriSTA framework. To evaluate its practi-
cal applicability, we implemented the complete VeriSTA framework. As shown
in Figure 7.1, the VeriSTA framework consists of three main components:

m a transformation tool translates a given abstract SystemC design into a
semantically equivalent UPPAAL model,

m a conformance test generator computes all possible output traces from
the UPPAAL model, and

m a test bench generator generates SystemC test benches from that.
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Figure 7.1: VeriSTA Framework
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We implemented these components in three tools: The SystemC to Timed
Automata Transformation Engine (STATE) translates a given SystemC design
into a semantically-equivalent UPPAAL timed automata model. The Automated
Test generation Engine for Non-deterministic Timed Automata (ATENA)
computes all possible output traces from the UPPAAL model. Finally, the
Test Bench Generator for SystemC (TBGeneSys) constructs a SystemC test
bench from these output traces, which can be used for automated conformance
evaluation. Together with the external UPPAAL model checker, these compo-
nents implement the complete VeriSTA framework.

All three components are implemented in the platform independent pro-
gramming language Java. They can be executed on all kinds of platform
that provide a Java Virtual Machine. The complete implementation comprises
about 10.000 lines of code. In the following, we summarize the main charac-

teristics of STATE, ATENA, and TBGeneSys.

7.1 STATE

We presented how to transform a given SystemC design into a semantically
equivalent UPPAAL timed automata model in Chapter 5. The transformation
is modular and precisely defined and captures all relevant language constructs
of SystemC. As a consequence, a given SystemC design can be automatically
translated. We implemented this automatic translation in the diploma thesis
of Joachim Fellmuth [Fel08]. The result is the SystemC to Timed Automata
Transformation Engine (STATE).

STATE takes a SystemC design as input and yields a corresponding Up-
PAAL model as output. As a front-end for SystemC, we used the Karlsruhe
SystemC Parser (KaSCPar) [FZI]. KaSCPar parses a given SystemC design
and generates an Abstract Syntaz Tree (AST) in XML. The AST in XML
serves as input for STATE, which generates a UPPAAL model that is also in
XML format and that can be used as input for the UPPAAL tool suite. Fig-
ure 7.2 shows the tool chain from SystemC to UpPAAL. Within STATE, the
transformation of a given SystemC design is performed in two phases: first, the
transformation engine constructs a UPPAAL model from the given AST of the
SystemC design. The model is incrementally build and stored in an internal
representation. Second, the optimization engine performs several optimiza-
tions on that. Accordingly, the implementation of STATE consists of three
packages: the package model contains classes for the internal representation
of both the SystemC and the timed automata model. The package engine
contains classes that implement the transformation rules from SystemC to
UprPAAL. The package optimization contains several optimizations to make
the generated UPPAAL model smaller and easier to read. In the following, we
present content and structure of the three packages.
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Figure 7.2: Tool chain from SystemC to Uppaal

Internal Representations

During the course of the transformation from SystemC to UpPPAAL, a Up-
PAAL model is incrementally build. When the SystemC design is read in, some
elements, like methods, are directly transformed into corresponding UPPAAL
templates. For other SystemC elements, like a module instantiation, the infor-
mation must be saved for later design composition. To collect such information
and to store the gradually growing UPPAAL model, we use the classes SCModel
and TAModel. In SCModel, information about SystemC modules is stored,
for example, their ports, variables, events, functions, processes, and their con-
structor. This is necessary for later design composition. Furthermore, the class
SCModel contains a set of module instances. In TAModel, templates, template
instances, and global declarations are stored. The templates consist of loca-
tions and transitions and hold references to variables that are used locally or
as parameters. With SCModel and TAModel together, all relevant information
for the transformation can be internally represented. When the transformation
phase is finished, TAModel contains the complete UPPAAL model.

Transformation Engine

In the transformation engine, we use the Xerces DOM Parser [Apa06] to read
the AST of the SystemC design. The idea is to define a dedicated handler
function for each XML node. Those handler functions take as parameters an
XML node, the current SCModel, the current TAModel and a hash map that
collects other information like the current module or the current method. The
concept of dedicated handler functions makes the implementation modular
and flexible and eases further developments. Remember that we have two
kinds of transformation rules. We have rules that directly map a SystemC
language construct to a corresponding timed automata representation and rules
that define templates for special SystemC constructs. Examples for the first
type are the rules for method and statement transformation, examples for
the latter are the rules for SystemC events, processes, and the request-update
protocol. A special case of the latter type is the rule for the construction of
the SystemC scheduler, which is added implicitly to every model to implement
the scheduling semantics.

The transformation is performed in two phases: first, the SystemC model
is read in and the information is stored in SCModel and TAModel. Functional
parts of the SystemC design, i.e., methods, are directly translated into timed
automata templates. Structural information, which is necessary for instantia-
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tion and binding, is collected in SCModel. In the second phase, this information
is used to add global declarations and the system declaration to the TAModel.
With that, the TAModel can be completed. The result is then written to an
output XML file. However, not all parts of the generated TAModel are nec-
essary to obtain a semantic-preserving UPPAAL model. In the following, we
describe several optimizations that remove such elements from the TAModel.

Optimization Engine

The aim of the optimization engine is to reduce the size of the generated Up-
PAAL model and to enhance its readability. The first is advantageous because
it reduces the computational effort of model checking and conformance test
generation. The second is advantageous because the UPPAAL model can be
used for debugging purposes. If a verification attempt fails, the UPPAAL model
checker provides a counter-example which can also be graphically visualized.
To make counter-examples as comprehensible as possible, the readability of
the generated UPPAAL model is very important.

