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ABSTRACT 

A formal description of the structure of several recent performance assessments (PAS) for the Waste Isolation Pilot 
Plant CNIpP) is given in terms of the following three components: a probability space ( s,,, d,,, p,,) for stochastic 
uncertainty, a probability space (S’,, A,,, p,,) for subjective uncertainty and a function (i.e., a random variable) 
defined on the product space associated with (S,,, d,,, p,,) and (S,,, d,,, p,,). The explicit recognition of the 
existence of these three components allows a careful description of the use of probability, conditional probability 
and complementary cumulative distribution functions within the WIPP PA. This usage is illustrated in the context 
of the U.S. Environmental Protection Agency‘s standard for the geologic disposal of radioactive waste (40 CFR 191, 
Subpart B). The paradigm described in this presentation can also be used to impose a logically consistent structure 
on PAS for other complex systems. 
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1. Introduction 

The importance of an appropriate treatment of uncertainty in performance assessments (PAS) for complex 

systems is now widely rec~gnized.~-l~ In particular, analyses for most complex systems such as chemical plants, 

nuclear power stations, radioactive waste disposal facilities and human populations involve two types of uncertainty: 

stochastic uncertainty and subjective uncertainty. Stochastic uncertainty arises because the system under study can 

behave in many different ways and is thus a property of the system. Subjective uncertainty arises from a lack of 

knowledge about the system and is thus a property of the analysts performing the study. Commonly used 

terminology for these two types of uncertainty includes aleatory, type A, irreducible and variability as alternatives to 

the designation stochastic and epistemic, type B, reducible and state of knowledge as alternatives to the designation 

subjective. Performance assessments must be carefully designed and implemented to maintain a distinction between 

stochastic and subjective uncertainty. Otherwise, the effects of these two types of uncertainty become commingled 

in a way that makes it difficult to draw useful insights from the analysis. 

Probability is typically used to characterize both stochastic and subjective uncertainty (e.g., see the three 

analyses summarized in Ref. 20). Indeed, the use of probability is a fundamental part of PA for a complex system, 

with the result that PA is also referred to as probabilistic risk assessment (PRA). Yet, when the documentation of 

most PAS is examined, little is typically found that is suggestive of the conceptual material covered in a textbook on 

probability. This is unfortunate because having a clear conceptual model for the probabilistic basis of an analysis 

helps in understanding the design and implementation of the analysis, in avoiding conceptual errors, and in relating 

analysis procedures to similar procedures used in other contexts. 

The purpose of this presentation is to provide a formal probabilistic description of a PA involving stochastic and 

subjective uncertainty. This description will be given in the context of several recent PAS for the Waste Isolation 

Pilot Plant (wIpP).21-29 However, the underlying concepts and associated structure are relevant to PAS for any 

system that involves both stochastic and subjective uncertainty. 
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2. Probability 

Probability is more than a number between 0 and 1. Rather, there are three elements in the development of 

probability: (1) a set Sthat contains everything that could occur for the particular "universe" under construction, (2) 

a suitably restricted set d of subsets of 8, called a Bore1 or o-algebra, and (3) a function p defined for elements of d 
that actually defines pr~bability?~"' In particular, d has the properties that (1) if & E d, then ec E d, where the 

superscript c is used to denote the complement of €, and (2) if { & i} is a countable collection of elements of d then 

u& and ni% are also elements of d and p has the properties that (1) p ( g  = 1, (2) if e E d, then 0 < p ( q  < 1, and 

(3) if 4, 5, ... is a sequence of disjoint sets from d (i.e., 4 n 4 = $ if. i #I], then p(u& = Zip(c$). The triple 

(8, d, p )  is called a probability space. In the terminology of probability theory, &'is the sample space, the elements 

of $are elementary events, and the subsets of Scontained in d are events. In most applied problems, the function p 
defined on d is replaced by a density function d such that, if f. E d, then 

In a careful development of probability, the preceding integral would be a Lebesgue integral, but for our purposes it 

can be assumed to be the Riemann integral of elementary calculus. The properties of the set denter into the formal 

development of the concept of integration over 8. The notation dVis used in Eq. (1) because S i s  multidimensional 

(e.g., Sc Rn) in most problems of interest. 

Problems involving probability usually relate to the behavior of a function f defined on the sample space S 
associated with a probability space (8, d, p) .  For example, the expected value offis given by 

Similarly, the complementary cumulative distribution function (CCDF) associated withfis given by 

where 

and CCDF(R) is the probability that a value of R will be exceeded by f. In an unfortunate but widely-used 

terminology,f is referred to as a random variable. 
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The CCDF defined in Eq. (3) is defined over the entire sample space 8 It is also possible to define CCDFs 

conditional on the occurrence of subsets of 8 In particular, the CCDF associated with f conditional on the 

occurrence of a subset €of Sis  given by 

where 6, is defined in Eq. (4) and CCDF(R1 e) is the probability that a value of R will be exceeded by fgiven that 

consideration is restricted to the set e The probabilities CCDF(Rl6 are conditional probabilities because of the 

restriction of consideration to the subset €of 8 

An additional important concept that arises in PAS for complex systems is that of a product space. Many 

problems involve more than one probability space. For example, two probability spaces (Sl, dl, pl) and (S2, d2, 
p2) might be involved in the formulation of a problem. Then, a third probability space (8, d, p )  can be obtained by 

combining (Sl, 4, pl) and (s2, J2, p2), where 

d= d lx  d 2 = { e : e = e 1 x e 2 , w h e r e E l ~  d2}, (7) 

The definition of p ( € )  in Eq. (8) implies that (S,, d,, pl) and (S2,  d2, p2) are independent in the sense that the 

occurrence of elements of 8, has no effect on the occurrence of elements of S2 and vice versa. If such is not the 

case, then more involved relationships are required to define p .  



