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Abstract
Tasks demanding fast responsiveness are increasingly com-
mon in today’s datacenters with containers becoming the
canonical way of deploying such tasks. Unfortunately, con-
tainer startup latencies remain high, limiting responsiveness.
This latency comes mostly from fetching container depen-
dencies including system libraries, tools, configuration files,
and data files.
To address this, we propose that schedulers in container

management systems take into account a task’s dependen-
cies. Hence, in dependency scheduling, the scheduler tries to
place a task at a node that has the maximum number of the
task’s dependencies stored locally. Designing a dependency-
aware scheduler involves a trade-off between complexity
(due to the overheads associated with tracking and account-
ing for dependencies) versus effectiveness (measured as the
improvement in startup latency).

We present two scheduler designs that represent two dif-
ferent points on this trade-off space: our image-match sched-
uler tracks dependencies at the granularity of entire con-
tainer images while our layer-match scheduler tracks the
finer-grained layers that constitute an image. We implement
both designs within Kubernetes and evaluate them through
extensive experiments and measurement-driven simulations.
We show that dependency scheduling improves task startup
latencies by 1.4-21x relative to current dependency-agnostic
scheduling for typical scenarios; we further show that layer-
match scheduling outperforms image-match by up to 1.65x,
but does involve greater implementation complexity. Our im-
plementation of image-match scheduling has been adopted
into the mainline Kubernetes codebase. It has been enabled
as a default scheduling policy in production clusters includ-
ing Alibaba, while the adoption of layer-match is currently
under discussion.

1 Introduction
Cloud applications are demanding ever faster responsive-
ness. We observe this trend for user-facing service tasks,
where responsiveness can be measured by the time between
when a task is submitted and when it is ready to start serving
application-level requests. Spurred by the cloud serverless
model from services such as AWS Lambda [2], Google Cloud

Functions [7], and Azure Functions [12], developers are build-
ing applications comprised of short-lived service tasks. Such
tasks are provisioned just-in-time upon request arrival to
enable improved performance, cost efficiency, scaling, and
convenience. A similar trend can be observed in interactive
data analytics frameworks [36] and emerging IoT applica-
tions [3, 6, 8, 27].
At the same time, application containers are becoming

the canonical way of deploying services in datacenters at
large [13, 32, 38]. Unfortunately, container startup latency
can significantly limit the efficiency of short tasks. This la-
tency comes primarily from fetching container dependencies
to the host machine at which the task will run. These depen-
dencies include system libraries, tools, configuration files,
and data files that must be present on the host machine
before the container is launched. Google, for example, re-
ports a median task startup latency of 25 seconds in their
container clusters, with 80% of that time spent on package
installations [38].

In this paper, we ask whether scheduling can be leveraged
to reduce this startup latency. We have an extensive liter-
ature on (and practice of) schedulers that are designed to
improve task performance but these have typically focused
on improving the task’s processing time – e.g., scheduling
to avoid contention over shared resources [28], to improve
data locality [40], and so forth. Given the above trends, we
propose extending the traditional view of scheduling to also
improve task launch time. To achieve this, we propose that
task dependencies be treated as another dimension to re-
source consumption and that schedulers take into account
a task’s dependencies when placing tasks. Specifically: we
propose that a scheduler should aim to place a task T at
the node that maximizes the amount of T ’s dependencies
that are already present at the node, thereby reducing the
task startup time. We refer to this approach as dependency
scheduling.
Note that we are not advocating that all tasks be sched-

uled using dependency scheduling, nor that tasks be sched-
uled based on their dependencies alone. Instead, we envision
that scheduling based on dependencies is one additional op-
tion available to operators and that operators can configure
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their scheduler to weight the relative importance of different
scheduling policies based on the workload at hand.1
The fundamental question that arises when designing a

dependency-aware scheduler is: at what granularity should
we account for and track dependencies? Clearly, tracking de-
pendencies at a finer granularity will enable greater savings
in startup time but will also increase scheduling overheads
and require more extensive modifications to existing con-
tainer frameworks. We propose two scheduling solutions
that allow us to capture different points in this tradeoff, yet
are practical for implementation since they leverage system
abstractions already available today.
Our first design treats the container image in its entirety

as a dependency and hence the scheduler attempts to place
a taskT at the node that has the maximum overlap (in bytes)
between the images it has cached locally and those requested
in T . We call this the image-match policy. Image-match is
very simple to implement and dramatically reduces startup
time when an image match is found. However, because it
does not consider the internal composition of a task’s im-
age, it cannot optimize launch times in situations when two
images only partially overlap in their internal dependencies.
Our second design avoids these missed opportunities by

tracking and matching dependencies at the finer granularity
of the layers that constitute the image. Hence, our layer-
match policy places a task T at the node that has the maxi-
mum overlap withT ’s layers (in bytes). Layer match is driven
by the intuition that container technology, as it simplifies
package reuse, has encouraged non-trivial overlap in the
dependencies of different tasks; layer-match exploits this
overlap. We explain our motivation for dependency schedul-
ing (on both designs) in more details in §2.

We implement dependency scheduling in Kubernetes, mod-
ifying the Kubernetes scheduler, internal APIs, and node
agent to support image and layer awareness. We evaluate our
scheduling schemes using extensive measurement-driven
simulation and experiments.We show that dependency sched-
uling substantially improves task startup latency: e.g., de-
pendency awareness leads to a 1.4-21x reduction in startup
latency relative to dependency-agnostic schedulers while
introducing as little as 0.3ms in scheduling overhead. In-
terestingly, as we show in §6, the benefits of dependency
scheduling arise not only because it reduces the latency and
overhead associated with pulling images but also because of
its ability to pack more images into its local image storage. In
addition, we show that layer-match achieves startup latency
up to 1.65x lower than image-match at the cost of modestly
higher runtime and implementation overheads (§5).

1As we elaborate on in §3, this is exactly the model already supported in con-
tainer frameworks such as Kubernetes which support multiple scheduling
policies each associated with a configurable weighting factor.

We have shared our scheduler implementations with the
Kubernetes developer community: our image-match sched-
uler has been incorporated into the mainline Kubernetes
codebase as a default scheduling policy and has been used in
production, while layer-match is currently under review [11],
corroborating both the relevance and practical nature of de-
pendency scheduling.
The remainder of this paper is organized as follows. We

first motivate dependency scheduling (§2) and summarize
the relevant background (§3). We then present the design
(§4) and implementation (§5) of dependency scheduling. We
evaluate our proposal using trace-based simulations (§6) and
empirical tests (§7), and then discuss related work (§8) and
conclude (§9).