During the course of the transformation of a given SystemC design, it is not
always possible to avoid the generation of superfluous elements. This is due to
the modular structure of the transformation engine, where each SystemC con-
struct is separately handled, and thus not all semantic information is available
in each handler function. For example, for the transformation of a SystemC
event, an event template is used which provides an interface for notifying the
event immediately, delta-delayed, or with a timing delay. If the event is only
notified immediately, the other parameters from the interface are dispensable.
The optimization engine detects such unused elements and deletes them from
the TAModel. The following optimizations are implemented at the time:

m Unused template parameters
This optimization checks for each parameter of a template whether it is
actually used and deletes it otherwise. This improves readability of the
generated model.

m Unused template instantiations
Each method is instantiated once for each process that could use it. This
optimizations checks for each method template instantiation whether it
is actually used and deletes it otherwise. This improves readability and
reduces the number of locations in the semantic state space.

® Unused events
For each process, a dedicated timeout event is generated to realize timed
wait-statements. This optimization detects event templates that are
never used and deletes them. This improves readability and reduces
the number of locations and clocks in the semantic state space.

m Non-preemptive transition chains
As the transformation of each statement is done separately, a chain of
non-preemptive statements is transformed to a chain of transitions, where
one action is assigned to each transition. Such non-preemptive chains are
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merged to a single transition associated with a sequence of actions. This
improves the readability of the generated model.

With the presented optimizations, a given SystemC design can be auto-
matically translated into a compact and easily comprehensible UPPAAL model.
Furthermore, the modular approach of the separation between transformation
and optimization together with the dedicated handler functions makes the im-
plementation flexible and eases further developments.

7.2 ATENA

In Chapter 6, we presented an algorithm for the generation of conformance
tests from a given UPPAAL timed automata model. The algorithm takes a
network of timed automata as input and computes all possible output traces
for a given input trace, which is in our case already contained in the UPPAAL
model. The resulting set of output traces can then be used for automated
conformance evaluation. We implemented the basic algorithm in the diploma
thesis of Florian Friedemann [Fri09]. The result is the Automated Test gener-
ation Engine for Non-deterministic Timed Automata (ATENA). We extended
and optimized ATENA in the diploma thesis of Marcel Pockrandt [Poc09]. As
ATENA computes all possible output traces of the given UPPAAL model, it
must explore the whole state space that is reachable with the input trace con-
tained in the model. To make the exploration of the state space as efficient
as possible, ATENA generates an executable representation from the UPPAAL
model. In the executable representation, semantically related elements are di-
rectly linked, and expressions are simplified whenever possible. The executable
representation is executed by a symbolic executor that explores the state space
and that constructs a partial computation tree, which contains all possible
output traces.

Figure 7.3 shows the structure of ATENA. The input UPPAAL model is
given in XML format. We used ANTLR (ANother Tool for Language Recogni-
tion) [Par08] for the automatic generation of a parser from the NTA grammar.
The grammar defines a set of rules that describe the syntax of the input lan-
guage and that map each language element to the output language. ANTLR
also allows the automatic generation of translators and code generation. In
ATENA, we defined two grammars: the NTA grammar describes the input
Network of Timed Automata (NTA), and the AST grammar describes the ab-
stract syntaz tree (AST). For the construction of the executable representation
(ER), we defined a set of string templates and a set of translation rules. The
string templates describe the Java classes that constitute the ER. The trans-
lation rules describe how the AST is translated to the ER. We use ANTLR
to generate a parser from the NTA grammar, and a translator from the AST
grammar and the string templates together with the translation rules. For
the generation of an executable representation, a given UPPAAL model is first
parsed and then translated into an ER. Finally, the ER is used by the Symbolic
Ezecutor to compute all possible output traces.
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Overall, the implementation of ATENA consists of two parts: first, the
grammars together with the string templates and the translation rules used
to generate the executable representation. Second, the symbolic executor to-
gether with several helper classes for the operations on Difference Bound Ma-
trices (DBM) are used to explore the state space and to generate all possible
output traces. In the following, we first present the main characteristics of the
executable representation and then those of the symbolic executor.

Executable Representation

In the first phase of ATENA, an executable representation is generated from
the input model. To this end, the class ER is constructed which contains an
efficiently executable representation of the network of timed automata. The
class KR is automatically generated by the chained application of the parser
and of the translator. It mainly consists of the appropriate instantiations of
predefined classes for processes, locations, edges, variables, clocks, and chan-
nels. Each process contains a set of locations, a set of edges, a reference to
its initial location, and a reference to the global data space. With that, the
network can be efficiently executed as follows: first, the current location is
taken from each process. Then all possible successor states are computed (as
described in Section 6.4). Finally each process is set to the corresponding next
location.

Locations and edges can be associated with invariants, guards, and updates
on global variables. To make the evaluation of guards and invariants and the
execution of updates as efficient as possible, the expressions are simplified and
transformed into executable methods. For example, each edge has a method
performAction() that directly executes the sequence of actions assigned to the
edge as updates in the UPPAAL model. Similarly, the method getClockGuards()
directly evaluates the parts of the edge’s guard that refer to global variables.
It returns either null if this already leads to false or a list of clock guards.
The latter are conjuncted with the current DBM to check whether the guard
is satisfiable in the current clock zone.
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Symbolic Executor

The symbolic executor implements the test generation algorithm (Listing 6.1).
It starts with the initial symbolic state of a given network of timed automata,
computes all possible successor states and then all possible successor states for
those and so on until the complete state space that is reachable with the given
input trace is explored. The result is a partial computation tree, from which
the possible set of output traces can be derived.

