
Plant Pathology

Occurrence of Fusarium species in maize kernels grown in Northwestern Spain

O. Aguín1, A. Cao2, C. Pintos1, R. Santiago2*, P. Mansilla1, A. Butrón2

1 Estación Fitopatolóxica do Areeiro, Deputación de Pontevedra, Subida a la Robleda 

s/n, 36153, Pontevedra, Spain

2 Misión Biológica de Galicia (CSIC), Apartado 28, 36080, Pontevedra, Spain

* Corresponding author: Tel. +34 986 854800; Fax +34 986 841362; E-mail: 
rsantiago@mbg.csic.es 

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22



Abstract 

Efforts are required to understand the epidemiology of the Fusarium disease by 

focusing more precisely on the relationship between environmental variables and the 

disease presence. The objectives of the present study were to monitor the occurrence of 

Fusarium species in maize kernels in Northwestern Spain in order to determine the 

potential risk of mycotoxin contamination, and to identify environmental traits affecting

the composition of the Fusarium species identified. 

The environmental mean of F. verticillioides presence ranged from 33 to 99 %, 

supporting the idea that the fumonisin contamination is the main maize-based feed and 

food safety concern in this area, although emerging mycotoxins such as moniliformin, 

fusaproliferin and beauvericin should be also taken into account. Under the particular 

environmental conditions of this region we must point out temperature and humidity in 

relation to the Fusarium spp. occurrence. We determine that warmer temperatures at 

later stages of kernel development and during kernel drying increase the frequency of F.

verticillioides in maize kernels; while the presence of F. subglutinans is impacted by 

higher relative humidity at the silking stage and cooler temperatures during the kernel 

drying period. The management of sowing and harvest dates can be effective in order to 

modulate the fungal presence and growth.
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Molds belonging to the genus Fusarium are widely found infecting maize kernels in 

temperate regions. The occurrence of Fusarium species is a food and feed safety 

problem because most of them produce mycotoxins (Logrieco et al., 2003,). Symptoms 

of mycotoxicosis depend on the type of mycotoxin, concentration, length of exposure 

and characteristic of the exposed individual (e.g. age and health), but mycotoxins could 

especially cause injuries in liver, kidneys, and immune, endocrine and/or nervous 

systems (Bennett & Klich, 2003). They can be mutagenic and carcinogenic; potential 

carcinogenic risk for some mycotoxins has been rated by the International Agency for 

Research on Cancer (IARC, 1993). Therefore, legislation to limit the amount of some 

mycotoxins has been implemented in many parts of the world (FAO, 2004) in order to 

minimize human health risk. 

Climatic conditions determine the predominance of a particular species or group 

of species which cause different types of maize ear rot. In cooler temperate regions, 

Gibberella ear rot is predominant and is mainly caused by F. graminearum and related 

species such as F. culmorum, F. cerealis and F. avenaceum (Munkvold, 2003, Logrieco 

et al., 2002, Bottalico, 1998). In warmer regions, Fusarium ear rot is prevalent and is the

result of kernel infection by F. verticillioides and other species of the Gibberella 

fujikuroi complex, such as F. proliferatum and F. subglutinans. All these species are 

mycotoxigenic and, depending on the particular species, can produce trichothecenes, 

fumonisins and/or zearalenone, and other mycotoxin comparatively less important such 

as moniliformin, beauvericin, fusaproliferin, fusaric acid or enniatins (Logrieco et al., 

2002, Jestoi, 2008). In Spain, maize kernel seemed to be predominantly infected by F. 

verticillioides and in a lesser extent by F. proliferatum, both known as fumonisin 

producers (Butron et al., 2006, Jurado et al., 2006, Arino et al., 2007). Significant 

differences among years and locations for Fusarium spp. incidence in maize kernels has
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been reported in many geographical areas (Bottalico, 1998, Goertz et al., 2010, 

Boutigny et al., 2012, Covarelli et al., 2011). Bakan et al. (2002), analyzing kernel 

infection by Fusarium ssp., found that F. proliferatum was more abundant in 

northeastern Spain. Our experimental plots are located in northwestern Spain, where 

climatic characteristics during kernel filling are very different from northeastern Spain 

conditions, and those climatic differences could be responsible for differences in the 

Fusarium species identified in the area (Marin et al. 1996; Butron et al., 2006). 

