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Abstract— Complex signal analysis allows separation of instan-
taneous envelope and phase of seismic waveforms. Seismic
attributes have long routinely been used in geological interpre-
tation and signal processing of seismic data as robust tools to
highlight relevant characteristics of seismic waveforms. In the
context of adjoint waveform inversion (AWI), it is crucial
choosing an efficient parameter to describe the seismic data.
The most straightforward option is using whole waveforms but
the mixing of amplitude and phase parameters increases the
nonlinearity inherent to the methodology. Several studies support
the good functioning of the instantaneous phase (IP), a more
linear parameter to measure the misfit between synthetic and
recorded data. The IP is calculated using the inverse of the
tangent function, where its principal value can be defined either
wrapped in between different limits or also unwrapped. The
wrapped phase presents phase jumps that reflect as noise in the
inversion results. The conditioning of these discontinuities solves
the problem partially and the continuous unwrapped IP is not a
good descriptor of the waveform. For this reason, it is worth to
explore beyond the traditional description of the IP parameter.
Two alternative functions have been studied: 1) a revision of the
triangular IP and 2) the first implementation of the normalized
signal. The main objective of this paper is therefore, to review
the fundamentals of the IP attribute in order to design robust
IP-based objective functions which allow mitigating the inherent
nonlinearity in the AWI method.

Index Terms— Acoustic propagation, backpropagation algo-
rithms, cost function, finite difference methods, gradient methods,
inverse problems, nonlinear equations, phase estimation.

I. INTRODUCTION

OMPLEX signal analysis was introduced in the context

of geological interpretation and geophysical exploration
in the 1970s [23], [24]. Currently, it is a well-established
seismic analytical method widely used both in academy and
industry [1]. In complex signal analysis, the seismic attributes
are called instantaneous because they produce local mea-
sures of the waveform at any given time, in contrast to the
Fourier analysis that produces global measures in frequency
domain. In complex signal analysis, the seismic trace is
represented as the real part of the complex analytical signal,
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fa(t) = E(@) - ¢/’ where the imaginary part is called
direct quadrature (DQ) and is obtained as the signal phase
shifted by (7 /2) radians. The main instantaneous attributes are
the instantaneous envelope (IE), E(¢), and the instantaneous
phase (IP), 6(¢), the two independent variables from which
other attributes can be derived. To separate the IE and the IP
information from the seismic waveform is, in fact, the main
purpose of complex signal analysis. Instantaneous attributes
describe well the waveform shape and are thus appropriate
visual tools for seismic interpretation. On the one hand, the IE
represents the instantaneous energy of the waveform, which is
proportional to the reflection coefficient, and therefore capable
of highlighting relevant seismic features, like bright spots,
unconformities, major lithology boundaries, etc. Complemen-
tarily, IP helps to distinguish between the continuous and the
discontinuous events, showing bedding accurately, represent-
ing all events equally as it has no amplitude information.
We apply the characteristics of the seismic complex
trace analysis in the framework of adjoint waveform inver-
sion (AWI). Proposed for over three decades by Lailly [16]
and Tarantola [25], AWI is a data-fitting procedure that
aims at retrieving detailed rock properties from the subsur-
face by comparing the recorded and synthetic seismograms.
As opposed to travel time tomography techniques which only
use the information from travel time differences from a limited
set of seismic phases from each seismogram, AWI pursuits
the minimization of objective functions (OFs) that compare
waveform attributes between the recorded and the simulated
seismograms, whose gradients are computed using the adjoint
method. This makes the AWI a powerful tool to reconstruct
models of physical properties of considerably higher reso-
Iution than travel time tomography methods, potentially of
an increased resolution of up to one order of magnitude.
It is suitable for all types of acquisition geometries and it
is appropriate for marine and land data. It has so far been
applied to a broad range of frequencies; long wavelengths
(up to 0.1 Hz) for regional studies with global earthquake
records [3], [9], for active seismic source experiments for
subsurface data at medium scale (10 Hz), and for the water
column at small scale (50 Hz) [8] and even at ultrahigh
frequency marine seismic reflection data (1 kHz) [21]. Also,
it allows multiparameter inversion; e.g., p and s wave-
velocities, anisotropy, density, and attenuation. Nevertheless,
AWI is not exempt from problems. In its more common
version, where the OF to be minimized is the L2-norm between
the recorded and the simulated seismograms, its success
depends critically on having a seismogram that is not cycle-
skipped at the lowest inverted frequency, usually implying a
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TABLE I
SUMMARY OF DRAWBACKS IN AWI: PROBLEMS (I), CAUSES (IT), AND POSSIBLE SOLUTIONS (IIT)

1. Problem II. Causes

II1. Possible solutions

e Highly non-linear method

Undetermined system
(many local minima) e Cycle-skipping between

recorded and simulated data

- Data processing (filtering, windowing ...)
- Multi-scaling technique
- Robust objective function/adjoint source
- Build accurate initial models using travel-time information:
- Using refraction-type, long-offset acquisition
geometry (e.g. long streamer, ocean bottom nodes)
- Redatuming of near-vertical reflection data
to the seafloor

e Large amount of data

High computational cost
and time consuming

e Complex physical propagation

e Optimization problem

with numerous intervening parameters

- High performance computing

- Multi-shooting

- Data pre-conditioning and decimation

- Identifying the most sensitive parameters

to the seismic attributes of interest

(e.g. acoustic vs elastic, isotropic vs anisotropic)

- In gradient-based method, gradient pre-conditioning

to reduce number of iterations

- Higher-order (e.g. Hessian-based) optimization techniques

Presence of noise
in real data

e Noise screening important freq.
spectrum in the seismogram

- Data pre-conditioning and data redundancy

very good starting model [10]. An alternative strategy is to use
a robust OF that is able to mitigate the strong nonlinearity of
the method [3], [14], [17]. Table I gives a summary of the main
issues of using AWI with the related causes and solutions.
For a general overview of AWI and detailed description of its
drawbacks, see [27].