The heart of the test generation algorithm is the function getSucces-
sors(s) that computes all possible successor states of a given state. This func-
tion implements the complete symbolic semantics of UPPAAL as presented in
Section 6.2. Symbolic states are triples (I, D,v), where [ is a vector of locations,
D a difference bound matrix representing a clock zone, and v a vector of variable
assignments. The class State is used to represent symbolic states. It contains
a unique identifier, a list of locations, a DBM, and a list of variable values. In
addition, the flags endState and deadlock are used to indicate whether the
state denotes the end of the test case or a deadlock state, respectively. From
a given state together with the executable representation generated from the
input UPPAAL model, all possible successor states are computed. During the
state space exploration, semantic states have to be kept in memory to detect
cycles. This leads to a state space explosion and the test generation algorithm
may run out of memory. To solve this problem, we presented several optimiza-
tions in Section 6.4.3. The proposed optimizations exploit the specifics of the
SystemC semantics to drastically reduce the number of states that have to be
kept in memory. To this end, they make use of delta-cycles, the cooperative
scheduler, and linear time progression. All of these optimizations were also
implemented in the symbolic executor.

With the presented optimizations, ATENA efficiently explores the state
space of a given UPPAAL model and computes a partial computation tree.
From that, all output traces that are possible with a given input trace can be
derived. The generated set of output traces can be used to generate SystemC
test benches for the automated conformance evaluation of a given SystemC
design.

7.3 TBGeneSys

The Test Bench Generator for SystemC (TBGeneSys) parses the set of out-
put traces yielded by ATENA, and generates a SystemC test bench from that
as described in Section 6.5. The test bench is constructed from the manually
implemented output monitor that was also used for conformance test gener-
ation (cf. Section 6.1). All ports and declarations are kept, but the monitor
function is deleted and replaced by automatically generated monitor functions
that compare the outputs of the system under test with the previously com-
puted expected output traces. Furthermore, the constructor is replaced by one
that declares the corresponding processes, and some global variable declara-
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tions (e.g., a state variable) are added. Apart from that, the generated test
bench contains a look-up table (LUT) as described in Section 6.5. The LUT
is used to check in each state whether the variable values are correct, whether
a valid successor state is reached, and whether timing constraints are adhered
to. If one of these conditions is not satisfied, the test verdict is fail and test
execution is aborted. If an inconclusive state is reached, the test verdict is
inconclusive. If a valid end state is reached, the test verdict is pass. Note that
in the case of multiple output monitors in the original test bench, all of these
monitors are replaced by monitors that automatically check the conformance
of the outputs of the design under test with those computed from the abstract
design.



8 Experimental Results

The implementation of the VeriSTA framework allows the practical evaluation
of our approach. The most important measures for the practical applicabil-
ity are the performance and the error detecting capability of the framework.
We evaluated these measures with a set of experiments. The performance is
measured in terms of computational effort. To illustrate the efficiency of our
tool chain, we provide experimental results that show the computational effort
of both the transformation with STATE and the test bench generation with
ATENA and TBGeneSys. Furthermore, to demonstrate the applicability of
the overall framework, we also provide experimental results that measure the
computational effort of the verification of SystemC designs using the UPPAAL
model checker. Those experiments show the compactness of the UPPAAL mod-
els generated with STATE. To evaluate the error detecting capability of our
conformance testing approach, we generated test benches and executed them
against erroneous designs. We obtain erroneous designs by injecting defects
from a predefined set of fault classes.

In the following, we first briefly present the main characteristics of the three
designs we use as case studies, namely a small producer-consumer example,
the packet switch example from the SystemC reference implementation, and
a SystemC design of an Anti-Slip Regulation and Anti-lock Braking System
(ABS/ASR). Then, we present our results from the performance evaluation of
our framework. Finally, we provide experimental results that demonstrate the
error detecting capability of our conformance testing approach.

8.1 Case Studies

For our practical evaluation, we use three case studies: a producer-consumer
example, a packet switch example and an ABS/ASR system. Note that the
producer-consumer and the packet switch example are especially well-suited
to assess performance and scalability of our approach because we can vary
the size of the designs. The ABS is especially well-suited to assess the error-
detecting capability of our conformance test approach because it was developed
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Figure 8.1: Architecture of the Packet Switch

in a typical refinement flow following the transaction level modeling (TLM)
approach and we have an abstract design and a refined design available.

Producer-Consumer Example

The producer-consumer example was already used to illustrate the main lan-
guage elements of SystemC in Section 2.4. It consists of a producer and a
consumer that communicate through a first in first out (FIFO) buffer. It uses
the SystemC channel concept as well as static, dynamic, and timing sensitivity
and thus covers many important language constructs of SystemC. Note that the
design is non-deterministic, as the execution order of producer and consumer is
not pre-determined. For our experiments, we use the producer-consumer exam-
ple with a varying buffer size. With that, we obtain a preliminary assessment
of the scalability of our approach. The size of the producer-consumer example
is approximately 130 lines of code (LOC) and it consists of two modules, two
processes and one channel.

Packet Switch

The packet switch example is taken from the SystemC reference implemen-
tation and demonstrates a multi-cast packet switch. The switch uses a self
routing ring of shift registers to transfer cells from one port to another in a
pipelined fashion, resolving output contention and efficiently handling multi-
cast cells. Input and output ports have FIFO buffers of depth 16 each.! The
architecture of the packet switch is shown in Figure 8.1.

For our experiments, we use the packet switch example with a varying
number of masters and slaves, from one master and one slave up to four of

IThis description is mainly taken from the README file of the SystemC reference imple-
mentation.
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Figure 8.2: Architecture of the ABS/ASR System

each. With that, the packet switch example is especially well-suited for the
evaluation of the scalability of our framework. The size of the packet switch
example is approximately 400 LOC. It contains 5 modules, 5 processes and 6
channels in case of one master and one slave, and 5 modules, 11 processes and
15 channels in case of four masters and four slaves.