2 The case for dependency scheduling
In this section, we examine the case for dependency sched-
uling and argue that it is well suited to emerging workload-
s/trends such as cloud-based voice services [1], cloud robot-
ics [8, 27, 31], connected vehicles [3], smart buildings [6],
serverless computing [30], and cloud IoT [17]. Our discus-
sion in this section provides a highly simplified model that
ignores many details of how dependency scheduling works;
the remainder of the paper considers the relevant implemen-
tation aspects in detail.
We start by addressing when dependency scheduling is

needed or useful. We can view a task’s completion time, T ,
as T = S + R where S is the time required to start/launch
the task and R is the application runtime required once the
task is launched. We further assume that S is dominated by
the time it takes to download and install the task’s container
image (we validate this latter assumption empirically in §6).
Our first observation is:

(1) Dependency scheduling is useful when S is a non-
trivial portion of T (i.e., S ∝ R). As prior work has noted,
this regime is relevant as there has been a long-running
trend towards shorter tasks. For example, the authors of [36]
present a scheduler that targets task times of 100ms; their
work is motivated by the observation that the Spark data
analytics framework saw a 6000x reduction in task times
over the preceding 6 years [36][35].

More recent work on prediction serving using a serverless
platform [29] reports an average task time of 10 seconds of
which approximately 8 seconds is spent launching the task.
Likewise, Pywren, a new serverless platform reports launch
times of 20-30 seconds which the authors report is “a main
drawback” of their solution, accounting for over 10% of the
total execution time [30].
More generally, we expect that the trend towards short

tasks will only increase with the deployment of IoT applica-
tions in which a large number of sensors periodically report
to a back-end cloud-based service and client applications
periodically query the same.
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Assuming the above condition holds, we next examine
when dependency scheduling is effective. As mentioned ear-
lier, dependency scheduling aims to reduce S by caching
previously used images at the nodes and scheduling tasks at
nodes that cache either the task’s entire image (our image-
match policy) or a subset of the layers in the image (our
layer-match policy). The main parameters that impact the
effectiveness of this policy are:

• N , the number of nodes in the cluster
• C , the size of the cache at each node
• L, the total size of popular layers involved for the work-
load in question

At the steady state2, if:

(1) the total size of the popular layers L is less than the
layer cache size of a single node C. Then, at the steady-
state, every node is able to store all popular layers in its cache.
Hence the dependency scheduling policies (image-match and
layer-match alike) should perform similarly as the agnostic
policy, because even if the policy randomly picks a node, the
node would have the layers.
(2) the total size of the popular layers L exceeds the
layer cache size of a single node C; but is less than
or close to the total layer cache size of all nodes com-
bined (N ·C). In this scenario, at the steady state, the depen-
dency scheduling offers speed-up over agnostic scheduling.
Intuitively, although popular layers cannot be cached on
every node, they can be cached on some nodes in the cluster.
Dependency scheduling is able to identify these nodes to
speed-up the container startup time S .
For example, consider the Connected Vehicle Platform

(CVP) [3] in which each user/vehicle has a different image
with some unique layers, e.g., a unique machine learning
model customized to each vehicle’s travel and/or application
stacks developed for each car model and make. To get a sense
of N , C , and L: we consider reports published by Ericsson
that cite 4 million connected cars as using their platform [5].
Assuming just 0.1% of these cars are active at any time

and issuing one update every 1 seconds, we’d see a total load
of 4,000 requests per second on a CVP cluster (L = 4000).
Handling this load would require a cluster of N = 40 nodes if
we assume each node can run 100 containers (the latter from
a target provided by the Kubernetes community [9]). Finally,
if we assume each node has 32G of storage (a typical disk
space reserved for rootfs) and each image in the CVP contains
a customized ML model sized 250MB (YOLO v3 [18, 37]);
assuming the image size equals to this size). This gives us
C = 128 images and hence N ×C = 5120. In this scenario, no
single node can store all 4,000+ layers, but the CVP cluster in
its entirety could do so comfortably, and hence dependency

2We loosely define the steady state as themoment where containers requests
have been submitted to the cluster for long enough time and the node cache
are populated by image layers.

scheduling can greatly reduce the startup time S associated
with user requests.
(3) the total size of the popular layers L is much larger
than the total layer cache size of all nodes combined
(N · C). In this scenario, dependency scheduling performs
the same as agnostic policy due to low layer cache-hit ratio.
We now compare image-match and layer-match policies

falling under dependency scheduling. At the steady state,
layer-match enables images that share layers to be grouped
together. This reduces the amount of duplicate layers across
nodes and hence allows more layers to be cached.
For instance, a plausible scenario for the CVP service ex-

ample is that each car manufacturer provides the CVP service
with an application stack developed for its own car models,
and hence the container image for the same car model may
share a portion of layers in their images (say 50MB of layers,
estimated conservatively; total image size is then 300MB,
taking into account the ML model). A 2018 study estimates
that there are over 250 car models in the USA alone[15].
Back to the previous setting where there are 4,000 images,
assuming they come uniformly from the car models then
there are 4000/250 = 16 images per car model. Layer-match
is able to group and keep these 16 images in the same node
and hence these layers takes only 50MB of additional space
per car model. Image-match is not able to exploit the layer
overlapping and can result in every node caching between
50MB to 250× 50MB = 12.5GB additional spaces, accounting
for 40% of node cache in the worst case.
As a summary, dependency scheduling treats the node

caches as a collective cache and actively exploits dependency
locality across all nodes. We will capture the subtlties of the
comparison in the simulation.

3 Background

We use the following terms throughout the paper. A node
refers to a machine hosting an OS that supports running
containers. A task refers to a compute workload that runs on
a node. We assume each task will be run in a container. We
use the term dependency to describe the software packages
and data files that a container requires to run.