Attending to the fumonisin contamination, Sanchis et al. (1995) had already pointed out 

the potential fumonisin contamination in many Spanish corn-based products containing 

both Fusarium species, while a previous papers from our group noted fumonisin 

contamination of maize flours above the levels established in the European Regulation 

(Butrón et al., 2006).

Although yearly and geographical variation in the diversity of Fusarium in 

maize kernels has been noted, we have no information attending the environmental 

traits affecting biodiversity other than the wetter regions seemed to favor greater 

Fusarium contamination than the drier regions (Cantalejo et al. 1998). Therefore, the 

objectives of the present study were: (i) to monitor the occurrence of Fusarium species 

in maize kernels in Northwestern Spain in order to determine the potential risk of 

contamination by several mycotoxins; and (ii) to identify environmental traits 

associated with the variability in the Fusarium species composition in the area.
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Materials and methods

Field experiments. Six maize hybrids derived from crosses among inbred lines EP39,

CM151, EP42 and EP47 were used to monitor the prevalence of Fusarium spp. on 

maize kernels under natural infection. As corn borer attack has been associated to 

increased kernel infection by fungus (Smith & White, 1988), two inbred lines (EP39 

and CM151) were selected as resistant to the Mediterranean corn borer (Sesamia 

nonagrioides Lef.) attack and the other two (EP42 and EP47) as susceptible ( Santiago 

et al., 2003). Hybrids were evaluated at early (end of April) and late (middle of May) 

sowings in 2007 and 2008 in three locations in Northwestern Spain and were harvested 

in two dates. Locations were Pontevedra (42º 24’ N, 8º 38’ W, 50 m above sea level) 

and Barrantes (42º 30’ N, 8º 46’ W, 50 above sea level), both placed close to the coast, 

and Valongo (42º 26’ N, 8º 27’ W, 500 above sea level), situated in the inlands. 

Therefore, hybrids were evaluated in a total of 24 environments (combination of 2 

years-3 locations-2 sowing dates-2 harvest dates). A split-plot design with three 

replications was used for each trial (year-location-sowing combination); hybrids were 

assigned to main plots and harvest times to sub-plots. Main plots consisted in two rows 

with 13 two-kernel hills per row, rows being 0.80 m apart from each other and hills 0.21

m apart. After thinning the final density was around 60 000 plants ha-1. Within each 

plot, ears from one row (sub-plot) were harvested at the beginning of October (early 

harvest) and from the other row one month later (late harvest). Harvested ears were 

shelled and kernels were dried at 35 ºC for one week and maintained at 4 ºC and 50 % 

humidity until analyses were performed. 

Environmental variables. A meteorological station was installed at each location for 

recording climatic data every 12 minutes. Next climatic variables were computed based 

on recorded climatic data: average of daily mean temperature (ºC), mean of daily 
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maximum temperatures (ºC), mean of daily minimum temperatures (ºC), mean of daily 

relative humidity (%), rainfall (mm), number of days with minimum temperature ≤ 15 

ºC, number of days with maximum temperature ≥ 30 ºC, number of days with mean 

temperature ≥ 10 °C  and < 15 °C, ≥ 15 and < 20 °C, ≥ 20 and < 25 °C, ≥ 25 and < 30 

°C, and number of days with rainfall  ≥ 2 mm. These climatic variables were selected 

according to previous reports on the influence of climatic factors on mold development 

in wheat and maize (Marin et al., 2004, de la Campa et al., 2005, Maiorano et al., 2009, 

Schaafsma & Hooker, 2007). These parameters were calculated for the next periods: the

entire maize growing period, from sowing to harvest; the maize vegetative period, from 

sowing to silking; the maize reproductive period, from silking to harvest; the flowering 

period, from 15 days before silking to 15 days after silking; critical period 1 (C1), 

between 10 and 4 days before silking; critical period 2 (C2), between 4 days before 

silking and 2 days after silking, critical period 3 (C3), between 2 and 8 days after 

silking; critical period 4 (C4), between 8 and 14 days after silking; milk-dough kernel 

stage, between 16 and 30 days after silking; dent kernel stage, between 31 and 45 days 

after silking; kernel developing period, from silking to physiological maturity; kernel 

drying period, from physiological maturity to harvest.

