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Abstract: The fraction of absorbed photosynthetically active radiation 
(FPAR) is a key parameter for ecosystem modeling, crop growth 
monitoring and yield prediction. Ground-based FPAR measurements are 
time consuming and labor intensive. Remote sensing provides an alternative 
method to obtain repeated, rapid and inexpensive estimates of FPAR over 
large areas. LiDAR is an active remote sensing technology and can be used 
to extract accurate canopy structure parameters. A method to estimating 
FPAR of maize from airborne discrete-return LiDAR data was developed 
and tested in this study. The raw LiDAR point clouds were processed to 
separate ground returns from vegetation returns using a filter method over a 
maize field in the Heihe River Basin, northwest China. The fractional cover 
(fCover) of maize canopy was computed using the ratio of canopy return 
counts or intensity sums to the total of returns or intensities. FPAR 
estimation models were established based on linear regression analysis 
between the LiDAR-derived fCover and the field-measured FPAR (R2 = 
0.90, RMSE = 0.032, p < 0.001). The reliability of the constructed 
regression model was assessed using the leave-one-out cross-validation 
procedure and results show that the regression model is not overfitting the 
data and has a good generalization capability. Finally, 15 independent field-
measured FPARs were used to evaluate accuracy of the LiDAR-predicted 
FPARs and results show that the LiDAR-predicted FPAR has a high 
accuracy (R2 = 0.89, RMSE = 0.034). In summary, this study suggests that 
the airborne discrete-return LiDAR data could be adopted to accurately 
estimate FPAR of maize. 

©2014 Optical Society of America 

OCIS codes: (280.3640) Lidar; (100.6890) Three-dimensional image processing. 
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1. Introduction 

The fraction of photosynthetically active radiation (PAR) absorbed by vegetation in the 0.4-
0.7μm spectrum, also known as FPAR, is one of important terrestrial variables controlling the 
mass and energy exchanges between vegetation and the atmosphere [1–3], and therefore is 
one of key parameters required in crop production models and Earth system models for 
simulating land vegetation-atmosphere interactions [4–7]. FPAR can be directly measured 
using the traditional and accurate ground-based methods, but direct measurements of FPAR 
are difficult and time consuming [1, 4, 8]. In addition, it is not feasible to apply the ground-
based methods to measure FPAR across large landscapes [9]. Even at some regional scales, 
these methods are also difficult to use to measure FPAR for studying spatial patterns of FPAR 
[10]. Remote sensing provides an alternative and unique method to obtain repeated, rapid and 
inexpensive estimates of FPAR over large areas [6, 11]. Passive remote sensing data have 
been widely used to derive FPAR using radiative transfer models or empirical relationships 
between FPAR and vegetation indices [5, 12]. Previous studies showed a linear or close linear 
relationship between vegetation index (VI) and FPAR [5, 13], where commonly used 
vegetation indices include the normalized difference vegetation index (NDVI), the simple 
ratio (SR), and the enhanced vegetation index (EVI). Propastin and Kappas [14] estimated 
FPAR of a grassland using a linear regression model between the ground-measured FPAR 
values and the corresponding NDVI values derived from SPOT-VGT data. Peng et al. [2] 
retrieved global FPAR using the FPAR-SR relationship as shown in Eq. (1) [7]: 

 ,min max min
min

,max ,min

( - )( - )
.

-
i

i i

SR SR FPAR FPAR
FPAR FPAR

SR SR
= +

   
    

 
 (1) 

where SR = (1 + NDVI)/(1-NDVI), FPARmax = 0.950, FPARmin = 0.001; FPARmax and FPARmin 
are independent of vegetation type; SRi,max is the SR value corresponding to 98% of NDVI 
population for type i vegetation; SRi,min is the SR value corresponding to 5% of NDVI 
population for type i vegetation. 