3. Probability in PAS for the WIPP 

Now that a few basic ideas from probability have been introduced, the use of probability in PAS for complex 

systems is considered. This usage will be motivated and illustrated by procedures used in several recent PAS for the 

WIPP (Le., in 199121-24 and 199225-29). The use of probability in these PAS derives from the EPA Containment 

Requirement 40 CFB 191.13,33934 which follows: 

Q 191.13 Containment Requirements. 

(a) Disposal systems for spent nuclear fuel or high-level or transuranic radioactive wastes shall be designed 
to provide a reasonable expectation, based upon performance assessments, that cumulative releases of 
radionuclides to the accessible environment for 10,000 years after disposal from all significant processes and 
events that may affect the disposal system shall: 

(1) Have a likelihood of less than one chance in 10 of exceeding the quantities calculated according to Table 
1 (Appendix A); and 

(2) Have a likelihood of less than one chance in 1,000 of exceeding ten times the quantities calculated 
according to Table 1 (Appendix A). 

(b) Performance assessments need not provide complete assurance that the requirements of 191.13(a) will be 
met. Because of the long time period involved and the nature of the events and processes of interest, there will 
inevitably be substantial uncertainties in projecting disposal system performance. Proof of the future 
performance of a disposal system is not to be had in the ordinary sense of the word in situations that deal with 
much shorter time frames. Instead, what is required is a reasonable expectation, on the basis of the record 
before the implementing agency, that compliance with 191.13(a) will be achieved. 

Containment Requirement 191.13(a) requires that the CCDF for normalized release to the accessible 

environment fall below a boundary defined by the points (0.1,l) and (0.001,lO) as indicated in Fig 1. 

Construction of this CCDF requires a probability space. In the WIPP PA, this probability space is assumed to derive 

from various disruptive events that conceivably could occur at the WIPP over the next 10,000 yr. The defining 

character of these events is that their occurrence involves a relatively rapid change in conditions at the WIPP (e.g., 

volcanism, meteor impact, drilling intrusions, ...). In the WIPP PA, as in many other analyses, the uncertainty 

indtroduced by the possible occurrence of such disruptions is referred to as stochastic uncertainty and is 

characterized by a probability space ( a’,, JSt, p J .  

Review work has indicated that drilling intrusions are the only disruptions at the WIPP with sufficient 

probability to be relevant to assessing compliance with 191.13(a) (Ref. 21, Chapt. 4). Therefore, the probability 

space (a’,, As,, p,,) for stochastic uncertainty is used to characterize the occurrence of drilling intrusions. In the 

computational implementation of recent PAS for the WIPP, the elements x,, of a’, have been vectors of the form 
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1.0 

Fig. 1. Comparison of CCDF for normalized release to the accessible environment with boundary line specified in 
191.13(a). 

1 1  1 1 I I I I 

- - 
Boundary Line: 

where ti is the time of the za drilling intrusion, xi is the location of the i~ drilling intrusion, Zi is the activity level of 

waste penetrated by the i* drilling intrusion, and n is the number of drilling intrusions. The function psr is defined in 

terms of the rate constant h in a Poisson model for drilling intrusions, the area of pressurized brine beneath the waste 

panels, and the repository area occupied by waste of each activity level. 39*40 Given the definition of xst in Eq. (9), 
S, is a subset of R". However, because of upper bounds placed on h, n has been assumed to satisfy the bound 

n 5 nBH in recent PAS for the WIPP, in which case 8, is a subset of R3nBH and, as an example, a subset of R30 if 

nBH= 10. 

The CCDF specified in 191.13(a) is obtained by integrating over 4, as indicated in Eq. (3). Specifically, the 

CCDF for comparison with the EPA release limits is given by 

where R corresponds to normalized release to the accessible environment, the functionfcorresponds to the combined 

operation of models of the form indicated in Fig. 2 to predict the normalized release associated with an element xst 
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Fig.2. Computer programs used in 1991 WIPP PA. Additional information on the individual programs is 
available as indicated: BRAGFLO (Ref. 22, Chapt, 5; Ref. 41, Sect. 3.1), CUTI'INGS (Ref. 22, Chapt. 7; 
Ref. 41, Sect. 3.5; Ref. 42), PANEL (Ref. 22, Chapt. 5;  Ref. 41, Sect. 3.2), SEC02D (Ref. 22, Chapt. 6; 
Ref. 41, Sect. 3.3; Ref. 43), STAFF2D (Ref. 22, Chapt. 6; Ref. 41, Sect. 3.4; Ref. 44). 

of Ssr, vis,,,, = Sst, &p8s,j = 4 if i # j ,  and Xsf,, E 6''t,,i. The approximation to the integral in Eq. (1) indicated in 

EQ. (1 1) is calculated by the program CCDFPERM4 in recent PAS for the WIPP. 

Once (&, .ds, psf) andfhave been developed, the first of several types of conditional CCDFs is possible. In 
particular, a CCDF conditional on the Occurrence of a specific subset e of S', can be determined. For example, let 

& be defined by 
' I  

& = {Xs; xSt E 5, and involves one or more drilling intrusions}, (12) 

which is equivalent to defining E, to be the set of all vectors of the form defined in Eq. (9) with n 1 1. The 

corresponding conditional CCDF is given by 

where CCDF(RI &I)  is the conditional probability of exceeding a normalized release of size R given that at least one 

drilling intrusion has occurred. Examples of CCDFs conditional on the set 6 in Eq. (12) are shown in Fig. 3. 
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Fig. 3. Original (unconditional) CCDFs and CCDFs conditional on one or more drilling intrusions (i.e., on the set 
5 in Eq. (12)) for release to the accessible environment due to groundwater transport and release to the 
accessible environment due to cuttings removal for sample element 46 in 1991 WIPP PA. 

If there was no uncertainty as to how the functionfand density d,, in Eq. (10) should be defined, then the CCDF 

required in 191.13(a) could be calculated and compared with the specified boundary line. With complete certainty, 

191.13(a) would either be met or not met, and there would be no additional uncertainty to be considered in the 

analysis. However, this type of certainty never exists in an analysis for a complex system, which is where 191.13@) 

enters the analysis and leads to an additional probability space. 

