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ABSTRACT
Often, in a regression situation with many variables, a sequence of submodels is gen-
erated containing fewer variables using such methods as stepwise addition as deletion
of variables, or "best subsets". The question is which of this sequence of submodels
is "best", and how can submodel perfornance be evaluated. This was explored in
Breiman [1988] for a fixed X-design. This is a sequel exploring the case of random
X-designs.

Analytical results are difficult, if not impossible. This study involved an extensive
simulation. The basis of the study is the theoretical definition of prediction error (PE)
as the expected squared error produced by applying any prediction equation to the dis-
tributional universe of (y,x) values. This definition is used throughout to compare
various submodels.

There are startling differences between the x-fixed and x-random situations and
different PE estimates are appropriate. Non-resampling estimates such as Cp, adjusted
R2, etc. turn out to be highly biased and almost worthless methods for submodel selec-
tion. The two best methods are cross-validation and bootstrap. One surpnse is that 5
fold cross-validation (leave out 20% of the data) is better at submodel selection and
evaluation than leave-one-out cross-validation. There are a number of other surprises.

* Work supported by NSF Grant No. DMS-8718362.



Dans l'analyse de problemes de regression 'a plusieurs variables (independentes), on
produit souvent une serie de sous-modeles constitues d'un sous-ensemble des variables
par des methodes tels que l'addition par etope, le retroit par e'tope et la methode du
"meilleurs sous-ensemble". Le probl'eme est de determiner liquel de ces sous-
mod'eles est "le meilleux et d'evaluer sa performance. Ce probleme fut explore dans
Breiman [1988] dans le cas d'une matrice X fixe. Dans ce qui suit, on consideire le
cas de la matrice X etant aliatoire.

La determination de resultats analytiques est dificile, si non impossible. Hors cet(te)
etude implique des simulations de grande ervergure. cet(te) etude se base sur la
d6finition theorique de l'erreur de prediction (PE) comme etant l'esperance du carre de
l'erreur produite en applicant une equation de prediction 'a l'inverse distributionel des
voleurs (y,x). cette definition est utilisee afin de comparen divers sous-modeles.

La difference entre les cas de la matrice X fixe et aleatoire est remarkable et
diff6rents estimateurs du PE s'appliquent. Les estimateurs n'utilisant pas de re-
echantillonage, tels que le Cp et le R2 ajuot6, produisent des methodes de selection
grandement biaisees. Leo deux meilleurs methodes sant cross-validation et l'auto-
armarcaze bootstrap. Une surprise est que S-fold cross-validation est mieux que
leave-one-out cross-validation. I1 y a falusieurs outres resultats surprenants.



- 2 -

SUBMODEL SELECTION AND EVALUATION IN REGRESSION-
THE X-RANDOM CASE

Leo Breiman
Philip Spector

Department of Statistics
University of California

Berkeley, California 94720

1. Introduction.

In previous research (Breiman, 1988) we explored the issue of submodel selection and
evaluation when the X-design was fixed and results were conditional on the fixed X-
design. In this present work we look at the situation where the X-design is random.

More specifically, we assume that there is data of the form (yn, xn), n = 1,... ,N
where xn is an M-variate vector. The analyst runs a program that produces regressions
based on subsets of the variables, such as a "best subsets" program or stepwise for-
ward variable addition or stepwise backwards variable deletion. This produces a
sequence of subsets Co, . * . ,M where we take each Cj to denote the indices of the
variables in the regression and I Cj I = J.

The problem is to select the "best" one of these submodels and to give some estimate
of the predictive capability of the submodel selected. In the previous paper we set up
some conceptual definitions to give some flesh to the concept of "best" and predictive
capability. The basic definitions were the x-fixed and x-random prediction errors.

Suppose we have a predictor A (x) for y based on x. In the x-fixed case, consider new
data (ynew, xn), n = 1,... ,n where the ynew have the same distribution and define as
the original yn.

PE = E 1 ynew _ A (x) 12
where we use the notation II al12 - Xan, and the expectation is over the {ynew) only,
which are assumed independent of the original {yn).
If the model generating the {Yn) is

Yn= (x) + en, n = 1,. .. .,N (1.1)

with ETh = 0, Eenq, = Y2 B., Then

PEF = Na2 + 11 a 112
We referred to the term I,n -_ 4112 as the x-fixed model error MEF.
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The assumptions for the x-random case are that the (y., xn) are i.i.d. sampled from the
distribution of (Y, X). In this case, the predictor error was defined as

PER = N E (yflw - A (Xnew))2

where (ynew, xnew) is a random vector with the distribution of (Y, X), but independent
of the (Yn, xn), n = 1, . . . , N and the expectation is over (ynew, Xnew) only.

If Y and X are related by

Y = p (X) + £,
Ee = 0, Ee2 = c2, and £ independent of X, then

PER = N&S2 + N E (g* (xnew)- (Xnew))2

The second term we called the x-random model error MER.

Then the submodel selection and evaluation problem was formulated as follows: let
ME (4) be the model error for OLS regression based on the subset of variables with
indices in C. In the sequence Co, . . . , CM find J that minimizes ME (Cj) and estimate
minJME (J).

We pointed out that what was really being selected was submodel dimensionality,
since in general, there could be many different submodels of the same dimension as Cj
with almost the same residual sum-of squares.

(1. 1) X-Fixed vs X-Random:

If we assume a classical linear model then for the full M-variable model the expected
x-fixed model error is May2, or a2 per variable. In the X-random case, as we will see,
the expected model error is cMa2, where c can be substantially larger than one.

In the latter case, more is gained by variable deletion, the "best" submodel is smaller
than in the X-fixed case and has larger model error. As the sample size -> oo these
differences become small. But they can be quite significant for sample sizes not large
compared to the number of variables.

The model error in the X-random case reflects both the variability due to the noise
components fen) and that due to the randomness in the (xn) as a sample from the X
distribution. If M is a substantial fraction of the sample size N, the latter variability
can contribute more to the ME than the former.

To illustrate this, we look at the full model ME assuming

(x) = z 13m Xmm

(X)= z Omxm
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where i3m are the OLS estimates. Let S = XtX where X is the data matrix. Then,
denoting 'ij = EXi Xj

MEF = (1 P *)S([A )

MER = (1 - *)N4(1 -3*)
or,

MER = (,13 - 1*)(NJS )S (13 - *). (1.2)

The extent to which NrS-1 differs from the identity will govern how much MEF and
MER differ. One useful estimate for NFS-1 is given by cross-validation,

NrS-1 ~ xxnS
-

n

where S_ is the inner product matrix Xt X formed with the exclusion of the nth case.
If we use the identity

-1 - -1 + (S1-xn)t (S-1 xn)
s-~n S1-ha

where hn = xn S-1 xn, then we get

MER- MF + z Ih,, (11 (Xn)- (Xn))2-MRzMEF + 1:

Under (1.1), taking expectations only over (en,

E(MER) MO2+ 2 . (1.2)

The average h, is h = M/N. If the (hn) are fairly constant,

E (MER) Nm MG2

For M = 40 and N = 60, this gives E (MER) - 3Ma2. But if the X-distribution is
skewed and long tailed, some of the (hn) can get near one, with the result that
E (MER) = cMaY2, with c as high as 6-7. This will be further illustrated by our simula-
tion results.

