

Hapax: Probabilistic
part-of-speech tagging in
XQuery and XForms
	
C.	M.	Sperberg-McQueen	
cmsmcq@blackmesatech.com	
Black	Mesa	Technologies	LLC,	United	States	of	America	
	

Many	programs	perform	part-of-speech	(POS)	tagging	
on	texts	[Leech	et	al.	1983,	Booth	1985,	Church	1988,	
DeRose	 1988,	 Brill	 1992,	 Leech	 et	 al.	 1994,	 Schmidt	
1994,	1995,	Toutanova	et	al.	2003];	although	they	use	
a	variety	of	algorithms,	their	interfaces	tend	to	be	sim-
ilar:	

• They	work	in	batch	mode,	not	interactively.		
• They	generally	model	text	as	a	flat	sequence	

of	characters;	for	most,	XML	markup	must	be	
removed	 before	 data	 are	 submitted	 to	 the	
tagger,	and	afterwards	merged	back	into	the	
output.	

• They	are	consequently	unable	to	exploit	 in-
formation	 in	 XML	 markup	 —	 for	 example,	
that	“Brown”	is	here	a	proper	noun	and	“Es-
sex”	there	a	place	name.	

• They	tag	each	word	token	in	the	input	with	
their	 best	 guess	 at	 the	 correct	 POS;	 by	 de-
fault,	they	do	not	distinguish	low-	and	high-
probability	guesses.	

• They	cannot	accept	partially	tagged	input.	In	
consequence,	 the	 human	 annotator	 cannot	
help	them	by	providing	hints	on	some	words.	

• They	 operate	 on	 words,	 not	 smaller	 seg-
ments.	

This	paper	describes	an	XQuery-based	POS	tagger	de-
signed	 to	 differ	 from	 existing	 taggers	 in	 all	 of	 these	
ways.	It	works	interactively	one	sentence	at	a	time	di-
rectly	on	XML	(by	default,	TEI-encoded)	text,	exploits	
relevant	markup,	provides	not	just	the	most	probable	
tagging	of	the	input	but	several	ranked	alternatives,	ac-
cepts	 partially	 tagged	 input,	 and	 can	 work	 on	 user-
specified	segments	(e.g.	TEI	w	[word]	or	m	[morph]	el-
ements)	instead	of	only	on	space-delimited	tokens.	Be-
cause	the	tagger	described	here	is	designed	to	support	

semi-automatic	 (or	 ‘half-automatic’)	 POS	 annotation	
for	XML	data,	it	has	been	given	the	name	Hapax.	
Hapax	has	been	designed	and	implemented	as	part	of	
the	project	“Annotated	Turki	Manuscripts	from	the	Jar-
ring	 Collection	 Online”	 (ATMO),	 supported	 by	 the	
Henry	R.	Luce	Foundation;	the	author	thanks	both	the	
Luce	Foundation	for	their	support	and	his	colleagues	
in	the	ATMO	project	for	their	collaboration.	

Design considerations
Early	 POS	 taggers	 used	 morphological	 and	 other	

rules	 to	 assign	 POS	 tags	 to	 input;	 later	 experience	
showed	 that	 purely	 statistical	 methods	 like	 hidden	
Markov	models	(HMMs)	could	achieve	better	accuracy	
with	less	effort;	for	tutorial	descriptions	of	HMMs	see	
Rabiner	1989	and	Charniak	1993.	
	 For	 batch-mode	 POS	 tagging,	 accuracy	 and	 speed	
are	 obvious	 desiderata.	 Many	 modifications,	 refine-
ments,	and	alternatives	to	HMMs	have	been	proposed;	
these	 can	 improve	 accuracy	 by	 several	 percentage	
points.	Larger	training	sets	make	a	much	larger	differ-
ence.	Schmid	1994	reports	a	comparison	in	which	the	
least	and	most	accurate	taggers	differ	by	two	to	 four	
percentage	points,	while	accuracy	rates	for	small	and	
large	training	sets	(<	10,000	and	>	1,000,000	words)	
differ	by	twelve	to	sixteen	points.	
	 For	Hapax,	intended	to	support	human	annotators	
working	on	under-resourced	languages,	raw	speed	is	
unimportant.	For	any	tagger,	the	human	annotator	will	
need	to	correct	many	proposed	taggings;	the	key	to	im-
proving	annotation	speed	is	to	make	corrections	faster.	

