

1

Abstract—To ensure effective management and security in large

scale public events, it is imperative for the event organizers to be

aware of potentially critical crowd densities. This paper, therefore,

presents a solution to the above problem in terms of WiFi based

crowd counting and LSTM neural network based forecasting.

Monitoring of an actual event organized in Brussels has been

described, wherein crowd counts are obtained using WiFi sensors

in a privacy-preserved manner. The time-stamped crowd counts

are used to develop univariate time-series, which are in-turn

utilized for forecasting. Five different LSTM models are utilized

for crowd time-series forecasting and analyzed for their

suitability. A random walk model is used as reference for

performance assessment. Among different LSTM models,

Convolutional LSTM delivered the best performance. Overall

results and analysis show that the developed system is suitable for

crowd monitoring.

Index Terms—Crowd monitoring, deep learning, forecasting,

long-short term memory, neural networks, time series, wireless

sensor networks.

I. INTRODUCTION

VERCROWDING is a common phenomenon observed

during major events such as concerts, festivals, sports,

games, and entertainment. There is a potential risk to public

safety during such large scale public events. The love parade

disaster in Germany [1] and the Turin stampede [2] are

significant examples of crowd disasters. In view of such

mishaps, the event organizers must be able to monitor and

predict the crowd behaviour. Apart from safety concerns, crowd

monitoring can also help the organizers to effectively plan the

venue layout (e.g. food points, shopping points, entries and

exits), and prepare crowd management strategy (e.g. restricting

access, evacuation, and additional installations).

A. Overview of the Motivation

Conventional research in crowd monitoring mainly focuses

on systems with computer vision approach [3]. Factors such as

occlusion, huge data handling, cost of implementation and

privacy concerns inhibit the possibility of using such systems

for real-time situational awareness [4]. These shortcomings led

to the development of alternative crowd monitoring strategies

using cellphone, global positioning system (GPS), Bluetooth

This work is a part of the MUFINS project – funded by INNOVIRIS. The

authors thank Brussels Major Events (BME) for the collaboration.

All authors are with the OPERA Wireless Communications Group,
Université libre de Bruxelles, 1050 Brussels, Belgium. Corresponding author

e-mail: utkarsh.singh@ulb.ac.be

and WiFi [5]-[8]. An insight into these technologies reveals

that, the WiFi sensors are not only free from occlusion, but are

also non-intrusive and cost effective [8], [9]. Successful

applications of wireless sensor networks in sensing and

monitoring have already been shown for: pedestrian counting

in urban traffic [10], industrial process automation [11],

landslide monitoring [12], and distributed environmental

monitoring [13]. Motivated from such applications, this paper

contributes to the existing knowledge by utilizing WiFi sensors

for not only estimating but also forecasting the crowd count in

large scale public events. More specifically, this paper

discusses, how to prepare time series of crowd counts derived

from WiFi measurements and utilize it for achieving multi-step

ahead crowd count predictions via long short-term memory

(LSTM) neural network. These predictions can ultimately help

in better management of large scale public events.

B. Related Works

Probably the most popular WiFi based crowd counting

approach is based on channel state information (CSI) [8], [14],

[15]; which quantifies the impact of crowd density on CSI.

Though this approach has the merit of being non-intrusive, it

does not assert the technical aptness for large scale public

events, where the crowd density surges during peak hours.

Another crowd counting method relies on direct measurement

of WiFi received signal strength indicator (RSSI). Authors in

[16] have used this approach for occupancy estimation in indoor

and outdoor environments. Only 9 people were considered to

validate the effectiveness of this technique. An interesting

development is presented in [17], where WiFi linkage blockage

patterns are classified using LSTM for crowd counting. It

remains to be seen whether the system can perform equally well

in outdoor environments with large and dense crowd. A more

robust way of crowd count estimation is to utilize probe

requests (PRs). PRs help a smartphone (or any WiFi enabled

device) in searching nearby access points (APs). Authors in [9]

and [10] have used this method to estimate pedestrian density

/count. These works show that a PR contains device address and

AP address. In PR based crowd counting, it is important to be

aware of variable PR frequency in devices. As mentioned in

[18] and [19], it can be tackled by having two or more sensors

separated by up to 100 meters for efficient crowd counting.

Crowd Forecasting based on WiFi Sensors and

LSTM Neural Networks

Utkarsh Singh, Jean-François Determe, François Horlin, and Philippe De Doncker

O

mailto:utkarsh.singh@ulb.ac.be

2

Though PRs can provide more accurate crowd count estimation,

it could also lead to privacy concerns. Authors in [19], give a

solution for preserving privacy in terms of SHA256 encrypted

MAC addresses. Weppner et al. [20] used 31 scanners to

monitor a motor show for 13 days based on sensing of WiFi

/Bluetooth enabled devices. The collected data was utilized

only to create heat maps, which does not give a quantitative

representation of the crowd. Besides, there is no discussion on

the possibility of devices anonymizing their media access

control (MAC) addresses, which could lead to duplicate counts

[21]. With respect to WiFi based crowd forecasting, there is

very limited literature available. Authors in [22] use WiFi

signal detectors for crowd count estimation and an

autoregressive integrated moving average (ARIMA) model for

forecasting. Another work on indoor crowd queuing time

estimation is presented in [23]. The authors used WiFi

positioning data and nonstandard autoregressive (NAR) model

to predict the queuing time. Possibly the only work, which

nearly matches the idea of this paper is highlighted in [24]. It

vaguely presents the idea of crowd count forecasting based on

Bluetooth data for a public event.

Although the purview of this paper is limited to crowd

forecasting, it is important to highlight the key works in

localizing crowd using WiFi probes. Authors in [25], present a

large-scale pedestrian monitoring system, where the importance

of scanning and hopping time is discussed to avoid packet loss

and increase localization accuracy. Potorti et al. [26], present a

fingerprint interpolation based approach and conclude that

WiFi probes are viable and economic for crowd localization. A

discussion on range-based and range-free methods and the

challenges in indoor localization is also presented. Another

work on ranging and positioning based on WiFi sensing, is

presented in [27]. The authors manage to achieve an accuracy

within 2.5m in 80% cases. An experimental study on the usage

of WiFi probes for user localization, profiling, and device

classification is reported in [28]. The authors have performed

tests in both indoor and outdoor environment, leading to three

crowd databases. The inter-probing times for Apple, Motorola,

and Samsung devices have also been analyzed. A very well

elaborated case study of WiFi based crowd localization in TU

Delft Campus in presented in [29]. The work presents useful

insights on sensor setup/ calibration, occupancy estimation,

positioning accuracy/ latency, movement patterns in indoor

environments.

C. Proposed Approach

This work proposes the crowd count estimation based on PRs

collected by WiFi sensors. Note that, crowd density and crowd

counts can be used interchangeably because crowd density can

be easily converted into crowd count for a fixed area. Although

WiFi sensors face attenuation problem, it is not really difficult

to estimate their operational range and allocate requisite

number of sensors for proper monitoring. Aggregating the

counts from all sensors gives an approximation of the crowd

count in a monitored area. To account for the people without

WiFi enabled devices, the aggregated crowd count is multiplied

by a pre-assessed extrapolation factor to give the net crowd

count. Received signal strength indicator (RSSI) values is used

to ensure that each device is counted only once. To ensure

privacy-preserved crowd counting, the MAC addresses in the

received PRs are anonymized by default. For each area, a

univariate time-series is prepared using time-stamped crowd

counts. It is true that a multivariate case (i.e. forecasts with

additional variables such as social media response, weather,

traffic, etc.) might help in giving better crowd forecasts. But

getting additional data can require further permissions and

multi-party dependency. The objective of this work is to present

a self-sufficient crowd monitoring system and therefore only

WiFi based univariate case is presented.