(1.2) Which schema should be used?

In some applications the x-variables are actually controlled and fixed. Here there is no

question of the appropriateness of fixed x methods. But in many other situations, e.g.
observational data, where there is no hope of controlling or replicating the x-variables,
should PEF or PER be used as the "standard"?
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An interesting discussion relevant to this issue is in an article by J. Wu (1986). Refer-
ring. to the fact that unconditional confidence interval estimates need the assumption
that the (xn) are i.i.d. samples, he states "In data analysis how often do analysts
bother to find out what the sampling design is? On the other hand, a conditionally
valid procedure... does not require such a stringent condition on the sampling design".
In the discussion, Tibshirani refers to both conditional and unconditional procedures as
being based on different "gold standards" and argues that it is not clear which one to
use if the x-design is not apriori fixed.

Tibshirani's point is a good one. Much of statistics has to do with the establishing of
standards for the presentation of results and for the understanding of these results.

Suppose, for example, that a faculty member has his freshman class fill out a ques-
tionaire with, say, 40 responses and then regresses the first response on the other 39.
Would the x-fixed or x-random PE be a better measure of the accuracy of the results?
What standard should he use?

To argue that in the absence of knowing that the x-variables are i.i.d. selected from a
well-defined universe, it is better to assume they are fixed (replicable, controlled) is an
argument for a poor standard. In this context, the x-random ME is a much more real-
istic standard.

Not only that, but if the faculty member decides to repeat the questionaire on the fol-
lowing years' freshman class and use the new data to estimate the prediction error of
the equation derived the previous year, then his estimate is clearly much closer in con-
cept to the x-random PE than the x-fixed.

Our belief is that for observational data, where the x-variables are gathered in an
uncontrolled manner, the x-random PE is a better standard, both conceptually and also
in terms of estimating prediction accuracy on future data gathered in a similar way (i.e.
another freshman class).

This is a practical issue as well as a conceptual one. Methods for estimating the pred-
iction or model error depend on whether one wishes to estimate the x-fixed or x-
random values. As Efron (1986) points out, cross-validation gives an estimate of the
x-random PE, and should not be used as an estimate of the x-fixed PE unless the sam-
ple size is large enough to make their difference small.

(1.3) Outline ofpaper
In the arena of submodel selection and evaluation, exact analytic results are hard to
come by. Some were given in the previous paper for the x-fixed case. But the x-
random case seems to be a harder nut to crack.
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However, the problem is too important and pressing to be put off pending the appear-
ance of analytical results. The standard methods used in estimating PE and selecting
submodels are highly biased and usually do poor selection. Here, by standard methods
we mean such things as adjusted R2, Cp, F-to-enter, F-to-delete etc. Reviews of these
appear in Miller [1984] and Thompson [1978].
Data resampling methods such as cross-validation and the bootstrap have become a hot
item in this arena and are being advocated as better PE estimators and submodel selec-
tors. However, no telling results have yet been published. For. these reasons, we
decided to embark on a simulation study having much of the same structure as the ear-
lier study in Breiman (1988). It uses 40 variables at sample sizes 60 and 160.

The basic structure is this: the {xn) are i.i.d. sampled from an underlying X distribu-
tion. The (yn} are formed from

Yn = P*xn + nx
(e1) i.i.d. N(0,as2).

Backwards deletion of variables is used to get the sequence 40, . . . , M. The model
using all M variables is called the full model.

The exact ME and PE for each submodel is computed, so we know what the best sub-
model is, and what its ME is. This is then compared to the ME estimates and submo-
dels selected by a number of different procedures.

In section 2, we give an outline of the methods to be compared. Section 3 discusses
the structure of the simulation. Section 4 gives the global simulation results, and sec-
tion 5 the results relevant to submodel selection and evaluation. Section 6 discusses
the results of some substudies, and 7 presents our conclusions.

2. Methods to be compared.

Denote by t (4) the OLS predictor based on the subset of variables with indices in 4,
and let

ME(4) = N E (p* (XneW) (Xnew, ))2

PE(4) = Na2 + ME (C).
For the particular sequence Co, CM generated by the variable selection, denote
ME (J) = ME (Cj). Let

RSS (C) = IIY-_ A(C) 112
and use subscript zero for full model values, i.e. RSSo = RSS (CM). Each method
given operates by forming an estimate ME (J) of ME (J); selecting the submodel Cj
such that ME (J) = minJME (J') and evaluating the selected subset by its estimated
model error.
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(2.1) Test set

As a benchmark procedure, a test set (yn',xn') n = 1,... , N is sampled, independent
of the original data set, but of the same size. For any subset C, the test set estimate of
PE (C) is

PE(4) = 2 (Yn'- (xn', ))2

To convert this into an ME estimate an estimate of N&2 has to be. subtracted. A rea-
sonable a2 estimate is

2 -_ RSSo"/(N-M)
where RSSO' is the residual-sum-of squares obtained from an OLS full model fit to the
data (yn',xn).
Thus, we use as our test set ME estimate

ME(4) = PE(4) - Na2

which is applied to give ME (J) = ME (4J).

(2.2) Complete Cross-Validation

In complete cross-validation, the nth case (yn, xn) is deleted from the data. The vari-
able selection process is then carried out on the remaining N - 1 cases resulting in a
sequence of subsets Cn), Cfn),... and corresponding predictors ( 1n (x, Cn))}. This is
done in turn for n = 1, . . . , N. For each J, J = 0, . . . , M, the PE estimate is

PE (J) = n(yn- (( jn)))2n

The ME (J) estimate is gotten by subtracting N&2, where 62 = RSSO/(N - M).

Complete cross-validation can be a very computer intensive process, necessitating N
subset selection procedures. For this reason, we test it only at sample size 60.

(2.3) V-fold Cross-Validation

This procedure is a more aggregated and less expensive form of complete cross-
validation. Let V be a small integer and divide the cases as nearly as possible into V
equal groups. This division can be completely at random or can use some stratifying
mechanism.

Denote these groups by L1,... , LV and let

L(V) =L - Lvt v=l . .. ,V

where L = all data. Using only the cases in L(V), do the subset selection getting the
sequence {4 v)} and predictors R (x, 4jv)). Form the estimate
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PE (J) = (Yn - v (L y4v)y)2
v (y1,x.)L,

and subtract N&2 to get the ME (J) estimate. The initial tests of this estimate were
done with V = 10.

(2.4) Bootstrap

The unconditional version of the bootstrap goes as follows: sample with replacement N
times from the original data {yn,,xnl. Denote the sample by (ynB,xx). Using the
bootstrap sample, do the submodel selection getting the sequence (CjB) and predictors
PB (X, C B). Define

eB (J) = £(y - B (xB, B))2 - (Yn - B (Xn J3))2
n n

Then eB (J) is an estimate of the bias in RSS (J) in estimating PE(J). Repeat the
bootstrap process and let e (J) = AVB eB (J). Define the bootstrap PE estimate as

PE (J) = RSS (4X) - e (J)
2and the corresponding ME estimate by subtracting Nd .