Other environmental variables included and recorded at harvest were: maize 

husk coverage, evaluated by a visual scale from 0 (loose husks with visible cob) to 5 

(tight husks) (Wiseman & Isenhour, 1992); kernel damage by corn borers on a visual 

rating from 1 (100% of ear totally damaged by borers) to 9 (no damage); tunnel length, 

maize stem damage by borers expressed in cm; kernel humidity (%); kernel damage by 

Sitotroga cerealella; percentage of kernels with damaged pericarp; and thickness of 

pericarp expressed in µm.
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Identification of Fusarium species.  Fifty kernels from each sub-plot were used for 

estimating the presence of each Fusarium species in maize kernels in 2007 and 2008. 

Maize kernels were grown on KOMADA medium which is selective for Fusarium spp. 

(Komada, 1975). Monosporic isolates were obtained and were grown on PDA (Potato 

Dextrose Agar), SNA (Spezieller Nährstoffarmer Agar) and CLA (CarnationLeaf Agar) 

media for determining specific characteristics of each isolate (Leslie & Summerell, 

2006). In addition, a molecular identification of the species was also performed: 

Fungal DNA was directly extracted from mycelia of monosporic cultures grown 

on plates, using the commercial kit E.Z.N.A.® Fungal DNA Mini (Omega bio-tek). All 

monosporic isolates were tested by PCR. PCR reactions were carried out with primers 

ITS1 and ITS4 (White et al., 1990) to amplify the ITS region of rDNA, and with 

primers EF1 and EF2 (O'Donnell et al., 2000) for the elongation factor 1 gene (EF-

. ITS-PCR reactions were carried out in microcentrifuge tubes each containing one 

PuReTaqM Ready-To-Go™ PCR Bead (GE Healthcare), 1 µL genomic DNA, 0.3 µL of 

each primer (10 µM), and sterile water up to a final volume of 25 µL.  Elongation factor

1 gene PCR-reaction contained 1 L of genomic DNA, 25 pmol of each primer, 200 

L of dNTPs, 1U of Green Taq DNA polymerase (GenScript, USA),  1X standard PCR 

buffer  and sterile water up to a final volume of 25 L.

Both DNA amplification reactions were carried out in a Thermocycler  Biometra

T3000 (Whatman) under the following conditions: one cycle at 94°C for 5 min; 35 

cycles at 94°C for 30 s, 55ºC  (for ITS1/ITS4) or 53ºC (for EF1/EF2) for 30 s, 72°C for 

1 min; and a elongation final at 72°C for 10 min. Products from PCR reactions were 

electrophoresed on a 2% agarose gel, then stained with ethidium bromide, and 

visualized with a UV transilluminator. The size of PCR products was estimated by 

comparison with a 100 bp standard ladder (Marker XIV, Roche Diagnostics). Amplified
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products were sequenced with the same primers used for PCR reactions in an ABIPrism

3130 Genetic Analyzer (Applied Biosystems). Sequences obtained were analyzed with 

the BLAST alignment program of the NCBI and comparing with those deposited in 

GenBank [National Center for Biotechnology Information (NCIB), 2012]. The 

molecular identification of a species was accepted when the percentage of sequence 

identity was above 98%.  

Statistical analyses. The averaged percentage of presence of each Fusarium species

at each of the 24 environments (combination of 2 years-3 locations-2 sowing dates-2

harvest dates) was computed as the mean of individual percentages in 18 sub-plots (six

different  maize  hybrids  replicated  three  times).  Combined  analyses  of  variance

(ANOVA) for  Fusarium spp. occurrence  were computed with the GLM procedure of

SAS following a split-plot design (SAS 2007). All sources of variation were considered

as  fixed  factors.  Comparisons  of  means  among  years,  locations,  sowing  dates  and

harvest dates were made by  Fisher’s protected least  significant  difference (LSD).  In

addition, Pearson correlations analyses between Fusarium spp. were calculated.

In order to examine the relationships between the environmental variables and 

the Fusarium species in the kernels a redundancy analyses (RDA) was performed using 

CANOCO (Ter Braak & Smilauer, 1997). Previously, a detrented correspondence 

analysis (DCA) had been performed to determine if data could fit a linear ordination 

model as RDA or not, following recommendations by Lepš and Šmilauer (2003). 