In large-scale public events lasting several days, generally the

granularity of forecast horizon is taken in minutes. Under such

conditions, short-term fluctuations and unpredictable behaviour

can make a time series hard to predict via conventional

methods. Given the abundance of data in such events, LSTM

becomes a suitable choice for forecasting [30]. Five variants of

LSTM have been used to make 30 minutes ahead crowd count

forecasts. The purpose is to make event organizers aware of

critical crowd density well in advance. The proposed methods

neither use nor identify trend and seasonality in the time series.

This ensures that the proposed methods are generalized and

apply to the widest class of events. Since the proposed

forecasting techniques rely on time series, they can be easily

employed in any other crowd monitoring technique which is

capable of producing time-stamped crowd counts. The novelty

and importance of this work is marked by the following key

contributions: (i) the proposed crowd forecasting is based on

real measurements taken from an actual event; (ii) a large scale

public event has been monitored instead of transportation

systems or indoor crowd; and (iii) a first-hand application of

LSTM is presented for crowd forecasting, with five different

variants.

D. Paper Layout

This paper is organized as follows: Section II describes the

crowd counting mechanism. Section III presents the Winter

Wonders festival, which was used for data collection. Section

IV offers an overview of LSTM based crowd forecasting.

Section V presents the results and discussion for crowd

forecasting. The paper concludes in Section VI, giving some

important future directions.

II. CROWD COUNTING VIA WIFI SENSORS

A. Probe Requests (PRs) Detection using WiFi Sensors

This paper is written from application perspective and

therefore only the measurement methodology is described

hereafter. The crowd counts required for forecasting are derived

on the basis of PR, which allows a WiFi enabled device to seek

and connect to a WiFi access point (AP) in its vicinity [9]. Each

PR frame, contains the source address of the sending device,

which is basically its MAC address (Refer [10, Fig. 2]).

Therefore, counting the PRs indirectly accounts for the number

of people present at an event. To avoid overestimation, it must

be ensured that the PRs with same MAC address are counted

3

just once. PRs are generally sent as several bursts within a small

time frame [31], which can be referred to as probe request bursts

(PRBs). In this work, WiFi sensors were developed, which are

capable of collecting and sending PRBs to a central server.

Setup of the WiFi sensor with description of the components is

shown in Fig. 1. Often the operational range of two or more

sensors overlap. This is a desirable situation, because it is hard

to precisely determine the range of a sensor. The operational

range of a WiFi sensor can vary based on crowd density,

because the signals are attenuated by human body. A high

density of sensors ensures that the area of interest is fully

covered. A typical deployment and detection scenario is

explained in Fig. 2. Overlapping range implies that several

sensors may detect identical PRBs. To avoid duplicate

counting, data from all sensors are jointly processed on a central

server.

B. Processing, Counting, and Time Series Preparation

Consider 𝑛𝑆 sensors deployed in 𝑛𝐴 areas at an event, where

each sensor and area is represented by their respective IDs: 𝑆𝑖

and 𝐴𝑗, where 𝑖 ∈ [1, 𝑛𝑆]; 𝑗 ∈ [1, 𝑛𝐴]; 𝑛𝑆, 𝑛𝐴 ∈ ℕ; and 𝑛𝐴 ≤ 𝑛𝑆.

The objective of the processing is to generate a time series with

crowd counts every 𝑇𝑖 = 5 minutes, corresponding to each area

𝐴𝑗. The first step consists of computing counts for disjoint and

contiguous elementary time frames of duration 𝑇𝑒 = 30

seconds. For each time frame, all the corresponding

anonymized MAC addresses are extracted from the database.

This results in an array of 3-tuples. The 𝑘th 3-tuple is

represented as (𝑆(𝑘), aMAC(𝑘), RSSI(𝑘)). Here, 𝑆(𝑘) is a sensor

ID 𝑆𝑖, aMAC(𝑘) is the corresponding anonymized MAC

address, and RSSI(𝑘) is the corresponding RSSI (a number

quantifying the received power by sensor 𝑆(𝑘) in dBm). It must

be noted that, aMAC(𝑘) does not reveal the actual MAC address

of the device corresponding to detected PRB, because it is

anonymized for preserving privacy. The number of distinct

PRBs are counted within each elementary time frame per

sensor. If a PRB is detected by more than one sensor, it is

counted only for the nearest sensor (i.e., the one which reports

highest RSSI). With this type of processing, the total crowd

count per area can be simply obtained by adding the counts

from all sensors within that area. To prepare a time series,

counts of ten corresponding elementary time frames are

averaged to generate counts at every 𝑇𝑖 = 5 minutes. Averaging

counts over five minutes also alleviates the measurement noise.

The entire process relies on PRB transmission within a short

time frame (𝑇𝑒 = 30 seconds). It does not intend long term

tracking of devices /users by deanonymizing the received PRs

[32]. In this way, the proposed crowd counting methodology is

immune to MAC address randomization. To account for the

people who may not have a WiFi enabled device, the counts are

multiplied by an extrapolation factor to obtain the net crowd

count. The extrapolation factor is obviously influenced by the

number of people who have their WiFi disabled or those who

might not have smartphones. Therefore, the extrapolation factor

was obtained by comparing crowd counts generated by WiFi

sensors, against those provided by a cellular network, in a

previous event. An extrapolation factor of 3 was found suitable

for large scale public events.

III. EVENT DESCRIPTION

A large scale public event – Winter Wonders, was organized

in the city of Brussels (Belgium) between November 30, 2018

and January 6, 2019. This work focuses on the two most

crowded areas of this event, namely Sainte-Catherine and

Bourse. Maps of these areas are respectively shown in Fig. 3

and Fig. 4. Both the areas had arrangements for food and

leisure, with almost similar setup. These areas are in the center

of Brussels city, with nearby metro and bus stations serving as

the major points of crowd influx. The time-series for Sainte-

Fig. 1. Setup of the WiFi sensor: All components are glued inside a robust

protective enclosure. During deployment, the sensors are mounted on poles
using zip-ties such that the antenna of WiFi dongle is vertically positioned. 4G

dongle provides the internet connection for transferring the anonymized probe

requests from Raspberry Pi to a central server. Power supply is accessed via
sufficiently long cables from a nearby source.

Raspberry

Pi 3 running

Raspbian

Huawei

4G dongle

ALFA

AWUS036NHA

WiFi dongle in

monitor mode

Power supply

(3 amp)

Power cable

Protective

enclosure

Fig. 2. Deployment and detection: Pole mounted sensors 𝑆1 and 𝑆2 detect the

PRBs emanating from users/ devices 𝐷1, 𝐷2, and 𝐷3 in area 𝐴1. The detection

range of each sensor is depicted by an ellipse and arrows represent the detection

of PRBs. Devices 𝐷1 and 𝐷3 are respectively detected by their nearest sensors,

i.e. 𝑆1 and 𝑆2. Being in a common zone, 𝐷2 is detected by both 𝑆1 and 𝑆2.

S1
S2

A1

D2
D3

D1

Fig. 3. Map of Sainte-Catherine area showing approximate sensor locations.

This figure has been generated using ‘My Maps’ tool from Google.

S1

S2

S3

S4

S5

S6

S7

S8

S950 m

4

Catherine area, obtained by aggregating the crowd counts from

sensors 𝑆1 to 𝑆9, is shown in Fig. 5. For Bourse, the time series

is obtained by aggregating crowd counts from sensors 𝑆13 to

𝑆19, and is shown in Fig. 6. The readers are requested to zoom

in the figures for clarity. Only those days are shown, when all

the sensors were continuously online in the respective areas.

Each day has 216 time steps between the time range of interest

(6 AM to 12 AM). The variations in crowd counts can be

perfectly captured in the mentioned time range, and therefore,

forecasting results will also be shown for the same.