In the simulation we use 50 bootstrap repetitions. Note that we do not use the
bootstrap at sample size 60. The reason is that, on the average, a bootstrap sample
will omit a fraction e-l of the cases. With 60 cases and 40 variables, this means that
often, when the matrix XtX is formed from the bootstrap sample, it is singular.
We could not see any method, both simple and reasonable, to get around this. A
smoothed version of the bootstrap would not encounter this difficulty, but it is not at
all clear how to smooth in a 40 dimensional space. Skipping any bootstrap sample
where XtX was nearly or exactly singular was another possibility, but we reasoned
that this would destroy the distributional rationale for bootstrap.

(2.5) Partial Cross-validation
Unlike the methods above, partial cross validation only uses the main sequence of sub-
sets C0 , ,... initially selected. Given any subset of variables with indices in C and
OLS predictor a (x, C), the cross-validated estimate for the PE is

PE(4) = £trn () l-hn(4)] (2.1)

where the (rf(4)} are the residuals yn-.1(xn, ) and hn()-xnS-1xn, S = XtX where
XtX is formed using only the variables (xm; m e J. Again, ME (4) is formed by
subtracting N&. This equation is applied to each of the (Cj) to get the ME (J) esti-
mates.
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The idea here is based on this reasoning: in complete cross-validation, when a single
case is left out, the sequence of selected subsets r dn), ;n) ,... should usually be identical
to the sequence of subsets C ,... selected using the same procedure on all the data.
Therefore, we can approximate complete cross validation (and drastically reduce com-
puting time) by assuming that

CpN),P Cl(n) ,..-- Ci I...

Under this assumption, complete cross-validation reduces to what we call "partial
cross-validation."

(2.6) Other estimates

There are other proposed PE estimates. For instance, Mallows Cp and the Sp statistic
(see Thompson [1978], Breiman and Freedman [1983]). There are also some proposed
variants of V-fold cross-validation. Burman [1989] has given a first-order correction
term. Stratification of the cross-validation samples has been suggested. An open issue
is how many "folds" to use, i.e. how big should V be? An analogous question is
how many bootstrap iterations should be used?

Our plan is to first give results for the test set benchmark estimate of section 2.1 and
for the 4 estimates defined in 2.2 to 2.5. These latter are, to us, the current serious
contenders. In section 6, we give some simulation results relevant to the other esti-
mates.

3. Simulation Structure.

a) For each run, the X-distribution was fixed, as were the coefficients of the full
model. In each repetition the x-variables were independently sampled from the under-
lying X-distribution. Normal noise was generated and added to give the y-values.
Backwards deletion was then carried out to give the sequence of submodels. There
were always forty variables and either 60 or 160 cases. In each run, there were 500
repetitions (with one exception noted later).
b) In each repetition the true ME was computed for each submodel selected by the
backwards deletion. Various ME estimates for each submodel were derived using the
methods listed in section 2.

c) Two general behavioral characteristics were observed. The first was the behavior
of the ME estimates over the entire sequence of submodels. Since the true ME was
known, the behavior of the estimates could be compared to it and systematic
differences noted. We call this the global behavior.
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The second type of behavior studied was the ability of these estimates to select submo-
del dimensionality and estimate the ME of the selected submodel. Knowing the true
ME, we knew the optimal dimensionality.

Using each ME estimate, in each repetition we selected the submodel having the
minimum test set estimated ME. For this submodel we computed its dimensionality
and the value of its ME estimate. The selected dimensionality was compared with the
optimal dimensionality. The ME estimate for this submodel was also compared with
the true ME of the submodel. We refer to these results as the submodel selection and
evaluation behavior.

d) Details: Two X-distributions were used. The first was a multivariate mean-zero
normal with E (XiXj) = pi J I, with p = .7. The second was a multivariate mean-zero
lognormal with the same covariance matrix and coefficient of variation 1.4. In both
cases N (0, 1) noise was added. The non-zero coefficients were in three clusters of
adjacent variables with the clusters centered at the 1Oth, 20th, and 30th variables.

For the variables clustered around the 10th variable, the initial coefficients values were
given by

10,j = (h - j)2, Ij < h.

The coefficient clusters at 20 and 30 had the same shape. All other coefficients were
zero. The coefficients were then multiplied by a common constant to make the
theoretical R2 equal to .75.

We used the h-values 1, 2, 3, 4. This gave, respectively, 3, 9, 15, 21 non-zero
coefficients. For h= 1, there were three strong, virtually independent variables. At
the other extreme, h = 4, each cluster contained 7 weak variables. These four different
sets of coefficients are designated by Hl, H2, H3, H4 in the tables and figures. Some
t-values for the coefficients are graphed in Breiman [1988].

We also ran the case with all coefficients zero. This is designated by a Z in the tables
and figures.

(3.1) Comments on the simulation structure

When the X-distribution is multivariate normal, the simulation is identical to that in
the X-fixed case (Breiman [1988]) except that the x-variables are randomly selected in
each of the 500 repetitions in a run, instead of being selected at the beginning of the
run and held fixed.

Sampling from the multivariate normal gives relatively short tailed symmetric data dis-
tributions. The multivariate lognormal distribution is of the form

Xj = aj (eZj - j)
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with the Zj multivariate normal, such that EXj= 0, EXiX = piiJ-I p=.7, and
SD (e7-) /E (e-J) = 1.4.

This lognormal distribution is skewed and long tailed. A few high leverage cases in
each repetition is a normal occurrence. The effects of the randomness of the x-sample
using this distribution are very marked.

The X-fixed simulation was run on sample sizes of 60,160, 600, and required many
hours of CRAY cpu time. The X-random simulation required even more intensive
computations. To keep the computing requirements within bounds, we eliminated the
sample size 600 runs.

4. Global Results.

The best way to understand the global behavior of the estimates is to look at the
graphs in Figures 1-4. The graphs on the left side of the page are the average of the
various ME (J) estimates over the 500 repetitions in a run plotted as a function of J.
The solid line is the average of the true ME (J).
The graphs on the right side of the page are the RMS differences between the various
ME (J) estimates and the true ME (J) computed and averaged over the 500 repetitions
and plotted against J. The solid line is the standard deviation of the true ME (J).
The most immediately striking result is the increase in ME over the X-fixed case. In
that case, the average full model ME was close to 40 (a2 = 1). Here, for N = 60, the
full model MEs are around 120 in the multivariate normal case and above 300 in the
lognormal. The effect is less pronounced at N = 160, but the lognormal ME is still
almost 100 at J = 40.

Another striking effect is the decrease in ME achieved by going from the full model to
the minimum ME model. One wins big in the X-random case by going to small sub-
models.