A number of works show the instantaneous attributes
as good candidates to perform as OFs in AWI [3], [6],
[9], [14]. The IP does not contain amplitude information, and
therefore, it presents a more linear behavior than the original
signal, in which the amplitude and the phase are mixed.
The IP is applied to AWI in [3] and [9] with earthquake
records at large regional scale. The synthetic studies presented
in [6] and [14] for active seismic data at local scale show that
the instantaneous attributes are less sensitive to cycle skipping
related issues than the L2-norm. Particularly, in [14], a modi-
fied version of the IP, which here we refer to as triangular IP,
is shown to be more robust than the L2-norm, the IE, and the
cross correlation travel time OFs. The principal value of the
IP, which is obtained as the inverse of the tangent function,
is typically calculated wrapped in AWI [3], [9]. When the
principal value is wrapped, natural phase jumps emerge
between the limits, producing spikes that, as we will show,
pollute the inversion results. To solve this problem, one option
is the filtering and/or the smoothing of the phase jumps, as it
is done in the works mentioned earlier with global earthquake
data [3], [9], where the IP is wrapped between (—x, 7).
However, the smoothing of the IP consequently modifies the
original parameter. Another way to avoid the undesirable
phase jumps is to calculate the IP unwrapped, as it responds
as a continuous function. There are no works in the literature
where the unwrapped IP is applied in AWI as an OF. As we
show in this paper, despite the absence of phase jumps due

to its continuity, its linear character rather than periodic does
not describe the waveform with sufficient detail.

In this paper, we explore the concept of the IP by analyzing
the limitations and the benefits of the different domains to
define its principal value. In particular, we analyze the IP
wrapped between (—n,7) and (—(x/2),(x/2)) and also
unwrapped. In Section II, we present a general overview
of the AWI applied in this paper and the technical details
and parameters used in our synthetic tests. Next, we show
how to extract the IE and the IP from the waveform using
an empirical adaptive method called the Huang transform
(Hu-T) [12] and how to assess the IP and the corresponding
adjoint source (AS) in the context of AWI. As a forward
step, we propose two more IP-based attributes with the main
concern of producing continuous and periodic functions which
do not need any further conditioning; the triangular IP, firstly
presented in [14], and the phase carrier function (sine or
cosine) that we refer as “normalized signal” OF, presented
in this work for the first time. The ASs for the different IP-
based OFs described in this paper differ from each other.
The common feature among the different ASs functions is
that they are composed in a similar way by two terms.
However, although the first term can be calculated directly,
the calculation of the second term increases the numerical
complexity and the computational time. Thereby, a priority
is to explore which of the OFs are robust in a realistic AWI
scenario, favoring the strategies with a more simple numerical
approach and that require less time calculation. The alternative
OFs proposed, namely the triangular IP and the normalized
signal, show high-resolution capacity and a robust behavior in
the presence of cycle skipping, which mainly occurs when
data lack low frequencies and/or a poor initial model is
used. Also, they may be incorporated in hybrid strategies to
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provide appropriate initial models for the conventional L2-
norm approach.

II. ADJOINT WAVEFORM INVERSION

We implemented a time domain 2-D acoustic AWI with a
gradient-based optimization scheme to extract the information
from the active seismic synthetic data. We distinguish the main
blocks.

1) Forward propagation: synthetic data, u®, are generated
by solving the wave equation in an initial model for the
first iteration, and, for the following ones, the updated
model obtained from the previous iteration is used. The
homogeneous, isotropic, and acoustic approximations
are applied to the wave equation, which is solved by
finite differences

Ciziz(r, 1) = Vu(r,t) = f(r,1) 1)

where the velocity ¢ = ((K/p))'/?, K is the bulk
modulus, and the value of the density is assumed to be
constant p = 1000 kg/m>. The factor f is the acoustic
source. The shot is obtained for each receiver position
and time step, u(r(R;),t;). We have tested our inver-
sion code using either K or ¢ as inversion parameter.
Using K, our code achieves a larger number of succesful
iterations till higher frequency values compared to the
case of using ¢ as inversion parameter. The better conver-
gence accomplished when inverting K parameter results
in inversion images with better resolution. We interpret
that the underlying reason is the smaller uncertainty
in the calculation of K gradient, gg, compared to the
calculation of ¢ gradient, g. &~ ¢ - gx. Thus, we invert
K instead of ¢ as in other works in the literature,
elastic [7], [15], or acoustic [25].

2) The misfit between the synthetic and the reference data

1S
r=Y [ M ar @
— Ji

where M is the OF and the summation applies to all the
receivers, R;. In this paper, [P-based parameters are used
to design the OFs, following the least-square criterion.
3) The model parameter K must be updated toward the
correct direction, where the misfit between the ref-
erence and the synthetic data decreases. The adjoint
method [25] is used to compute the gradient of K for
each shot in the model, g = Vg y, by convolution of
the synthetic and adjoint wavefields, for each receiver

gr) =— /(’;Ws(r, Nory(r, T —1t) dt 3)
t

where the adjoint field y is obtained back propagating
the AS in time for each receiver. The AS is calculated
for each receiver as

f(r) = —Vyus M(1). 4)

4) We use the nonlinear conjugate gradient method to
find the step size toward the optimal direction for

the decrease of the misfit. This methodology uses the
gradient obtained in the previous iteration to obtain the
search direction d; [11]

8i(gi — &i-1)
di = —gi+fidi-1; pi==""—3—.
18il
5) Finally, the parameter K is updated as
Kiy1 = K; - %% (6)

and therefore, the p-wave velocity is c¢jy1 =
(Ki+1/p)'/%. The optimal step « is calculated using a
polynomial approximation around the minimum of the
misfit [18]. This process is repeated till the synthetic data
match the reference data. For more technical details on
our code implementation, see [7] and [14].