IV. CROWD FORECASTING WITH LSTM

A. Description of LSTM

 LSTM is a type of recurrent neural network which propagates

or forgets information over a long and recurrent training period,

so as to improve the prediction performance. The capability to

correlate between the previous and current information makes

it a suitable candidate for time series forecasting. The basic unit

in LSTM modeling is known as a cell. Fig. 7 shows the

architecture of an LSTM cell, which is the most basic unit of an

LSTM neural network. All bold notations henceforth represent

vector quantities. Let 𝒙𝒕 be a sequence vector, where sample

index 𝑡 = 1, 2, … 𝑇 and 𝑇 is the total time samples in the sequence.

At each index 𝒕, LSTM takes an input sample from 𝒙𝒕, past cell

state 𝒂𝒕−𝟏, and past hidden state 𝒉𝒕−𝟏. The learning of temporal

relations in LSTM is defined by the following equations [33]:

Г𝒇
𝒕 = 𝜎(𝑊𝑓ℎ𝒉𝒕−𝟏 + 𝑊𝑓𝑥𝒙𝒕 + 𝒃𝒇) (1)

Г𝒊
𝒕 = 𝜎(𝑊𝑖ℎ𝒉𝒕−𝟏 + 𝑊𝑖𝑥𝒙𝒕 + 𝒃𝒊) (2)

Г𝒈
𝒕 = 𝜌(𝑊𝑔ℎ𝒉𝒕−𝟏 + 𝑊𝑔𝑥𝒙𝒕 + 𝒃𝒈) (3)

Г𝒐
𝒕 = 𝜎(𝑊𝑜ℎ𝒉𝒕−𝟏 + 𝑊𝑜𝑥𝒙𝒕 + 𝒃𝒐) (4)

𝒂𝒕 = Г𝒇
𝒕 ⨀ 𝒂𝒕−𝟏 + Г𝒊

𝒕 ⨀ Г𝒈
𝒕 (5)

𝒉𝒕 = Г𝒐
𝒕 ⨀ 𝜌(𝒂𝒕) (6)

Here, 𝑊𝑓ℎ, 𝑊𝑓𝑥, 𝑊𝑖ℎ, 𝑊𝑖ℎ, 𝑊𝑔ℎ, 𝑊𝑔ℎ, 𝑊𝑜ℎ, 𝑊𝑜ℎ, are the

weight matrices and 𝒃𝒇, 𝒃𝒊, 𝒃𝒈, 𝒃𝒐 are the bias vectors which

lead to the respective resultant vectors of Г𝒇
𝒕 , Г𝒊

𝒕, Г𝒈
𝒕 , Г𝒐

𝒕 . The

subscripts 𝒇, 𝒊, 𝒈, and 𝒐 respectively represent the forget gate,

input gate, input node, and output gate. Symbol ‘⨀’ represents

elementwise product. In (1)-(6), the dimension of all vector

quantities is 𝑇 × 1 and the weight matrices is 𝑇 × 𝑇, where 𝑇

represents total time samples in input sequence. Cell state is the

memory of an LSTM cell, whereas hidden state is virtually its

output. Before the operations inside an LSTM cell can be

deciphered, it is important to understand the role of activation

functions. In this work, sigmoid and rectified linear unit (ReLU)

activation functions are used. The expression for sigmoid

activation is given as 𝜎(𝑧) =
1

1+𝑒−𝑧 which gives an output in the

range (0, 1) for any input 𝑧. The expression for the ReLU is

given as 𝜌(𝑧) = max (𝑧, 0). The sigmoid activation is used in

the input, output, and forget gate; where its output decides

whether an information should be propagated (values closer to

1) or rejected (values closer to 0). Training of LSTM involves

gradient computation, which may lead to vanishing gradient

problem if the gradients shrink to zero (see [34] for further

details). This problem is solved by the choice of ReLU

activation, whose gradients are faster to compute and do not

vanish easily [35]. From Fig. 7, it can be seen that the forget

gate decides what information to omit from 𝒉𝒕−𝟏 and 𝒙𝒕. This

resulting vector Г𝒇
𝒕 (see (1)) contains values in (0,1) which helps

in omitting irrelevant values from cell state 𝒂𝒕−𝟏 via

elementwise product (see (5)). Using a sigmoid activation, the

input gate decides the indices at which new information should

Fig. 4. Map of Bourse area showing approximate sensor locations. This figure

has been generated using ‘My Maps’ tool from Google.

S13

S14

S15

S16

S17

S18

S19

20 m

Fig. 5. Time series (ground truth) for Sainte-Catherine area.

Fig. 6. Time series (ground truth) for Bourse area.

Fig. 7. LSTM Cell structure. All vectors are represented in bold. Weight

matrices are symbolized by 𝑾.

+

[--]

σ σ ρ σ

ρ

+ [--]

σ ρ

Elementwise productElementwise sum Concatenation

Elementwise sigmoid activation Elementwise ReLU activation

at-1

ht-1

xt

Wfh, Wfx, bf
ht

at

Wih, Wix, bi Wgh, Wgx, bg Woh, Wox, bo

5

be added, which leads to representative vector Г𝒊
𝒕 (see (2)). The

ReLU activation in input node, gives the new values to be added

in terms of vector Г𝒈
𝒕 (see (3)). The resultant of elementwise

product of Г𝒊
𝒕 and Г𝒈

𝒕 contains new values which are added to

Г𝒇
𝒕 ⨀ 𝒂𝒕−𝟏, resulting in an updated cell state 𝒂𝒕 (see (5)). Finally,

the output gate passes a filtered or relevant values form the

updated cell state 𝒂𝒕, as the new hidden state 𝒉𝒕. The values to

be passed in the new hidden state 𝒉𝒕 are obtained by passing

updated cell state 𝒂𝒕 through ReLU activation, which gives

𝜌(𝒂𝒕). The locations of the updated cell state vector which will

hold the filtered values are decided by sigmoid activation (see

(4)), resulting in vector Г𝒐
𝒕 . The new hidden state 𝒉𝒕 is finally

obtained by elementwise product of Г𝒐
𝒕 and 𝜌(𝒂𝒕) (see (6)).

The handling of a time series can be understood by the

unrolled representation of an LSTM at subsequent time samples

as shown in Fig. 8. From the application perspective the cells

are referred to as neurons. Vertical stacking of time-unrolled

cells represents the LSTM layers. Fig. 8 shows the 𝑇 samples

of the unrolled sequence and also 𝐿 different layers which can

be stacked on top of each other for deep learning. Deep learning

symbolizes automatic feature learning capability of the LSTM

which enables it to enhance its predictive performance. For

example, it can read a crowd density time series and learn the

time dependent variations in crowd density using several LSTM

layers to predict the crowd density for a desired time horizon.

An LSTM can have several intermediate layers which are

known as the hidden layers. As seen in Fig. 8, each cell passes

an output 𝒚𝒕 to the subsequent layer. This output is essentially

the hidden state 𝒉𝒕, as mentioned earlier. If LSTM inputs are

encoded, then 𝒉𝒕 is passed through another activation function

to obtain the output 𝒚𝒕. If inputs are not encoded, then the

hidden state is simply passed as the output, i.e. 𝒉𝒕 = 𝒚𝒕.

B. Forecasting Methodology

LSTM is considered suitable for time series forecasting

because of sequential input support, mapping of input data to

vector output for multistep ahead predictions, and effective

modeling of non-stationary and non-linear processes. It is a

common practice to remove non-stationarity in time series

through various transformations, which removes trends and

seasonality [36]. However, in this paper, such transformations

shall not be used, because LSTM has been shown to perform

well even without accounting for non-stationarity [30], [33],

[37]. A general model for LSTM based multistep ahead

forecasting is shown in Fig. 9. The objective of forecasting in

this paper, is to obtain 𝑀 future crowd counts given 𝐾 past

crowd counts. A sequence vector of crowd counts is created

with past 𝐾 values, represented as 𝒙𝒕 = {𝑐𝑡−𝐾 , … , 𝑐𝑡−2, 𝑐𝑡−1}.