Containment Requirement 191.13(b) requires a “reasonable expectation” that compliance with 191.13(a) will be 

achieved. The goal in recent PAS for the WIPP has been to assess this reasonable expectation on the basis of the 

effects that fixed, but poorly known, quantities have on the location of the CCDF specified in 191.13(a). To this 

end, the functionfand density d,, in Eq. (10) were developed so thatf(x,,) and d,,(x,,) depend on quantities that are 

believed to have fixed values (at least within the resolution of the modeling being used). In other words,fand d,, are 

treated as being of the formf(x,,, x,,) and ~,,(x,)x,,), where x,, E S,, and x,, is a vector of fixed, but poorly known, 

quantities. Distributions are then assigned to the elements of x,, to characterize where their true, but unknown, 

values are believed to be located. In turn, the location of the distribution of CCDFs that results from the uncertainty 

in x,, provides a measure of the assurance with which 191.13(a) can be met. The development of distributions for 

the elements of x,, is still in progress in the WIPP PA,233U with the result that the PA has not yet arrived at the point 

where all distributions in use can be viewed a providing representations for where “true, but unknown, values are 
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believed to be located." In particular, the analysis is still at a stage where some distributions are assigned primarily 

to help assess the sensitivity of analysis outcomes to the associated input variable. 

Definition of distributions for the elements of X,, defines the probability space (S,,, d,,, p,,) for subjective 

uncertainty. Here, subjective uncertainty is used to designate a lack of knowledge about a fixed, but unknown, 

quantity. The study of subjective uncertainty is the primary domain of classical statistics, although many analyses for 

complex systems find that they must rely heavily on expert-review processes4548 to assess subjective uncertainty 

[Le., to define (s,, dsu, p,,)]. In the 1991 WIPP PA, Xsu contained the 45 variables indicated in Table 1; thus, s,, 
is a subset of R45. For notational ease, integrals over elements of 4, will be expressed with the density function d,,. 

Thus, 

Table 1. Examples of Imprecisely Known Variables Considered in 1991 WlPP PA (adapted from 
Table 3-1 of Ref. 24, App. A of Ref. 41 and Table Vlll of Ref. 49, which list all 45 variables 
considered in the 1991 WlPP PA). The variables indicated in this table and their 
associated distributions define the probability space (S,,, 4,, p,,) for subjective 
uncertainty. 

~ 

Variable Definition 

1 BHPERM Borehole permeability. Range: 1 x lWi4 to 1 x 10-" m2. Distribution: Lognormal. 

2 BPPRES 

3 BPSTOR 

Initial pressure of pressurized brine pocket in Castile Formation: Range: 1.1 x lo7 to 2.1 
x lo7 Pa. Distribution: Piecewise linear. 

Bulk storativity of pressurized brine pocket in Castile Formation: Range: 2 x 1W2 to 2 
m3. Distribution: Lognormal. 

4 BPAREAFR Fraction of waste panel area underlain by a pressurized brine pocket (dimensionless). 
Range: 2.5 x 10-' to 5.52 x 10-l. Distribution: Approximately uniform. 

23 LAMBDA 

45 W O O D  

Rate constant in Poisson model for drilling intrusions. Range: 0 to 1.04 x 1Wl1 s-*. 
Distribution: Uniform. 

Fraction of total waste volume that is occupied by IDB (Integrated Data Base)5o 
combustible waste category (dimensionless). Range: 2.84 x 10-' to 4.84 x 10-l. 
Distribution: Normal. 
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At this point, the WIPP PA involves two probability spaces,(S’,, d,,, p,,) and (S,, d,,, p,,), and the actual 

object of study becomes the product space (& d, p )  derived from these two individual spaces [see Eqs. (6) - (8)l. 
Definition of the probability function p associated with this product space is actually more complicated thari 

indicated in Eq. (8) because elements of s,, affect the definition of psr In particular, p has the form 

where e= E,, x E,, E d, d is the density function associated with p ,  and d,, is now a function of both x,, and X,, 

(Table 2). 

Three different CCDFs associated with the product space containing s,, x 8, for normalized release to the 

accessible environment are presented in PAS for the WIPP: an unconditional CCDF based on the entire product 

space, a CCDF conditional on the occurrence of a specific element of S’,, and a CCDF conditional on the 

occurrence of a specific element of Ssr In addition, a cumulative distribution function (CDF) based on the 

probability space (S,,, A,,, p,,) also plays an important role. Each of these cases is now discussed. 

Table 2. Definition of Density Functions for (S,,, d,,,p,,), (S,,, d,,,p,,) and (5 d, p) .  

Density Functions Assumed to be Known 

d,, (x,,) = density function for (s,,, d,,, p,,) 

d,, ~ X , ~ X , , )  = density function for (S,,, A,,, p,,) given Xsu 

Constructed Density Functions 

10 



3.1 Unconditional CCDF on Product Space for SSt x S', 

The unconditional CCDF based on the entire product space is given by 

where CCDF(R) is the probability that a normalized release of size R will be exceeded. In the 1991 WIPP PA, the 

functionfderives from the combined operation of the CU'ITINGS, B ~ G F L O ,  PANEL, SEC02D and STAFF2D 

models as indicated in Fig. 2; in the 1992 WIPP PA, the STAFF2D model was replaced by the SECOTP model (Ref. 

26, App. C; Ref. 28, Chapt. 6). The CCDF in Eq. (16) is designated as the mean CCDF in PAS for the WIPP (see 

Figs. 4 and 5, with an approximation to the CCDF defined in Eq. (16) appearing in Fig. 5). The reason for the 

designation "mean CCDF will be discussed later. 