Analyses were applied to the averaged percentage of presence of each Fusarium species

in maize kernels at each environment. RDA computations were performed on centered 

and standardized data, and run with a forward selection of the environmental variables 

procedure and the associated Monte Carlo permutation test (499 unrestricted 
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permutations) to exclude environmental variables that did not contribute significantly 

(p>0.05) to the variation of the Fusarium species. 
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Results 

Nine different Fusarium species were isolated from maize kernel samples (Table 1). 

Five species were found in all locations: F. verticillioides, complex F. subglutinans 

sensu lato, F. proliferatum, F. poae and F. oxysporum. The prevalent species in the 24 

environments was F. verticillioides; the environmental average of F. verticillioides 

presence ranged from 33 to 99 %. The second most abundant was the complex, F. 

subglutinans sensu lato, which was present in all environments at percentages varying 

from 1 to 27 %. The species identified and also included in this complex were F. 

begoniae and F. sterilihyphosum. The remaining Fusarium species (F. proliferatum, F. 

poae, F. oxysporum, F. cerealis, F. equiseti, F. solani, and F. culmorum) were present 

sporadically across environments and never surpassed a kernel presence of 4 % (data 

not shown).

There were no differences between years, locations, sowing dates or harvest 

dates for the diverse Fusarium species identified with the exception of F. verticillioides.

F. verticillioides presence was higher in coastal locations (Pontevedra and Barrantes) 

compared to the inland location (Valongo). In addition, early sowing (86.19 % early 

sowing vs. 74.55 % late sowing) and late harvest (73.52 % early harvests vs. 80.94 % 

late harvests) showed the highest occurrence. No significant differences between years 

were observed for F. verticillioides presence.

There was simple positive correlation among abundances for F. oxysporum and 

F. solani (r = 0.67, P ≤ 0.001), F. cerealis and F. poae (r = 0.56, P ≤ 0.01), as well as 

F. equiseti and F.culmorum (r = 0.77, P ≤ 0.001), F. equiseti and F. subglutinans sensu 

lato (r = 0.59, P ≤ 0.01), and F. culmorum and F. subglutinans sensu lato (r = 0.70, P ≤ 

0.001). It is important to note that these correlations are based on very low percentages 

of presence for those species.
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The redundancy analysis was performed using significant non-categorical 

environmental factors as explicative variables. The results of the Monte Carlo 

permutation tests revealed the statistical significance (p ≤ 0.05) of the effects of three 

environmental variables on Fusarium species composition: number of days with mean 

temperature ≥ 15 and < 20 °C during drying kernel period, averaged relative humidity at

C3 (between 2 and 8 days after silking), and number of days with minimum temperature

≤ 15 ºC at dent kernel stage (Table 2). The first two axes of the redundancy analysis 

using these three environmental variables as explicative variables explained the 71.2 % 

of the variability for Fusarium species ocurrence (Figure 1), the 75.0 % of the 

variability for F. verticillioides and 49.0 % of the variability for F. subglutinans sensu 

lato presence (Table 3). Days with mean temperature ≥ 15 and < 20 °C at drying kernel 

period and days with minimum temperature ≤ 15 ºC at dent kernel stage had an 

important contribution to the gradient for the first axis which explained the 75 % of 

variability for F. verticillioides (Table 3).  The averaged relative humidity during C3 

period (between 2 and 8 days after silking) and days with mean temperature ≥ 15 and < 

20 °C  at drying kernel period had an important effect on the second axis. Both the axes 

explained 49 % of variability for F. subglutinans sensu lato and between 6 and 21% of 

variability for F. poae, F. proliferatum, F. oxysporum, F. cerealis, F. equiseti, F. solani 

and F. colmorum (Table 3). Increased days with mean temperature 15 ºC ≤ and < 20 ºC 

at drying kernel period and fewer days with minimum temperature ≤ 15 ºC at dent 

kernel stage favored the occurrence of F. verticillioides in maize kernels (Figure 1); 

while the presence of F. subglutinans augmented with increased relative humidity at C3 

period and fewer days with mean temperature 15 ºC ≤  and< 20 ºC during kernel drying 

(Figure 1).
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Discussion

All species isolated from maize kernel samples were previously found in maize 

grown in Europe (Dorn et al., 2009, Goertz et al., 2010, Logrieco et al., 2002). These 

Fusarium species are, in general, mycotoxigenic, and produce fumonisins, 

trichothecenes, zearalenone, moniliformin, beauvericin, enniatins and fusaric acid 

(Leslie & Summerell, 2006, Logrieco et al., 2003, Jestoi, 2008). The results confirmed 

that F. verticillioides is the prevalent species in Northwestern Spain (Munoz et al., 

1990, Butron et al., 2006). 