Anti-lock Braking System and Anti-Slip Regulation

The ABS/ASR system monitors the speed of each wheel and regulates the
brake pressure in order to prevent wheel lockup or loss of traction and to im-
prove the driver’s control over the car. It consists of dedicated wheel speed
sensors, a hydraulic modulator to control the brake pressure, an electronic con-
trol unit that runs the control algorithms, and a control area network (CAN)
bus. The architecture of the design is shown in Figure 8.2. To measure the
wheel speed, the number of incoming wheel signals (ticks) are used to compute
the speed of each wheel. To this end, a tick counter is placed of each wheel.
The measurement results are sent to an electronic control unit (ECU) via a
CAN bus. On the ECU, the control algorithms for brake pressure control and
Anti-Slip-Regulation (ASR) are executed. A minimal real-time operating sys-
tem (RTOS) is used to schedule the tasks in the ECU and provides an interrupt
layer for the interactions with the CAN bus. The resulting control signals are
sent to the brake hydraulics.

The ABS was developed in a student’s project using a typical HW/SW co-
design flow following the TLM approach. We started with an abstract design
where processes communicate over FIFO channels and where timing is only
coarsely estimated. This abstract model allows the validation and verifica-
tion of the control algorithm without having to cope with communication or
timing details. Then, we refined the design by using a high-speed CAN bus
for communication, an interrupt layer and simple scheduling algorithm on the
electronic control unit, and detailed timing information. While the abstract
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design consists of approximately 500 LOC and contains 4 modules and 18 pro-
cesses that communicate over 12 channels, the refined design consists of over
5 KLOC and contains 10 modules and 28 processes that communicate over
25 channels. Overall, the ABS is well-suited to assess the performance and
error detecting capability of our approach. We can use the abstract design to
generate conformance tests and then automatically evaluate conformance of
the refined design.

8.2 Performance Evaluation

For the evaluation of the performance of our framework, we measured the
computational effort of

m the transformation of a given SystemC design into a UPPAAL model,
m model checking of an automatically generated UPPAAL model,

m the generation of SystemC test benches for automated conformance eval-
uation from an automatically generated UPPAAL model for a given test
scenario.

The results are presented in the following sections. All experiments were
run on a machine with an Intel Pentium 3.4 GHz DualCore CPU and 4 GB
main memory running a Linux operating system.

8.2.1 Transformation from SystemC to Uppaal

Table 8.1 shows the results for the computational effort of the transformation
from SystemC to UPPAAL for the three case studies. The results show that
the transformation time is negligible and that it scales well for an increasing
number of modules. This is due to our modular transformation approach. The
computational effort of the main translation phase is linear in the number of
modules and the code size, and the computational effort of the design compo-
sition is linear in the number of module instances. In the parsing phase, the
AST of the design as produced by KaSCPar is read in node by node. Thus,
the parse time is linear in the code size. The optimizations remove unused
elements, i. e., they process the design only once. Thus, the optimization time
is also linear in the code size.

8.2.2 Model Checking

For the evaluation of the performance of model checking of an automatically
generated UPPAAL model, we verified liveness and safety properties using the
UpPPAAL model checker on all three case studies. To ensure the correctness of
the designs for all possible input scenarios, we used generic input generation
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Transformation Time (in seconds)

Parse Translate Compose Optimize | Total
Producer-Consumer | 0.08 0.18 0.00 0.07 0.33
Packet Switch 1mls | 0.28 0.31 0.01 0.22 0.82
Packet Switch 1m2s | 0.32 0.33 0.02 0.24 0.91
Packet Switch 2m1s | 0.32 0.31 0.02 0.27 0.92
Packet Switch 2m2s | 0.42 0.33 0.02 0.26 1.02
Packet Switch 4m4s | 0.79 0.38 0.04 0.29 1.50
ABS/ASR System 0.45 0.36 0.03 0.24 1.08

Table 8.1: Computational Effort of the Transformation from SystemC to UPPAAL

components. These components provide all possible inputs at arbitrary times.
As a consequence, we obtain guarantees for all possible input scenarios.

Producer-Consumer Example

For the producer-consumer example, we verified the following properties:

(1) deadlock freedom,
(2) the absence of buffer overflows,

(3) the consumer reads items sent by the producer within a given time limit.

We varied the buffer size of the FIFO connecting the producer and the
consumer from 10 to 1000 (BS 10, BS 50, BS 100, BS 1000). In all cases, all
properties were proved correct. Table 8.2 shows the verification times averaged
over 10 runs. Note that the first two properties can be expressed by simple
CTL formulae, while the third property is not directly expressible in CTL.
This is due to the fact that we need to track each item until it arrives at the
consumer. To this end, we introduced an additional helper automaton, which
copies the values the producer sends into an internal array and deletes them

Verification Time (in seconds)

Property | BS 10 BS 50 BS 100 BS 1000 | satisfied
(1) 178 178 178 181 v
2) 178 178 178 181 v
(3) 1.82 195 922 10851 v

Table 8.2: Results from Model Checking of the Producer-Consumer Example for
Varying Buffer Sizes (BS)
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when they are read by the consumer within the given time limit. If they are
not read within the given time limit, it reaches a failure location. The CTL
formula for the third property is then simply that the helper automaton never
reaches this failure location. As shown in Table 8.2, the verification effort for
the first two properties is small and scales comparatively well. For the third
property, it is much higher and less scalable. This is due to the large internal
array that is used in the helper automaton.