LSTM computations are sensitive to data scale, therefore the

sequence vector must be normalized in the range [0, 1]. Min-

max normalization is used for this purpose and the resulting

vector is represented as 𝒙𝒕̃ = {𝑐̃𝑡−𝐾 , … , 𝑐̃𝑡−2, 𝑐̃𝑡−1}. This

normalized vector is fed to the first LSTM layer. Inside the

LSTM, the sequence vectors are utilized to train weights and

biases, which will in-turn help in making predictions. During

training, the weights are initialized randomly and the biases are

initialized as one to prevent information loss. The initialization

of cell state and hidden state vectors is generally done with zero.

After the training is finished, the output of LSTM is passed

through one or more dense layers. An LSTM dense layer is a

fully connected layer which links each input neuron to the

output neuron, just like in a conventional neural network. In

simpler terms, it helps in mapping an input of different size to

an output of desired size. The output received from dense layer

is normalized and needs to be inverted to its min-max scale. The

scale inverted output vector gives the 𝑀 step ahead predictions,

which can be represented as 𝒚𝒕 = {𝑑𝑡 , 𝑑𝑡+1, … , 𝑑𝑡+𝑀}. This

paper presents 6-step (30-minutes) ahead crowd forecasts,

therefore the output sequence length is chosen as 𝑀 = 6

samples. The size of input sequence can be flexible. An input

sequence of size 𝐾 = 12 samples (twice that of output size) is

chosen in this work, based on trial and error method.

Five different variants of LSTM are used in this paper: (i)

Vanilla LSTM (VLSTM), (ii) Bidirectional LSTM (BiLSTM),

Fig. 8. Unrolled and layered representation of LSTM. Rolled over 𝑻 time

samples of time sequence 𝒙𝒕, depicting 𝑳 layers of LSTM with hidden layers in

between. For example, 𝐋𝐒𝐓𝐌𝑻
𝟏 represents 𝑻th cell in layer 1, which has past

cell state 𝒂𝑻−𝟏
𝟏 and past hidden state 𝒉𝑻−𝟏

𝟏 with present input 𝒙𝑻, giving the

output 𝒚𝑻
𝟏 to subsequent cell in layer 2. An LSTM model can have any

number of cell (neurons) or layers, as required by the problem in hand.

LSTM1
T-1

xT-1

a
1

T-1a
1
T-2

h
1
T-1h

1
T-2

LSTM1
1

x1

a
1
1a

1
0

h
1
1h

1
0

LSTM1
T

xT

y
1
1 y

1
T-1 y

1
T

LSTML
T-1

a
L

T-1a
L

T-2

h
L

T-1h
L

T-2

LSTML
1

a
L

1a
L

0

h
L

1h
L

0

LSTML
T

y
L

1 y
L

T-1 y
L

T

y
L-1

1 y
L-1

T

Output layer

First layer

Input sequence

Unrolled

layers
Hidden layers

y
L-1

T-1

Cells or

neurons

Fig. 9. General model for LSTM based forecasting. 𝑴-step ahead predictions

are obtained using preceding 𝑲 samples.

Set K time steps for look back

Prepare input sequence

Min-max normalization in range [0, 1]

Input sequence vector

LSTM layer / Encoder

...

Hidden layers

...

LSTM Layer / Decoder

...

Dense layer

...

...

De-normalization using min-max scale

M step output vector

...
...

... ...

...

Intermediate outputs

6

(iii) Encoder-Decoder LSTM (EDLSTM), (iv) Convolutional

Neural Network LSTM (CNNLSTM), (v) Convolutional

LSTM (ConvLSTM). VLSTM is the simplest variant of LSTM

which has only one LSTM layer which is immediately followed

by a dense output layer to make predictions. BiLSTM consists

of 2 layers in opposite directions connected to same output.

EDLSTM is a variant which is specially used for sequence to

sequence prediction problems. The length of input and output

sequences in EDLSTM can be same or different, as per the

requirement of forecasting problem. Mapping between input

and output vectors of different length is done using coded

vector representations. The CNNLSTM and ConvLSTM

variants involve convolutional neural networks for input (time

series) feature extraction, followed by LSTM for sequence

prediction. The only difference between CNN LSTM and

ConvLSTM is that, the latter has convolutional reading of input

is built directly into LSTM layer. The objective of this paper is

only to apply and compare the performance of mentioned

LSTM variants for crowd forecasting. Due to length

restrictions, it is not possible to describe each variant in detail.

Therefore, the readers are kindly requested to follow references

[38]-[41], which elucidate the architecture and modeling of the

LSTM variants.

C. Hyperparameter Selection

Hyperparameters are those parameters whose values are

chosen before training a machine learning model. Obtaining the

optimal hyperparameters is a computation intensive process.

Moreover, it is contextual and may not be optimal for different

problems. Therefore, this paper will only follow the best

practices in LSTM hyperparameter selection. Similar approach

has been used in [33], [37]. The aim is to obtain forecasting

models which can perform well across different test cases. The

choice of parameters common to all models is given as follows:

Batch Size: A batch is the number of samples of training set

needed to update the coefficients, i.e., weights and biases.

Based on trial and error approach, a batch size of 18 is chosen.

Epochs: It is number of times an overall training set is passed

through the network. Based on trial and error approach, 70

epochs were found suitable in this work.

Optimizer/ learning rate: Due to its proven performance [33],

ADAM optimizer has been used in this work with its default

parameters (learning rate = 0.001).

Loss function: Being the most common choice, mean squared

error (MSE) is chosen as the loss function in this work.

Neurons or cells: 100 neurons per hidden layer were chosen

based on performance analysis in the search space of 20 to 200,

as recommended in [42]. Using more neurons may lead to

slightly better performance, but the training time is too high.

Hidden layers: Based on the discussion given in [42] and tests

performed, single LSTM hidden layer has been chosen in this

work apart from the model specific layers. Adding further

layers complicates the training without giving better results.

D. Training

As seen in Fig. 5 and Fig. 6, Sainte-Catherine and Bourse

time series have 8 days of available data. These days are divided

in training and test sets, as shown in Table I. The training and

test sets are selected sequentially from the two time series.

However, it should not lead to any bias in LSTM forecasts,

because the days in time series are not consecutive. An insight

in the training procedure is given in Fig. 10. It can be seen how

the 216 samples (crowd counts) available from each day of

training data are restructured to create 199 training sets, each

having an input window of 12 samples and target or output

window of 6 samples. An overfitting check has been

implemented via walk-forward validation, also known as

‘rolling forecast’. In walk-forward validation, LSTM models

will be required to make 6-step ahead crowd count forecasts.

Thereafter, the actual data will be made available to predict the

next 6 steps. Since this method does not provide complete data

to the model at once, therefore overfitting is prevented by

default. The training process is dynamic in nature because

LSTM preserves memory across the training samples. An

underfitting check is also implemented by comparing the

performance metrics of LSTM model against a random walk

(RW) baseline model [Section V-A]. If the LSTM models show

worse metrics than the baseline model, then it would be

considered as underfitting.

V. CROWD FORECASTING RESULTS

A. Metrics and Baseline Model

Two metrics are chosen in this work for performance

assessment, root mean square error (RMSE) and mean absolute

percentage error (MAPE). Let 𝒙𝒕 be actual crowd count at any

time instance 𝒕 and 𝒚𝒕 be the corresponding predicted count,

where 𝒕 varies from 1 to 𝑇. Then, the RMSE can be expressed

as:

RMSE = √
1

𝑇
∑ (𝒙𝒕 − 𝒚𝒕)2𝑇

𝑡=1 (7)

From (7), it can be seen that RMSE penalizes large errors

because the errors are squared before averaging. Though RMSE

is suitable for the situation where large errors are undesirable,

its sensitivity to outliers can also lead to misjudgment of a

forecasting model. This is where MAPE can be useful. The

expression for MAPE is given as:

MAPE =
100%

𝑇
∑

|𝒙𝒕−𝒚𝒕|

𝒙𝒕

𝑇
𝑡=1 (8)

Fig. 10. An insight into LSTM Training: Training data of 216 samples is

restructured such that an input window of 12 samples targets an output window

of next 6 samples. LSTM learns to predict for the chosen horizon of (6

samples×5minutes) 30 minutes. This results in 199 training sets [input + target]

without hindering temporal dependency in the time series data. A collection of

18 training sets forms one batch.

x216

x12 x13 x14 x15

...x3x2x1

x1 x2 x3 ... x18...

x13 x14 x15 x16x2 x3 x4 ... x19...

x210 x211 x212 x213x199 x200 x201 ... x216...