3.1 Containers, Images, and Layers

Containers are based on lightweight OS-level virtualization
technology that isolates and manages an application’s re-
source usage, and optionally provide tools for managing the
application’s dependencies. Containers offer two major ben-
efits: lightweight resource isolation and container images.
The latter allows developers to package and distribute

applications using a standard format. An application’s image
includes all its dependencies, including the code, binaries,
system tools, and configurations files. An image is read-only,
copy-on-write, and can be shared by multiple containers:
when a container wants to apply changes to the image, the
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Figure 1. Overview of Kubernetes system architecture

target files or directories will be copied to the container’s
own independent layer, as described later in this section.
To use an image, users specify the image name in the

container request. The container runtime normalizes the
specified image name – e.g., replacing a default generic im-
age name with the specific name of the latest version. It
then resolves the image name to get its constituent layers
(described below) and pulls them from the image repository
if they are not already cached. Once the entire image has
been retrieved, the container is installed and booted.

Containers are backed by a layered file-system, i.e., a con-
tainer encapsulates an image’s dependencies in the form of
layers. When the container image is deployed on a node, its
layers are union-mounted to form a complete filesystem for
the running container. There is a specific order in which the
node is required to install the layers. Two consecutive layers
in this ordered list are termed as parent and child layers.
Each layer encapsulates a set of files and directories that

are put together when the image is built and is associated
with a collision-resistant hash digest taken over its content.
Every layer can be uniquely identified using its digest. Track-
ing layer digests decouples the image contents from the
image name. This allows users to rename images without
invalidating the entire image cache and is a common practice
today. Therefore, the layered filesystem of a container offers
an organized summary of the image’s dependencies.

3.2 Container Orchestration using Kubernetes

While the concept of dependency scheduling is a general one,
we focus on its application to Kubernetes [10] (henceforth
k8s) as the latter is widely used and open-source. Figure 1
shows a high-level view of the relevant components in k8s.
The k8s master node has two main components: (1) an API
server, which interfaces with the user and is backed by a
distributed key-value store that maintains cluster state, and
(2) the scheduler. Incoming requests for executing a job –
called pod requests – are submitted to the API server. A
pod request consists of one or more tasks, each running

in a separate container. The API server communicates the
request parameters, including those required image names,
to the scheduler.
The k8s scheduler includes a set of scoring functions (or

“scheduling priority functions” in k8s terminology), each
evaluating the goodness of placing a task at a specified node
based on different factors such as pod priorities, data locality,
or node resource utilization levels. Scheduling a pod request
is done in two steps. First, for each pod request, a predefined
set of rules (called predicates) are applied to filter out nodes
that do not meet the resource and affinity requirements for
that pod. Each remaining node is then assigned a score by
each scoring function and a node’s overall score is a weighted
average of the scores it receives from each function. Weights
can be configured to balance different scheduling goals. The
remaining nodes are then ranked according to their overall
score and the pod is placed on the node with the highest
score. By default, k8s uses equal weights over a set of scoring
functions that consider factors such as pod priorities and
resource utilization levels. Prior to our work, none of the k8s
scoring functions considered pod dependencies.
We now briefly touch on the relevant per-node compo-

nents in the k8s architecture. Each worker node runs (1) the
“kubelet” agent that interacts with the master node, and (2) a
container runtime engine (such as Docker) that manages the
lifecycle of a container: creation, removal, pausing, and mon-
itoring. The container runtime interacts with the kubelet
via the container runtime interface. Each worker node has
its own local image store where it can cache images. The
required layers that are not already cached in the local im-
age store are fetched from an external image store (such
as Amazon’s Elastic Container Registry) by the container
runtime.

3.3 Task Startup Latency

Wedefine a container’s startup latency as the time taken from
the submission of a task until its container starts running on
a cluster node. Assuming the common-case scenario where
the cluster is not overloaded (i.e., there is at least one node
that can accommodate the task), the startup phase of a task
comprises of the following steps:
(i) Picking the appropriate node: The primary overhead here
is simply the scheduling computation time needed to run the
appropriate scoring functions, which is a small fraction of
a task’s startup latency, e.g. a few milliseconds for small-to-
middle sized clusters (§7) or hundreds of milliseconds for
larger ones.
(ii) Provisioning the node: This involves setting up the con-
tainer’s runtime environment and includes both a resolution
and a pulling step. First, the node resolves an image name
into its set of constituent layers - this step might involve
contacting a remote registry to obtain the necessary map-
pings. Next, the node fetches and installs missing layers. The
corresponding pull latency includes the time to download
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Algorithm 1 Dependency Scheduling
1: at the cluster scheduler:
2: for each job j queued do
3: /*on nodes meeting resource constraints*/
4: for n in nodes do
5: score[n] = size(|dep(n) ∩ dep(j)|)
6: end for
7: /*tie-break with other scheduling criteria*/
8: n* = argmaxn score[n]; bind(n*, j)
9: end for

the layers from a remote registry and (importantly) the time
to decompress and register them, to set up the filesystem,
and so on. Provisioning time is typically dominated by the
pull latency. Consistent with prior work [24, 38], our mea-
surements in §6 show that provisioning latency varies from
milliseconds to hundreds of seconds.
(iii) Booting the container on the node: Finally, once provi-
sioned, the container is started. This boot latency is typically
small as well: we measure boot times of ∼1s in §7.
Thus, among the above factors, the provisioning latency

(dominated by the time taken to pull the dependencies) is
the most variable and the largest contributor to startup la-
tency. This is because container images have very different
sizes (ranging from a few megabytes to gigabytes) and hence
different download and installation times.

4 Dependency Scheduling
We discuss our overall approach (§4.1) and then describe the
detailed design of our image-match (§4.2 and layer-match
(§4.3) scheduling.

4.1 Design Rationale

Our approach aims to avoid pulling dependencies altogether
by modifying the scheduler to place tasks at nodes where
some or all of a task’s dependencies are already present. The
benefit of this scheduler-based approach is that it requires no
change to the infrastructure hardware (servers or networks),
nor to containerized applications, restricting all changes to
the container orchestrator (e.g., k8s).
This dependency scheduling policy is presented in Algo-

rithm 1, where dep() extracts the dependency information
from a node or a job. We rank nodes based on how much
their locally-stored dependencies overlap with those of the
request. The degree of overlap depends on the granularity
of the dependencies we consider. We propose images and
layers as two candidate definitions of dependencies since
these are common concepts already present in applications
and container frameworks (though not used by the frame-
work’s schedulers) and hence they simultaneously capture
the tradeoff between coarse vs. fine-grained dependencies
and are practical for implementation.