Looking at the global behavior of the various estimates, we pick out the following
features

i). Complete cross-validation has uniformly low bias and RMS error

ii). At N = 60, ten fold cross-validation is biased upwards with larger RMS error at
the higher dimensional submodels. This bias is considerably reduced at
N= 160.

iii). Bootstrap has fairly low bias and RMS error at N = 160, with the estimate tend-
ing to be slightly low.

iv). Partial cross-validation is heavily biased downward with generally high RMS
error.
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To get an overall measure of bias for each J we computed percent difference of the
average ME (J) estimate from the average true ME(J), took the absolute value of this
percent difference, and averaged over J. These numbers are given in Table 4.1.

Note that the test set procedure has theoretical bias zero. Thus, the extent to which the
TS bias percentages differ from zero gives an indication of the error due to finite sam-
ple size. All of the results in this and the next section for the lognormal case, N = 60,
are based on runs of 1000, instead of 500. This is the most variable situation and we
decided on the basis of an initial run that the larger run length should be used.

Table 4.1
Average Percent Bias

Normal N = 60
Z* Hi H2 H3 H4

TS 1.0 3.5 2.3 .8 3.7
CCV 4.5 4.6 2.8 3.1 2.1
CV/10 30.9 36.2 29.6 29.6 29.1
PCV 93.9 81.2 77.5 76.3 76.5

Lognormal N = 60
TS 2.9 3.4 4.2 1.0 4.8
CCV 2.3 3.4 4.1 3.5 7.4
CV/10 32.3 40.9 28.1 36.4 36.9
PCV 83.4 76.3 74.2 73.1 72.4

Normal N = 160
TS 1.3 2.2 .5 2.1 1.3
BOOT 25.9 24.2 20.4 16.0 19.1
CV/10 12.5 12.3 12.5 15.2 12.3
PCV 84.8 72.0 65.0 61.1 60.8

Lognormal N = 160
TS 2.3 2.3 1.4 1.8 1.2
BOOT 15.4 14.6 10.3 8.0 12.8
CV/10 15.9 17.4 14.7 19.4 13.8
PCV 78.0 67.8 64.7 61.2 61.7

*Averaged only over J > 4.
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The overall measure of RMS difference is calculated as follows: in each run, look at
those J values for which the average true ME(J) is less than the average true full
model ME. Now average the RMS differences between the true and estimated ME (J)
over this set of J values. This partial averaging eliminates a few of the smallest J
values for which the ME (J) values and corresponding RMS values are very large.
These results are given in table 4.2.

Table 4.2
Average RMS Error

Normal N = 60
Z Hi H2 H3 H4

TS 28.7 28.6 30.9 31.3 30.6
CCV 43.3 48.9 50.8 50.4 53.5
CV/10 59.1 65.9 65.9 65.7 71.5
PCV 75.6 75.7 82.5 83.2 85.3

Lognormal N = 60
TS 238.6 142.6 137.0 236.4 151.2
CCV 169.9 196.1 240.8 233.3 227.1
CV/10 217.6 258.7 354.1 272.7 353.8
PCV 193.2 206.7 212.6 226.8 217.7

Normal N = 160
TS 17.3 16.3 18.2 18.6 19.4
BOOT 15.8 16.4 16.8 16.8 18.8
CVI1o 16.6 17.8 19.3 20.7 21.5
PCV 34.6 32.6 33.1 33.5 37.7

Lognormal N = 160
TS 39.1 34.6 36.7 39.9 44.2
BOOT 32.8 32.2 32.2 34.9 37.4
CV/10 44.4 48.7 46.9 52.4 55.9
PCV 56.8 55.8 57.7 59.5 65.6

5. Selection and Evaluation Behavior.

The most important role of the PE/ME estimates is in submodel selectioii and evalua-
tion; i.e. how good a submodel does it select and how good is the ME estimate of the
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selected submodel.

To answer the question of how good the selection is, the criterion used is the average
true ME value for the selected submodel. This is given in Table 5.1.

The next comparison is between the average dimension as selected by the true ME and
by each of the estimates, together with the RMS differences between them. This is
given in Table 5.2 where the numbers in parentheses are the RMS differences, except
that the number following the average dimension selected by the true ME is the stan-
dard deviation.

Table 5.1
True ME of Submodels Selected

Nornal N = 60
Z Hi H2 H3 H4

ME(True) 0 7.9 20.5 31.9 37.8
TS 1.4 9.6 23.0 35.1 41.9
CCV 5.8 16.5 30.9 46.8 55.1
CY/1o 2.7 13.4 28.8 43.0 51.2
PCV 56.2 62.4 78.8 83.0 83.2

Lognormal N = 60
ME(True) 0 31.3 42.8 52.4 57.4
TS 1.7 36.7 51.4 60.3 67.9
CCV 8.3 52.7 73.8 86.1 92.2
CV/10 5.1 52.7 66.1 80.6 86.0
PCV 108.3 149.1 168.2 174.6 166.8

Normal N =160
ME(True) 0 3.0 18.2 28.6 35.3
TS 1.3 4.2 21.0 32.0 38.8
BOOT 1.7 5.6 26.3 41.7 49.1
CV/10 3.4 7.9 24.5 40.0 49.3
PCV 29.1 30.2 38.0 40.9 46.2

Lognormal N= 160
ME(True) 0 4.1 23.1 41.7 52.3
TS 1.2 5.5 26.6 47.3 59.2
BOOT 1.5 7.0 31.2 57.5 70.8
CVI1o 3.6 8.6 31.7 59.5 72.7
PCV 44.6 45.9 57.1 66.7 73.9
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Table 5.2
Dimension Selected
Normal N = 60

Hi
3.2(.7)

4.1(1.5)
5.6(3.5)
4.4(2.7)

12.9(11.1)

H2
4.1(1.3)
4.3(2.6)
1.7(3.8)
5.5(2.8)

14.6(12.1)

Lognormal
3.2(.9)

3.7(2.7)
3.9(2.9)
3.4(1.9)

12.6(5.7)

N= 60
3.6(1.2)
4.3(3.1)
4.5(3.9)
4.0(3.0)

13.4(11.3)

Norma
3.0(0.0)
3.3(.9)

3.3(1.0)
3.7(1.7)
9.8(7.5)

1i N = 160
4.2(1.6)
5.3(4.0)
5.9(5.2) 2
5.1(4.0)

12.0(8.5) 1

Lognormal N =

3.0(.1) 4.0(1.6)
3.3(.9) 4.8(3.1)
3.2(.8) 4.5(2.7)

3.5(1.5) 4.8(3.5)
10.1(8.0) 11.6(8.6)

3.6(3.2)
9.3(5.2)
2.7(10.5)
1.1(6.7)
13.4(6.5)

160
7.3(3.4)
8.8(6.1)
7.3(5.7)
8.1(7.0)

12.9(7.6)

10.8(4.3)
12.2(6.8)

17.6(13.6)
12.1(8.9)
14.2(6.4)

9.2(4.0)
11.3(7.6)
9.3(6.8)

10.1(8.0)
13.7(7.2)

In terms of the ability of the estimate to evaluate the subset selected, we give two

tables. The first (Table 5.3) compares the average estimated ME value for the subset

selected by the estimate to the average true ME value for the same subset. In this

table, the numbers in parentheses are the true ME averages. Table 5.4 gives the RMS

differences between the true ME and the estimated ME for the subset selected over the

500 repetitions in a run (1000 for lognormal n = 60).