...

...

One day training data, 216 samples

Splitting in input and target sets for training

Input set

199 vectors of 12 samples each

S
te

p
w

is
e

p
ro

g
re

ss
io

n

Target set

199 vectors of 6 samples each

...

7

Since MAPE focuses on absolute errors (|𝒙𝒕 − 𝒚𝒕|), it is less

sensitive to outliers as compared to RMSE. Owing to the

normalization of the absolute error, it offers a way to minimize

relative error in the predictions. Clearly, RMSE and MAPE

have different ways to account for errors. But, this would also

help in having a balanced performance assessment of the

forecasting models. The metrics RMSE and MAPE, do not take

into account the sign of the error. Due to the peculiarity of the

application it would be interesting to see if the forecasting

techniques underestimate or overestimate the crowd count. For

this, the average error (AE) will also be reported for each case

as follows:

AE =
1

𝑇
∑ (𝒙𝒕 − 𝒚𝒕)𝑇

𝑡=1 (9)

To prove that the LSTM models perform well, their RMSE

and MAPE values must be compared against a baseline model

and must perform better than it. A random walk (RW),

alternatively known as naive persistence model can be used as

a baseline for comparison [43], [44]. It works on an assumption

that a time series is constant over the required forecast horizon.

For an actual value 𝒙𝒕 at time sample 𝑡, the RW model gives a

prediction at time 𝑡 + ℋ as 𝒚𝒕+𝓗 = 𝒙𝒕, where ℋ is the required

time horizon.

B. Results and Discussion

All the simulations are performed in Python (version 3.6) and

the figures are plotted using MATLAB (version 9.4). LSTM

models have been prepared using Keras library (version 2.2.4)

in Python environment. The test cases mentioned in Table I

have been considered to check whether the prediction

performance of models improve with more training data or not,

which generally does happen in deep learning models.

Improvement in performance with increase in training days

would thus validate the correctness of developed models. Also,

consideration of three different cases would help in averaging

the performance (metrics) of each model for the purpose of

comparison. Best model would be determined on the basis of

percentage (%) improvement in average RMSE and MAPE

values as compared to RW model. Fig. 5 and Fig. 6 represent

the ground truth for respective areas. It should be noted that the

reported metrics are computed only in those parts of time series,

where the crowd counts have an increasing trend. This is

because during early and late hours, the changes in crowd

counts are not critical. The aim is to forecast in range where the

crowd builds up until its peak count. The time range of interest

for metrics computation in Sainte-Catherine area is 4 PM to 8

PM, whereas in Bourse area it is 10.30 AM to 4.30 PM.

 Table II and Table III respectively show the results for 6-step

(30 minutes) ahead crowd count forecasts for Sainte-Catherine

and Bourse area. All reported values are rounded to two decimal

places. Average RMSE and MAPE values corresponding to the

three test cases are shown. From the RMSE and MAPE values,

it is evident that the LSTM models outperform RW model in all

cases. Except some deviations in Table II, the metrics generally

improve with increase in training data, which confirms that the

models tend to perform better with more training data. It can

also be seen that the metrics reported for Sainte-Catherine are

bigger as compared to Bourse area. This is obvious, given the

fact that crowd counts are much higher and random in Sainte-

Catherine. High counts in Sainte-Catherine area can be

TABLE I
TRAINING AND TEST SETS

Sainte-Catherine

Case Training days Test Days

1 Dec 01
Dec 10, Dec 13, Dec 14, Dec 15,

Dec 17, Dec 18, Dec 28

2 Dec 01, Dec 10
Dec 13, Dec 14, Dec 15, Dec 17,

Dec 18, Dec 28

3 Dec 01, Dec 10, Dec 13
Dec 14, Dec 15, Dec 17, Dec 18,

Dec 28

Bourse

Case Training days Test Days

1 Dec 25
Dec 26, Dec 27, Dec 28, Dec 29,

Dec 30, Jan 04, Jan 05

2 Dec 25, Dec 26
Dec 27, Dec 28, Dec 29, Dec 30,

Jan 04, Jan 05

3 Dec 25, Dec 26, Dec 27
Dec 28, Dec 29, Dec 30, Jan 04,

Jan 05

TABLE II
CROWD COUNT FORECAST ERRORS FOR SAINTE-CATHERINE AREA

RMSE values

Model Case 1 Case 2 Case 3 Avg. (+ %) *

RW 272.60 282.16 274.46 276.41 -

VLSTM 265.08 251.92 214.30 243.77 13.39

BiLSTM 201.71 206.95 223.17 210.61 31.24

EDLSTM 212.01 178.94 197.44 196.13 40.93

CNNLSTM 180.91 194.80 206.39 194.03 42.46

ConvLSTM 184.10 200.73 190.18 191.67 44.21

MAPE values

Model Case 1 Case 2 Case 3 Avg. (+ %) *

RW 7.16 7.15 6.89 7.07 -

VLSTM 7.30 6.52 5.24 6.35 11.34

BiLSTM 5.26 5.17 5.59 5.34 32.40

EDLSTM 5.52 4.35 4.72 4.86 45.47

CNNLSTM 4.67 4.58 5.20 4.82 46.68

ConvLSTM 4.72 5.00 4.52 4.75 48.84

* (+%) represents percentage improvement in average metrics attained by

LSTM variants as compared to average metrics of RW model. The average is
taken over the three different test cases having different number of training

days.

TABLE III

CROWD COUNT FORECAST ERRORS FOR BOURSE AREA

RMSE values

Model Case 1 Case 2 Case 3 Avg. (+ %) *

RW 240.16 236.37 229.40 235.31 -

VLSTM 176.48 166.74 158.49 167.24 40.70

BiLSTM 193.85 155.55 146.59 165.33 42.33

EDLSTM 183.01 151.24 149.64 161.30 45.88

CNNLSTM 163.83 148.60 156.06 156.16 50.69

ConvLSTM 162.37 152.99 142.68 152.68 54.12

MAPE values

Model Case 1 Case 2 Case 3 Avg. (+ %) *

RW 10.33 10.22 9.97 10.17 -

VLSTM 7.15 6.72 6.28 6.72 51.34

BiLSTM 7.95 6.31 5.84 6.70 51.79

EDLSTM 7.29 5.97 5.95 6.40 58.91

CNNLSTM 6.77 5.73 6.18 6.23 63.24

ConvLSTM 6.49 5.98 5.52 6.00 69.50

* (+%) represents percentage improvement in average metrics attained by

LSTM variants as compared to average metrics of RW model. The average is
taken over the three different test cases having different number of training

days.

8

accredited to its bigger size than Bourse (compare scales in Fig.

3 and Fig. 4). For both areas, it is observed that the net

improvement achieved is more for MAPE values as compared

to RMSE values. This signifies that the forecasting models

better track the small variations in crowd count as compared to

drastic variations. In general, the large and sudden variations in

a crowd time series are less predictable. Comparing the LSTM

forecasts in Sainte-Catherine and Bourse, it is seen that the

metrics are improved more in Bourse area. This is because

Bourse time series being smoother and thus more predictable

(compare Fig. 5 and Fig. 6). This in-turn implies that the LSTM

models would not achieve significant improvements as

compared to RW model. To comment on individual

performances of LSTM models, it can be said that the encoding

decoding of time series helps in achieving better predictions.