Given a particular definition of dependencies, the follow-
ing properties hold for dependency scheduling at at each
scheduling iteration:
Property 1: Dependency scheduling minimizes the provision-
ing time for an incoming request r under the assumption that
the provisioning time is proportional to the size of r .
Property 2: Dependency scheduling minimizes the space used
to store dependencies across the cluster.
Property 3: The overlap in dependencies between an incoming
request and a cluster node is at least as large as when a coarser-
grained definition of dependencies is used.
Properties 1 and 2 hold by design of our algorithm, and

lead to reduced provisioning time and more efficient storage
space utilization within the cluster respectively. Property 3
holds under the assumption that a dependency can be further
decomposed into one or more finer-grained dependencies.
This assumption is true for the dependencies (images and
layers) that we consider in this paper.

4.2 Image-match

For our image-match policy, dep() (in Algorithm 1) returns
the container images in a request or a node, thus placing an
incoming request at a node that has the maximum overlap
(in bytes) between the images cached locally at the node and
those in the request. For the common case of single image
per request, this policy simply prefers a node that has the
entire requested image already in cache.

When feasible, image-match entirely eliminates the pulling
time for any matched images. Note that such a placement is
feasible even when there are containers already running on
the selected node (recall that images are read-only and copy-
on-write). To perform image-match, the scheduler mainly
needs two pieces of information: (i) what image is requested
and (ii) what images exist on each worker node. The former
is supplied by the request. The latter requires some modifi-
cation to the container orchestrator. The scheduler cannot
simply retain information about which images it has placed
at different nodes since this information would be incorrec-
t/stale as images are evicted from a worker node’s cache.
Hence, we instead rely on worker nodes to periodically prop-
agate this information to the scheduler as follows.
Image State Propagation. Eachworker node already tracks
which images (their names and sizes) it caches. We refer to
this information as a node’s image state and extend worker
nodes to propagate this state to the scheduler. In the spe-
cific context of k8s, worker nodes achieve this by storing
their image state in the k8s key-value store (etcd) and the
scheduler reads the relevant state from the key-value store
and caches it locally. Upon a request arrival, the scheduler
simply computes our image-match function using the image
state information that it has cached locally.
Image Name Normalization. Since an image may be as-
sociated with multiple names (see §3.1), the scheduler may
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miss an image-match if the user-specified name for the re-
quested image differs from what the worker nodes report.
Therefore, to maximize the opportunities for image-match,
the scheduler normalizes the names of requested images,
using the same rules as those used at worker nodes (§3.1).
Note that name normalization helps but does not guarantee
matches when users apply different tags to the same image.

We describe our implementation of image-match in §5.

4.3 Layer-match

The image-match policy can lead to missed opportunities: un-
less there is an (available) node that has in its cache the exact
image, with the same normalized name as the one specified
in the request, image-match cannot offer any performance
benefit over the dependency-agnostic policies. Indeed, it is
common to see images that are only minor variants of each
other; e.g., an image with a newly added layer, or with only
a slight name change (e.g., a different tag).

In fact, a notable characteristic of container images is that
they are subject to frequent and incremental updates that
are made convenient by their layered structure. In our study,
the 56K most popular container images on DockerHub have
675K layers in total but only 383K layers are unique. Further
analysis of the top 1,000 images shows that each image has
an average of 39.6 versions (each associated with a unique
tag). The overlap in dependencies between these versions is
typically high as well. For example, “microsoft/dotnet”(one
of the most popular images) has 1,088 versions with a total
of 905 layers across versions, of which only 426 are unique.
Our next design, therefore, defines dependencies at the

granularity of container layers instead of the entire image.
The scheduler places a new request at a node which has
the maximum overlap (in bytes) between the layers cached
locally and those needed by the request. At a high level, layer-
match offers two important advantages over image-match:
(1) It discovers a greater degree of overlap in dependencies.
(2) The layer digest offers a content-addressable name for de-
pendency identification: the layer’s name/digest is a unique
identifier of its content, allowing the required dependencies
to be tracked and matched accurately. These benefits, how-
ever, come at the cost of more state that needs to be tracked
and propagated and deeper modifications to existing con-
tainer frameworks. We discuss our design below and present
implementation details in §5.
Layer State Propagation. Worker nodes already track im-
age state but they must be extended to track the layer state
as well. Then, as in image-match, this per-node layer state
must be communicated to the container scheduler, which in
the context of k8s is achieved by having each node store its
layer state in the k8s key-value store.
Image Resolution. The content addressable nature of layer
names allows the scheduler to skip the name normalization
process required in the image-aware policy. However, it now
needs to deal with a different issue: since the request does

not specify which layers constitute the requested image, the
scheduler will not be able to perform layer-match. This issue
can be addressed by making the scheduler query the image
repository to retrieve and cache image-to-layer mappings.

4.4 Other optimizations and considerations

Eviction Policy The default policy adopted by container
runtimes when its local image cache is full is to evict the
least-recently-used (LRU) image. Ideally, to maximize the
benefits of layer-match, this eviction process would also op-
erate at the granularity of layers: i.e., evicting layers instead
of images. However, unlike our other changes for schedul-
ing, this would require changing the container runtime. We
therefore use the conventional image-based eviction policy
in our default design and implementation, although we also
evaluate the benefits of layer-based evictions in §6.
Claiming CPU resources for container runtime A con-
tainer, once scheduled on a particular node, is allocated a
weighted fair share of CPU on that node. However, it starts
using its CPU fair share only after all of its dependencies
have been fetched and it starts running the task. The con-
tainer runtime, that fetches, extracts, and installs the required
dependencies, is allocated a very small amount of CPU by
default [14]. This increases the request startup latency when
CPU resources are overloaded. We implement an optimiza-
tion where once the container runtime is ready to fetch a
container’s dependencies, it is allocated that container’s CPU
fair share. Once the dependencies have been fetched and in-
stalled, the CPU share claimed by the runtime is allocated
to the container itself for running the task. This optimiza-
tion has a minor impact on the results presented in §6 due
to low baseline CPU usage. In our microbenchmarks with
overloaded CPU, this optimization led to 4.2× speed-up in
task startup latency (we omit detailed results for brevity).
Balancing Scheduling Policies. Cluster schedulers often
consider balancing resource allocations and/or spreading
containers (e.g.,microservice instances) acrossmultiple nodes
for higher availability and reliability. Both image- and layer-
match policies can affect the decision made according to
these criteria when, say, jobs with the same dependencies
are potentially assigned to a smaller number of nodes, re-
sulting in “hot spots” of overloaded nodes within the cluster.
To resolve this, we rely on the scoring function of the sched-
ulers as discussed in §3.2, where the weighting of different
functions can be adjusted to navigate such trade-offs.