Selecting	the	correct	tag	from	a	menu	requires	sev-
eral	interactions:	the	80	tags	in	the	Brown	Corpus	POS	
tag	set	do	not	fit	into	a	single	menu;	many	tag	sets	are	
larger.	 Accepting	 a	 proposed	 tagging	 for	 a	 word	 re-
quires	a	single	user-interface	interaction	(e.g.	clicking	
“OK”).		

So	speed	 improves	with	accuracy:	 the	 fastest	cor-
rections	are	 those	not	needed.	But	high	accuracy	 re-
quires	large	training	sets,	which	under-resourced	lan-
guages	lack	by	definition.	Some	algorithms	cope	well	
with	limited	data.	In	the	Brown	Corpus,	92%	of	all	to-
kens	 are	 tagged	with	 the	most	 frequent	 POS	 tag	 for	
their	word	type.	A	trivial	1-gram	tagger,	which	just	as-
signs	 the	most	 frequent	POS	tag	 for	each	word	 form,	
will	thus	do	almost	as	well	on	known	words	as	more	
sophisticated	algorithms.	 In	reality,	not	all	words	are	
known,	but	a	1-gram	tagger	trained	on	as	little	as	2000	
words	 from	the	Brown	Corpus	will	 tag	60	 to	70%	of	
input	 tokens	 correctly.	 Larger	 training	 sets	 (8000,	
32000,	128000,	500000	words)	again	do	better	 (68-
78%,	73-85%,	77-90%,	82-92%).	

	 Also,	we	can	make	tagging	errors	less	costly	to	fix.	
If	the	tagger	provides	one	tag	for	each	segment,	every	
wrong	guess	costs	a	manual	tag	selection.	If	the	tagger	
proposes	several	POS	tags,	then	some	errors	will	be	as	
cheap	as	a	correct	tagging:	one	mouse-click.	So	the	goal	
of	Hapax’s	design	is	to	minimize	the	need	to	select	tags	
from	menus,	by	proposing	not	one	but	several	POS	tags	
for	each	word.	

If	a	1-gram	tagger	for	the	Brown	Corpus	proposes	
not	 one	 but	 three	 POS	 tags,	 the	 correct	 tag	 will	 be	
among	those	proposed	71-80%,	79-86%,	84-93%,	87-
97%,	or	90-98%	of	the	time	(for	2000-,	8000-,	32000-
,	128000,	500000-word	training	sets).	If	 five	tags	are	
proposed,	 the	 correct	 tag	 will	 be	 proposed	 79-88%,	
87-92%,	91-95%,	92-97%,	or	94-98%	of	the	time.	

If	 a	 single	user	 interaction	can	accept	a	proposed	
tagging	for	the	entire	sentence,	we	will	save	one	inter-
action	 for	 each	 word	 of	 the	 sentence.	 Hapax	 uses	 a	
standard	bigram	HMM	to	 calculate	 the	N	most	 likely	
taggings	 for	 the	entire	 sentence.	The	higher	N	 is	 set,	
the	greater	the	chances	that	only	a	single	mouseclick	
will	 be	 required,	 but	 more	 time	 will	 be	 needed	 for	
reading	and	considering	the	proposals;	it	is	likely	that	
there	is	a	point	of	diminishing	returns.	

XQuery implementation
Hapax	is	implemented	as	a	library	of	XQuery	func-

tions.	One	set	of	functions	reads	the	training	material	
and	produces	XML	word-	or	POS-frequency	lists	from	
them.	These	list	word	types	or	POS	tags	by	frequency,	
subdivided	by	POS	tags	or	word	types	(or,	for	bigrams,	
POS	of	following	segment).	Additional	functions	calcu-
late	 probability	 distributions	 for	 use	 with	 unknown	
words,	using	the	technique	of	Charniak	et	al.	1993.	

The	 1-gram	 tagger	 consults	 the	 word/POS	 fre-
quency	list	and	returns	the	N	most	likely	POS	tags	for	
the	given	word	form.	The	bigram	tagger	consults	 the	
bigram	 and	 POS/word	 lists	 and	 uses	 the	 standard	
Viterbi	 algorithm	 to	 calculate	 the	 most	 likely	 path	
through	the	trellis	of	possible	taggings	for	a	sentence.	
A	simple	modification	of	the	algorithm	allows	Hapax	to	
calculate	not	one	path	but	the	best	N	paths,	with	time	
linear	in	the	number	of	tags	in	the	trellis.	