Packet Switch Example

For the verification of the packet switch example, we checked the following
properties:

(1) deadlock freedom,
(2) every packet is forwarded to all its receivers, and

(3) if a packet is forwarded, this is done within a given time limit.

For the third property, we used a similar helper automaton as for the
producer-consumer example. In this case, however, the amount of data that
has to be stored internally in the helper automaton is limited due to the lim-
ited space in the packet switch shift ring. In all experiments, we increased the
number of masters and slaves from one master and one slave up to two master
and two slaves (1mls, 1m2s, 2mls, 2m2s). Table 8.3 presents the verification
times averaged over 10 runs. In all cases, properties (1.) and (3.) were found
satisfied, while property (2.) is not satisfied. The reason for that is as follows:
Due to the semantics of sc_signal, the change event of signal ports is only
notified if the value changes. If consecutively sent messages are equal, there
is no change event at the input port of the packet switch and thus, only the
first message is forwarded. This is a typical corner case which is both hard
to find and hard to trace and understand with standard simulation. With our
approach, we found it automatically and instantly had a graphically animated
counter-example at hand to easily find out where the problem arose from. Note
that the generation of counter-examples is very fast, as it is not necessary to
explore the complete state-space. This makes debugging fast and efficient. The
results show that verification of properties (1.) and (3.) scales comparatively
well for this case study.

ABS and ASR System

For the ABS/ASR example, the generic input generation component sends
ticks for each wheel in arbitrary time intervals, but with a minimal distance
corresponding to 200 km/h. The maximal distance between two ticks is un-
limited, as the car may also stop for an arbitrary amount of time. Overall, the
component allows arbitrary speeds up to the maximal speed of 200 km/h and
also enables arbitrary acceleration and deceleration. We checked the following
properties on the abstract ABS/ASR design:
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Verification Time (in seconds)

Property | 1mls 2mls 1m2s 2m2s | satisfied
(1) 2228 56.49 43.73 211.26 v
(2) 3.02 338 3.30 4.89 4
(3) | 129.16 46.63 29841 544.88 |

Table 8.3: Results from Model Checking of the Packet Switch for Varying Numbers
of Masters (m) and Slaves (s)

(1) deadlock freedom,

(2) if the deceleration exceeds a given limit, i.e., the wheels lock, the brake
pressure is eventually reduced,

(3) if the deceleration exceeds a given limit, the brake pressure is reduced
within a given time limit.

4) if the acceleration exceeds a given limit, i.e., the wheels slip, the brake
g
pressure is eventually increased.

(5) if the acceleration exceeds a given limit, the brake pressure is increased
within a given time limit.

In the beginning, only the first property turned out to be satisfied. With
little debugging effort, supported by the counter-examples produced by the
model checker, we found out where the problem arose from. We made an error
during the conversion of ticks into speed. This error was not detected by our
previously used test cases because we unintentionally solely used test cases
where changes in the tick speed happened only at full seconds. Note again
that the generation of counter-examples is very fast. After the defect removal,
the state space turned out to be too large to be completely explored with our
4 GB main memory. This is mainly due to the large data ranges used in the
ABS/ASR example, which cannot symbolically be captured by the UPPAAL
model checker. However, with bit state hashing enabled, we were able to verify
that the properties are maybe satisfied. The result of model checking with bit
state hashing is an under-approximation of the state space, i. e., the state space
is only partially explored. However, it is still very well-suited for debugging
purposes. Furthermore, given that a large hash table is available, it can be
expected that the verification results have a high probability to be reliable if
the model checker does not find a counter-example.

8.2.3 Conformance Test Generation

To evaluate our conformance testing approach, we computed all possible output
traces for our three case studies. As a test scenario for the producer-consumer
example, we used a trace where hundred items are sent from the producer
to the consumer. In case of the packet switch, we used consecutively sent
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Computation Time (in seconds)

Generation of Property

Property | Counter-Examples Verification
(1) - - 722.54 v (maybe)
(2) 2.56 4 555.56 v (maybe)
(3) 3.51 4 844.15 v (maybe)
(4) 2.13 4 556.78 v (maybe)
(5) 2.95 4 532.93 v (maybe)

Table 8.4: Results from Model Checking of the ABS/ASR System

packages with fixed data until each receiver has received at least two packages.
As a test scenario for the ABS/ASR system, we simulated an acceleration from
0 km/h to 200 km/h at full throttle and a subsequent deceleration with full
application of the brakes. Our test scenario ensures that both the ASR and
the ABS come into action and run through the whole control cycles.

For the three case studies, we performed conformance test generation using
the basic algorithm as well as the optimized version. We already used the
packet switch example with up to two masters and two slaves in [HFG09] and
we use it now to illustrate the effect of the optimizations of the conformance
test algorithm. The resulting computation time and memory usage averaged
over 10 runs are shown in Table 8.5. Only for the producer-consumer example,
the optimizations do not pay off and the optimized version is slightly slower
than the basic version. For the packet switch, the computation time is reduced
by 50 - 60%, the memory usage by over 90%. The packet switch example with
four masters and four slaves and the ABS/ASR system ran out of memory with
the basic algorithm, but can be handled in reasonable time with the optimized
version.