IIT. INSTANTANEOUS PHASE

The IP of a time signal is computed in complex trace analy-
sis as the phase of the complex analytical function, formed
by the signal, u(¢), and its quadrature, g (1) = DQ[u(¢)]. The
magnitude DQ[u(z)] is often calculated by applying the Hilbert
Transform (Hi-T) [3]. The Hu-T, an adaptive data analysis
proposed by Huang et al. [12], can also be applied. The advan-
tage of using the Hu-T instead of solving the Hi-T lies not
only in avoiding complicated numerical integration, but also
it is proven to work better for non-linear and non-stationary
data [12], [13]. We use the Hu-T to extract the IE from the
signal. It is numerically efficient and can be easily applied to
data of any kind; however, the only demand is that data must
be monocomponent, i.e., data with a well-defined frequency.
In this paper, we fulfill this requirement following a multiscale
approach [5], applying a sufficiently narrow bandpass filter
on the source and the data (0.5 Hz). Also, it is important to
have an accurate interpolation method. The extraction of the
IE from the signal is an iterative process that gives as a result
the IE and also the normalized signal, u,, in which all the
minima and the maxima are —1 and +1, respectively. The IE
is built, at the first iteration, by interpolating all the maxima in
the absolute value of the original signal. Then, the normalized
signal is obtained in a second step as

u' (1)
Ei(t)
However, this calculation rarely succeeds at the first attempt.
Due to fluctuation errors of the interpolation, the extrema of
the normalized signal might exceeds the limits of £1. For this
reason, the correct values for E(¢) and u,(t) are generally
obtained after a few iterations. The final IE uniquely defined
for a particular receiver is obtained as

u(t)
un(t),
Once the IE is extracted, we must obtain the DQ of the

normalized signal, as the normalized signal phase shifted
(7 /2) radians

4u (1) = DOy (1)) = uy (00) = 3 ). ©)

ul (1) = ©

E@) = lun ()] = 1. (®)
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4
TABLE 11
DIFFERENT CRITERIA TO BUILD THE ANALYTICAL SIGNAL
Cases | u,(t) qn(t) fan(t) = E(t) - €19®)
A sin 0(t) | —cos 0(t) | E(t) - (—gn(t) + J - un(t))
B cos O(t) | sin 6(t) | E(t)- (un(t) +J-qn(t))

The normalized seismic signal can be assumed to be a sine or a
cosine type function, two criteria that we refer as case A
and case B, respectively. The corresponding normalized DQ
and the complex analytical signal in each case is displayed
in Table II.

Assuming that for our narrow bandpass of 0.5 Hz, the fre-
quency of the signal is a well-defined constant and positive
value, 0(t) ~ w - t

dsin O(¢
oo 7D © =w-cos 6(t);
ot ot

dcos 0(1) _ —w -sin O(t)

(10)

this leads to the following expression for the DQ (adding the
IE) in both cases, A and B:

E@) oun(0)

9 = === 5

Even if w value is unknown, we still can obtain the DQ
normalizing the expression —E(¢) - (Ou,(t)/dt) so that the
maximum absolute value is 1, as we are using the traces
u(t) and ¢(r) normalized to 1 to calculate the misfit.!
However, to avoid numerical problems we apply the
Pythagorean identity to obtain the absolute value of the
quadrature as E()-(1 — u,(¢)*)'/?. We then use (11) to obtain
the sign of the quadrature. The expression for g (1) = DQ[u(?)]
is then rearranged as

Oouy, (t
4() = sgn (— o )) EO T —u@F. (12)
Finally, the IP is obtained as 6(¢) = atan((sin 6(z)/cos 6(r)),
for cases A and B

_ un(t) _ M
64 (t) = —atan (qn(t)) = —atan (q(t))

Op(t) = atan (Z:Eg) = atan (%)

Thus, the common characteristic between using the Hi-T
and the Hu-T schemes is that the IP is finally extracted as
the phase of the complex analytical signal fu,(t) = E(¢) -
e/90) [see Table II and (13) and (14)]. The difference lies
in the procedure to estimate the DQ of the signal. In the
Hi-T formalism, the DQ is computed directly by calculating
the Hi-T of the original signal [3]. In our formalism, the

(1)

13)

(14)

INote that we are using the word “normalization” for two different types of
normalizations. In the case of the original signal u(¢) and its quadrature ¢(t),
we use the classical normalization where just the maximum in the absolute
value of the signal is 1. In the case of the normalized signal u,(r) and
normalized quadrature g, (¢), it is a special type of normalization, calculated
with the Hu-T iterative method, where each of the extrema reach the —1 or 1
value (depending if it is a minimum or a maximum).
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— u(t)
-- E@®.q,®
- HT[u()]

_1 1 1 1 I 1 1 1 1 1 1 1
1 2 3 4 5 6 7
time [s]
Fig. 1. Example of the extraction of the IE and normalized signal from

monocomponent data. (a) Original waveform u(r) (black solid line), the IE,
E(t) (red dashed line), and the normalized signal, u,(¢) (blue dotted line)
extracted with the Hu-T method. (b) Original waveform (solid black line)
and the reconstructed quadrature g () = DQ[u(#)], using the Hu-T method
DQ[u(#)] = HuT[u(¢)] (red dashed line) versus the DQ calculated with the
Hi-T method DQ[u(7)] = HiT[u(¢)] (blue dotted line).

Hu-T method is used first to extract numerically the IE from
the signal. Then, the DQ is calculated using (12). To show
the validity of our methodology, we display in Fig. 1(a) an
example of a monocomponent signal and the final extracted IE
and normalized signal. Fig. 1(b) shows the equivalent results
obtained for the DQ of the signal reconstructed with the Hu-T
method versus the DQ calculated using the Hi-T (using the
Hi-T algorithm from the MATLAB library).