5 System Implementation
We implement dependency scheduling in k8s; our image-
match policy is currently available in k8s (as of v1.12), while
we are working on upstreaming our layer-match policy [11].

As discussed in §4, the primary change we make is to add
dependency awareness to the k8s scheduler. At a high-level,
this entails tracking dependencies at a per-node level, prop-
agating this information to the scheduler (via the API server
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and key-value store), and finally using this information in
making scheduling decisions. This requires changes to the
following k8s components (from Figure 1):
(i) Kubelets running at each worker node for tracking cached
dependencies and communicating them to the master node.
(ii) API-server for incorporating dependency information
in the global cluster state it maintains and in the RPCs it
generates to communicate with other system components.
(iii) Scheduler for implementing dependency scheduling.

We describe the changes made to each of the above com-
ponents in more detail below.

5.1 Extending k8s to support Image-Match

The changes for supporting image-match are as follows.
Kubelets. The container runtime in the worker nodes al-
ready tracks the image state (names and sizes of the cached
images). We simply extend the kubelet to retrieve this state
from the container runtime and communicate it to the API
server as described next.
API-server. Currently, the interface between the API-server
and the kubelet lacks image-awareness. We extend the RPCs
between the kubelet and the API-server to communicate the
image state. Likewise, we also extend the global cluster state
that backs the API-server to store this per-node image state.
Scheduler. We extend the scheduler to implement image-
match using the per-node image information stored in the
global cluster state. This involves two key changes:
Image Name Normalization. To implement the image match
policy, we must compare the name of each image in a new
pod request with the names of the images cached at each
node. Recall that the latter is obtained from the container
runtime, and can be different from the name specified by
the user in a pod request even for the same image. This
is because of the image name normalization done by the
container runtime after the pod has been scheduled on it (as
described in §3.1). To not miss the opportunity for an image-
match in such cases, we normalize the image names before
scheduling using the same rules as the container runtime. 3
Adding Image-match Scheduling Criteria.We extend the node
scoring function (see §3.2) to include image-match. When
evaluating our image-match policy in the following sections,
we set the weight for this criteria to the maximum allowed
value so as to clearly isolate the performance gains due to
dependency scheduling (we did the same for the layer-match
policy discussed later); in practice, these weights can be
configured differently depending on how important startup
latency is for the workload in question.

5.2 Extending k8s to support Layer-Match

We now describe the additional changes required for sup-
porting layer-match.

3Image naming conventions are still in the process of standardization. We
followed the conventions of Docker in our implementation.

Kubelets. Since the container-runtime only tracks cached
images, we extend the kubelet to track cached layers as well.
We add a layer tracking subroutine to the kubelet to col-
lect layer metadata directly from the local filesystem. The
metadata for each layer includes its (a) digest, the global
collision-resistant hash over the compressed layer blob (in-
troduced in §3.1), (b) diff-id, the hash over the uncompressed
layer blob computed locally by the node, and (c) chain-id,
obtained by computing the hash of a layer’s diff-id with its
parent’s chain-id. The topmost layer without a parent has
a chain-id equal to its diff-id. The local filesystem indexes
each cached layer by its chain-id, which can be used to track
its diff-id and size. The diff-id, in turn, is used to track the
corresponding layer digest using the diff-id to digest map-
ping maintained by the filesystem. Note that a diff-id can be
associated with multiple chain-ids (a cached layer shared by
multiple images can have multiple parents), but it is always
mapped to its unique layer digest and size. The layer state
(its digests and sizes), thus collected, are communicated to
the API-server.
API-server. Similar to adding image-awareness, we extend
the RPCs between the kubelet and API-server to communi-
cate per-node layer state, along with adding this information
in the global cluster state.
Scheduler. Extending the scheduler to support layer-match
also involves two key changes.
Image Resolution.We use this term to describe the process of
mapping an image name to its corresponding layer digests.
With the original k8s design, this resolution is executed by
the container runtime at each worker node before pulling
the required layers for a new image. With dependency sched-
uling, we need a pod’s layer information in order to assign it
to a node and hence resolution must happen earlier so that
the scheduler knows the mapping between the image of an
incoming pod request and its layer digests.

We, therefore, implement the image resolver in the sched-
uler. Whenever a pod request with a new image comes in,
the resolver obtains the image to layers mapping by query-
ing the external image respository and caches them. This
takes about 200ms . However, this is just a one-time penalty
paid for new image requests, with the local image resolution
from the cached mapping being the common-case occur-
rence. We implement this external image resolution outside
of the scheduler’s critical path to avoid any head-of-the-line
blocking – when a new image request comes in, the sched-
uler can continue processing other cached image requests
while the external resolution completes.
Adding Layer-match Scheduling Criteria. Similar to image-
match, we extend the scoring function to include layer-
match; i.e. the total size of layers cached in the node with
digest values matching with the layers in the pod request.
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6 Simulations driven by Real-world Traces
We evaluate dependency scheduling using a combination of
measurement-driven simulations (this section) and experi-
ments on a k8s cluster (§7).
We use simulations driven by an image trace obtained

from DockerHub to test the limits of dependency scheduling
at scale and its robustness over a wide range of parameter
settings. We compare the following scheduling policies: (i)
image-match, (ii) layer-match, and (iii) a dependency agnostic
scheduling policy that places a task at a randomly selected
available node. This agnostic policy reflects the absence of
dependency-awareness in the default k8s scheduler prior to
our changes and we use it as a baseline to compare our two
dependency-aware scheduling policies.

We show that dependency scheduling, with either policy,
consistently results in smaller startup latency and more effi-
cient cluster usage than the dependency-agnostic baseline,
with the finer-grained layer-match policy exhibiting greater
benefits compared to the coarser-grained image-match.