The integral in Eq. (16) is too complicated to be evaluated with a closed-form procedure. Rather, a numerical 

approximation must be used. In the WIPP PA, a two stage procedure is used to approximate this integral. In the 

first stage, Monte Carlo techniques are used to approximate the outer integral in Eq. (16). Specifically, a Latin 

hypercube sample5I 

X , , ,  k = 1 , 2, . . . , nLHS, (17) 

is generated from the sample space 4, associated with the probability space (S,, dsu, psu), which leads to the 

following approximation to CCDF(R): 

In the WIPP PA, the Latin hypercube sample is generated with the LHS program52 and the mechanics of performing 

the indicated summation take place in the CCDFPERM program?O In the second stage of the procedure, the 

integrals in Eq. (18) are evaluated with an importance sampling procedure (Ref. 53, Sect. 5.4) that involves the 

subdivision of the sample space 4, associated with the probability space (4, As,, p,,) into a sequence SstP i = 1, 

2, ..., nS, of disjoint subsets such that uiSst,, = Ssr Although the notation in use does not explicitly indicate it, (s',, 
dst, pst) actually changes from sample element to sample element (Le., is a function of xsu) due to the dependence of 

pst on variables contained in xsu, with the result that the sets Sst,,i and the probabilities pst( &'&) can also change from 

sample element to sample element. Once the 4t,i are defined, the approximation to CCDF(R) becomes 

. I  
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Fig.4. Distribution of CCDFs for normalized release to the accessible environment including both cuttings 
removal and groundwater transport with gas generation in the repository and a dual-porosity transport 
model in the Culebra Dolomite (Ref. 24, Fig. 2.2-2; Ref. 49, Fig. 2). 
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Fig. 5. Mean and percentile curves for distribution of CCDFs shown in Fig. 4 (Ref. 24, Fig. 4.1-1; Ref. 49, Fig. 6). 
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where Xsf,i E &i  and pst ( S,f,i) is defined by 

In terms of implementation, f ( x S ,  xSyk) is calculated with CUTTINGS, BRAGFLO, PANEL, SEC02D and 

STAFF2D for a relatively small number of elements xsr of &",; the results for these elements are then used to 

construct (Le., estimate)f(xsf,i, XsU,J for the large number of xst,i involved in the summation in Eq. (19)?O This 

construction process takes place in the program CCDFPERM, as does the evaluation of the probability pst( Ss,,i) in 

Eq. (20). The mean CCDF in Fig. 5 was produced by the calculation shown in Eq. (19). 

3.2 CCDF Conditional on Element of 4, 

The construction of a CCDF conditional on the occurrence of a specific element of 4u is now considered. It is 

useful to begin by considering the more general case of a CCDF conditional on the occurrence of an arbitrary subset 

tsu of 8,. The corresponding conditional CCDF for normalized release to the accessible environment has the form 
shown in Eq. (3, where the probability space under consideration is the product space associated with 4, x 4u. As 

a result, the CCDF is actually conditional on the occurrence of 8, x 2,. Specifically, 

where CCDF(RI Ssf X e,) is the probability that a normalized release of size R will be exceeded conditional on the 

occurrence of S,, x %,. 

For a CCDF conditional on the occurrence of a specific element zsu of SSu, the set CSu will contain only zsu, 
with the outcome that the integrals in the numerator and denominator of Eq. (21) will be zero. As a result, Eq. (21) 

cannot be applied directly to obtain ccDF(RI $st {:su}) Instead, the desired probability is obtained by taking the 

limit of the expression in Eq. (21) as the size of the set && containing zsu approaches a volume of zero (i.e., as 

V( $,) -+ 0). Specifically, cCDZfR18st X {zsu}) is defined by the limit 



[by mean value theorem with E,,, ?,, E E,,] 

provided the functions involved are "reasonably" behaved. 

The expression CCDF(RI8,t X{Z,,}) as defined by the integral in Eq. (22) gives the probability of exceeding a 

normalized release of size R conditional on the occurrence of the element zsu of 4,. In PAS for the WIPP, this 

probability is approximated by 

with use of the same notation as in Eq. (19). In particular, the probability of exceeding a normalized release of size 

R conditional on the occurrence of a sample element x , , , ~  of the form indicated in Eq. (17) is 

Plots of the resultant CCDFs for the individual sample elements in the 1991 WIPP PA appear in Fig. 4. The 

calculation indicated in Eq. (24) to obtain the CCDFs in Fig. 4 is performed in the program CCDFPERIVI."~ 

The CCDF discussed in Sect. 3.1 is often referred to as a "mean CCDFI because it can be viewed as the mean of 

the CCDFs discussed in this section. In particular, the integral for CCDF(RIs,, X{%,,}) in Eq. (22) is the inner 

integral in Eq. (16). 
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3.3 CDF Based on S,, 

The expression CCDF(R I a’, x {xSu}) is a function defined on 4, for each value of R. Thus, this expression 

has a distribution that derives from the probability space (S’,, ds,, pSJ .  For notational reasons, this distribution is 

best expressed as a cumulative distribution function (CDF). In particular, the probability that 

CCDF(R I S’, x {xs,}) is less than or equal to p is given by 

where 6, is defined as indicated in Eq. (4). The CDFs defined by Eq. (25) are characterizing the uncertainty in the 

exceedance probabilities that are used in comparisons with the boundary line specified in 191.13(a). The probability 

space ( S’,, As,, ps,) characterizes how well we (Le., all the analysts involved) know the appropriate values for use 

in the modeling system employed in a PA for the WIPP. The uncertainty in this input translates into corresponding 

uncertainty in quantities predicted by the PA. Among these uncertain quantities are the exceedance probabilities 

associated with normalized releases of different sizes. The CDFs defined by Eq. (25) characterize a degree of belief 

with respect to where these exceedance probabilities are located and thus provide a measure of the assurance 

requested in 191.13(b) that 191.13(a) will be met. 