ME(True)
TS
CCV
CV/10
PCV

z
0.0(0.0)
.9(1.1)

1.9(2.3)
.8(1.1)

11.1(12.3)

H3
4.5(1.9)
5.1(3.0)
5.9(5.0)
4.7(3.4)

15.1(11.7)

H4
5.5(2.7)
6.1(4.2)
6.7(5.8)
5.5(4.2)

15.1(11.0)

ME(True)
TS
CCV
CV/10
PCV

0.0(0.0)
.4(.9)

.6(1.7)

.4(1.0)
9.9(11.4)

4.1(1.5)
4.6(3.2)
5.0(3.7)
4.3(2.9)

14.0(5.3)

4.6(1.7)
5.2(3.7)
5.3(4.6)
4.6(3.6)

13.6(10.3)

ME(True)
TS
BOOT
CV/10
PCV

ME(True)
TS
BOOT
CV/10
PCV

0.0(0.0)
.3(.9)
.2(.7)

.5(1.3)
7.7(8.4)

0.0(0.0)
.3(.7)
.1(.4)

.4(1.1)
7.9(8.8)
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Table 5.3
Average Estimated ME
Normal N = 60

z
-1.2(1.4)
-2.7(5.8)
- 1.9(2.7)

-13.4(56.2)

Hi
6.0(9.6)

4.9(16.5)
10.6(13.4)

-10.6(62.4)

-.1(1.7)
-1.7(8.3)
-1.3(5.1)

-12.0(108.2)

-.1(1.3)
.3(1.7)
-.7(3.4)

-10.2(29.2)

-1.0(1.2)
.3(1.5)
-.5(3.6)

-10.4(44.6)

Lognormal N = 60
25.1(36.7) 38.9(51.4) 44.4(60.3)
25.0(52.7) 42.7(73.8) 46.2(86.1)
35.5(52.7) 47.8(66.1) 59.3(80.6)
-8.7(149.1) -6.3(168.2) -6.2(174.6)

Normal N = 160
2.3(4.2) 15.2(21.0) 25.8(32.0)
2.9(5.6) 17.9(26.3) 29.0(41.7)
2.0(7.9) 14.4(24.5) 27.3(40.0)

-6.9(30.2) -3.7(38.0) -1.5(40.9)

Lognormal N = 160
3.0(5.5) 19.3(26.6) 34.0(47.3)
8.0(7.0) 26.4(31.2) 42.8(57.5)
4.5(8.6) 21.0(31.7) 40.6(59.5)

-7.0(45.9) -3.5(57.1) -.5(66.7)

49.9(67.9)
47.0(92.2)
58.2(86.0)
-6.5(166.8)

32.1(38.8)
32.7(49.1)
35.4(49.3)
-.4(46.2)

45.2(59.2)
49.9(70.8)
51.2(72.7)

0(73.9)

TS
ccv
CV/10
PCV

H2
19.7(23.0)
18.1(30.9)
24.9(28.8)
-8.4(78.8)

H3
28.7(35.1)
28.0(46.8)
37.1(43.0)
-7.6(83.0)

H4
35.0(41.9)
31.4(55.1)
41.5(51.2)
-8.0(83.2)

TS
ccv
CV/10
PCV

TS
BOOT
CV/10
PCV

TS
BOOT
CV/10
PCV



- 17 -

Table 5.4
RMS Differences in MEs

Normal N= 60
Z Hi H2 H3 H4

TS 16.0 16.9 20.4 21.7 22.5
CCV 20.0 27.5 31.0 36.1 40.7
CYf10 16.4 23.0 26.3 26.9 30.3
PCV 76.7 82.7 97.7 98.0 81.5

Lognormal N = 60
TS 16.1 31.8 42.8 42.8 41.8
CCV 27.7 61.3 119.7 78.7 83.2
CV/1o 21.7 59.3 62.2 68.5 64.2
PCV 151.3 193.7 210.1 212.4 201.5

Normal N=160
TS 10.8 10.7 15.0 16.4 17.6
BOOT 9.7 10.1 15.1 19.9 22.6
CY/lo 11.8 13.6 16.9 21.4 24.6
PCV 41.1 39.0 43.2 44.3 48.7

Lognormal N = 160
TS 11.0 11.9 20.0 26.0 32.5
BOOT 10.9 14.1 20.5 30.7 36.3
CY/lo 14.1 17.4 26.1 36.9 41.3
PCV 60.4 58.5 66.3 72.8 78.7

The major surprise here is that ten-fold cross-validation is uniformly better in
selection/evaluation than complete cross-validation. Complete cross validation has
better global behavior. But the critical issue in selection is the shape of the estimates
ME(J) curve near the minimum value of the true MEE(J) curve, rather than global
behavior. Where it counts CV/10 gives better performance than CCV.

At sample size 160, CV/10 and bootstrap give very competitive results. In selection,
there is very little to choose between them. In evaluation, bootstrap has a slight edge.
Partial cross validation's performance is not in the same league. It is so poor that it
should not be seriously considered for submodel selection/evaluation in regression.
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6. Some Substudies.

In the studies discussed below, the summary statistics for some of the estimates may
differ somewhat from the same summary statistics for the same estimates given in the
previous sections. This is because different random numbers may have been used.
But whenever two or more procedures are compared below, the comparison is on runs
on the same data.

(6.1) Fixed path estimates

By fixed path estimates of ME/PE we mean estimation methods that work with the
given sequence , ... , CM of submodels only. For example, partial cross validation
is a fixed path estimate. But 10-fold cross-validation generates 10 generally different
sequences of submodels in addition to the initial sequence. In contrast, we refer to
estimates that generate other sequences of submodels as alternative path estimates.

Partial cross-validation is the most complicated of the fixed path estimators. Others in
common use are the Cp estimate of PE (Cj) given by,

RSS (Cj) + 2 62 J

the Sp estimate given by (approximately)

[NNJ1 RSS(&)
Various asymptotic optimality properties can be given for some of these estimates, if
no extensive data driven submodel selection is used.

But in realistic situations, such as in the structure of this simulation, fixed path esti-
mates are hopelessly biased and do poorly in subset selection. This was the case for
Cp in the X-fixed study and for partial cross-validation in the present study.

We also calculated and used Cp in the present study. The results were similar to those
using partial cross-validation, but Cp gave somewhat better results. For example,
Table 6.1 compares the true ME values for the subsets selected by PCV and CP for
N = 60.
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Table 6.1
True ME Values

Normal
Z Hi H2 H3 H4

CP 35 45 64 70 72
PCV 56 62 79 83 83

Lognormal
CP 79 119 146 149 145
PCV 108 149 168 175 167

Comparing these results with the alternative path estimates (Table 5.1) shows that the
improvement is not of much help. Figure 5 gives the graphs of the global Cp behavior
compared to PCV for the normal distribution, N = 60.