We first describe our simulation methodology and default
experimental setup (§6.1), then present our results across a
variety of test scenarios (§6.2 - §6.5).

6.1 Simulation Process

Overview: Our simulation process comprises of four steps:
(i) mirroring a subset of images from DockerHub to our
private image registry on EC2, (ii) profiling the image pull
latencies (iii) generating a realistic trace by extrapolating
the collected latency profiles to a larger image set, and (iv)
using the generated trace for cluster-level simulations. Sim-
ulations driven by the actual pull latencies as measured for
real-world images on an EC2 cluster allow us to closely
model reality while giving us the flexibility to experiment
with more settings than would be possible using our real
system implementation. We elaborate on the above steps
below.
(i) Image Mirroring: We select the latest versions of the 5K
most frequently used images from DockerHub [4], forking
them to the Amazon Elastic Container Registry (ECR). This
saturates our repository limit on Amazon ECR (which was
increased from the default of 1K images on request).
(ii) Latency Profiling: We deploy a Docker engine on an
m4.xlarge dedicated Amazon EC2 instance, and pull the im-
ages from ECR. We instrument the Docker engine to log
the size of each layer in the image, and the time taken to
pull the layer (its pull latency).4 The pull latency includes
both the time taken to download a layer and to register it
on the node, and we measure each. After all layers in an
image have been pulled, we remove the image and ensure
no cached layer exists locally, eliminating any layer reuse
that can affect the latency readings. Figure 2 shows how the
pull latency increases with increasing layer size.

4We will make the collected dataset publicly available.
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Figure 2. Layer download and registration latency vs layer
size, measured with AWS EC2 m4.xlarge dedicated instance
and Elastic Container Registry.

Total no. of images 56,218
Total no. of layers 383,326

Sum of all image sizes 33.15TB
Sum of unique layer sizes 20.95TB
Average image pull latency 19.2s
Average layer pull latency 1.75s

Average no. of layers per image 11.95

Table 1. Summary of the trace collected for simulations

(iii) Extrapolating Latency Profile: We extrapolate the results
from the latency profile of the above 5K images to create a
latency profile for approximately 56K of the most frequently
used DockerHub images. We use K-nearest neighbours for
this extrapolation. We also validate our extrapolation strat-
egy on a separate subset of the collected latency profiles and
find that the extrapolated pull latencies are, on an average,
within 15% of the actual latencies. Table 1 gives a high-level
summary of this trace.
(iv) Cluster-level simulation: We wrote a simulator that mod-
els a k8s cluster and implements the image- and layer-match
policies, as well as the dependency agnostic policy described
before. To understand the impact of dependency scheduling,
most of our experiments do not model the other scoring
functions found in k8s’ scheduler. This is equivalent to con-
figuring the k8s scoring function with a very high weight
for dependency scheduling. We relax this in §6.5. Among the
three components of startup latency (§3.3), our simulation
only captures the provisioning latency (more specifically,
the pull latency) obtained from the latency profile trace. We
do not model the booting latency and the computation time.
However, we measure these using our system implementa-
tion in §7 and show that, in practice, these are far smaller
than the pull latency and hence can be safely ignored.
Default Experiment Setup: Unless explicitly specified, we
use the following parameters throughout the simulations:
200 nodes in the cluster, with at most 16 running containers
and 32GB image cache size per node. Pod requests arrivewith
Poisson inter-arrival times, with the default load selected
such that the cluster utilization is ∼ 80% for the agnostic
policy. We model the common case of a single task (and,
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Figure 3. Container startup latency for the default experi-
ment setting.

hence, container image) per pod. 5 Our default workload
uses a realistic Zipf distribution (with an exponent value of
0.75) when picking the container image for each pod request,
since it is the common access pattern observed in a wide
range of scenarios [19, 20]. The execution time for each
task is uniformly sampled from 1-10 seconds. We vary these
default settings to study how they affect our results in §6.4.

6.2 Key Results

We first present the results from our default setup.
Startup Latency: Figure 3 shows the CDF of the startup
latency for our default simulation setting. These results con-
firm the design rationale discussed in §4: dependency sched-
uling (both image-match and layer-match) result in smaller
startup latencies when compared to the agnostic policy, with
layer-match generally performing better than image-match.
The CDF can be divided into three regimes:
(i) The very low percentiles (< 30%ile) correspond to cases
where the entire image is cached at a node, thus resulting in
similar performance for layer-match and image-match, both
having significant benefits over the agnostic policy.
(ii) The very high percentiles (> 90%ile), on the other hand,
correspond to cases where no layer is cached, thus resulting
in similarly high startup time for all three policies.
(iii) The range between 30-90%ile corresponds to cases where
some layers are cached but not the entire image, in which
(common) case layer-match has notable benefits over image-
match, and both greatly outperform agnostic.
On average, the image-match and layer-match policies

result in 1.44x and 2.33x smaller startup latency compared to
agnostic policy respectively, with layer-match performing
1.6x better than image-match.
Cluster Usage: In addition to reducing startup latency, de-
pendency scheduling makes more efficient use of cluster
resources, both compute and storage.

5For cases with multiple containers per pod, we expect some affinity in
the container images that are clubbed into a pod (analogous to layers in
a particular image being requested together, but with abundant sharing
across images). Our dependency scheduling design – both image-match
and layer-match – will naturally exploit sharing in such cases as well.
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Figure 4. Cluster compute usage under the same load with
different policies.

Policy Avg. no. of cached
images per node

Avg. unused
space in local

store
Agnostic 34.68 5.11GB

Image-match 40.24 5.64GB
Layer-match 60.10 7.98GB

Table 2.Average number of cached images and unused space
in the local image store for the three policies.

Compute: Figure 4 shows compute usage with the three poli-
cies for the same input load, measured as the sum of the total
time each core is occupied divided by the product of the total
number of cores in the cluster and the simulation duration.
As expected, reduced provisioning time directly translates
to smaller usage of compute resources in the cluster. Layer-
match is most efficient, followed by image-match, with the
agnostic policy being the least efficient.
Storage: In Table 2, we report the number of cached images
per node and the amount of unused space in the per-node
image store, computed as an average across all nodes and
all scheduling rounds from the second half of the simulation
(the latter to avoid startup effects). Dependency scheduling
allows better packing of images in each node by co-locating
images with larger numbers of shared dependencies. This
results in more images stored per node as well as slightly
higher unused (or free) space in the local image store.