Testing	routines	generate	random	test	and	training	
sets	from	a	corpus	stored	as	an	XQuery	database;	in	a	
project	setting,	the	training	sets	are	not	created	on	the	
fly	 but	 prepared	 in	 advance	 and	 stored	 in	 a	 data-
base.The	primary	 interface	 for	 consumers	of	 the	Ha-
pax	library	is	the	function	hapax:tag(),	which	accepts	
as	arguments:	
	

• An	XML	element	representing	a	sentence		

• An	indication	of	what	frequency	data	to	use		
• Optionally,	a	set	of	access	functions	

The	function	calls	the	1-gram	and	bigram	taggers	and	
returns	an	XML	document	describing	possible	POS	tag-
gings	for	the	input.	In	the	common	case,	the	input	sen-
tence	is	a	tei:s	element,	containing	tei:w	or	tei:m	ele-
ments	to	be	tagged.	Input	elements	may	have	type	at-
tributes;	such	a	partial	tagging	of	the	sentence	will	af-
fect	 the	 probabilities	 for	 the	 POS	 tags	 for	 other	 ele-
ments.	The	optional	set	of	access	functions	allows	Ha-
pax	to	be	used	with	non-TEI	markup;	the	user-supplied	
functions	are	used	to	identify	words	in	a	sentence,	de-
tect	POS	tagging	in	the	input,	and	add	POS	tags	to	the	
output.	

The	entire	Hapax	library	is	a	few	thousand	lines	of	
XQuery;	the	rich	sets	of	data	structures	(including	XML	
as	a	native	type),	higher-order	functions,	and	grouping	
constructs	in	XQuery	and	XSLT	make	the	implementa-
tion	of	POS-tagging	algorithms	remarkably	straightfor-
ward.	

XForms interface

	 In	 the	 ATMO	 project,	 Hapax	 supports	 a	 browser-
based	user	interface	specified	with	XForms.	The	form	
displays	a	document,	providing	an	Annotate	button	for	
each	sentence.	When	the	button	fires,	the	form	sends	
the	sentence	 to	 the	Hapax	back	end	and	uses	 the	re-
sponse	 to	build	a	 form	for	accepting	or	changing	 the	
annotation.	The	most	likely	taggings	for	the	sentence	
are	shown,	each	with	an	Accept	button.	A	“Tag	word-
by-word”	button	 is	also	shown;	 in	word-by-word	an-
notation,	 each	 segment	 in	 the	 sentence	 is	 displayed	
with	several	proposed	tags:	first	those	in	the	full-sen-
tence	taggings,	then	other	common	tags	for	the	word	
type,	 and	 a	worst-case	 “Tag	manually”	 button	which	
exposes	the	POS	menus.	The	user	can	tag	one	or	more	
words	and	activate	a	“Re-annotate”	button,	which	re-
submits	the	sentence	to	the	back	end.	This	allows	the	
user	 to	 explore	 the	 effect	 of	 one	 POS	 assignment	 on	
POS	probabilities	for	nearby	words.	

Within	 the	 ATMO	 project,	 data	must	 also	 be	 seg-
mented	 and	 spelling-regularized;	 those	 topics	 and	
their	 interaction	with	 POS	 tagging	 are	 not	 discussed	
here.	

Further work
	 Hapax	v1	uses	standard	1-	and	2-gram	HMMs	 for	
POS	 tagging	 (Charniak	 et	 al.	 1993).	 Future	 versions	
should	 implement	 Schmid’s	 binary-decision-tree	
method	 (1994,	1995),	which	helps	with	 sparse	data.	
More	challenging	will	be	adapting	the	directed-graph	
model	of	Xuehelaiti	et	al.	(2013)	to	probabilistic	POS	

tagging.	This	two-level	model	would	allow	the	proba-
bility	of	a	given	stem’s	POS	tag	to	depend	not	only	on	
the	 POS	 of	 the	 immediately	 preceding	morpheme(s)	
but	on	the	tag(s)	of	the	preceding	word	stems,	which	
may	 improve	 tagging	 accuracy	 for	 agglutinative	 lan-
guages.	

Bibliography

Booth,	B.M.	(1985),	“Revising	CLAWS,”	ICAME	News	9:	29-
35.		

Brill,	E.	(1992),	“A	simple	rule-based	part	of	speech	tagger,”	
in	Proceedings	of	the	Third	conference	on	applied	natural	
language	 processing,	 Trento	 31	 March	 -	 3	 April	 1992	
([n.p.]:	 Association	 for	 Computational	 Linguistics),	 pp.	
152-155.		