See in Table II and Table III that, EDLSTM, CNNLSTM, and

ConvLSTM models report more improvements as compared to

VLSTM and BiLSTM. Based on the overall improvement in

metrics, ConvLSTM is deemed as the best crowd forecasting

model. This could be accredited to its convolutional reading

capability, where it creates two or more subsequences from an

input sequence to learn temporal dependencies. Overall, all the

observations are found to be in close conformity with the

expectations. For a quick qualitative analysis, 6-step ahead (30

minutes) predictions achieved by different models are shown in

Fig. 11. For further assessment of the forecasts, a summary of

average errors (AE) is shown in Table IV for the three training

cases of both areas. As expected, the LSTM models report

lesser error in general as compared to RW model. Except in two

cases, the proposed models underestimate the crowd counts as

shown by the positive average error. The overestimations

(negative error) in EDLSTM and CNNLSTM may be

subjective. The obtained results are favourable in two ways: (i)

The event managers prefer underestimations so as not to raise

frequent false alarms; and (ii) The average errors seem

reasonable, with ConvLSTM giving the most consistent and

reliable performance. The total runtime taken in training,

testing and computing the metrics for different models are

reported in Table V. All computations were performed on Intel

i7 1.80 GHz CPU, with 16 GB RAM and Intel 620 Integrated

GPU. Since RW model simply reiterates past values, it has least

runtime in all cases. In LSTM variants, the runtime is obviously

higher and it increases with the increases with increase in size

of training data. ConvLSTM shows high runtime owing to the

convolutions performed during training.

In general, the runtime can vary from system to system based

on hardware specifications. Therefore, time complexity

notations are often used to specify the computational

requirements of an algorithm. Time complexity of the preferred

ConvLSTM model can be obtained by adding the complexities

of convolutional layer and LSTM hidden layer. Based on the

derivations given in [45], the overall time complexity of

ConvLSTM can be interpreted as: 𝒪 ((∑ (p𝑗 . q𝑗
2. r𝑗 . s𝑗

2) +𝐶
𝑗=1

𝝎). 𝛸. 𝛦). Here, 𝑗 is convolutional layer number, 𝐶 is total

number of convolutional layer, p is number of input channels,

q is spatial size of filter, r is number of filters, s is spatial size

of output feature map, 𝝎 is number of weights in hidden LSTM

layer, 𝛸 is input length, and 𝛦 is number of epochs. In a

Fig. 11. Comparison of predictions made by different models against ground truth: (a) Sainte-Catherine with 1 training day, (b) Sainte-Catherine with 2 training

days, (c) Sainte-Catherine with 3 training days, (d) Bourse with 1 training day, (e) Bourse with 2 training days, and (f) Bourse with 3 training days.

0 500 1000 1500

Time step [1 unit = 5 minutes]

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000
C

ro
w

d
 C

o
u

n
t

Sainte-Catherine Crowd Forecasts: 1 Training Day, 7 Test Days

Dec 10 (Mon) Dec 13 (Thu) Dec 14 (Fri) Dec 15 (Sat) Dec 17 (Mon) Dec 18 (Tue) Dec 28 (Fri)

Actual

RW

VLSTM

BiLSTM

EDLSTM

CNNLSTM

ConvLSTM

0 200 400 600 800 1000 1200

Time step [1 unit = 5 minutes]

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

C
ro

w
d

 C
o

u
n

t

Sainte-Catherine Crowd Forecasts: 2 Training Days, 6 Test Days

Dec 13 (Thu) Dec 14 (Fri) Dec 15 (Sat) Dec 17 (Mon) Dec 18 (Tue) Dec 28 (Fri)

Actual

RW

VLSTM

BiLSTM

EDLSTM

CNNLSTM

ConvLSTM

0 100 200 300 400 500 600 700 800 900 1000

Time step [1 unit = 5 minutes]

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

C
ro

w
d

 C
o

u
n

t

Sainte-Catherine Crowd Forecasts: 3 Training Days, 5 Test Days

Dec 14 (Fri) Dec 15 (Sat) Dec 17 (Mon) Dec 18 (Tue) Dec 28 (Fri)

Actual

RW

VLSTM

BiLSTM

EDLSTM

CNNLSTM

ConvLSTM

0 500 1000 1500

Time step [1 unit = 5 minutes]

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

C
ro

w
d

 C
o

u
n

t

Bourse Crowd Forecasts: 1 Training Day, 7 Test Days

Dec 26 (Wed) Dec 27 (Thu) Dec 28 (Fri) Dec 29 (Sat) Dec 30 (Sun) Jan 04 (Fri) Jan 05 (Sat)

Actual

RW

VLSTM

BiLSTM

EDLSTM

CNNLSTM

ConvLSTM

0 200 400 600 800 1000 1200

Time step [1 unit = 5 minutes]

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

C
ro

w
d

 C
o

u
n

t

Bourse Crowd Forecasts: 2 Training Days, 6 Test Days

Dec 27 (Thu) Dec 28 (Fri) Dec 29 (Sat) Dec 30 (Sun) Jan 04 (Fri) Jan 05 (Sat)

Actual

RW

VLSTM

BiLSTM

EDLSTM

CNNLSTM

ConvLSTM

0 100 200 300 400 500 600 700 800 900 1000

Time step [1 unit = 5 minutes]

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

C
ro

w
d

 C
o

u
n

t

Bourse Crowd Forecasts: 3 Training Days, 5 Test Days

Dec 28 (Fri) Dec 29 (Sat) Dec 30 (Sun) Jan 04 (Fri) Jan 05 (Sat)

Actual

RW

VLSTM

BiLSTM

EDLSTM

CNNLSTM

ConvLSTM

(a)

(b)

(c)

(d)

(e)

(f)

Ground Truth

Ground Truth

Ground Truth
Ground Truth

Ground Truth

Ground Truth

9

univariate forecasting scenario, ConvLSTM can be used by

reshaping the input into subsequences within a single

convolutional layer (kindly refer to [36] for modeling insights).

Considering single convolutional layer, the complexity of

ConvLSTM can be redefined as: 𝒪((p. q2. r. s2 + 𝝎). 𝛸. 𝛦).

The obtained expression explains the high runtime of

ConvLSTM as compared to the other models. But given its

impressive performance, it can be readily given preference over

other variants. As reported in [46], the complexity of RSSI

based localization process can be given as 𝒪(𝒩), where 𝒩 is

the number of measurements. Combining the complexities of

sensing and forecasting, the overall complexity of the proposed

crowd monitoring approach may be given as 𝒪((p. q2. r. s2 +

𝝎). 𝛸. 𝛦) + 𝒪(𝒩). This will be effectively equal to

𝒪((p. q2. r. s2 + 𝝎). 𝛸. 𝛦) because the complexity of

forecasting algorithm is more dominant.

VI. CONCLUSION

This paper presented a first-hand application of WiFi sensors

and LSTM for crowd forecasting. A procedure for privacy-

preserved crowd counting based on probe request detection was

described. A large scale public event (Winter Wonders 2018-

2019, Brussels) was monitored to obtain crowd counts and

corresponding time series. Five different LSTM based

univariate forecasting models were used to make 6-step (30

minutes) ahead predictions on the resulting time series. All

LSTM models outperformed the random walk model, which

was used as a baseline. ConvLSTM was found to be most

suitable model for crowd forecasting. As compared to random

walk model, respective improvements of 44.21% and 48.84%

were observed in average RMSE and MAPE values for St.

Catherine area. Corresponding improvements in Bourse area

were 54.12% and 69.50%. The average errors (AE) reported by

ConvLSTM were also found to be most reliable and consistent.

It provides most significant improvements in metrics by slightly

compromising on the time. Clearly, the forecast performance

is different for different areas, which possibly depends on a time

series being more or less predictable. Overall, the proposed

crowd forecasting system can be deemed suitable for

monitoring the large scale public events. In the future work,

multivariate crowd forecasting models can be developed by

assuming interdependency between crowd counts of two or

more areas in proximity or by considering additional features

such as social media response, weather, and traffic updates. It

can lead to more efficient forecasts and offer more insight into

the crowd behaviour.