FPAR can also be estimated from empirical relationships between field-measured FPAR 
and leaf area index (LAI) [15]. Beer-Lambert law has been widely used to describe the 
exponential attenuation of monochromatic radiation in a canopy and approximates vegetation 
as a turbid medium [16, 17]. Casanova et al. [18] found the ratio between transmitted and 
incoming photosynthetically active radiation (PAR; 0.4-0.7μm) under a canopy decreases 
approximately exponentially with LAI, and thus the FPAR can be expressed as a function of 
LAI as follows: 

 1 .c LAIFPAR e− ×= −  (2) 

where FPAR is fraction of PAR intercepted by the canopy, c is extinction coefficient and LAI 
is leaf area index. 

Although vegetation indexes can be used to estimate FPAR, accuracy in the estimated 
FPAR is limited by saturation of vegetation indexes, because canopy spectral reflectance is 
less sensitive to LAI variation as LAI is greater than 3.0 [19, 20]. The FPAR estimation based 
on Eq. (2) is also affected by the background spectral information if LAI is low [21, 22]. 
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Furthermore, since optical remotely sensed data do not take into account the three-
dimensional structural characteristics of the canopy cover, the information reflected in the 
two-dimensional data such as multi-spectral imagery is not sufficient for estimating FPAR 
[8]. Although interferometric synthetic aperture radar (InSAR) can provide some three-
dimensional vegetation structural information, the coarse spatial resolution associated with 
InSAR suggests that the current InSAR technique is incapable of measuring stand-scale 
canopy vertical structures [8, 23, 24]. 

LiDAR (Light Detection and Ranging) is an active remote sensing technology and has 
been widely used in extracting three-dimensional information of land surfaces [25, 26], such 
as fine spatial resolution and high vertical accuracy 3D structural characteristics of plant 
cover [27, 28], which are very useful for studying forest canopy structure and leaf physiology, 
and estimating biophysical parameters [29, 30], e.g., tree height, crown width, fractional 
cover, LAI, total aboveground biomass, and timber volume [e.g., 31–37]. LiDAR systems 
have the ability to penetrate into vegetation canopy and thus can be used to characterize light 
transmittance through the canopy [38, 39]. This, in turn, provides information about the 
available light for photosynthesis and its variation over the entire canopy depth [38]. 

Several studies have shown that airborne LiDAR data can be used to accurately estimate 
FPAR based on empirical relationships between FPAR and LiDAR derived metrics [e.g., 4, 8, 
38, 39]. Recent studies that used LiDAR data to estimate FPAR tended to concentrate on 
forest vegetation [e.g., 8, 39], and application of LiDAR data to estimate FPAR of crops such 
as maize and sorghum has barely been investigated. However, FPAR is an important 
parameter in many crop growth and yield models [e.g., 1, 40]. Therefore, this study aimed to 
estimate FPAR of maize using airborne discrete-return LiDAR data. Three main objectives 
were pursued to achieve the goal of this study: 1) computing vegetation cover (fCover) using 
the ratio of canopy return counts or intensity sums to the total of returns or intensities; 2) 
establishing a series of regression relationships between LiDAR-derived fCover and field-
measured FPAR; and 3) evaluating the reliability of the constructed regression model by 
performing the leave-one-out cross-validation (LOOCV) analysis and validating the accuracy 
of the LiDAR-predicted FPARs. 

2. Materials and methods 

2.1 Study area 

The study area is in the Heihe River Basin, northwest China (38°56′N-38°59′N, 100°25′E-
100°28′E) (Fig. 1). The mean annual air temperature, precipitation and potential 
evapotranspiration are about 7.3 °C, 129 mm, and 2047 mm in this arid region, respectively. 
The terrain in the study area is relatively flat with a mean elevation of 1403 m above sea 
level. A total of 40 FPAR values were measured in six sampling areas (see Fig. 1). 
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Fig. 1. The location of study area. A, B, C, D, E and F are six sampling areas where FPAR was 
measured using the ground-based method. 