CPU Time (s) Memory Usage (MB)

Base | Optim | Improv | Base | Optim | Improv
Producer-Consumer | 4.90 5.07 | —3.5% 5 5 0%
Packet Switch 1mls | 25.11 9.49 | 62.2% 58 5| 91.4%
Packet Switch 1m2s | 34.27 | 13.90 | 59.4% 98 51 94.9%
Packet Switch 2m1ls | 42.38 | 20.72 | 51.1% | 160 5 96.9%
Packet Switch 2m2s | 54.77 | 27.43 | 49.9% | 275 13| 95.3%
Packet Switch 4m4s 4 443 oo 4 302 oo
ABS/ASR System 4| 10210 oo 4 302 oo

Table 8.5: Computational Effort of Conformance Test Generation
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8.3 Error Detecting Capability

To evaluate the error detecting capability of our conformance testing approach,
we used the same test scenarios as described above. We generated SystemC
test benches for automated conformance evaluation as described in Section 6.5.
Then, we injected several defects from the following fault classes into the de-
signs:

® missing and wrong condition

® missing and wrong assignment

permuted variables
m transmission error

m transmission delay

In case of the producer-consumer and the packet switch example, we in-
jected defects into the designs themselves. Then, we generated SystemC test
benches from the original designs and executed them against the faulty ver-
sions. In case of the ABS/ASR system, we have an abstract and a refined
design available. We injected defects into the refined design according to the
predefined set of fault classes. Table 8.6 shows the results. Then, we generated
test benches from the abstract model and executed them against the refined
design.

For the producer-consumer example, we have ambiguous results. Some de-
fects are detected, others are not detected. This is due to the non-deterministic
behavior of the example and the incomplete statement coverage of the test sce-
nario. For example, the FIFO buffer is never completely filled in the given test
scenario. As a consequence, a manipulation of the condition that prevents
a buffer overflow does not lead to a failure. Similarly, a wrong assignment
is not always detected. For example, it is not detected if it only affects the
variable counting the number of items currently stored in the FIFO buffer and
the FIFO buffer becomes neither full nor empty. However, these are standard
problems in the area of black-box testing. Standard solutions are the use of
test suites with full coverage and the repeated execution of test cases in case
of non-deterministic behavior.

For the packet switch and the ABS/ASR system, all defects were detected,
i.e., each deviation from the specification was detected. This has two reasons:
first, the full statement coverage of our test scenario, and second, that all
injected defects led to an observable deviation from the specification. With
a test scenario that does not cover all parts of the control cycles, we would
not be able to detect all kinds of defects. However, as we assume the test
scenario (or input trace) as given, we are not interested in the coverage of a
certain test suite so far. The important result here is that we can detect all
kinds of defects with our automated conformance evaluation, given that the
considered test scenario reveals the erroneous behavior. The fact that for both
case studies each of the injected defects had impact on the observed output
behavior is a specialty of the case studies. In general, errors that do not lead
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Producer-Consumer | Packet Switch | ABS/ASR System
without defects pass Pass Pass
missing or wrong e . .
condition pass/ fail fail fail
;I;:er?i;)ﬁ twrong pass/ fail fail fail
permuted variables fail fail fail
transmission delay . . .
or loss fail fail faz

Table 8.6: Error Detecting Capability

to a deviation from the specification in the output traces are never detectable
with black-box testing approaches. However, they are strictly speaking not
considered as a defect in our sense.

8.4 Summary

Overall, our experiments demonstrate the applicability, the performance, and
the error detecting capability of our approach. The computational effort of the
transformation from SystemC to UPPAAL is linear in the number of modules
and in the code size. It takes only a few seconds even for comparably large de-
signs. Concerning the model checking of SystemC designs, we encountered the
problem of state space explosion. However, we have shown that it is possible to
obtain guarantees about the liveness and timing behavior for our smaller case
studies. It covers corner cases that are hard to find with testing and simulation.
For example, we detected a problem in the SystemC reference implementation
of the packet switch example that results in a failure only for very special test
scenarios. As the UPPAAL model checker generates counter-examples if a proof
attempt fails, the source of a failure is easily detectable. This is in particular
supported by the graphical visualization of counter-examples. For larger case
studies, such as the ABS/ASR system, we were not able to guarantee liveness
and timing properties because the model checker ran out of memory. However,
the model checking approach is still very useful for these systems, as it can be
used for debugging purposes. The generation of counter-examples is very fast
and efficient even for large systems. We detected a defect in the ABS/ASR
system that we had not detected with testing. Furthermore, the possibility
of bit state hashing available in the UPPAAL model checker allows a partial
exploration of the state space that fully exploits the available memory. This
does not yield guarantees about the behavior of a SystemC design, but the
probability that errors are not detected is very low if the model checker could
not find a counter-example with a large hash table. However, the efficiency of
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model checking itself is out of the scope of this thesis. The aim of our work is
to provide a formal semantics for SystemC, and to make model checking and
conformance testing applicable to SystemC designs. Our experimental results
show that we have met that goal.

The experimental results of our conformance testing approach are very
promising. Conformance tests can be generated even for large systems, as the
reachable state space is limited by the length of the input trace. The compu-
tational effort of the conformance test generation is notable, but acceptable
as it only has to be done once, and then the test cases can be repeated arbi-
trarily often without re-computation. The experiments on the error detecting
capability show that all kinds of errors can in principle be detected with our
approach. The actual amount of detected errors depends on the coverage of
the given test suite.






9 Conclusion

In this chapter, we summarize and discuss the results of this thesis. We also
review the criteria we defined in the introduction and discuss whether we suc-
ceeded in meeting them. Then, we give an outlook on future work.

0.1 Results

In this thesis, we presented our approach for the automated HW/SW co-
verification of SystemC designs using timed automata. The approach allows
the fully automatic verification of digital HW/SW systems modeled in Sys-
temC. It is based on a quality assurance process that assists the HW/SW
co-design flow efficiently and continuously from an abstract design down to
the final implementation. The general idea is to formally verify abstract de-
signs via model checking and to generate conformance tests for all subsequent
refinements of the abstract design. This combination is especially well-suited
for HW/SW co-verification, as it can be applied to both the hardware and
the software parts of a given HW/SW co-design on different levels of abstrac-
tion. Furthermore, both the model checking and the conformance testing are
automatically applicable.