As is the case for all integrals over probability spaces in PAS for the WIPP, the integral in Eq. (25) must be 

approximated numerically. Specifically, the following approximation is used: 

where notation is the same as used in Eq. (19). Further, Eq. (19) provides an approximation to the expected @e., 

mean) value of CCDF(RI a’, x{x,,)), where this expectation derives from (a’,, d,,, p J .  As an example, the 

CDFs that result for the results summarized in Fig. 4 and values of R = 0.001,O.Ol and 0.1 are shown in Fig. 6. The 

preceding procedure for estimating the integral in Eq. (25) for a given value of R is equivalent to determining the 

number nE(5p) of CCDFs that have an exceedance probability less than or equal to p and then defining CDF@,R) to 

be nE(Lp)/nLHS. The percentile curves (Le., loh, 50h (median), 90h) and mean curve in Fig. 5 result from 

connecting the corresponding percentile and mean values for individual normalized releases. Thus, these curves 

provide a compact summary for distributions of the form shown in Fig. 6. A CDF is used to represent the 

uncertainty in exceedance probabilities so that the distributions in Fig. 6 will have the same orientation as the 

percentile curves in Fig. 5. 
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Fig. 6. Estimated CDFs for exceedance probabilities associated with normalized releases to the accessible 
environment of R = 0.001,O.Ol and 0.1 in Fig. 4. 

The percentile values on which the percentile curves in Fig. 5 are based are conditional on individual 

normalized release (Le., R) values. Thus, these curves characterize the uncertainty in the probability that specific R 

values will be exceeded rather than the uncertainty in the location of entire CCDFs. For example, it is inappropriate 
to conclude that there is a probability of 0.9 that a CCDF produced for a randomly selected element of S’, will fall 

below the 90th percentile curve. The probability that a CCDF will fall below a specified boundary line (e.g., the 

boundary line defined in 40 CFR 191.13(a) and illustrated in Fig. 4) can be estimated by generating a sample from 
8, as indicated in Eq. (17) and then dividing the number of CCDFs below the boundary line by the sample size. In 

contrast as shown by the development leading to Eq. (19), connecting the mean exceedance probabilities for 

individual R values produces the unconditional CCDF discussed in Sect. 3.1. 

3.4 CCDF Conditional on Element of S’, 

The construction of a CCDF conditional on the occurrence of a specific element of 4, is now considered. This 

case is similar to the case considered in Sect. 3.2 for a CCDF conditional on the occurrence of a specific element of 
S,. It is useful to first consider the more general case of a CCDF conditional on the occurrence of an arbitrary 

subset E,, of Ssp The corresponding conditional CCDF for normalized release to the accessible environment has the 

form shown in Eq. (3, where the probability space under consideration is the product space associated with S‘, x 
&. As a result, the CCDF is actually conditional on the occurrence of Est x Ssu. Specifically, 
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where CCDF(R I e,, x Ssu ) is the probability that a normalized release of size R will be exceeded conditional on the 

occurrence of Est x &. 

To obtain a CCDF conditional on the occurrence of an element %,, of &",, it is necessary to consider the limit of 

the expression in Eq. (27) as the volumes of sets Est that contain zst go to zero (Le., as V( Est) + 0). Given the ratio 

in Eq. (27), this limit does not have a simple form due to the dependence of f(x,, xSu) and ds,(xs, I xsu) on xsu. 
However, considerable simplification is possible provided there is no'relationship between the variables in xsu that 

affect f and the variables in xSu that affect dsr As discussed in the next paragraph, this is the case in recent PAS for 

the WIPP. 

In recent PAS for the WIPP, the probability space <&,, dsu, psu) for subjective uncertainty is itself a product 

space obtained by combining a probability space (s,,,, dsu,d. pSu,d), which characterizes the uncertainty in 

variables used in the definition of the functions pst and dsr and a probability space ( sSuf ,  &, psuf), which 

characterizes the uncertainty in variables used in the definition of the function$ The elements xsu,d of Ssu,d are of 

the form 

Xsu,d = [BPAREAFR, LAMBDA], 

where BPAREAFR and LAMBDA are defined in Table 1. Thus, Ssu,d is a subset of R2. The distributions indicated 

in Table 1 provide the information needed to complete the definition of (ssu,, f&, pSu,d). Similarly, the elements 

xsu,!of 4u,fare vectors containing the remaining 43 variables indicated in Table 1 (Le., Ssufis a subset of R43) and 

the indicated distributions in Table 1 provide the information needed to complete the definition of (Ssu2 d,, 
psuJ). As S', = &d x quf) each element X,, of &", has the form 



where dsu,d and dsu,are the density functions associated with the probability spaces ( Ssu,d, dSu,d, pSu,d) and ( ssu2 
dsu3 psu,), respectively, and the indicated decomposition in Eq. (30) follows from the assumed independence of the 

two preceding spaces. 

Due to the considerations indicated in the preceding paragraph, the relationship in Eq. (27) is actually of the 

form 

CCDF(R1 €st x &) 

- - ' €s t  '&u,d '&,f G R [ f ( x s t - x s u , f ) ]  dsu, f (xsu, f )  dsu,d (xsu,d) dst (xstlxsu,d) %,f d%,d d&t 

dsu, f k s u ,  f ) dsu,d (xsu,d) dst (xstlxsu,d) d&, f d&u,d d& 
"ist '&u,d '&u,f 

= '€st  '&u,d '&u, f 6 R [ f ( x s t , x s u , f ) ]  dsu,f (xsu , f )  dsu,d (xsu,d) dst (xst lxsu,d)  &,f d&u,d d& 

"€st '&u,d dsu,d (xsu,d) dst (Xst lXsu,d)  d&u,d dht 

in recent PAS for the WIPP. 

The expression in Eq. (31) can now be used to obtain the CCDF for normalized release to the accessible 
environment conditional on the occurrence of an element iist of Ssr Specifically, with the assumption that iist E 

Est2 

I [ '%,d dsu,d (xsu,d)dst ( ; . lxsu,d)dv. , ,d ]  v(€st) } 
[from Eq. (31) by mean value theorem with Xst, is, E est] 
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= limit R [f(j7st 9 xsu, f )] dsu, f (xsu, f ) dVsu, f } 

provided the functions involved are "reasonably" behaved. The representation for CCDF(Rl{%,t}X Ssu) in Eq. (32) 

gives the probability that a normalized release of size R will be exceeded conditional on the occurrence of the 

element iist of 4r 

As is the case for all integrals discussed in this presentation, the WIPP PA does not evaluate the integral in Eq. 