Despite that in the complex trace analysis only case B is
usually considered, in this paper we also include case A. The
IPs obtained in cases A (13) and B (14) are equivalent but
shifted 7 /2 radians with respect to each other. As we will show
in the results section, we can give a good description of the
waveform within each criterion, depending on the considered
domain for the principal value. In Fig. 2, we plot, for cases A
and B, the principal value of the IP in the different domains
where it can be defined: in Fig. 2(a), for the domain (—x,7),
in Fig. 2(b), for the domain (—(z /2), (x /2)), and in Fig. 2(c),
for the unwrapped case. The IP is unwrapped in this paper
using the IP wrapped between (—z,7) and adding 27 at each
phase jump. Within a specific domain, the IP functions for
case A are plotted in red dashed lines and in case B in red
dotted lines. The IPs wrapped between (—x,7 ) have the same
periodicity as the signal and half of the periodicity in case of
the IPs wrapped between (—(7z/2), (r/2)). The OF of the IP
at each receiver is defined as

AP _ 0°() = 0°())

M, (1) = 15
r (1) 3 2 s)
The corresponding AS must be calculated as
o00° (1
fr(r) = —A0 ® (16)

. ous (1)
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— v
o p (case A)

3 3.5 4
time [s]

Fig. 2. Example of a waveform (black line) and the corresponding
IP-based parameters represented with points (red circles for case A and red
stars for case B). The figure is shown for just 1 s in the x-axis to highlight
the differences. (a) IP wrapped between (—z, ). (b) IP wrapped between
(—(m/2), (7 /2)). (c) Unwrapped IP. (d) Triangular IP. (¢) Normalized signal.

where 06 is equal for cases A and B

—q (1) - ou(t) + u(r) - 99 (1)

E(1)? '
Taking into account the coincident results of the quadrature
q(t) = DQ[u(t)] for monocomponent data using the Hu-T
and Hi-T methods in Fig. 1(a), panel II, we can apply the
expression defined for the Hi-T in [3] to extract the derivative
ou from the second term u(z) - dg(t) in the expression above,
as

004 = 00p = a7

f (@) - 0DQ[u(r)] = —ou(t) - DQLf(1)] (18)

this leads to the final expression of the AS at each receiver

A0 () - q° (1) 0 AOa, (1) - u’(1)
Es (,)2 Es (t)z

In Fig. 7, both terms in the AS, 71 and T», are plotted

in the first and the second columns, respectively, for cases

A (black solid line) and B (red dashed line), respectively.
The T and T, terms show clear differences for the domains

fr(t)a,B = ] (19)

(—=,m) [Fig. 7(a)] and (—(x/2), (x/2)) [Fig. 7(b)], and also
for cases A and B. In the case of the unwrapped IP [Fig. 2(c)]
and due to its linear character, the phase difference for
cases A and B, A4 and Afp, is equivalent and therefore,
the terms 77 and 7> as well [see Fig. 7(c)]. The unwrapping
of the IP is a solution to obtain a continuous function without
phase jumps and without the need of a smoothing filter. As it
is shown in Fig. 7(c), the unwrapped IP produces periodic and
smooth AS terms. However, as we will show in the results of
section VII, the unwrapped IP is not an optimal OF for AWIL.

IV. TRIANGULAR INSTANTANEOUS PHASE

The IP holds the capability to operate well in AWI.
However, the natural phase jumps between the limits of the
wrapped principal values producing numerical instabilities
and this produces noisy inversion results, as we show in
Section VI (Fig. 6). The smoothing of the AS solves this
problem; however, it produces certain loss in the resolution
capacity. It is also possible to design a specific instantaneous
wrapped IP function with no phase jumps that does not
need any conditioning. The technique consists of multiplying
the IP expression by the sign of the term contained in the
denominator of the arctangent (the cosine). By doing this,
we obtain a pseudophase signal that follows a continuous
triangular shape. We use the definition domain of the IP
wrapped between (—(x /2), (7 /2)) because after the proposed
modification, it has the same periodicity as the original signal,
so it mimics better the waveform. We refer to this modified
version of the IP as triangular IP signal, whose expressions,
in cases A and B are

Oa =04 - sgnlgn]: O = 0Op - sgnluy]. (20)

Operating as in the former section, the corresponding misfit
at each receiver r is

Aéfw(t)
—% .

To obtain the AS, first we calculate the partial derivatives of
the triangular IP as

M, (1) = 1)

6(§A =
89~A =

(22)
(23)

Sgn[Qn] . 6(9,4 + 9A . asgn[Qn]
sgnlu,] - 00p + Op - dsgnlu,].

The second term is neglected in both expressions as its value
is 0 except for ¢g,(r) = 0 (case A) and u,(r) = 0 (case B),
where it is not defined. Thus, reorganizing the formula, the AS
for the triangular IP at each receiver corresponds to

f.r(l‘)A B
_ AGa() - 1g* @) AGa(1) - u (1) - sgnlg® (1)]
=" mae  TPe ES(1)?
(24)
f.r(t)B _
_ AGp(1) - ¢* (@) - sgnlu’ (1)] Ap(t) - |u* (1)
- ES (,)2 + DQ ES (t)z

(25)
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Fig. 2(d) shows an example of a signal and the corresponding
triangular IP for cases A and B. The triangular IPs and the
original signal have the same periodicity in time. It should be
noted that the time location of the extrema in the triangular
IP in case A are coincident with the extrema of the original
signal, although the signals appear shifted # rad with respect
to each other. Fig. 7(d) shows the first and second terms of
the AS of the triangular IP. The triangular IP for case A was
firstly presented in [14] and also recently applied in [21].

V. NORMALIZED SIGNAL

Another way to obtain a continuous and periodic measure
of the IP is using the normalized signal u, () as parameter,
i.e., the phase carrier function. As it was defined earlier,
the normalized signal is the original signal modified so that
each maximum and minimum are located to +1 and —1,
respectively. It is an indirect measure of the IP which plays
the role of the sine/cosine of the IP. The cosine of the IP is
also used in geological interpretation as a seismic processing
tool [22], [28]. As in the case of the triangular IP function
presented earlier, the cosine of the IP has no amplitude
information and it does not introduce numerical spikes. Thus,
the OF at each receiver is referred here as normalized signal

Au(t
M, (1) = ”T() (26)
and as in the former cases, to obtain the AS
OM,(t) = Au,(t) - Ou,(2). 27

The partial derivative du, (t) can be obtained considering the
term u,(t) as the carrier phase function, which either in the
sine-type (case A) or cosine-type (case B) criteria corresponds
to the same expression

Oun (1)
00
Also, the term can be expressed as u,(t) = (u(t)/E(t)),

where E(t) = (u(t)> + q(1)»)'/?