We presented a concept for a comprehensive and formally well-founded
quality assurance process. Our framework for the automated Verification of
SystemC designs using Timed Automata (VeriSTA) puts the proposed process
into practice and allows automated verification of SystemC designs throughout
the whole design flow. The prerequisite for the application of automated veri-
fication techniques is a formal semantics of SystemC. We solved this problem
by defining a transformation from SystemC to UPPAAL timed automata. The
resulting UPPAAL model can be used as input for the UPPAAL model checker,
and thus we can prove that it meets a given requirements specification fully au-
tomatically. Furthermore, it yields a formal basis for automated conformance
test generation.

Our approach for model checking SystemC designs is based on a mapping
from the informally defined semantics of SystemC to the formally well-defined
semantics of UPPAAL timed automata. Based on this mapping, a SystemC
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design can be transformed into a semantically equivalent UPPAAL model. Fur-
thermore, the formal model of a given design can be derived automatically.
That means that the designer does not have to perform the time-consuming
and error-prone task of developing a formal model any more. The transfor-
mation enables the usage of the UPPAAL tool suite on SystemC designs. This
includes the UPPAAL model checker to formally verify temporal properties of
SystemC designs, and the animated simulation of counter-examples for debug-
ging purposes. For the transformation, SystemC processes are transformed
into timed automata processes, which are synchronized using channels. The
execution semantics is modeled using an explicit model of the scheduler to-
gether with specific templates for events and processes. The translation is per-
formed fully automatically. We use a compositional approach where modules
are translated separately. Thus, the approach is highly scalable, and complex
and large SystemC designs can be transformed in reasonable time. The infor-
mally defined behavior of a given SystemC design is completely preserved in
the generated UPPAAL model. In addition to that, also the structure of the
design is preserved. This makes it easy for the designer to locate possible errors
in the SystemC design based on the counter-example the model checker pro-
vides if the verification fails. Moreover, the models generated by our method
are compact and easily comprehensible and can comparatively efficiently be
verified by model checking. This is demonstrated by our experimental results.

In addition to the transformation from SystemC to UPPAAL, we presented
an approach for the automated conformance evaluation of SystemC designs.
To this end, we presented a complete symbolic semantics for UPPAAL timed
automata. Furthermore, we defined a formal conformance relation that can be
used to relate an implementation in SystemC to a specification in UPPAAL.
Based on the symbolic UPPAAL semantics and on the conformance relation,
we presented an algorithm for the generation of conformance tests from a
given UPPAAL timed automata model. The algorithm can cope with non-
deterministic designs and computes all possible expected output traces for a
given input trace offline. To the best of our knowledge, such an approach was
never investigated before. To mitigate the effect of the state space explosion
problem, we presented several optimizations that make use of the specifics of
the SystemC semantics to drastically reduce the number of semantic states
that have to be kept in memory during state space exploration. Furthermore,
we presented an approach to automatically generate SystemC test benches
that allow fully automatic conformance evaluation.

For the practical evaluation of our approach, we implemented the complete
VeriSTA framework. The implementation consists of three components: The
SystemC to Timed Automata Transformation Engine (STATE) translates a
given SystemC design into a semantically equivalent UPPAAL model. The
Automated Test generation Engine for Non-deterministic Timed Automata
(ATENA) computes all possible output traces from a given UPPAAL model.
The Test Bench Generator for SystemC (TBGeneSys) generates SystemC
test benches that allow fully automatic conformance evaluation. To evalu-
ate the applicability of our approach, we used three case studies: a simple
producer-consumer example, the packet switch example from the SystemC
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reference implementation, and an Anti-Slip Regulation and Anti-lock Braking
System (ABS/ASR) developed in a student’s project. The experimental re-
sults show the automated applicability and the error detecting capability of
our approach. The generated UPPAAL models can be comparatively efficiently
verified using the UPPAAL model checker, and conformance tests are generated
in reasonable time. In particular, the presented optimizations of the algorithm
for conformance test generation succeeded in reducing the computational effort
and the memory consumption significantly. Finally, the experiments demon-
strate that the generated SystemC test benches can be used for fully automatic
conformance evaluation and that defects can efficiently be detected.

0.2 Discussion

In the introducing chapter, we defined a set of criteria that a framework for
the automated HW/SW co-verification of SystemC designs should meet. In
addition, we also defined a set of criteria for a formal semantics of SystemC. In
the following, we first review and discuss the criteria we defined for the overall
framework, and then those for the formal semantics of SystemC.

First, we stated that the proposed co-verification techniques must be suit-
able for both hardware and software parts of a given digital control system, and
that they have to be able to cope with the main co-design concepts, namely
concurrency, time, reactivity, hierarchical modeling and abstract communica-
tion. Due to the implementation of concurrency in the SystemC scheduler,
this includes the requirement to support non-deterministic system designs.
Our framework VeriSTA meets all these requirements. It is suitable for both
hardware and software and for the main co-design concepts, as it supports
all relevant SystemC language constructs. This includes delta-cycles and the
request-update scheme, static and dynamic sensitivity, timing behavior, and
the communication model of SystemC. Furthermore, the non-deterministic be-
havior of the SystemC scheduler is explicitly modeled. This allows the verifi-
cation of all possible execution orders in case of concurrent execution.