Key Takeaway: Our results show that dependency sched-
uling results in smaller provisioning time and enables more
efficient usage of cluster resources than dependency agnos-
tic scheduling. They further reveal that a scheduling policy
based on finer-grained dependencies (layers) offers greater
benefits than using coarser-grained dependencies (images).

6.3 Impact of Layer Eviction

As discussed in §4, the layer-match scheduling policy can be
further enhanced by using layers as the granularity for evic-
tion (instead of the default strategy of evicting entire images
based on an LRU policy). We now evaluate the benefits of
layer-based eviction by comparing the startup latencies and
the cluster resource usage when the layer-match scheduler
is used with the default LRU image eviction policy and with
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Metric
Eviction Policy

LRU Image LRU Layer LFU Layer
Startup Latency 6.5s 5.65s 5.42s

Avg. Compute Usage 47.08% 43.48% 42.58%
Avg. no. of cached images 60.10 72.92 71.08
Avg. unused local space 7.98GB 7.8GB 8.18GB

Table 3. Comparing results for layer-match scheduling
across different eviction policies.

layer-based LRU and LFU eviction policies. Table 3 presents
the results. We find that using layer-based LRU or LFU evic-
tion results in 16% and 13% lower startup latencies respec-
tively. Correspondingly, they result in 7% and 9% smaller
compute usage, and 21% and 18% more images cached per
node, although the observed average unused storage space
remains similar across these different eviction policies.

6.4 Robustness Analysis

We now evaluate the robustness of our results to varying
parameters.
Effect of changing cluster configuration: Cluster con-
figuration includes the number of nodes in a cluster and
the per-node cache size, which may vary depending on the
physical limits of a cluster or its use.
Varying cluster size: Cluster size may range from a couple of
nodes to a few thousands [9]. Fig. 5a shows the speedup due
to using dependency scheduling, measured as the average
startup latency for agnostic policy divided by the startup
latency for image-match and for layer-match. As the cluster
size increases, the number of cached layers – and hence
the opportunities for sharing – increase, leading to greater
performance benefits for dependency scheduling over the
agnostic policy. Comparing the two dependency scheduling
policies, the benefits of using layer-match over image-match
first increase but then start decreasing, as the cluster size
becomes large enough to cache more images.
Varying per-node image cache size: We capture the effect
of changing the per-node cache size in Figure 5b. As be-
fore, increasing the cache size creates more opportunities for
sharing, benefiting both layer and image-match policies. We,
therefore, see a similar trend, where the benefits of using
dependency scheduling over the agnostic policy increases,
while the benefits of using layer-match, when compared to
image-match, first increase and then start decreasing as the
image cache size is increased beyond 48GB.
Effect of changing workload: We look at how our input
workload parameters, i.e. request rate (or load) and image
access pattern, affect our results.
Varying offered load: Figure 5c shows how the speedup in
startup latency due to dependency scheduling changes as the
offered load or the request arrival rate is increased. Depen-
dency scheduling continues to perform better than the agnos-
tic policy as the offered load is varied, with a sudden jump in

the benefits seen at a high load of 150 requests/second, since
at this point the cluster is almost fully (95%) utilized with the
agnostic policy, while image-match and layer-match result
in only 82% and 67% cluster compute usage. This shows that
dependency scheduling can sustain a higher offered load
than the agnostic policy. We again see that finer-grained
layer-match gives greater benefits than image-match policy.
Varying image access pattern: In Figure 6, we change the im-
age access pattern for the incoming requests from our default
Zipf distribution, to (i) uniform distribution where images
are assigned to the container uniformly at random and, (ii)
the popularity distribution where the images are assigned
proportionally by their pull count reported by Docker Store.
We see an interesting trend with uniform distribution

where image-match policy shows very small benefits over
the agnostic policy. This is because with uniform distribu-
tion, there is a larger variety of images among the containers
running in the cluster, decreasing the probability of an image-
match between an incoming request and one of the avail-
able nodes. However, since these images may have multiple
shared layers, layer-match results in significantly smaller
startup latencies than the agnostic policy.

By contrast, the popularity distribution is highly skewed,
with a small number of very popular images which are of-
ten cached, resulting in significant benefits for dependency
scheduling over agnostic policy: 19x and 21x lower startup
latencies for image-match and layer-match respectively.

Key Takeaway: Our trends from §6.2 hold across a wide
range of scenarios. Dependency scheduling performs bet-
ter than the agnostic policy, with layer-match performance
being generally better than image-match.

6.5 Supporting Multiple Objectives

In practice, cluster operators may want to achieve a com-
bination of different objectives. We implement the scoring
function mentioned in §4.3 in our simulations to see how
dependency scheduling interacts with another policy that
aims to balance the load within the cluster. This latter policy
assigns higher score to nodes that have fewer running con-
tainers. For each scheduling round, we measure the ratio of
the average number of containers running across all nodes
over the maximum number of containers running in a single
node. We average this ratio across all rounds to get a balance
ratio that we use as a metric for the effectiveness of the load
balancing scheme. We tune the relative weight of the the
load-balancing policy with respect to the dependency sched-
uling (image- or layer-match) from 0:1 (no load balancing)
to 1:0 (no dependency scheduling).
Figure 7 shows the result. We find that as the relative

weight of load-balancing policy is increased, the speed-up
in startup latency due to dependency scheduling decreases,
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Figure 5. Speedup due to dependency scheduling as the number of nodes, per node cache size, or offered load is varied.
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while the balance ratio increases. This shows that our de-
pendency scheduling policies can co-exist well with other
policies to produce the desired combination of objectives.

7 System Evaluation
We now evaluate our dependency scheduling implementa-
tion on k8s. In §7.1 we show how the startup latency trends
observed in our simulations in §6 also hold for the real sys-
tem. Then, in §7.2, we provide a breakdown of the startup
latency to show the dominance of provisioning time.

7.1 Container Startup Latency

Experiment Setup: We set up a 60-node cluster on AWS
EC2. Each node in our cluster is an c4.xlarge instance with 16
cores each. We configure the EBS (Elastic Block Service) vol-
ume attached to each node to have 32GB disk space reserved
for the rootfs, which is used as the local image store. We use
an input workload comprising of 5K images (saturating our
ECR limit), with Poisson inter-arrival times and Zipf image
access pattern as described before in §6.
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Figure 8. CDF of startup latency with 3 different policies at
(a) 1 pod requests/second, and (b) 10 pod requests/second.