(32) directly. Rather, an approximation procedure is used. Specifically, 

where, in consistency with the notation used in Eq. (32), the elements of the Latin hypercube sample indicated in Eq. 

(17) are assumed to be of the form 

The 1991 WIPP PA evaluated CCDFs of the form defined in Eq. (33) for 10 elements of 4; single drilling 

intrusions at 1,000,3,000,5,000,7,000 and 9,000, yr and ElE2-type drilling intrusions at 1,000,3,000,5,000,7,000 

and 9,000 yr, where an ElE2-type intrusion involves two or more boreholes penetrating the same waste panel, with 

at least one intrusion penetrating a pressurized brine pocket and at least one intrusion not penetrating a pressurized 

brine pocket. The resultant CCDFs for groundwater transport to the accessible environment are shown in Fig. 7. As 

illustrated in Fig. 8, box plots are often used in the WIPP PA to summarize distributions of the form appearing in 

Fig. 7 due to their greater compactness and legibility. 

If x,, does not have the decomposition in Eq. (29), the outcome of evaluating the limit in Eq. (32) is 
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Fig. 7. Complementary cumulative distribution functions for normalized release to the accessible environment due 
to groundwater transport conditional on the occurrence of individual elements of Ssr The upper plot frame 
contains CCDFs for single intrusions at 1000, 3000, 5000 and 7000 yrs (Le., for scenarios s(l,O,O,O,O), 
s(O,l,O,O,O), s(O,O,l,O,O), s(O,O,O,l,O) in the notation used in the 1991 WIPP PA); a single intrusion at 
9000 yr (i.e., scenario s(O,O,O,O,l)) resulted in no release. The lower plot frame contains CCDFs for ElE2- 
type drilling intrusions at 1000, 3000, 5000, 7000 and 9000 yrs (i.e., for scenarios &'+-(2,0,0,0,0), ... , 
5+-(0,0,0,0,2)). 
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Fig. 8. Alternative summary of CCDFs in Fig. 7 with box plots (Ref. 24, Fig. 4.4-1; Ref. 49, Fig. 10). 



where d s u ( ~ s u l ~ s t )  is the density function for x,, conditional on the occurrence of Zst (Table 2). If a sample from 

s', of the form indicated in Eq. (17) is used, then the CCDF in Eq. (35) can be approximated by 

which is equivalent to use of the reweighting procedure proposed by Iman and Conover. 54 

3.5 Alternate Construction of Unconditional CCDF on Product Space S',x S', 

The unconditional quantity CCDF(R) was obtained in Eq. (16) by integrating over the probability space 

associated with S= 4, x S',. As discussed in Sect. 3.2, CCDF(R) is the mean of CCDFs conditional on individual 

elements of *SSu, with this mean being calculated with respect to (S',, A,,, p J .  Eqs. (18) and (24) show that an 

approximation to CCDF(R) can be constructed by first approximating CCDFs conditional on elements of s,, 
obtained by random or Latin hypercube sampling and then vertically averaging these CCDFs. 

An alternate approximation procedure for CCDF(R) is to calculate CCDFs conditional on elements of 4, as 
discussed in Sect. 3.4 and then vertically average these CCDFs over ( Sst, As,, p J .  Formally, 

An approximation to CCDF(R) is obtained by subdividing Sst into a sequence Ss,,i, i = 1,2,  ..., nS, of disjoint 

subsets. Specifically, 

[by generalized mean value of theorem with x,,,~ E S,,,i] 



[from definition of dsf (x,, ) in Table 21 

where in the final equality 

is the probability of 4f,i given x,, and 

is the expected value of p(Ssf,i I xsu) over ( &,, J,,, p,,). 

If a sample from 4, of the form indicated in Eq. (17) is used, then the results in Eqs. (36) and (38) can be 

combined to obtain the following approximation to CCDF(R): 

where { -} is an approximation to a CCDF over subjective uncertainty conditional on the occurrence of an element 

x ~ ~ , ~  of &"f,i and is an approximation to the expected value over subjective uncertainty for the probability of 
4f,p If xsU has the decomposition indicated in Eq. (29) and a sample of the form in Eq. (34) is used, then the results 

in Eqs. (33) and (38) can be combined to obtain 

where { - } 1  and { - } 2  have the same interpretation as in Eq. (41). 

The approximations to CCDi(R) in Eqs. (41) and (42) both involve a construction procedure of the form 

indicated in Fig. 9, with CCDFs conditional on the occurrence of individual elements of S,, being constructed and 

then vertically averaged to obtain an approximation to CCDF(R). The first term (i.e., I-}*) in Eqs. (41) and (42) is 
an approximation to the conditional CCDFs (i.e.7 to CCDF(RI (xsf , i }x  Ssu) in Fig. 9. The second term (i.e., { -}2) 

in Eqs. (41) and (42) is an approximation to the probability (i.e.7 to P(&"~,~) )  of the subsets Ss,,i of 4, on which the 
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Fig.9. Construction of Unconditional CCDF on S,, x S,, (Le., CCDF(R)) by Vertically Averaging CCDFs 
Conditional on the Occurrence of Elements of 8,. 

construction of CCDF(R) is based. The summation in Eqs. (41) and (42) produces an approximation to the CCDF 

labeled CCDF(R) in Fig. 9. 

Although Eqs. (41) and (42) approximate p(SStJ in the same manner, the approximations to 

CCDF(R1 (xs,,i}~ S,,) are different. The independence of variables that affectf(x,,, xSud) and d,,(x,, I xSyd) in Eq. 

(42) allows the approximation to CCDF(RI{X,,~}X S,,)to be constructed directly from the values offixst,i, xsudk) 
calculated for the sample elements xSudk, kl, 2, ..., nLHS. In contrast, the corresponding lack of independence for 

Eq. (41) requires the inclusion of a weighting term in the approximation to CCDF(RI { ~ , , , i  ). S,,) . 