Oup (1) Oun (1)

ou(t) OE(t)

In both cases, the result for the partial derivative term is
equivalent

Oun(t) =

Oun(t) = ou(t) + OE(1). (29)

2
t t) - t
gn (1) ou(t) — un(t) - qn(t) - 0q(1).
E(1) E(1)
Operating as in the former cases, the AS for the normalized
signal at each receiver corresponds to

RYAORHONE Aun(t) - ul (1) - q3(t)
Es(1) Es(t) '

Oun(t) = (30)

f.(0) = DQ

€1V

The normalized signal parameter is shown in Fig. 2(e) and is
compared to the original signal. Also, Fig. 7(e) shows the first
and second terms of its AS. The similar shape of the 77 term
of the AS between the triangular IP in case A [black line in
the first column, Fig 7(d)] and the normalized function [first
column, Fig. 7(e)] is noticeable; therefore, similar inversion
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results are expected. In contrast to the IP parameters defined
earlier, the original IP and the triangular IP, the boundary
limits of the normalized signal parameter are naturally and
uniquely defined. Besides, there is no distinction between
cases A and B.

VI. NUMERICAL CONSIDERATIONS

1) The calculation of the second term 7> of the AS function
requires to obtain the DQ of the following expressions.
a) For the IP: (AO4 p(t) - u*(t)/E*(1)?).
b) For the Triangular Phase:
i) Case A: (AGA(r) - u® (1) - sgnlq® (£)]/ E* (1)?).
ii) Case B: (AOp(1) - |u(1)|/E*(1)?).
c) For the Normalized
(Aun(t) - up (1) - g, (1)) E*(1)).
This cannot be done using the Hu-T directly, as the
expressions are commonly a nonmonocomponent signal;
however, they can be transformed. The nonmonocompo-
nent data is assumed to be composed of different coex-
isting oscillatory waves with different frequencies. These
oscillations called intrinsic mode functions (IMFs) are
monocomponent signals. The extraction of the different
IMFs of any data set is referred as the empirical mode
decomposition (EMD) method, and it is explained in
detail in [12] and [13]. As a summary of this process,
the lower (upper) IE is calculated by connecting the
minima (maxima) in the signal, respectively. Afterward,
the average IE is obtained and this quantity is subtracted
from the data. The process is repeated till this subtracted
value achieves the definition of an IMF. To obtain
the second IMEF, this residual is treated as the new signal,
and the same procedure outlined earlier is repeated for
the new signal until all the IMFs are obtained. At the end
of the process, the data is decomposed into its different
IMFs as

Signal:

u= ZIMF,- +r (32)
i

where the remnant r is normally a constant or a function
with a single maximum or minimum. Once the IMFs
are extracted, the Hu-T can be applied to each of
them to obtain the instantaneous parameters IE, IP,
normalized signal, and DQ. In our case, our data are
generated with a narrow bandpass width of 0.5 Hz.
This allows to simplify numerically the extraction of
the modes, as 7> can be reproduced by just two IMFs,
in which r is reabsorbed inside the IMFs. Fig. 3 shows
an example of the extraction of the IMFs from a
nonmonocomponent signal. Fig. 3(a) shows the signal
and the sum of the two IMFs extracted, which give the
value of the original signal. In Fig. 3(b), the IMFs are
plotted separately and in Fig. 3(c), we show the DQ
of the signal, calculated as the summation of the DQs
of each IMF, versus the DQ calculated using directly
the Hi-T over the nonmonocomponent signal. In this
respect, the quadrature obtained with the Hu-T and the
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Fig. 3. Example of the extraction of the IMFs from nonmonocomponent
data. (a) Monocomponent data (black line) and the summation of the extracted
intrinsic modes IM|+IMj (red dashed line). (b) Intrinsic modes IM; (black
solid line) and IM; (red dashed line). (¢) Nonmonocomponent data 7, (black
solid line) and its DQ calculated as a summation of the individual DQs for
each intrinsic mode using the Hu-T method (red dashed line) versus the DQ
calculated directly over the nonmonocomponent data using the Hi-T method
(blue dotted line). The #, nonmonocomponent data refers to the term 77 in
the ASs, before calculating its DQ.

Hi-T is remarkably similar, differing only in the ampli-
tude of certain peaks. Note that when both methods are
applied to obtain the quadrature of a monocomponent
signal, shown in Fig. 1(b), results are equivalent, and as
was mentioned earlier, this justifies the use of (18) to
obtain the final AS function. As a summary, in Fig. 4,
we show the workflow to obtain the OF and the AS of
a monocomponent signal using numerical adaptive data
methods, like the Hu-T and EMD applied here.

2) As was already outlined in Section I, the wrapped
IP presents phase jumps that produce numerical dis-
continuities also in the AS. These spikes reflect
in the gradient and this distorts the search direc-
tion to update the velocity model. As we show in
Fig. 6(b) [(iii) and (iv)], this produces noise in the inver-
sion result. To avoid these numerical spikes, we apply a
smoothing filter to the wrapped IP. In Fig. 6(a), we show
an example of this smoothing applied to the IP wrapped
between (—(7 /2), (r/2)) and in Fig. 6(c) [(iii) and (iv)],
the result of the inversion in which the numerical dis-
continuities have vanished.

3) To avoid discontinuities in the AS when ES(r) = 0,
a constant quantity ¢ can be added to the IE in the
denominator as E°(¢) : E®(t) + 6. The higher this
value is, the softer is the AS function at certain peaks.
However, this does not alter the inversion results. Taking
into account that max[E ()] = 1, we have tried o
values from the range d = 107> to 1. Using any ¢
value in the mentioned range and after 30 iterations
during the first frequency step, we checked that the
decrease of the misfit and the rms value differ at the most

Mono-component
signal

Hu-T

IP-based parameter

OF: M(t)
AS:V M(1) +—
T, = DQIt,]
EMD
t, = X IMF,
Hu-T
T, T, = ), DOIIMF,]
\ AS =TT, -/

Fig. 4. Workflow for the calculation of the OF and AS for the IP-based
parameters presented.
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Fig. 5. (a) Initial model. (b) Reference “true” model.

by 3%. Consequently, we fixed this parameter arbitrarily
to 0 =0.1.