Results: In Figure 8(a) and (b) present the CDF of the ob-
served startup latencies under low and high load respectively,
for the three policies: dependency scheduling with image-
match and layer-match, and k8s’ default scoring function
that is dependency-agnostic. We continue to see the same
trends that were observed in our simulations before: the
startup latency is smallest with layer-match and highest
with the default (agnostic) policy.

Under low load, image- and layer-match have 1.83x and
2.34x smaller average startup latency than agnostic respec-
tively. Under high load, the absolute values of the startup
latency for all three policies are significantly higher than
what we observed in the simulations before and for the low
load case. This is because the system sees significant queu-
ing in the node’s container runtime engine – the runtime
engine only provisions one container at a time resulting in a
queue build up (an effect not captured in our simulations).
With lower provisioning time, dependency scheduling sees
much smaller per-node queuing, with layer-match perform-
ing better than image-match: image-match and layer-match
result in 3.61x and 5.57x lower average startup latency than
dependency agnostic respectively.

7.2 Other Startup Latency Components

We now show that provisioning latency is the most dominant
of the three startup latency components described in §3.3, by

11



Conference’17, July 2017, Washington, DC, USA Silvery Fu, Radhika Mittal, Lei Zhang, and Sylvia Ratnasamy

 0

 200

 400

 600

 800

 1000

 1200

 1400

10 60 120S
c
h

e
d

u
li
n

g
 C

o
m

p
. 

T
im

e
 (

µ
s
)

Cluster Size

k8s-agnostic

2
5
1

6
0
3

8
6
6

k8s-image

3
4
2

6
5
1

9
6
0k8s-layer

3
4
2

6
8
4

11
83

Figure 9. Scheduling computation latency comparisons.

 0

 1

 2

105 106 107 108 109B
o
o
ti

n
g
 L

a
te

n
cy

 (
s)

Size (bytes)

booting latency

Figure 10. Booting latency vs image size.

measuring the scheduling computation time and the booting
latency using our system implementation.
Scheduling Computation Time:We pre-warm each node
with about a hundred images (corresponding to about 1000
layers) and measure the scheduling computation times for
the three policies we consider for 100 consecutive pod re-
quests. Fig. 9 shows this time for different cluster sizes. As
expected, the computation time for dependency agnostic is
the lowest, followed by image-match (8 - 36% higher than ag-
nostic), and then layer-match (13 - 37% higher than agnostic
and up to 23% higher than image-match).
Also, as expected, the computation times increase with

increasing cluster sizes, as there is more per-node state in-
formation that needs to processed. 6 In all cases, the compu-
tation time incurred by dependency scheduling stays within
1.2ms, and is therefore negligible compared to the reductions
in provisioning time that it achieves.
Booting Latency:We select a subset of 134 images of vary-
ing sizes and measure how long each of them take to boot up
on a node (after being provisioned). Figure 10 shows our re-
sults. We find that irrespective of the image size, the booting
latency largely remains fixed at around one second.
Key Takeaway: The provisioning latency (including the
queuing in the container runtime) is indeed the dominant
and the most variable component of startup latency.

6Notice that the computation time for dependency-agnostic scheduling
also increases with increasing number of nodes. This is because we use
the default scoring function implemented in k8s and do not simply pick an
available node at random (as in the simulations).

8 Discussion and Related Work
Cluster Scheduling: There is a large body of work on clus-
ter scheduling that focuses on reducing contention over
shared resources, achieving better data locality and so on [21–
23, 26, 32, 35, 36, 38]; these schemes do not optimize for
startup times which is our focus. The latter is increasingly
important in modern contexts where the infrastructure runs
diverse application workloads composed of ever-shorter
tasks [36].
Serverless Computing: Serverless [2, 7, 12, 25] is an emerg-
ing model for application deployments in the cloud that
typically uses containers to run short tasks. Our work on
reducing container startup latency is well-suited to this par-
adigm (§7).
Container Reuse: A cloud provider can cache a popular
pool of running containers such that they can immediately
accommodate new function requests [16, 30, 39] without
incurring the time to provision and boot containers. Such
container reuse differs from dependency scheduling along
multiple dimensions: (i) container reuse only reduces start
time for repeat requests from the same user (and hence can-
not exploit the overlap in dependencies across users), (ii) the
operator must proactively determine which containers are to
be kept on hot standby, ready for reuse (vs. opportunistically
exploiting dependencies that happen to be in cache), (iii)
container reuse consumes additional runtime resources (not
incurred by dependency scheduling), and (iv) container reuse
cannot exploit the overlap in finer-grained dependencies (as
layer-match does).7 That said, those user requests that bene-
fit from container reuse do enjoy low sub-second start times.
Hence, we view dependency scheduling and container reuse
as playing different and complementary roles.
Storage Optimization: Slacker [24] uses a proprietary NFS
implementation to lazily pull the contents of the container
image, and thus improve startup latency. Such strategies
increase the complexity of the storage backend (e.g., to main-
tain many active client connections) and non-trivial infras-
tructure changes (e.g. modifications to the linux kernel and
the use of a proprietary NFS server). Dependency scheduling
is an orthogonal technique that is simpler to implement, and
that can complement such storage optimization techniques
to get even smaller startup latencies.
Dependency Trimming: Trimming dependencies is an or-
thogonal approach to reduce startup time that has been stud-
ied in the context of unikernels [33, 34]. These use an offline
process for trimming dependencies and report lower startup
latency than untrimmed unikernels and containers. Depen-
dency scheduling is, again, orthogonal and complementary
to dependency trimming, and offers benefits without requir-
ing that users change their submitted container images.

7Moreover, current usage of such container reuse is restricted to serverless
architectures with specific language runtimes.
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9 Conclusion
Programmers are most productive when they reuse existing
libraries to build applications. Such reuse can lead to substan-
tial dependency sharing between containers. Dependency
scheduling explores and exploits such sharing. Our work
shows that dependency scheduling is highly effective in cut-
ting container startup latency. Our image-match policy has
been adopted bymainline Kubernetes, while our layer-match
policy is currently under review.
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