The approximation procedure in Eq. (42) has often been proposed for estimating CCDF(R), with there typicaily 

being no uncertainty in the probability for subsets S,t,i of Ssr 55-59 However, there are two disadvantages to the use 

of Eq. (42). First, by directly constructing CCDF(R) from CCDFs conditional on elements of S,,, the uncertainty 

associated with (S,,, d,,, p,,) that leads to multiple possible CCDFs for comparison with 40 CFR 191.13 is 

obscured. Second, when many subsets S,t,i of S,, are in use, this procedure can become computationally unwieldy. 

For example, nS exceeded lo6 in the construction of some of the CCDFs in Fig. 4 (see Ref. 40, Table 2). In 
addition, the use of Eq. (41) when the variables associated with (S,,, d,,, p,,) that affectf(x,,, xSu) and d,,(xSt I X,,) 
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are not independent requires the inclusion of weights with the calculated results for individual sample elements. The 

requirements for these weights is the reason why the approximation in Eq. (20) of Ref. 15 will not, in general, 

produce the same CCDF as the approximations in Eqs. (19) and (41); however, it does produce the same CCDF as 

Eq, (42) when the variables that affectf(x,,, x,,) and dSt(xst I x,,) are independent. 
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4. Discussion 

As evidenced by the extensive discussion in Refs. 1-20, much interest exists in the treatment of uncertainty in 

PAS for complex systems. Indeed, the incorporation of uncertainty into the outcomes of an analysis is the essence of 

a PA for a complex system. However, appropriately drawing a distinction between the uncertainty that arises 

because the system can behave in many different ways (Le., stochastic uncertainty) and the uncertainty that arises 

from a lack of knowledge on the part of the analysts conducting the PA (i.e., subjective uncertainty) remains an area 

of considerable confusion. 

This presentation describes and illustrates a formal approach to representing the uncertainty in a PA for a 

complex system in which a probability space (s,,, d,,, psr) is used to characterize stochastic uncertainty, a 

probability space (s',, dsu, p,,) is used to characterize subjective uncertainty, and the models used in the PA are 

functions (Le., random variables) defined on the product space associated with (4,, Asp psr) and (S',, d,,, p J .  

Initially, this can sound very complicated. However, this structure produces a relatively simple conceptual 

description of a PA into which the many individual components of the PA can be placed and leads naturally to the 

actual calculations that are performed within a PA. 

The development of the probability space (s',, As,, psr) is central to all PAS. For example, the fault and event 

tree techniques that play an important role in many large analyses can be viewed as algorithms for developing, or at 

least approximating, (S',, d st, p,,). An inevitably-posed question in every large PA involves completeness; 

specifically "Did the PA consider everything that could occur in the system under study?". What this question is 

actually asking is whether or not the sample space 4, was appropriately defined. Another activity that arises in one 

form or another in all PAS is scenario development and involves the selection of subsets of & for consideration in 

the PA. Typically, scenarios are elements of dt for which probabilities are determined and consequence 

calculations are carried out. Thus, scenario development can be viewed as the determination of sets in d, for 

inclusion in the PA. Finally, psr must be developed if probabilistic statements are to be made about occurrences in 

the system under study. An important point that should be recognized is that, although probabilities are determined 

for subsets of 4,, consequence calculations are performed for individual elements of 4r Thus, an important 

consideration in scenario development is to obtain subsets of S', that are reasonably homogeneous so that a 

calculation performed for an arbitrary element of 4, in a scenario will produce results that are reasonably close to 

what would be obtained for any other element of 4, associated with the scenario. 

A clear conceptual model for a PA is very important. At the same time, it is important to recognize how 

computational practice diverges from this conceptual model. For example, in most large analyses S,,, d,, and psf 

are never fully developed. Rather, fault and event tree techniques or some other construction procedure are used to 

develop a collection of disjoint sets that spans 4r The nature of S', is then inferred from these sets, and p,, is 

defined only for these sets. Thus, although a probability space (S,, d,,, p,,) for stochastic uncertainty underlies the 
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analysis, this space is never known completely. Rather, enough information about (S,,, d,,, p,,) is developed to 

allow the analysis to be performed but a complete construction of ( 4,, d,,, p,,) is not carried out. 

Much of what is done in a PA involves integrations performed with the probability spaces (&, A,,, p,,) and 

(S,,, d,,, p,,). Integration of suitably defined functions over (S,, J,,, p,,) leads to the CCDFs that are typically 

presented as the outcomes of PAS for complex systems. For most systems, integration procedures based on 

importance sampling or Monte Carlo techniques are used. In the example contained in this presentation, an 

integration procedure based on importance sampling was used to estimate the CCDF specified in &e EPA's 

regulation 191.13(a) for the geologic disposal of radioactive waste. This CCDF could also have been estimated with 

Monte Carlo procedures.6° The fault tree and event tree techniques used in many large analyses to develop scenarios 

can also be viewed as algorithms to define importance sampling procedures for integration over (S,,, d,,, p,,). 

Importance sampling procedures are often used because they provide a way to assure the inclusion of low probability 

but possibly high consequence subsets of S,, in the analysis. What are rather lightly referred to as "suitably defined 

functions" at the beginning of this paragraph are often sequences of complex computer programs. Thus, the closed 

form evaluation of integrals is typically not a possibility in PAS for complex systems. 

The probability space (S,,, d,,, p,,) enters a PA when it is desired to express the analysts' confidence in the 

outcomes of the study. Often, (S,,, d,,, p,,) is developed at least in part through an expert review process in which 

distributions are developed to characterize the state of knowledge uncertainty in individual variables used in the 

analyses. Taken collectively, these distributions then define (S,,, d,,, p,,). In the example contained in this 

presentation, the uncertainty characterized by (S,,, dsu, p,,) leads to an assessment of the "reasonable expectation" 

called for in the EPA's regulation 191.13(b). As for (S,,, d,,, p,,), the implications of the uncertainty characterized 

by (&, A,,, p,,) must be determined by numerical integration procedures. Possibilities include the discrete 

probability method6' and Monte Carlo procedures based on simple random sampling or Latin hypercube sampling. 