2.2 Field measurements 

The field experiment was conducted in July 2012. The FPAR was measured as photosynthetic 
photon flux density (PPFD, µmol m−2 s−1) using LI-191SA Linear Quantum PAR Sensor (LI-
COR, Inc.) [41]. This sensor spatially averages radiation over its 1 meter length, minimizes 
the error and allows one person to easily make many measurements in a short period of time 
(LI-COR, Inc.) [41]. To obtain FPAR, above-canopy downwelling (PARad) and upwelling 
(PARau) PAR, below-canopy downwelling (PARbd) and upwelling (PARbu) PAR were 
measured for each sample plot. Linear quantum sensor was at an approximate height of 0.5 m 
above the canopy surface and 0.15 m above the ground for all measurements, respectively. 
This placement ensured that the sensor was above the short grass vegetation in each sampling 
plot. To reduce the error, the sensor was kept level when all the measurements were taken. 
FPAR was calculated based on Eq. (3) for each plot. 

 
( ) ( )ad au bd bu

ad

PAR PAR PAR PAR
FPAR

PAR

− − −
=  (3) 

where PARad and PARau are incident and reflected PAR above the canopy, respectively; PARbd 
and PARbu are incident and reflected PAR below the canopy, respectively [42]. 

The geographic coordinates of each plot center point were measured using a centimeter-
level GPS with a horizontal accuracy of 0.012 m and a vertical accuracy of 0.01 m. A total of 
40 plots with an area of 5.0 m x 5.0 m each were measured at representative sites across the 
study area. The maize crop during the field survey was between pre-flowering and flowering 
stages. The average height of maize was 1.85 m, and the average row spacing and intra-row 
spacing were about 0.6 m and 0.25 m, respectively. 

2.3 Collection of airborne LiDAR data 

Small footprint airborne LiDAR data were acquired in July 2012 using a Leica ALS70 
system. For the study area, the scan angle was ± 18° with a 60% ight line side lap. The 
average flying height was 1300 m above the ground with a velocity of 60 m/s and an average 

#200050 - $15.00 USD Received 25 Oct 2013; revised 18 Feb 2014; accepted 19 Feb 2014; published 26 Feb 2014
(C) 2014 OSA 10 March 2014 | Vol. 22,  No. 5 | DOI:10.1364/OE.22.005106 | OPTICS EXPRESS  5111



point density of 7.4 points/m2. Raw LiDAR data was converted to a LAS binary format file 
including x, y, z coordinates and intensity return values. 

2.4 LiDAR data processing 

The flowchart of LiDAR data processing and PFAR estimation is shown in Fig. 2. Raw 
airborne LiDAR data may contain some outliers, which are extremely higher or lower than 
other points in the vicinity and isolated points up in the air or below the ground. Outliers were 
removed from raw LiDAR data before they were processed by the TerraScan software 
(TerraSolid, Ltd., Finland). Then LiDAR point clouds were classified as canopy and ground 
returns using the progressive triangulated irregular network (TIN) densification method 
proposed by Axelsson [43] in the TerraScan software. It is very important to carry out some 
manual check and reclassification since the classification may misclassify some points and 
any misclassification of point clouds could result in significant errors in the extracted DEM 
and vegetation structural parameters. 

The fractional cover of canopy (fCover) is defined as the fraction of ground covered by 
vegetation [32]. The LiDAR derived canopy fractional cover can be calculated as the ratio of 
the number of canopy laser returns or intensity sums to total returns or intensities based on 
Eq. (4) [e.g., 4, 20, 32, 44–46]. 

 canopy

total

.
N

fCover
N

=  (4) 

where fCover is the fractional cover of canopy, Ncanopy is the number of canopy laser returns 
or the sum of intensity and Ntotal is the total returns or intensities. 

 

Fig. 2. Flow chart of LiDAR data processing and PFAR estimation. 
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LiDAR intensity is the amount of energy reflected back to the LiDAR sensor, which is a 
function of several variables such as laser power, angle of incidence, target reflectivity and 
LiDAR sensor-to-target range [47, 48]. It is therefore necessary to calibrate intensity values to 
achieve a better comparison among different strips, flights or regions [49]. To improve 
accuracy of the LiDAR derived canopy fractional cover, LiDAR intensity data were 
normalized using Eq. (5) [50]. 