We did not run the Sp estimate. One reason is that, at least in the normal case, it
should be close to the partial cross-validation value. Looking at the definition of the
latter, note that if the hn(j) are almost constant, then since hn(j)=J, we can

n

approximate the 1/(1 - h (&j))2 term in (2.1) by N2 / (N _ J)2. this gives the corrected
residual-sum-of-squares estimate

PE(J) = (N/N-J)2RSS(&)
and the associated ME (J) estimate. This is very close to the Sp statistic recommended
by Thompson [1978] in her review article. For an asymptotic justification of Sp see
Breiman and Freedman [1983].

(6.2) Correcting and stratifying the CV/JO estimate

Burman [1989] gives a first order correction to the V-fold CV estimate of PE.
Another issue in this estimation method is how to select the V subsets into which the
N cases are grouped. The simplest method is ordinary random selection. But the
question has been raised as to whether some sort of stratified selection might improve
accuracy.

In particular, in the lognormal x-distribution, a few very high leverage cases usually
occurred in the full model. Thus, sampling from strata determined by the leverage
values (diagonals of the hat matrix) in the full model, might give a more homogeneous
grouping and increased stability. More specifically, the data were sorted by their full
model hn values and divided into N/V groups. One observation from each of these



- 20 -

groups was then randomly selected (without replacement) to form each of the
L1, . . , Lv.

For the normal case, N = 60 figure 6 gives plots of the global behavior of the estimate
(CV/C) resulting from correcting CV/10, the estimate (CV/S) resulting from stratifying
and then doing 10 fold cross-validation, and the estimate (CV/CS) resulting from both
correcting and stratifying. The correction does improve accuracy for the larger submo-
dels. It is not clear that the stratification has any effect.

However, the story in subset selection and evaluation indicates that neither the correc-
tion or stratification are useful. For instance, Table 6.2 gives the true average ME for
the submodels selected by the different estimates for sample size 60.

Table 6.2
True ME Values

Normal N = 60
Z Hi H2 H3 H4

CV/10 2.7 13.4 28.8 43.0 51.2
CV/C 3.6 17.4 33.5 46.4 54.4
CV/S 3.2 13.2 28.8 44.1 52.7
CV/CS 4.5 16.6 33.5 46.6 55.3

Lognonnal N = 60
CV/10 5.1 52.7 66.1 80.6 86.0
CV/C 9.1 60.0 72.5 85.4 92.9
CV/S 5.4 52.7 69.0 81.0 84.6
CV/CS 11.5 58.4 74.4 90.1 94.0

The thought might occur that even if CV/C did not do as well in submodel selection, it
might be a better ME estimator at the subset it selects. Not so! In every case the
corrected estimate does worse than the uncorrected estimate.

Thus, using the correction term makes selection and evaluation less accurate. Our
method of stratification seemed to neither help or harm.

(6.3) How many folds in cross-validation?

The preceding sections have produced some surprises concerning cross-validation. Ten
fold validation gave better selection and evaluation results than com.plete cross-
validation, even though the latter is a better global estimate. Similarly, adding a
correction term gives a better global estimate, but a poorer selection/evaluation
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method. This raises the possibility that 5-fold or even 2-fold cross-validation estimates
might be reasonably good in selection/evaluation. For N = 60, 2-fold was not possi-
ble, leading to a singular XtX matrix.

Thus, we compared CVW10 to CV/5 at N = 60 and CV/10, CV/5 and CV/2 at N = 160.
The global results are as expected: CV/5 and CV/2 have larger bias and RMS error at
the larger submodels (see figure 7,8 for graphs in the normal case.) To compare the
selection/evaluation performance, we created Table 6.3 and 6.4. Table 6.3 gives the
true average ME for the selected subset, and 6.4 gives the RMS error for the ME esti-
mate of the selected subset.

Table 6.3
True ME

Normal N = 60
Z Hi H2 H3 H4

CV/10 2.4 12.3 30.8 42.5 53.4
CV/5 1.7 11.5 28.9 41.0 53.9

Lognormal N = 60
CV/10 3.2 49.4 65.7 81.9 88.3
CV/5 2.6 52.6 70.4 81.7 87.6

Normal N = 160
CV/10 3.0 6.2 24.4 40.9 47.1
CV/5 2.2 5.2 23.3 41.3 48.0
CV/2 1.2 3.5 22.2 43.3 54.9

Lognormal N = 160
CV/10 3.7 9.6 33.6 58.6 71.4
CV/5 2.2 8.0 32.4 57.9 71.7
CV/2 1.1 9.0 32.2 62.4 82.2
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Table 6.4
RMS Error

Normal N = 60
Z Hi H2 H3 H4

CV/10 16.3 12.4 30.8 42.5 53.4
CV/5 15.8 11.5 28.9 41.0 53.9

Lognormal N = 60
CV/10 17.6 65.4 56.5 66.1 65.4
CV/5 16.8 65.7 62.1 61.1 62.9

Normal N = 160
CV/10 11.9 12.8 16.8 20.9 22.9
CV/5 10.9 11.7 14.6 19.2 22.4
CV/2 10.0 14.8 23.4 30.9 36.2

Lognormal N = 160
CV/10 14.1 19.6 28.1 37.7 40.4
CV/5 12.1 19.2 28.1 36.0 40.8
CV/2 10.7 68.7 54.9 63.1 69.9

We see again the interesting phenomenon that although CV/5 is not as good an estima-
tor globally as CV/10, it does as well on submodel selection and evaluation. But two
folds are not enough and tables 6.3 and 6.4 show CV/2 breaking down in accuracy.
The breakdown of CV/2 seems to have its source in that with a sample size of only
80, CV/2 tends to select models that are too small.

(6.4) How many bootstraps are needed?

In our main simulation, we used 50 bootstrap iterations. The question of how much
this can be reduced without significant loss in accuracy is an important practical issue.
Fifty bootstrap iterations is a considerable amount of computing (see the next section).
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Table 6.5
True Average ME

Normal N = 160
Z Hi H2 H3 H4

BOOT/50 2.3 5.1 26.6 41.0 47.9
BOOT/20 2.6 5.1 27.0 41.4 48.1
BOOT/10 2.9 5.4 27.1 41.5 48.5
BOOT/5 3.9 6.2 27.6 41.8 48.3

Lognormal N = 160
BOOT/50 1.5 6.9 32.9 58.4 67.7
BOOT/20 2.1 7.4 33.1 59.3 68.4
BOOT/10 2.6 8.0 33.8 59.6 69.2
BOOT/5 3.4 9.1 35.1 60.2 69.9

To look at this issue we ran the sample size 160 cases using 50, 20, 10 and 5
bootstrap iterations (see figure 9,10). Tables 6.5 and 6.6 compares the
selection/evaluation performance. Table 6.5 gives the true average ME for the selected
subset and 6.6 gives the RMS estimate error for the ME estimate of the selected sub-
set.

The accuracy of BOOT holds up even with a sharply reduced number of bootstrap
iterations. Globally, there is no increase in bias and the RMS error only shows appre-
ciable increases at 5 iterations.