Second, we claimed that the quality assurance process should be compre-
hensive and continuous, in other words, it should support the complete system
design flow from an abstract design down to the final implementation. This
requirement is met by the combination of model checking and conformance
testing. As model checking is applied on an abstract design and conformance
tests are generated for each refined design, the design flow is continuously sup-
ported. The conformance testing also ensures consistency between different
abstraction levels in a refinement process and allows the reuse of verification
results from high abstraction levels on lower abstraction levels.

Third, we required the co-verification techniques proposed in our quality
assurance process to be automatically applicable and efficient. In our VeriSTA
framework, the only manual effort that is necessary is the specification of the
requirements in temporal logics. Everything else can be done automatically,
as our experimental results demonstrate. In the current development state,
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the test inputs have to be defined manually. We are already working on an
extension of our framework with the possibility of automatic input selection.
The efficiency of our framework, in particular the efficiency of model checking,
is limited by the state space explosion problem. However, this inherent problem
of model checking is beyond the scope of this thesis. Still, the UPPAAL models
we generate are compact and thus, our approach is comparatively efficient.

In addition to the criteria we defined for an overall HW/SW co-verification
framework, we also defined a set of criteria for a formal semantics of SystemC.
We required the formal semantics to preserve the behavioral semantics and
the structure of a given SystemC design. This is ensured by our semantic-
preserving transformation that also preserves the structure of a given design.
In addition, we claimed that a formal model should be generated automatically
for a given design, that the generated model should be suitable for automated
verification, and that there should be tool support to edit, visualize and sim-
ulate the formal model of a given SystemC design. Those criteria are all met
by our approach to generate a UPPAAL model from a given SystemC design.
With that, we obtain access to the complete UPPAAL tool suite, which allows
the verification, visualization, and simulation of timed automata models.

9.3 Outlook

We presented a comprehensive and formally founded framework for the auto-
mated HW/SW co-verification of SystemC designs using timed automata. The
framework supports the co-design of digital HW/SW systems throughout the
whole development process and can be applied fully automatically. Further-
more, we implemented the complete framework and could show its practical
applicability with our experimental results. In particular, we demonstrated
the performance and the error detecting capability of our approach. How-
ever, there are still open questions that are worth to be investigated in further
research.

For example, we are currently extending our framework with the ability to
select input traces based on dedicated SystemC coverage criteria. Dedicated
coverage criteria are for example channel coverage, communication coverage,
or port coverage. We plan to use those criteria together with classical coverage
criteria such as statement coverage, branch coverage, and path coverage. We
are confident that we can systematically test certain refinement steps with
that. For example, when the communication architecture is refined following
the TLM approach, the dedicated criteria shown above are very promising to
purposefully test the correctness of these refinements. In particular, we plan
to combine intra-module or intra-process coverage criteria with inter-module
or communication coverage criteria. With that, we hope to achieve an optimal
trade-off between the size of a test suite and its error detecting capability. With
the ability to select input traces, we obtain a fully automatic co-verification
framework that supports the whole SystemC design flow without any user-
interaction except for the requirement specification.
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The main advantage of our approach lies in its expressiveness and compre-
hensiveness. It has to be said that this comes at a price. While our approach
can cope with highly heterogeneous systems, in particular with both hardware
and software, itis not optimal for purely synchronous hardware models. Such
models could be verified more efficiently with specialized approaches than with
our universally applicable framework. This effect is mitigated partly by our
combination of static and dynamic techniques, but there is still room for im-
provement. In particular, we think that many of the approaches discussed
in the related works section could complement our framework and that new
promising research topics could arise from a combination of the central con-
cepts. For example, all of the approaches that can be used for the verification
of SystemC designs on register transfer level [GD05, GKD05, GKDO06] can be
used together with our framework. While our framework is particularly useful
to verify the high-level structure and the interactions between hardware and
software, dedicated hardware verification techniques such as SAT solving are
more efficient for the verification of low-level RTL components. Furthermore,
the expressiveness of our approach pays off whenever abstract high-level mod-
els are available, but it has its limitations if pure hardware blocks (IP cores)
should be included in a design from the beginning. It would be interesting
to combine the work of Kroening [KS05, BKS08] and GroBe [GKDO06] with
our framework. For example, the automatic HW/SW partitioning proposed
by Kroening et al. [KS05] could be applied first. Then, we could apply dedi-
cated hardware verification techniques to synchronous hardware blocks and our
framework to the verification of software parts and the overall communication
architecture.

The combination of our framework with dedicated hardware verification
techniques is also very promising to transfer it to other application domains,
for example, to the verification of multiprocessor systems. A prerequisite for
this is again a formal model. However, multiprocessor systems usually consist
of highly heterogeneous components, which could for example be written in a
hardware description language such as Verilog or VHDL, but also in a software
language such as C or Java. There exist many approaches to build a formal
model for each of those components, but those models are very different for
the hardware and the software parts. To solve this problem, it is necessary to
develop a formally well-defined interface between the hardware and the soft-
ware blocks. One possible solution to establish such an interface between is to
use abstraction techniques together with composition. The idea of that would
be to build an abstraction of a given software component that can be used in
hardware verification or the other way around. Another possible solution is
to establish an interface between the corresponding verification tools. When
the whole system is verified, a model checker could for example consult a SAT
solver to determine the behavior of a hardware component.

As a short-term goal, the extension of our VeriSTA framework with au-
tomated input selection is promising to complete its comprehensiveness and
its ability for fully automatic co-verification of digital HW/SW systems. For
the long-term, we are convinced that the integrated, automated, and formally
well-founded verification of digital hardware and software can be successfully
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applied to large and heterogeneous systems, for example, to multiprocessor
systems. In particular, the integrated analysis of hardware and software al-
lows the verification of the interplay between hardware and software, which is
still difficult and often excluded in current quality assurance processes.
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