Charniak,	 E.	 (1993),	 Statistical	 language	 learning	 (Cam-
bridge:	MIT	Press).	

Charniak,	 E.,	Hendrickson,	 C.,	 Jacobson,	N.,	 and	Parko-
witz,	M.	(1993),	“Equations	for	Part-of-Speech	Tagging,”	
in	Proceedings	of	the	11th	National	conference	on	artifi-
cial	intelligence,	Washington	DC	July	11-15,	1993	([n.p.]:	
The	AAAI	Press;	Cambridge:	MIT	Press,	1993),	pp.	784-
789.	 Web.	 http://www.aaai.org/Pa-
pers/AAAI/1993AAAI93-117.pdf(Accessed:	 1	 October	
2016)	

Church,	K.	W.	(1988),	“A	Stochastic	Parts	Program	and	Noun	
Phrase	 Parser	 for	 Unrestricted	 Text,”	 in	Proceedings	 of	
the	Second	Conference	on	Applied	Natural	Language	Pro-
cessing,	 Austin	9-12	February	1988	 ([n.p.]:	Association	
for	 Computational	 Linguistics),	 pp.	 136-143.	 Web.	
http://www.aclweb.org/anthology/A/A88/A88-
1019.pdf.	(Accessed:	1	October	2016)	

DeRose,	S.J.	(1988),	“Grammatical	category	disambiguation	
by	 statistical	 optimization,”	 Computational	 Linguistics	
14.1,	pp.	31-	39.		

Leech,	 G.	 Garside,	 R.,	 and	 Bryant,	M.	 (1994),	 “CLAWS4:	
The	tagging	of	the	British	National	Corpus,”	In	Proceed-
ings	 of	 the	 15th	 International	 conference	 on	 computa-
tional	linguistics	(COLING	94)	Kyoto,	Japan,	pp.	622-628.	
Web.		http://ucrel.lancs.ac.uk/papers/coling.html	.	(Ac-
cessed:	1	October	2016)	

Leech,	 G.,	 Garside,	 R.,	 and	 Atwell,	 E.	 (1983),	 “The	 auto-
matic	 grammatical	 tagging	 of	 the	 LOB	 corpus,”	 ICAME	
News	7:	13-33.		

	

Rabiner,	L.	R.	(1989)	“A	Tutorial	on	Hidden	Markov	Mod-
els	and	Selected	Applications	in	Speech	Recogni-
tion.”Markov	Models	and	Selected	Applications	in	
Speech	Recognition.”	Proceedings	of	the	IEEE	77.2:	257-
286.	

Schmid,	 H.	 (1995),	 “Improvements	 in	 part-of-speech	 tag-
ging	with	 an	application	 to	German,"	 In	Proceedings	 of	
the	ACL	SIGDAT-Workshop.	Dublin,	Ireland.	Revised	ver-
sion	 available	 on	 the	 Web	 at	 	 http://www.cis.uni-
muenchen.de/~schmid/tools/TreeTagger/data/tree-
tagger2.pdf	(Accessed:	1	October	2016.)		

Schmid,	H.	(1994),	“Probabilistic	part-of-speech	tagging	us-
ing	decision	trees,"	In	Proceedings	of	International	Con-
ference	 on	 New	Methods	 in	 Language	 Processing,	 Man-
chester,	 UK.	 Web.	 http://www.cis.uni-
muenchen.de/~schmid/tools/TreeTagger/data/tree-
tagger1.pdf	.	(Accessed:	1	October	2016)	

Toutanova,	 K.,	 Klein,	 D.,	 Christopher	Manning,,	 C.	 and	
Singer,	Y.	(2003),	“Feature-Rich	Part-of-Speech	Tagging	
with	 a	 Cyclic	 Dependency	 Network,"	 In	Proceedings	 of	
HLT-NAACL	2003,	pp.	252-259.		

Xuehelaiti,	M.,	Liu,	K.,	Jiang,	W.,	and	Yibulayin,	T..	(2013).	
“Graphic	Language	Model	 for	Agglutinative	Languages:	
Uyghur	as	Study	Case."	Chinese	computational	linguistics	
and	natural	 language	processing	based	on	naturally	an-
notated	 big	 data:	 12th	 China	 National	 Conference,	 CCL	
2013	 and	 First	 International	 Symposium,	 NLP-NABD	
2013,	Suzhou,	China,	October	10-12,	2013,	Proceedings,	
ed.	Maosong	Sun.	LNAI	8202.	Berlin:	Springer,	pp.	268-
279.	

	
	