The submodel selection and evaluation accuracy holds up even for as few as 5
bootstraps. The differences between 50 and 20 are small, and dropping even lower
creates few ripples. Past 10-20 bootstrap iterations, the increase in accuracy is margi-
nal compared to the computing time required.
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Table 6.6
RMS Error

Normal N = 160
Z Hi H2 H3 H4

BOOT/50 10.9 10.9 15.0 19.1 24.1
BOOT/20 11.6 11.1 15.8 19.0 23.1
BOOT/10 12.6 11.9 16.8 20.1 21.7
BOOT/5 14.1 13.6 18.9 22.1 20.8

Lognormal N = 160
BOOT/50 11.0 13.8 22.9 30.9 34.0
BOOT/20 11.9 15.4 24.2 32.9 35.5
BOOT/10 13.4 15.8 25.4 34.8 37.6
BOOT/S 15.3 17.1 27.5 37.8 40.9

(6.5) Restriction to cost-effective submodels

The idea of cost-effective submodels was introduced in Breiman [1988], [1989] and is
similar to the notion of cost-complexity submodels used in regression and classification
trees (Breiman et. al. [1985]).

Briefly, given a sequence , ... m call Cj a cost minimizer if there is an cc . 0
such that J minimizes RSS (CJy) + a J', 0 < J' < M. Call Cj cost effective if it is a cost
minimizer and some value of ax for which it is a cost minimizer is between 2&2 and
1lO2. (& the full model estimate).
In the x-fixed simulation, the results indicated that restricting the submodel selected to
be cost effective had a uniformly beneficial effect on the selection/evaluation pro-
cedure. We conducted a similar study in the present X-random situation.

Let J1, . . . JK be the dimensions of the cost effective submodels. Usually, there are

only a few such submodels. In fact, for all runs in the simulation, out of 41 submo-
dels, on the average about 5 are cost-effective. Now, for any ME(J) estimate, select
that J e (J1, . . . , JK} which minimizes ME (J).

The effects of restricting choice to cost effective submodels was carried out in a
separate simulation. To keep computing time down, we explored only its effect on

CV/10 and BOOT results and summarized in table 6.7, 6.8 and 6.9. Table 6.7 com-

pares the true ME of the selected subsets. Table 6.8 compares the RMS ME estimate
errors, and Table 6.9 gives the average dimension selected and its RMS difference
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from that selected by the true ME.

z

CV/10 3.4
CV/10/CE 3.2

CV/10 3.3
CV/10/CE 3.1

CV/10 3.7
CV/10/CE 3.6
BOOT 1.6
BOOT/CE 1.6

CV/10 4.0
CV/10/CE 3.5
BOOT 1.6
BOOT/CE 1.6

Table 6.7
True ME

Normal N = 60
Hi H2 H3 H4
12.4 28.9 41.6 52.2
12.4 28.5 41.8 50.7

Lognormal N = 60
48.2 66.6 79.7 85.4
47.5 66.3 77.7 85.8

Normal N = 160
6.3 25.2 41.2 48.6
6.3 25.1 39.7 47.3
4.4 27.2 43.5 48.8
4.4 26.3 40.4 46.3

Lognormal N = 160
8.5 33.1 58.9 71.2
8.7 31.9 55.5 68.0
6.7 31.9 56.6 68.8
6.9 31.9 55.9 67.8
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Table 6.8
RMS Error

Normal N = 60
Z Hi H2 H3 H4

CV/10 17.7 21.9 26.4 29.3 33.5
CV/1O/CE 17.9 20.8 26.0 28.4 32.3

Lognormal N = 60
CV/10 17.1 50.2 59.4 79.1 64.1
CV/10/CE 17.0 55.4 66.3 86.7 64.2

Normal N = 160
CV/10 13.0 12.7 17.6 22.0 23.3
CV/10/CE 13.0 12.7 17.3 21.4 22.9
BOOT 10.4 10.7 16.7 21.1 22.5
BOOT/CE 10.4 10.7 15.3 18.3 19.4

Lognormal N = 160
CV/10 15.6 16.8 26.8 35.5 40.3
CV/10/CE 14.1 16.4 26.4 38.8 42.4
BOOT 11.0 13.8 20.8 27.7 34.7
BOOT/CE 11.0 13.6 22.2 28.6 33.3
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Table
Dimension
Normal

Hi H2
3.1(.5) 3.5(1.1)

3.6(1.9) 4.2(2.8)
3.6(1.5) 4.2(1.9)

Lognormal
3.2(.9) 3.6(1.2)

3.5(2.1) 4.0(3.0)
3.7(1.7) 4.1(2.4)

Normal
3.0(.0) 4.2(1.7)

3.5(1.2) 5.1(4.1)
3.5(1.1) 5.1(3.1)
3.1(.5) 6.5(6.9)
3.1(.4) 5.8(4.0)

Lognormal
3.0(.1) 4.0(1.6)

3.5(1.5) 4.7(3.7)
3.4(1.2) 4.6(2.4)
3.2(.7) 4.5(2.8)
3.2(.7) 4.4(2.3)

6.9
Selected
N = 60

H3
4.5(1.8)
5.0(4.0)
5.2(3.0)

N = 60
4.1(1.4)
4.2(3.6)
4.3(2.6)

N= 160
8.6(3.0)
9.0(7.1)
7.7(4.1)

13.5(11.8)
10.0(5.1)

N= 160
7.2(2.9)
7.8(6.9)
6.9(3.6)
7.1(5.1)
6.8(3.6)

These results show that selection/evaluation is about as good, and often slightly better

by insisting that the submodel selected be cost effective. Table 6.9 shows, in particu-
lar, that the restriction has a stabilizing effect on the dimensionality selection.

(6.7) Computational aspects.

There are two interesting computational aspects we ran across in this work. The first

was that after using about 50 hours of CRAY XMP-2 cpu time, we realized that we

were only about half way through the simulation and almost out of CRAY money.

The rest of the simulation was done on 25 networked SUN 3/50's in the Statistical

Computing Facility at the U.C. Berkeley Statistics Department. Each run of 500 itera-

tions was split into 25 runs. The compiled code for this smaller run using a random

ME(True)
CV/10
CV/10/CE

ME(True)
CV/10
CV/10/CE

ME(True)
CV/10
CV/10/CE
BOOT
BOOT/CE

ME(True)
CV/10
CV/10/CE
BOOT
BOOT/CE

z
.0(.0)

.5(1.7)

.4(1.7)

.0(.0)

.3(.7)

.2(.7)

.0(.0)
.6(1.4)
.5(1.4)
.2(.6)
.2(.6)

.0(.0)
.4(1.5)
.3(1.0)
.1(.4)
.1(.4)

H4
4.5(1.8)
5.7(5-1)
5.6(2.7)

4.5(1.7)
4.3(3.1)
4.5(2.7)

11.3(4.9)
12.5(9.6)
9.9(4.3)

17.0(12.7)
12.3(4.9)

9.5(4.5)
9.9(8.3)
8.4(4.1)
8.9(6.9)
8.4(3.8)
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number as a seed to the simulation's random number generator was executed in paral-
lel on each SUN 3/50 and the individual output files sent to the "mother" file system
for processing.