 
2

normalized 2
s

.
cos

R
I I

R α
=  (5) 

where Inormalized is the normalized intensity, I is the raw intensity, R is the sensor to target 
range, Rs is the reference range or average flying height (in this study Rs = 1000 m) and a is 
the angle of incidence. Since this study area has a relatively flat terrain, the scanning angle 
and the angle of incidence were approximately equal. Therefore, we used the scan angle as 
the incidence angle a in Eq. (5), and the effect of terrain on the LiDAR intensity was 
neglected in this study [49, 51]. 

The reflectances are different between the canopy and ground at the infrared wavelength 
(1064 nm). To reduce the effect of this reflectance difference on accuracy in the estimated 
canopy fractional cover, the LiDAR intensity values of canopy and ground need be adjusted 
according to Eq. (6) [52–54]. 

 canopy .groundI kI=  (6) 

where k is the adjusting factor of reflectance, Icanopy and Iground are the intensity of canopy and 
ground, respectively. In this regard, previous studies generally used 2.0 as the k value in 
calculating fCover [e.g., 52–54]. To determine the optimal k value and improve the accuracy 
of FPAR estimation, we examined a sequence of k values from 1.0 m to 10.0 m with an 
increment of 0.5 m and selected the value that yielded the highest R2 value in a linear 
regression against the field-measured FPAR [46]. 

2.5 FPAR estimation from LiDAR data 

The fCover is dependent on canopy structure up to a certain radius size and the trial-and-error 
method could be used to determine an optimal radius size [55]. Previous studies provided 
experiential evidence on how to identify a reasonable radius size [32, 37]. To obtain the 
optimal plot size for estimating FPAR from the LiDAR data, the center coordinates of each 
plot were applied to extract return counts and intensity for each plot with different radii from 
classified LiDAR point clouds. We examined a range of plot radii from 1.0 m to 7.0 m with 
an increment of 0.5 m. For each plot, the number of canopy returns and the sum of intensity 
(Ncanopy) and the total returns and intensities (Ntotal) were calculated for each specific radius. 
LiDAR return- and intensity-based fCover of each plot were computed according to Eq. (4) 
using Ncanopy and Ntotal, respectively. The linear regression analysis of the LiDAR-derived 
fCover against the field-measured FPAR was carried out to build an empirical FPAR 
estimation model as given in Eq. (7): 

 y ax b= +  (7) 

where y is FPAR, x is fCover based on returns or intensities, a and b are the slope and the y 
intercept of the regression line, respectively. The coefficient of determination (R2), the 
adjusted R2 (adj. R2) and the root mean square error (RMSE) across a range of plot sizes (i.e., 
1.0 m-7.0 m in radius) were calculated. The statistical results of each radius were compared 
for determining the optimal FPAR estimation model and the optimal plot size. 
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3. Results and validation 

3.1 Results 

Since fCover varies with the plot size [37, 55], to investigate the effect of different plot sizes 
on model performance, fCover was estimated on the 40 field plots using a range of plot radii 
from 1.0 m to 7.0 m with an increment of 0.5 m. A linear regression analysis (i.e., Eq. (7)) 
between 25 field-measured FPARs and LiDAR-derived fCover values was carried out. The 
statistical characteristics of the estimated FPARs with different plot radius are shown in Table 
1. According to Table 1, as the plot radius is 4.0 m, both LiDAR return- and intensity-based 
fCover estimations have the smallest RMSE and the highest correlation with the field-
measured FPAR. 