VII. INVERSION TESTS USING INSTANTANEOUS
PHASE-BASED OBJECTIVE FUNCTIONS

A. Test Parameters

Similar to [14], we use the Marmousi model as bench-
mark [see Fig. 5(b)]. Therefore, to obtain the reference
data from the Marmousi model, u°(t), forward propaga-
tion is also used. A Ricker wavelet with central frequency
fo = 20 Hz is used as a source. For the first iteration, we use
a homogeneous vertical gradient velocity model displayed
in Fig. 5(a). The space is discretized with a staggered grid [26],
with 25 m spacing both in x and z directions and the
simulation time is 8 s. Along the x-direction, we locate a
receiver at each point of the model and 16 sources equally
spaced along the surface. We apply convolutional perfectly
matched layers scheme [20] on the left, bottom, and right
boundaries to avoid numerical reflections and a free surface at
the top of the Marmousi model. As explained earlier, the width
of the bandpass in the multiscale approach is kept fixed to
0.5 Hz so that the data preserves its monocomponent character.
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Fig. 6. (a) Plot of the IP wrapped between (—%,%) (black squares) and the

same when a smoothing filter is applied (red circles). (b) Inversion result (I)
T T

and AS (II) using the IP wrapped between (—%,%) and the same in (III) and
(IV) but using the smoothed IP. In both cases, the AS is shown for all the
receivers and time steps, just for the first shot in the first iteration.

This makes the calculation of the instantaneous parameters
using the Hu-T method straightforward. The total number of
iterations per frequency step is fixed to 20 and the maximum
frequency inverted is 12 Hz. The lower frequency is 1 Hz to
simulate data with low-frequency content and 4 Hz to test
the algorithms for data with lack of low frequencies. The
limits of the bandpass filter in the multiscale approach increase
0.5 Hz at every frequency step as follows: (fo, fo+0.5), (fo+
0.5, fo+ 1), (fo+ 1, fo+1.5),... etc. We evaluate the misfit
between the reference and the simulated data at each iteration.
The OFs evaluated and compared are the IP calculated with
the inverse tangent function in its different domains, as well
as the triangular IP, and the normalized signal.

B. Inversion Tests

In Fig. 8, we plot the inversion results for data containing
low frequencies (starting frequency is 1 Hz) and for the
different IP parameters defined in an specific angular domain
and criteria:

1) The direct calculation of the IP through the inverse of
the tangent is as follows.

a) IP wrapped between (—x, ), case A [Fig. 8(a)]
and case B [Fig. 8(b)];
b) IP wrapped between (—(z/2),(7/2)), case A
[Fig. 8(c)] and case B [Fig. 8(d)];
c) IP unwrapped [Fig. 8(e)].
2) The triangular IP for case A [Fig. 8(f)] and B [Fig. 8(g)].
3) The normalized signal [Fig. 8(h)].
Each row displays three types of inversion results plotted in
three different columns. We want to explore the dependence
of results by using separately the terms that confirm the AS
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Fig. 7. First term 77 (t) (left column) and second term 7> () (right column)
of the AS of the IP-parameters for the A (black dashed line) and B (red
dashed line) criteria. The normalized synthetic and observed waveforms are
also plotted as a reference (black and red solid lines). The y-axis for 77 and 7»
is located on the left-hand side and for the waveforms is located on the right-
hand side of each panel. (a) and (b) Wrapped IPs are defined between (—z, 7)
and (=%, %), respectively, and smoothed to avoid numerical problems.
(c) IP is unwrapped. (d) AS terms for the triangular IP. (¢) Normalized signal.

and also using the complete expression. If 77 and 7> provide
complementary information that improves the results, then
both terms are necessary. By the contrary, if they provide anal-
ogous information or one of them can be shown to worsen the
results, using only one term would simplify the calculations.
The second term 7> is more complex numerically. It increases
the computational time as it implies the calculation of the
IMFs of a nonmonocomponent signal, as explained earlier
(see Fig. 4). Thus, we will favor the OFs which give good
results using the 77 term alone. The first column shows the
result obtained when only the first term of the corresponding
AS is used, T;. The second column shows the results when
the second term, 7>, is used, and the inversion result with both
terms in the AS, T1 4 T3, is plotted in the third column. The
inversion results of the wrapped IP are plotted in Fig. 8(a)—(d),
and are obtained using the smoothed wrapped IPs in every
case, in order to avoid the phase jumps which cause numerical
spikes. For the IP wrapped between (—z,7), the inversions
generated with the 7> term are better than with the 77, in both
cases A [Fig. 8(a)] and B [Fig. 8(b)]. Using the complete AS,
the results worsen dramatically due to the influence of the 7
term in case A [Fig. 8(a)]. When the IP is wrapped between
(—=(m/2), (r/2)), the inversion is only successful in case A
[Fig. 8(c)].

Despite of the continuous and periodic behavior of the AS
terms of the unwrapped IP, the inversion results are strikingly
poor [Fig. 8(e)]. The three inversions are almost identical,
consistent with the AS, which is equivalent for the terms 7}
and T,. For the rest of the inversions in the different IP cases
and criteria, there is a variety of results. The best inversion
results are obtained using the triangular IP (case A) and the
normalized signal; in particular, using the term 77 in both cases
[Fig. 8, first column of (g) and (h)]. In these cases, the term
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Fig. 8. Inversion results using 77 (first column) and 75 (second column) terms of the AS separately and using the complete expression T1 + 75 (third
column), for the different IP criteria. (a) Inversion results when using the IP wrapped between (—x, 7) for case A. (b) Inversion results when using the IP
wrapped between (—x, 7) for case B. (c) Inversion results when using the IP wrapped between (—(x /2), (7 /2)) for case A. (d) Inversion results when using
the IP wrapped between (—(z/2), (/2)) for case B. (e) Inversion results when using the unwrapped IP. (f) Inversion results when using the triangular IP for
case A. (g) Inversion results when using the triangular IP for case B. (h) Inversion results when using the triangular IP for the normalized signal.