ACKNOWLEDGMENTS

 The authors thank Innoviris for funding this research through

the MUFINS project. The authors are also thankful to Brussels

Major Events for their active collaboration.

REFERENCES

[1] G. Cardone, A. Cirri, A. Corradi, L. Foschini, R. Ianniello, and R.

Montanari, “Crowdsensing in urban areas for city-scale mass gathering
management: Geofencing and activity recognition,” IEEE Sensors

Journal, vol. 14, no. 12, pp. 4185-4195, 2014.

[2] N. Shiwakoti, S. Xiaomeng, and Y. Zhirui, “A review on the performance
of an obstacle near an exit on pedestrian crowd evacuation,” Safety

science, vol. 113, pp. 54-67, 2019.

[3] J. C. S. Jacques, Jr., S. R. Musse, and C. R. Jung, “Crowd analysis using
computer vision techniques,” IEEE Signal Processing Magazine, vol. 27,

no. 5, pp. 66–77, Sep. 2010.

[4] S. Gong, C. C. Loy, and T. Xiang. “Security and surveillance.” In Visual

analysis of humans, pp. 455-472. Springer, London, 2011.

[5] F. Calabrese, M. Colonna, P. Lovisolo, D. Parata, and C. Ratti, “Real-time

urban monitoring using cell phones: A case study in Rome,” IEEE

Intelligent Transportation Systems Magazine, vol. 12, no. 1, pp. 141–151,

Mar. 2011.

[6] M. Wirz, T. Franke, D. Roggen, E. Mitleton-Kelly, P. Lukowicz, and G.

Troster, “Inferring crowd conditions from pedestrians’ location traces for

real-time crowd monitoring during city-scale mass gatherings,” in Proc.

IEEE WETICE, Jun. 2012, pp. 367–372.

[7] M. Versichele, T. Neutens, M. Delafontaine, and N. Van de Weghe, “The

use of bluetooth for analysing spatiotemporal dynamics of human

movement at mass events: A case study of the Ghent festivities,” Appl.

Geograph., vol. 32, no. 2, pp. 208–220, 2012.

[8] W. Xi, J. Zhao, X.-Y. Li, K. Zhao, S. Tang, X. Liu, and Z. Jiang,

“Electronic frog eye: Counting crowd using wifi,” in IEEE INFOCOM

2014-IEEE Conference on Computer Communications. IEEE, 2014, pp.
361–369.

[9] A. Kurkcu and K. Ozbay, “Estimating pedestrian densities, wait times,

and flows with WiFi and bluetooth sensors,” Transportation Research
Record, vol. 2644, no. 1, pp. 72–82, 2017.

[10] A. Guillén-Pérez and M. D. C. Baños, “A wifi-based method to count and
locate pedestrians in urban traffic scenarios,” in 2018 14th International

Conference on Wireless and Mobile Computing, Networking and

Communications (WiMob). IEEE, 2018, pp. 123–130.
[11] L. Ascorti, S. Savazzi, G. Soatti, M. Nicoli, E. Sisinni, and S. Galimberti,

“A wireless cloud network platform for industrial process automation:

Critical data publishing and distributed sensing,” IEEE Transactions on
Instrumentation and Measurement, vol. 66, no. 4, pp. 592-603, 2017.

[12] P. Giri, K. Ng, and W. Phillips, “Wireless Sensor Network System for

Landslide Monitoring and Warning,” IEEE Transactions on
Instrumentation and Measurement, vol. 68, no. 4, pp.1210-1220, 2018.

[13] L. Lombardo, S. Corbellini, M. Parvis, A. Elsayed, E. Angelini, and S.

Grassini, “Wireless sensor network for distributed environmental

TABLE IV
AVERAGE ERRORS (AE) FOR TRAINING CASES IN RESPECTIVE AREAS

Model
Sainte-Catherine Bourse

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

RW 168.86 173.27 166.15 166.08 160.14 153.51

VLSTM 204.00 171.52 117.34 77.67 77.74 56.10

BiLSTM 103.41 117.81 136.05 134.76 39.77 29.98

EDLSTM 124.33 -2.84 62.70 116.37 2.34 39.53

CNNLSTM 43.37 -53.45 122.73 75.04 50.17 75.47

ConvLSTM 66.63 78.50 46.46 59.08 43.39 30.41

TABLE V
RUNTIME IN SECONDS FOR TRAINING CASES IN RESPECTIVE AREAS

Model
Sainte-Catherine Bourse

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

RW 0.01 0.01 0.01 0.01 0.01 0.01

VLSTM 7.90 15.75 20.62 7.21 13.55 20.56

BiLSTM 8.51 14.92 24.37 9.46 17.83 24.20

EDLSTM 10.29 21.52 30.60 11.92 22.79 32.71

CNNLSTM 7.49 14.67 22.24 8.45 15.86 23.59

ConvLSTM 11.01 23.05 34.23 13.23 23.07 33.88

10

monitoring,” IEEE Transactions on Instrumentation and
Measurement, vol. 67, no. 5, pp.1214-1222, 2017.

[14] Y. Wang, J. Liu, Y. Chen, M. Gruteser, J. Yang, and H. Liu, “E-eyes:

device-free location-oriented activity identification using finegrained wifi
signatures,” in Proceedings of the 20th annual international conference

on Mobile computing and networking. ACM, 2014, pp. 617–628.

[15] S. Liu, Y. Zhao, F. Xue, B. Chen, and X. Chen, “Deepcount: Crowd
counting with wifi via deep learning,” arXiv preprint arXiv:1903.05316,

2019.

[16] S. Depatla, A. Muralidharan, and Y. Mostofi, “Occupancy estimation
using only wifi power measurements,” IEEE Journal on Selected Areas

in Communications, vol. 33, no. 7, pp. 1381–1393, 2015.

[17] O.T. Ibrahim, W. Gomaa, and M. Youssef, “CrossCount: A Deep
Learning System for Device-Free Human Counting Using WiFi,” IEEE

Sensors Journal, vol. 19, no. 21, pp. 9921-9928, 2019.

[18] C. Groba, “Demonstrations and people-counting based on Wifi probe
requests,” In 2019 IEEE 5th World Forum on Internet of Things (WF-

IoT). IEEE, 2019, pp. 596-600.

[19] M. Uras, R. Cossu, and L, Atzori, “PmA: a solution for people mobility
monitoring and analysis based on WiFi probes,” In 2019 4th International

Conference on Smart and Sustainable Technologies (SpliTech). IEEE,

2019, pp. 1-6.

[20] J. Weppner, B. Bischke, and P. Lukowicz, “Monitoring crowd condition

in public spaces by tracking mobile consumer devices with wifi

interface,” in Proceedings of the 2016 ACM International Joint
Conference on Pervasive and Ubiquitous Computing: Adjunct. ACM,

2016, pp. 1363-1371.
[21] M. Vanhoef, C. Matte, M. Cunche, L. S. Cardoso, and F. Piessens, “Why

MAC address randomization is not enough: An analysis of Wi-Fi network

discovery mechanisms,” in Proceedings of the 11th ACM on Asia
Conference on Computer and Communications Security. ACM, 2016, pp.

413–424.

[22] I. K. Tan, O. B. Yaik, and O. B. Sheng, “Predicting shopper volume using
ARIMA on public Wi-Fi signals,” International Information Institute

(Tokyo). Information, vol. 19, no. 8A, p. 3295, 2016.

[23] H. Shu, C. Song, T. Pei, L. Xu, Y. Ou, L. Zhang, and T. Li, “Queuing time
prediction using WiFi positioning data in an indoor scenario,” Sensors,

vol. 16, no. 11, p. 1958, 2016.