Table 1. Statistical characteristics of estimated fpars with different sample radii 

Plot radii 
(m) 

Based on LiDAR return count 
 

Based on LiDAR intensity 

R2 Adj.R2 RMSE R2 Adj.R2 RMSE 
1.0 0.23 0.19 0.088  0.22 0.19 0.088 
1.5 0.26 0.23 0.086  0.32 0.29 0.082 
2.0 0.32 0.30 0.082  0.44 0.42 0.075 
2.5 0.60 0.58 0.063  0.63 0.61 0.060 
3.0 0.77 0.76 0.047  0.80 0.79 0.044 
3.5 0.83 0.82 0.042  0.85 0.84 0.037 
4.0 0.85 0.84 0.038  0.86 0.86 0.036 
4.5 0.84 0.83 0.039  0.85 0.84 0.038 
5.0 0.82 0.81 0.043  0.83 0.82 0.041 
5.5 0.80 0.79 0.045  0.82 0.81 0.042 
6.0 0.78 0.77 0.048  0.76 0.75 0.049 
6.5 0.75 0.74 0.050  0.74 0.73 0.050 
7.0 0.72 0.71 0.053  0.73 0.72 0.051 

Accounting for the reflectance difference between the canopy and ground, the fCover was 
calculated using Eq. (8) to improve the accuracy of FPAR estimation. 

 canopy canopy

total canopy ground

N N
fCover

N N kN
= =

+
 (8) 

where Nground is the sum of ground laser return intensity. We adjusted the intensity of a plot of 
radius 4.0 m using a sequence of k values from 1.0 m to 10.0 m with an increment of 0.5 m. 
Results showed the accuracy of intensity-based FPAR estimation was the highest (R2 = 0.90) 
as the k value was 3.0 in Eq. (8), while R2 was 0.85 for the LiDAR return-based fCover 
estimation. Scatterplots of the LiDAR-derived fCover versus the field-measured FPAR and 
the corresponding regression models are presented in Fig. 3. 
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Fig. 3. (a) Scatterplot of the return-based LiDAR-derived fCover versus the field-measured 
FPAR and the corresponding regression model (R2 = 0.85, RMSE = 0.038, n = 25, p<0.001). 
(b) Scatterplot of the intensity-based LiDAR-derived fCover versus the field-measured FPAR 
and the corresponding regression model (R2 = 0.90, RMSE = 0.032, n = 25, p<0.001). 

To determine the optimal model of FPAR estimation using the airborne LiDAR data, we 
compared the LiDAR intensity-based and return-based models. Results indicate that the 
intensity-based prediction model had the highest accuracy (R2 = 0.90, adj. R2 = 0.89, RMSE = 
0.032) and yielded slightly better estimates compared to the LiDAR return-based model (R2 = 
0.85, adj. R2 = 0.84, RMSE = 0.038). This result is in a good agreement with Hopkinson and 
Chasmer's results which showed that laser intensity can potentially provide an accurate 
estimate of FPAR [44], because the intensity methods implicitly provide some quantification 
of the surface area that the pulse is interacting with in the form of the reflectance amplitude 
(e.g., intensity) [44]. 

3.2 Accuracy assessment 

To assess the model’s reliability, the predicted residual sums of squares (PRESS statistic) was 
calculated using the leave-one-out cross-validation (LOOCV) analysis [37, 56], which is an 
effective method to evaluate the generalization capability of regression models, being 
particularly useful when a low number of field-measured data are available [56]. The root 
mean square error from the cross validation analysis (RMSEcv) was computed as the square 
root of the ratio between the PRESS statistic and the number of observations [34]. The 
RMSEcv was 0.033 for the intensity-based regression model and the RMSE was 0.032. The 
close consistency between the RMSEcv and the RMSE suggests that the regression model is 
not overfitting the data and has a good generalization capability. In addition, we obtained the 
accuracy of LiDAR-predicted FPARs using other 15 field-measured FPARs which are not 
used for the regression analysis (Twenty-five out of the total 40 field-measured FPARs were 
used to construct the FPAR estimation model). Results show a good relationship (R2 = 0.89, 
RMSE = 0.034, RMSEcv = 0.035) between the field-measured and the LiDAR-predicted 
FPARs (Fig. 4). 
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Fig. 4. Scatterplot of the intensity-based LiDAR-predicted FPAR and the field-measured 
FPAR and the corresponding linear regression (R2 = 0.89, RMSE = 0.034, p<0.001, n = 15). 