T, is small compared with 77 so it barely influences the result calculation of the synthetic and reference IP. The calculation
[see Fig. 7(d) and (e)]. The time cost to calculate the term of both terms 77 + 7> takes 2 s, due to the calculation of
Ty for all the receivers and time steps is 1 s, mainly due to the intrinsic modes. With respect to the time cost per iteration
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Fig. 9. Time cost per iteration for the first 10 iterations for the best strategies
shown in Fig. 8: triangular phase (case A) for the complete AS (black circles)
and using only 77 (black plus) and normalized signal for the complete AS
(red squares) and using only 77 (red stars). The time cost for the L2 function
is also shown as reference (blue triangles).

for an IP-based OF using the complete AS can increase from
25% to 60% compared with using the 77 term alone. The
time cost per iteration during the first 10 iterations is shown
in Fig. 9 for the mentioned best strategies from Fig. 8. As a
reference, the calculation with the L2 function is also included
in the figure [the L2 inversion results are shown in Fig. 10(k)
and (1)]. Also, it can be seen that the time cost per iteration
for the IP-based functions using only the 77 term in the AS is
similar to the time cost for the straightforward L2 function. On
top of that, the 7> term is highly nonlinear, and whether we
use the Hu-T or the Hi-T, a wrong calculation would increase
the uncertainty in the results, especially for noisy data. Taking
into account this scenario, whenever the 7, term does not
improve the results such as in the mentioned cases, we will
avoid its calculations using the term 77 alone, therefore saving
time and numerical problems. As a summary, the best results
from Fig. 8§ are plotted in the first column in Fig. 10, together
with the velocity difference of each inversion compared with
the reference model, which is shown in the second column.
We have included as well in the last row the results for the
waveform difference, the L2 OF. For each row, it has the
following.

1) Fig. 10(a) and (b): IP wrapped (—m,x), case A,

with 75.

2) Fig. 10(c) and (d): TP wrapped (—z, ), case B, with
T+ 1.

3) Fig. 10(e) and (f): TP wrapped (—(x /2), (x/2)), case A,
with T7.

4) Fig. 10(g) and (h): triangular IP, case A, with T7.

5) Fig. 10(i) and (j): normalized signal, with T7.

6) Fig. 10(k) and (1): L2.
In all cases, the reference model is well recovered in the top
half of the model; however, the best inversions correspond to
the triangular IP and the normalized signal OFs.

C. Lack of Low Frequencies

The seismic records typically acquired in most exploration-
type surveys lack energy at low frequencies. In general, signal-
to-noise ratio is too small to retrieve usable signal below
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Fig. 10. Results selected from Fig. 8 (first column) and velocity difference
with respect to the reference model (second column). (a) and (b) Inversion
results for the IP wrapped between (—z, ) using only 7> of the AS for
case A. (c) and (d) Inversion results for the IP wrapped between (—x, )
using 74+ 7>, case B. (e) and (f) Inversion results for the IP wrapped between
(—(m/2), (7/2)) using only T7, case A. (g) and (h) Inversion results for
the triangular IP using only 77, case A. (i) and (j) Inversion results for the
normalized signal using only 77. (k) and (1) Inversion results for the L2 OF.

3-4 Hz. To simulate the realistic conditions of data lacking
low frequency signal, we filtered out in our source and data
frequencies below 4 Hz. The same cases shown in Fig. 10 are
plotted in Fig. 11 for data lacking low frequencies below 4 Hz.
In this case, the multiscale approach from lower to higher
frequency is [4-4.5], [4.5-5] Hz, ... etc. Only the inversion
results generated with the triangular IP and the normalized
signal OFs are robust enough to overcome nonlinearity and
obtain acceptable results. Compared to Fig. 10, the velocity
difference shows a larger error in location of the horizontal
layers of the model. Also, the deeper part of the inverted
model is resolved worst. As stated in the introduction, the most
popular OF used in AWI with exploration-type data [27] is the
L2-norm. It is simple, fast to calculate, and free of numerical
problems. However, using the original signals to build the OF,
the nonlinearity inherent in the AWI method increases due
to the mixing of amplitude and phase. As a consequence,
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Fig. 11. Inversion results for the same strategies shown in Fig. 10 but without
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Fig. 12. (a) Hybrid strategy where the inversion is done from 4 to 5 Hz with
the triangular IP and after, this result is used as initial model for the L2-norm
OF from 5 Hz. (b) Velocity difference between (a) and the reference true
model. (¢) and (d) Similar to (a) and (b), but using the normalized signal as
an initial model.

the L2 is not the most robust OF [see Fig. 11(k) and (1)]. Its
success strongly depends, among other factors, on the accuracy
of an initial model to overcome cycle skipping at the lowest
inverted frequencies.
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V3 = 7.5 km, for the successful inversion strategies shown in Figs. 11 and 12

for the specific OFs: triangular IP (black solid line), normalized signal (red

dashed line), “triangular IP + L2” (green dashed dotted line), and “normalized
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Fig. 14.  Horizontal profiles at different depths HI = 1, H2 = 1.5,
and H3 = 2.5 km, for the successful inversion strategies shown in
Figs. 11 and 12 for the specific OFs: triangular IP (black solid line),

normalized signal (red dashed line), “triangular IP + L2” (green dashed dotted
line), and “normalized signal + L2” (blue dotted line).

The alternative measures of the IP functions presented, i.e.
the triangular IP and the normalized signal, are robust in the
absence of low frequencies in the data. However, as explained
in the methodology section, their usage is restricted to mono-
component data, obtained in our work with narrow bandpass
filters on the source and the data. In order to obtain a robust
strategy with less numerical demands, it is possible to design
hybrid strategies using first the IP-based functions for the
lower frequencies available in the data. After this initial step,
the resulting velocity model may be used as initial model for a
L2-norm-based AWI scheme, saving computational resources
and time and, more importantly, avoiding numerical errors
which might arise when dealing with noisy field data. When
using the L2-norm OF, wider band data sets can be applied
to source and data, as there is no requirement to work with
monocomponent data. In this case, the bandpass also increases
0.5 Hz at each frequency step but the initial frequency is
kept constant. As a summary, the hybrid strategy tested in
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this analysis is:
1) Triangular IP/normalized signal: [4—4.5], [4.5-5] Hz.
2) L2-norm between waveforms: [5-5.5], [5-6] Hz...