[24] M. Claeys Bouuaert, “Modeling crowds at mass-events: learning large-
scale crowd dynamics from Bluetooth tracking data,”

http://cartogis.ugent.be/mobileghent/sites/default/files/slides/Modeling%

20crowds%20at%20mass-events%20-%20MG2013%20-%20MCB.pdf,
2013.

[25] Z. Xu, K. Sandrasegaran, X. Kong, X. Zhu, B. Hu, J. Zhao, and C. Lin,

“Pedestrain monitoring system using Wi-Fi technology and RSSI based
localization,” International Journal of Wireless & Mobile Networks, vol.

5, no. 4, pp. 17-34, 2013.

[26] F. Potortì, A. Crivello, M. Girolami, P. Barsocchi, and E. Traficante,
“Localising crowds through Wi-Fi probes,” Ad Hoc Networks, vol. 75,

pp.87-97, 2018.

[27] S. Yan, H. Luo, F. Zhao, W. Shao, Z. Li, and A. Crivello, “Wi-Fi RTT
based indoor positioning with dynamic weighted multidimensional

scaling,” in International Conference on Indoor Positioning and Indoor

Navigation (IPIN). IEEE, 2019, pp. 1-8.
[28] A.E. Redondi and M. Cesana, “Building up knowledge through passive

WiFi probes,” Computer Communications, vol. 117, pp.1-12, 2018.

[29] R. Braggaar, “Wi-Fi network-based indoor localisation: The case of the
TU Delft campus,” M.S. thesis, TU Delft, Delft, NL, 2018.

[30] S. Siami-Namini, N. Tavakoli, and A. S. Namin, “A Comparison of

ARIMA and LSTM in Forecasting Time Series”. In 2018 17th IEEE
International Conference on Machine Learning and Applications

(ICMLA). IEEE, 2018, pp. 1394-1401.

[31] C. Matte, M. Cunche, F. Rousseau, and M. Vanhoef, “Defeating MAC
address randomization through timing attacks,” in Proceedings of the 9th

ACM Conference on Security & Privacy in Wireless and Mobile

Networks. ACM, 2016, pp. 15–20.
[32] M. Gast, 802.11 wireless networks: the definitive guide. “O’Reilly Media,

Inc.”, 2005.

[33] W. Kong, Z. Y. Dong, Y. Jia, D. J. Hill, Y. Xu, and Y. Zhang, “Short-
term residential load forecasting based on LSTM recurrent neural

network,” IEEE Transactions on Smart Grid, vol. 10, no. 1, pp. 841-851,

2017.
[34] S. Hochreiter, “The vanishing gradient problem during learning recurrent

neural nets and problem solutions,” International Journal of Uncertainty,

Fuzziness and Knowledge-Based Systems, vol. 6, no. 2, pp.107-116, 1998.

[35] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” In Advances in neural

information processing systems, 2012, pp. 1097-1105.

[36] V. M. Guerrero, “Time-series analysis supported by power
transformations,” Journal of Forecasting, vol. 12, no. 1, pp. 37–48, 1993.

[37] Z. Zhao, W. Chen, X. Wu, P. C. Chen, and J. Liu, “LSTM network: a deep

learning approach for short-term traffic forecast,” IET Intelligent
Transport Systems, vol. 11, no. 2, pp. 68-75, 2017.

[38] M. Schuster, and K. K. Paliwal, “Bidirectional recurrent neural

networks,” IEEE Transactions on Signal Processing, vol. 45, no. 11, pp.
2673-2681, 1997.

[39] S. H., Park, B., Kim, C.M., Kang, C.C., Chung, and J.W., Choi,

“Sequence-to-sequence prediction of vehicle trajectory via LSTM
encoder-decoder architecture,” In IEEE Intelligent Vehicles Symposium

(IV), IEEE, 2018, pp. 1672-1678.

[40] C. J., Huang, and P.H., Kuo, “A deep cnn-lstm model for particulate
matter (PM2. 5) forecasting in smart cities,” Sensors, vol. 18, no. 7, p.

2220, 2018.

[41] S. H. I. Xingjian, Z. Chen, H. Wang, D. Y. Yeung, W. K. Wong, and W.
C. Woo, “Convolutional LSTM network: A machine learning approach

for precipitation nowcasting,” In Advances in neural information

processing systems, 2015, pp. 802-810.

[42] K. Greff, R.K. Srivastava, J. Koutník, B.R. Steunebrink, and J.

Schmidhuber, “LSTM: A search space odyssey,” IEEE Transactions on

Neural Networks and Learning Systems, vol. 28, no. 10, pp. 2222-2232,
2016.

[43] B. M. Williams and L. A. Hoel, “Modeling and forecasting vehicular
traffic flow as a seasonal ARIMA process: Theoretical basis and empirical

results,” Journal of transportation engineering, vol. 129, no. 6, pp. 664–

672, 2003.
[44] P. Torres, P. Marques, H. Marques, R. Dionísio, T. Alves, L. Pereira, and

J. Ribeiro, “Data analytics for forecasting cell congestion on LTE

networks,” in 2017 Network Traffic Measurement and Analysis
Conference (TMA). IEEE, 2017, pp. 1–6.

[45] E. Tsironi, P. Barros, C. Weber, and S. Wermter, “An analysis of

convolutional long short-term memory recurrent neural networks for
gesture recognition,” Neurocomputing, vol. 268, pp.76-86, 2017.

[46] T. Xie, H. Jiang, X. Zhao, and C. Zhang, “A Wi-Fi-Based Wireless Indoor

Position Sensing System with Multipath Interference Mitigation,”
Sensors, vol. 19, no. 18, p.3983, 2019.

Utkarsh Singh (S'17, M’18) graduated in electrical and

electronics engineering from Uttar Pradesh Technical
University, India, in 2012. He completed his master’s

degree with AICTE fellowship in Power Systems from

Thapar University, India, in 2014. He completed his
PhD with MHRD fellowship in Power Quality from the

Indian Institute of Technology Roorkee in February

2018. In June 2018, he joined OPERA-Wireless
Communications Group at Université libre de Bruxelles, Belgium, where he is

working on project ‘MUFINS’ funded by INNOVIRIS. His research interests

include artificial intelligence, data analysis, optimization, signal processing and
power systems.

Jean-François Determe received the electrical

engineering degree (Master en ingénieur civil électricien)

from Université libre de Bruxelles (ULB) in 2013.He
also jointly received the PhD in Engineering from ULB

and Université catholique de Louvain in2018. From 2013

to 2017, he was an FNRS research fellow, funded by the
Belgian FRS-FNRS. Since 2018, he has been a

postdoctoral researcher with the OPERA-WCG

department at ULB and is currently funded by Innoviris.
His research interests focus on applied time series analysis

and on sparse recovery algorithms.

http://cartogis.ugent.be/mobileghent/sites/default/files/slides/Modeling%20crowds%20at%20mass-events%20-%20MG2013%20-%20MCB.pdf
http://cartogis.ugent.be/mobileghent/sites/default/files/slides/Modeling%20crowds%20at%20mass-events%20-%20MG2013%20-%20MCB.pdf

11

François Horlin (S'01–M'02) received the Ph.D. degree
from the Université́ Catholique de Louvain (UCL) in

2002. He specialized in the field of signal processing for

digital communications. After his Ph.D., he joined the
Inter-university Micro-Electronics Center (IMEC). He

led the project aiming at developing a 4G cellular

communication system in collaboration with Samsung
Korea. In 2007, François Horlin became professor at the

Université́ libre de Bruxelles (ULB). He is currently

supervising a research team working on next generation communication
systems. Localization based on 5G signals, filter bank-based modulations,

massive MIMO and dynamic spectrum access are examples of currently

investigated research topics.

Philippe De Doncker received the M.Sc. degree in
physics engineering and the Ph.D. degree in science

engineering from the Université Libre de Bruxelles

(ULB), Brussels, Belgium, in 1996 and 2001,
respectively. He is currently a Professor with the ULB,

where he leads the research activities on wireless channel

modeling and electromagnetics.