F. verticillioides is the most frequently isolated species from maize pink ear rot 

which is commonly observed from southern to central European areas; while the 

predominant species causing maize red ear rot is F. graminearum which is increasingly 

distributed from central to northern European regions (Logrieco et al., 2002). In warm 

southern European areas, F. verticillioides is associated with F. proliferatum, while 

displacement toward Central Europe increases the presence of F. subglutinans in 

detriment of F. proliferatum. In this study, F. proliferatum was scarce and F. 

graminearum was not present, while F. verticillioides was highly predominant and F. 

subglutinans sensu lato was the most abundant group in agreement with the trend 

observed in surveys performed in the last ten years in maize growing areas around the 

world where F. verticillioides associated with F. subglutinans are becoming the 

dominant species (Bottalico, 1998). Non-detected presence of F. graminearum could be 

consequence of early establishment of F. subglutinans that may act as a biological 

control mechanism against invasion by F. graminearum (Cooney et al., 2001) and/or the

possible competence between F. verticilliodes and F. graminearum (Marin et al., 2004, 

Reid et al., 1999). Environmental conditions at Northwestern Spain, mild temperatures 

along the year and moderate risk of ear damage by corn borers, can be related to the 
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species distribution. Corn borer damage is associated with increased infection by F. 

subglutinans and F. verticillioides in detriment of infection by F. graminearum (Lew et 

al., 1991). In addition, more extreme temperatures would favor F. graminearum 

(colder) or F. proliferatum (warmer) presence (Logrieco et al., 2002).

F. verticillioides is a fumonisin producer , and F. subglutinans produces a range 

of mycotoxins including moniliformin, fusaproliferin, beauvericin and fumonisin 

(Jestoi, 2008).The fumonisin producing capacity of the F.verticillioides isolates in the 

area has been noted (Cao, 2013).  In addition, previous studies show the risk of 

fumonisin occurrence in maize kernels in Northwestern Spain (Butrón et al. 2006; Cao 

et al, 2013). The higher presence of F. verticillioides showed up by the results, obtained 

in a wide range of environments in natural conditions, support the idea that the 

fumonisin contamination is the main maize-based feed and food safety concern in this 

area, although emerging mycotoxins such as moniliformin, fusaproliferin and 

beauvericin should be also taken into account.

The influence of the geographical location on the variability of F. verticillioides 

is important as long as climatic conditions vary across locations (Boutigny et al., 2012). 

F. verticillioides presence was higher in coastal locations compared to the inland 

location as expected because the coastal climate is more temperate. Variation due to 

years was not significant; in southern European areas minor differences among years for

Fusarium variability have been reported (Covarelli et al., 2011, Dorn et al., 2009), while

important shift from one year to another for Fusarium spp. composition have been 

found in northern European regions (Goertz et al., 2010, Dorn et al., 2009). About the 

sowing and harvest dates, we corroborate the role of agronomic practices in order to 

regulate the occurrence of F. verticillioides (Blandino et al, 2009), although slight 

effects in the Fusarium presence has been noted in this particular study, probably with 
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no effect in the subsequent fumonisin contamination. The positive correlation among 

abundances for F. subglutinans sensu lato, F. equiseti and F. culmorum, as well as 

between F. cerealis and F. poae, corroborate that these species are adapted to similar 

environmental conditions, those encountered in central and northern European areas 

(Logrieco et al., 2002).