Due to the wider band passed data at each frequency step once
the L2-norm is applied, the hybrid multiscale strategy is more
efficient compared to using the single IP-based OFs, as data
are redundant. In Fig. 12, we show the results of the two
hybrid strategies in the first column and their corresponding
velocity difference in the second column, showing similar
results compared with the single OF strategies. For a better
comparison between the single and the hybrid strategies,
we plot the depth and horizontal profiles of the velocity
difference (Vawi— Vrue), in Figs. 13 and 14. All the strategies
(left y-axis) behave in a similar manner; the velocity difference
concentrates in the areas where velocity contrasts/gradients are
stronger. For a better understanding of this fact, we also plot
the p-wave velocity of the reference model for the chosen
lines in both figures (red solid line), whose correspondent
y-axis is placed at the right part of the graph. In general,
the results worsen with the depth, as shown in the depth
profiles in Fig. 13, where the results clearly deteriorate deeper
than 1.5 km, for all the chosen lines (V1, V2, and V3) along
the horizontal axis. For the same reason, in the horizontal
profiles in Fig. 14, the velocity difference in all the strategies
for the shallower line H1 (placed at 1-km depth) are smaller
than for H2 (1.5-km depth), and for H3 (2.5-km depth), where
all the velocity differences dramatically increase.

VIII. CONCLUSION

We have performed a theoretical and practical analysis on
how to measure the IP from a seismic waveform so that it
can play an efficient role as OF in the AWI method. The
principal value of the IP is not uniquely defined; therefore,
we have extended the analysis of the IP in its different
domains, wrapped between (—z, 7) and (—(z/2), (x/2)) and
unwrapped. The waveform can be considered as a sine-
type (case A) or as a cosine-type (case B) function. These
different criteria give equivalent IP functions but shifted 7 /2
radians with respect to each other. Thus, we explore the
results obtained for the different angular domains and for
cases A and B. The extraction of the IP from the waveform is
done using the Hu-T numerical adaptive data method, which
can be easily applied in any type of data whenever it is
monocomponent. In our case, the monocomponent character
is obtained applying to data and source bandpass filters with
0.5-Hz width.

The wrapped IP functions naturally present phase jumps
which need to be treated because they reflect in the inver-
sion results giving noisy images. When smoothing filters are
applied to the wrapped IP functions, the numerical errors
vanish and good results can be obtained when using data
containing low frequencies, just in the cases where the phase
discontinuities are time coincident with the extrema of the
waveform. This happens for case B when the IP is wrapped
between (—7x, ) and for case A when it is wrapped between
(=(7/2), (x/2)). In the mentioned works where the wrapped
IP is applied in AWI for global earthquake data [3], [9],
the IP is calculated in case B with its principal value defined

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

between (—m, ), coincident as well with our best results.
In large scale studies, the presence of low frequencies in the
recorded data favors that simulated data are not cycle-skipped,
and according to what was shown in our tests, the treatment
of the phase jumps’ discontinuities helps to obtain good
results. But when data lack low frequencies, the waveforms
of the initial and reference models are cycle-skipped and this
technique does not work properly, as we show in our results.
With respect to the unwrapped IP, it produces a linear and a
continuous OF; however, it does not work well at minimizing
the misfit between the synthetic and the reference data. As it
can be observed, the corresponding AS function does not give
sufficient details in the description of the waveform.

The main conclusion of our tests is that an appropriate
description of the waveform with an IP-based function requires
the use of a continuous and a periodic signal, i.e., wrapped,
whose extrema are time coincident with the extrema of the
original signal. Following this description, it is possible to
formulate alternative ways to measure the IP indirectly. Two
examples of IP-based OFs that provide robust AWI results
even in the absence of low frequencies in the input data
are: 1) the triangular IP function, acquired as the original IP
wrapped between (—(z /2)(z/2)) in case A multiplied by the
sign of its quadrature [14] and 2) the normalized signal, firstly
proposed in this paper and whose meaning corresponds to
the carrier phase function of the waveform. In contrast to the
rest of the IP-based OF, the normalized function parameter is
uniquely defined between its natural limits and equivalent for
the criteria cases A and B. The alternative OFs proposed have
the same periodicity as the waveform and do not need any
modification to be used directly as OF in AWI, even without
low frequencies in the source and the data, and resulted more
robust compared with the original wrapped IP parameter. The
results between the triangular IP and the normalized signal
OFs are similar, as their corresponding ASs share the main
features, having the different maxima and minima located at
the same time positions.

We have given special emphasis to simplifying the numer-
ical calculation of the AS. We have tested three types of
inversions depending on which part of the AS function is
solved, T and 75 terms separately and the complete expression
T1+T,. We have checked that the 7> term does not improve the
results for the IP OFs working well for data with and without
low frequencies, the triangular IP function (case A) and the
normalized signal. The success mainly depends on using the
T; term in the AS. The 7> term for these cases is much
smaller compared with the 7} and requires a more complex
numerical calculation. On the top of that, the calculation of 7>
is computationally more expensive as might increase the time
cost per iteration from 25% to 60% compared with using only
the 71 term. Therefore, we just considered the 77 term in the
AS function for the selected IP-based OFs.

The method can be improved using the inversion results
of the alternative IP-based OFs after one or two inversion
steps at the lowest frequencies available in the data as initial
models for the traditional L2-norm OF, which is then used
for the following inversion steps. Although the use of these
hybrid strategies gave similar results as the usage of the single



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JIMENEZ TEJERO ez al.: APPRAISAL OF IP-BASED FUNCTIONS IN AWI

IP-alternative OFs, the advantage lies in improving the data
redundancy, diminishing computational time, and numerical
problems that need to be tackled when extracting the IP from

[21]
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the waveform and calculating its AS function.
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