4. Discussion 

In this study, we explored the potential of airborne discrete-return LiDAR data in estimating 
FPAR of maize. Results show that airborne LiDAR data can be used to estimate FPAR 
accurately. However, LiDAR data acquisitions over large areas are extremely expensive and 
they become more expensive at higher sampling densities [57]. LiDAR and optical remotely 
sensed data can be considered complementary, as LiDAR can provide vertical structural 
information of canopy and optical data can reflect the spectral information of the ground 
cover [57]. Fusion of airborne LiDAR and multispectral or hyperspectral imagery has 
promising prospective for estimating FPAR at regional scales [58–60]. More effort is needed 
to study how to combine airborne LiDAR data and optical remotely sensed imagery to 
retrieve vegetation biophysical parameters (e.g., biomass and structure) [61, 62]. 

The FPAR estimation approach developed in this study can be applied to other sites. 
However, since the estimation model is empirical, it could not be directly used for different 
study areas and vegetation types, and LiDAR data must be analyzed and modeled according 
to actual situations to obtain the optimal FPAR estimation model suitable for the study area. 

Thomas et al. [38] conducted spatial simulations of FPAR using a LiDAR-hyperspectral 
approach and found the strongest correlation between FPAR and mean LiDAR height. Here 
we also performed a linear regression analysis between mean LiDAR height and the field-
measured FPAR and found that the maximum R2 between FPAR and mean LiDAR height 
was 0.61 (RMSE = 0.062), which is lower than the LiDAR intensity-based estimation model 
developed in this study. Moreover, Thomas et al. [38] showed that the optimal cell size for 
estimating FPAR was 20 m in their study. However, our results indicated that 4.0 m radius 
plot size was the appropriate scale for estimating FPAR of maize. The difference between our 
results and Thomas et al’s could be due to different vegetation types, study areas, and average 
LiDAR point density. 

The FPAR retrieved from airborne LiDAR data in this study is only the instantaneous 
value. Daily PAR can be calculated through integrating instantaneous PAR from sunrise to 
sunset [63]. To date, vegetation LiDAR research has been largely empirical, focusing on 
strong relationships between LiDAR-derived metrics and vegetation height, LAI, FPAR, 
biomass, and volume [38]. Further research on developing some innovative physically based 
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methods, e.g., radiative transfer models [59, 64], to estimate biophysical and biochemical 
parameter from airborne LiDAR is needed. 

5. Conclusions 

FPAR is an important input parameter for terrestrial ecosystem models. Although many 
studies have shown that LiDAR is a viable technique for estimating FPAR, the majority of 
these studies are forestry-oriented. The aim of this study was to investigate the feasibility of 
applying discrete-return small-footprint LiDAR data to estimate FPAR of maize. A method to 
retrieve FPAR from LiDAR data was proposed and applied to a maize field in northwest 
China. The canopy and ground returns were first separated from raw LiDAR point clouds. 
The canopy fractional cover (fCover) was estimated based on the ratio of the number of 
canopy laser returns (or intensity sums) to total returns (or intensities). FPAR estimation 
models of maize were established based on linear regression analysis between the field-
measured FPAR and the LiDAR-derived fCover. Results show strong correlations between 
the LiDAR-derived fCover and the field-measured FPAR (R2 = 0.90, RMSE = 0.032, p < 
0.001). It was found that 4.0 m plot radius was the optimal scale for estimating FPAR. 
Accuracy in the estimated FPAR can be improved through normalizing the LiDAR intensity 
value based on a standard range and the incidence angle. It was also found that the LiDAR 
intensity-based FPAR estimation model had a higher accuracy compared to the LiDAR 
return-based FPAR model. The reliability of the LiDAR intensity-based FPAR model was 
assessed using the LOOCV procedure. Results show that the regression model is not 
overfitting. Finally, 15 independent field-measured FPARs (that were not used in the 
regression analysis) were used to evaluate accuracy of the LiDAR-predicted FPARs, and the 
coefficient of determination (R2) is 0.89 and RMSE is 0.034. 
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