The example contained in this presentation and also the NUREG-1150 probabilistic risk a s ~ e s s m e n t s ~ ~ * ~ ~  used Latin 

hypercube sampling because of its efficient stratification properties. 

The integration procedures indicated in the two preceding paragraphs can also be viewed as the outcome of 
experimental designs applied to &, and S,,. Thus, the subdivision of 8, into scenarios (i.e.., elements of d,,) is an 

experimental design based on importance sampling. Similarly, the use of Monte Carlo procedures based on simple 

random sampling or Latin hypercube sampling can be viewed as generating random designs. 

The KapldGarrick ordered triple representation for risk2 provides a useful way to view the structure of a PA 

that is consistent with the ideas discussed in this presentation. In the KapldGarrick representation, risk is 

represented by a set $of the form 

$= {( s;, , ps i ,  CSJ, i = 1,. . ., ns}, (43) 
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where 4 is a set of similar occurrences, psi is the probability that an occurrence in the set 4 will take place, cS, is a 

vector of consequence associated with 4, nS is the number of sets selected for consideration, the sets 4 have no 

occurrences in common, and ui4 contains everything that could occur in the system under consideration. In the 

context of the probability space (s',, ds,, p,,), the 4 are elements of dst, the sample space 4, is equal to ui4, and 

pS, is ,equal to pst(J;:). Further, cSi is obtained by evaluating a function f for a suitably selected element of 4; 
another possibility is that cSi is the expected value o f f  on 4 but this usage is less common. Thus, the 

KapladGarrick ordered triple representation for risk is simply a way to develop the CCDFs for the probability space 

(q,, As,, p,,) and an associated functionfdefined on &. 

Subjective uncertainty enters into the risk representation in Eq. (43) through the recognition that !&is actually a 

function of the form 

where 

x = [ X 1 , X 2 , . . . , X n V ]  

: I  

(45) 

is a vector of imprecisely known inputs required in t.8 analysis. Lack of knowledge about x is subjective uncertainty 
and is characterized by the probability space (s',, Jsu, psu). In practice, (s,,, As,, psu) is defined by a sequence of 

distributions 

for the individual elements xi of X. The effect of this uncertainty is typically characterized by generating a random or 

Latin hypercube sample 

Xk, k =  1, 2, ..., nK, (47) 

for k = 1,2, . . ., nK. The preceding procedure leads to representations of uncertainty of the form shown in Figs. 4-7 

and is equivalent to integrating over the probability space (4,, dsu, psu) as discussed in this presentation. 

An often contentious point that arises in many PAS is whether or not it is meaningful to have a "probability of a 

probability." Such a probability arises quite naturally when product spaces are considered. As discussed in Sect. 3.3 

and illustrated in Fig. 6, a probability can arise from one probability space (e.g., (s',, As,, p,,) in this presentation) 
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and a distribution for this probability can arise from another probability space (e.g., (&,, .d,, psu) in this 

presentation). 

A phrase often used in conjunction with PAS for complex systems is "uncertainty and sensitivity analysis." 

Uncertainty analysis involves determining the uncertainty in analysis outcomes that derives from uncertainty with 

respect to the correctness of the assumptions used in the analysis. In the terminology of this presentation, uncertainty 

analysis is an investigation of the effects of subjective uncertainty. Indeed, the primary purpose of this presentation 

is to provide a formal description of uncertainty analysis in which the dependent variable of interest is a CCDF that 

results from stochastic uncertainty. Sensitivity analysis involves determining the effects of the uncertainty in 

individual variables on various analysis outcomes of interest (e.g., the probability of exceeding a given consequence 

value).63 Although not emphasized in this presentation, sensitivity analysis typically involves determining the effects 

of individual variables associated with the probability space (&, dsu, ps,) on either a function f evaluated at a 

specific point in 4, (e.g., see Ref. 49, Tables M, X, XI) or an exceedance probability that results from integrating f 

over (s',, .d,,, ps,) (e.g., see Ref. 49, Figs. 27, 28). The modifier "typically" is used in the preceding sentence 

because it is also possible, though less commonly done, to use sensitivity analysis techniques to investigate the 

effects of the variability associated with (S',, .ds,, p,,) on predicted quantities of interest. 

The division of uncertainty into stochastic uncertainty and subjective uncertainty greatly helps in the 

organization of a large analysis. At times it is argued that this distinction is artificial. However, when the actual 

computatihal implementation of an analysis must be confronted, the necessary distinctions are usually apparent. 

When these distinctions are not immediately apparent, evaluating them forces the analysts to come to grips with the 

nature of the system that they are studying and the analysis that they are conducting. Even if there is doubt as to how 

an uncertainty should be classified, the use of a formal structure to describe the analysis should leave no doubt as to 

how this uncertainty was actually treated. There is nothing wrong with differing views on how an analysis should be 

conducted and uncertainty treated within the analysis. What is unacceptable is to be unable to determine what was 

done after an analysis is completed. 

: . ..-. 

This presentation has described a paradigm for the description and organization of a PA for a complex system. 

In this paradigm, a PA involves three basic components: a probability space (&,, dst, pst) for stochastic uncertainty, 

a probability space (s',, -dsu, p,,) for subjective uncertainty, and a function defined on the product space associated 

with (&,, Jsp pst) and (4,, -dsu, psu). AI1 of the basic results used in expressing the outcomes of a PA can be 

described in terms of these three components. The formalism associated with this paradigm is certainly not for 

presentation to all groups that may be involved in or interested in a given PA. However, there should be a core of 

individuals associated with any PA who have a clear conceptual understanding of the organization of the analysis. 

These individuals can then assure that the treatment of uncertainty and the modeling of physical processes is 

consistent with this organization and that analysis results are presented in a way that properly communicates what 
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was done in the analysis. The structure described and illustrated in this presentation provides a basis for such an 
understanding. 
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