Efforts are required to understand the epidemiology of the Fusarium disease by 

focusing more precisely on the relationship between environmental variables and the 

disease-cycle. Temperature must be considered as an environmental factor that 

influences spore production under field conditions, in addition to humidity (Indira and 

Muthusubramanian 2004). In the same way, the mycotoxin contamination is affected by

climatic factors such as temperature and relative humidity available for pre and / or 

post-harvest (Paterson & Lima, 2010). Attending to F. verticillioides, the two main 

abiotic factors associated with the its life cycle are temperature and water activity 

(Marin et al., 2004; Samapundo et al., 2005), they were considered the main factors in 

modeling fungal development and fumonisin synthesis (Maiorano et al. 2009, De la 

Campa et al., 2005). Likewise, under the particular environmental conditions of 

Northwestern Spain we pointed out temperature and humidity in relation to the 

Fusarium spp. occurrence. We conclude that warmer temperatures at later stages of 

kernel development and kernel drying period favored the presence of F. verticillioides 

in maize kernels; while the presence of F. subglutinans sensu lato augmented with 

increased relative humidity at the stage of exposed fresh silks and cooler temperatures at

the kernel drying period. These results agree with the idea that F. subglutinans is 

favored by cooler temperature and more humid conditions (Logrieco et al., 2002, Goertz

et al., 2010, , Boutigny et al., 2012) compared to F. proliferatum and F. verticillioides.
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Table 1. Averaged percentages of kernels with presence of Fusarium spp. isolates in 

2007 and 2008 at three locations in Northwestern Spain. The numbers of positive 

samples are within parenthesis.

Fusarium spp. 2007 2008

F. verticillioides 75.75 (196) 78.69 (197)

F. subglutinans sensu lato 4.64 (45) 10.34 (85)

F. poae 1.01 (20) 0.07 (2)

F. proliferatum 0.78 (4) 0.05 (1)

F. oxysporum 0.07 (2) 0.96 (11)

F. cerealis 0.15 (1) 0.05 (2)

F. equiseti 0.00 0.17 (4)

F. solani 0.00 0.05 (2)

F. culmorum 0.00 0.10 (2)

Total % of positive kernels 82.40 90.49

Total % of negative kernels 17.60 9.51
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Table  2. Statistics  of  the  environmental  variables  retained  after  the  Monte  Carlo

permutation test and included in the RDA for  Fusarium species composition in maize

kernels cultivated in 24 environments (two years, three locations, two sowing dates and

two harvest dates) in Northwestern Spain.

Variables1 F p Cumulative variance

Tm15-20S 15,87 0,002 0,42

HumC3 12,14 0,002 0,63

Tmin15D 5,65 0,016 0,71
1Tm15-25S: number of days with mean temperature ≥ 15 ºC and < 20 ºC at the kernel

drying period; HumC3: relative humidity at the critical period C3 (between 2 and 8 days

after maize silking); Tmin15D: number of days with minimum temperature ≤ 15 ºC at

the maize kernel dent stage.
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Table 3. Accumulated variability for each Fusarium species abundance at 24 

environments (two years, three locations, two sowing dates and two harvest dates) in 

Northwestern Spain explained by three selected significant variables (days with mean 

temperature ≥ 15 ºC and < 20 ºC at the kernel drying period, relative humidity at the 

critical period C3 (between 2 and 8 days after maize silking), and days with minimum 

temperature ≤ 15 ºC at the maize kernel dent stage). 

Variability explained Axis 1 Axis 2 Axis 3 Axis 4

F. verticillioides 0.75 0.75 0.75 0.99

F. subglutinans sensu lato 0.01 0.49 0.49 0.65

F. poae 0.01 0.15 0.32 0.32

F. proliferatum 0.06 0.06 0.06 0.09

F. oxysporum 0.05 0.14 0.16 0.16

F. cerealis 0.10 0.17 0.17 0.19

F. equiseti 0.01 0.10 0.12 0.28

F. solani 0.02 0.18 0.19 0.19

F. culmorum 0.08 0.21 0.21 0.31

23

446

447

448

449

450

451



Figure 1. Redundancy analysis (RDA) of variability for Fusarium species1 presence 

restricted to the variability explained by three environmental variables2.

1Each Fusarium species was designated using the initial of the genera (F) and the initial 

letters of the Latin specific name: Fver stands for F. verticillioides, Fsub_sl for F. 

subglutinans sensu lato, Fpro for F. proliferatum, Fcul for F. culmorum, Fequ for F. 

equiseti, Fpoa for F. poae, Foxy for F. oxysporum, Fsol for F. solani, and Fcer for F. 

cerealis.

2Tm15-20S = Mean temperature ≥ 15 ºC and < 20 ºC at the kernel drying period; 

HumC3 = relative humidity at the critical period 3 (between 2 and 8 days after maize 

silking); and Tmin15D = number of days with minimum temperature ≤ 15 ºC at the 

maize kernel dent stage.
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