The programs were run on low priority to avoid conflict with the normal interactive
SUN usage. Since these machines are rarely used from late at night to early in the
morning, the simulation had virtually exclusive use of them for 10 hours a day. Our
estimate is that 25 SUN 3/50's are about 1/4 of a CRAY XMP-2. But because we did
not have to wait in a queue with other CRAY users, our tum-around time was usually
at least as good.

Another issue of practical importance is computational efficiency of the various estima-
tion procedures. The fixed path procedures are most efficient but also least useful.
The two most effective estimates are CV/V and BOOT. In addition to the original
regression and submodel sequence generation, CV/V and BOOT do additional regres-
sions and submodel sequence generation. In each such replicate the operations neces-
sary consist of two main components. The first is in the formation of the X'X matrix,
where about NM2 operations are needed. The second is in generating the sequence of
submodels. If simple stepwise variable deletion or addition is used and implemented
by Gaussian sweeps, then about 2M3 operations are used. Many more are required if a
best subsets algorithm is used.

After the additional regressions have been done, they have to be combined to give the
ME (J) estimates for each J. If R is the number of bootstraps or the number of folds,
then this costs about 3/2 M3 R operations. In CV/V the XtX computing can be
reduced. Take {n'} to be a random permutation of { 1 , . . . , N). Let

XtXi) N sn:N Xin'xjn'

where N = [N (v - 1) / V]. Then X'X = EXtX(v), and the sum-of-squares matrix
v

with the vth group deleted is XtX - XtX(v). This reduces all sum-of-squares computa-
tions in CV/V from NM2V operations to about NM2 operations.

Another place where computation can be reduced is in the restriction to cost effective
submodels. The number of operations needed to compute the ME (J) estimate is
3/2 M2R per submodel for bootstrap and CV/V respectively. If these estimates are
computed only for the cost effective submodels, then the operations required in form-
ing estimates drop by the proportion of non-cost effective submodels.

Here are some typical SUN 3/50 timing runs (CPU seconds) in cell H3 of the simula-
tion:
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Regular Cost Effective
CV/5 29.0 22.5
CV/10 43.5 36.5
BOOT/5 77.2 48.2
BOOT/10 146.2 88.7
BOOT/50 698.0 413.0

The time for a single sequence of variable deletions is 7.7 CPU seconds.

7. Conclusions

(7. 1) Submodels in x-random v.s. x-fixed.
The full model x-random ME has an expectation of about 120 for the sample size 60
simulated normal data. In the x-fixed case it is 40. For the H3 coefficients the true
ME minimum submodels have an average ME of 31.9 (Table 5.1). This is 26% of the
full model ME.

In the x-fixed case for the same coefficients, the similarly selected submodels had
average MEs of 54% of the full model ME. This is typical across Z,H1,H2,H3,H4. In
the x-random case submodel selection results in a much larger reduction of full model
ME than in the X-fixed case.

This is not so pronounced for normal data at N = 160. Here, the submodel selected in
the x-random setting under H3 is 54% of the full model ME compared to 62% for the
x-fixed case.

The reduction can be even more drastic if the X-distribution is skewed and long-tailed.
In the lognormal N = 60 case, with H3 coefficients, the full model ME is reduced to
15% percent of its value at the minimum ME submodel. The message is clear: You
can win big by using submodel selection in the x-random case, especially for thin sam-
ple sizes and irregular X-distribution.

Another thing that shows up is that we win more by selecting smaller submodels in the
x-random case. For instance, here is a comparison of the average dimension selected
in the N = 60, normal runs using true ME for selection:
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Z H1 H2 H3 H4
x-fixed .0 3.2 4.1 6.1 7.9
x-random .0 3.2 4.1 4.5 5.5

In the H3, H4 coefficients there are a number of weak variables. In the x-random
situation there is more incentive to peel these off and reduce x-variability than in x-
fixed. There is still evidence of this effect at N = 160, but not as strongly. For x-
fixed the average dimension in H4 is 11.6. For x-random it is 10.8.

(7.2) Which ME/PE estimator to use?

We hope this present simulation will drive another nail into the practice of using fixed
path estimators when data driven submodel selection is in operation.

Surprisingly, CV/V for V as low as 5 does better selection/evaluation than complete
cross-validation. Bootstrap, when the sample size is large enough to use it, does as
well as CV/V in selection with a small edge in evaluation, and accuracy is not
significantly decreased with as few as 5 bootstrap iterations. On the other side of the
scale is bootstrap's computational expense compared with CV/V.

But no matter which method is used, it seems fairly clear that restricting attention to
the small class of cost effective submodels has a number of advantages and no
apparent disadvantages.

(7.3) Submodel evaluation

All estimates of ME for the selected submodels had appreciable downward bias (see
Table 5.3). But, in general, this bias was not the major factor in their RMS error (see
Table 5.4). In comparing the RMS errors of all estimates (including test set) to the
average ME being estimated (Table 5.1), one is disappointed by how large the
RMSE/ME ratio is.

Often the RMSE is about the same size as the ME it is trying to estimate. At best it is
not less than about half of the ME. This persists even as sample is increased to 160.
If ME e: N a2, the ME term makes a small contribution to PE and the major variation
in estimating PE is in the estimation of N a2. This latter quantity can be estimated
with small coefficient of variation for N - M > 1. In fact, some approximate calcula-
tions indicate that the coefficient of variation for estimating PE in the normal case for
the subsets selected by either CV/V or BOOT is around .15 for N = 160 but over .3
for N = 60.
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The reason for the noisiness in the ME estimates was discussed in Breiman [1988]. It
is intrinsic in the nature of the problem. There is some evidence that using these esti-
mates to compare submodels is more reliable. That is, given two submodels with
indices in 41 2, it seems possible to estimate ME () - ME (42) with much less vari-
ability than either of ME (&), ME(2) separately. Thus, using bootstrap or cross-
validation to compare procedures operating on the same data may give reasonable
results. But answers to these issues aren't known yet.
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Normal N=160
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Figure 3
Lognormal N=60

z

8

0 10 20. 30 40
Dimenion

8
-

0

0 10 20 30 40
Dimension

Hi

8

0

0 10 20 30 40
Dlmension

-~.5

, , ,- ," .

0 10 20 30 40
Dimension

H2

8
0

0 10 20 30 40
DinmesIon

.O~ ~ ~ ~ ~ 5J ,-.---- _ I

0 10 20 30 40
Dlmension

H3

8

0

0 10 20 30 40
Dlmension

H4

8
0

0 10 20 30 40
Dlmension

10 20
Dilmenion

30 40 0 10 20
Dlmenson

I

8
0

_ ,. _

8

0

8

0

I--,

-.5.5-
~~~~-- //;

I--," Jr& ..%% ,/~~~~~~~~~~~~~~~~~~~oo
\ ,,~~~~~~~~~~~~~~~~~~_ _~~~~~~~~~~~~~~~~~~. I

8

8

0

I--, -7---
,-

1-.5 '5-.5

-'--..5-

*..-

1' o - LQ/

0 30 40



Figure 4
Lognormal N=160
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Figure 6
Normal N=60
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Figure 7
Normal N=60
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Figure 8
Normal N=160
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Figure 9
Nornal N-160
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Figure 10
Lognormal N.160
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