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Abstract—To ensure effective management and security in large 

scale public events, it is imperative for the event organizers to be 

aware of potentially critical crowd densities. This paper, therefore, 

presents a solution to the above problem in terms of WiFi based 

crowd counting and LSTM neural network based forecasting. 

Monitoring of an actual event organized in Brussels has been 

described, wherein crowd counts are obtained using WiFi sensors 

in a privacy-preserved manner. The time-stamped crowd counts 

are used to develop univariate time-series, which are in-turn 

utilized for forecasting. Five different LSTM models are utilized 

for crowd time-series forecasting and analyzed for their 

suitability. A random walk model is used as reference for 

performance assessment. Among different LSTM models, 

Convolutional LSTM delivered the best performance. Overall 

results and analysis show that the developed system is suitable for 

crowd monitoring. 

 
Index Terms—Crowd monitoring, deep learning, forecasting, 

long-short term memory, neural networks, time series, wireless 

sensor networks. 

I. INTRODUCTION 

VERCROWDING is a common phenomenon observed 

during major events such as concerts, festivals, sports, 

games, and entertainment. There is a potential risk to public 

safety during such large scale public events. The love parade 

disaster in Germany [1] and the Turin stampede [2] are 

significant examples of crowd disasters. In view of such 

mishaps, the event organizers must be able to monitor and 

predict the crowd behaviour. Apart from safety concerns, crowd 

monitoring can also help the organizers to effectively plan the 

venue layout (e.g. food points, shopping points, entries and 

exits), and prepare crowd management strategy (e.g. restricting 

access, evacuation, and additional installations).  

A. Overview of the Motivation 

Conventional research in crowd monitoring mainly focuses 

on systems with computer vision approach [3]. Factors such as 

occlusion, huge data handling, cost of implementation and 

privacy concerns inhibit the possibility of using such systems 

for real-time situational awareness [4]. These shortcomings led 

to the development of alternative crowd monitoring strategies 

using cellphone, global positioning system (GPS), Bluetooth 
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and WiFi [5]-[8]. An insight into these technologies reveals 

that, the WiFi sensors are not only free from occlusion, but are 

also non-intrusive and cost effective [8], [9]. Successful 

applications of wireless sensor networks in sensing and 

monitoring have already been shown for: pedestrian counting 

in urban traffic [10], industrial process automation [11], 

landslide monitoring [12], and distributed environmental 

monitoring [13]. Motivated from such applications, this paper 

contributes to the existing knowledge by utilizing WiFi sensors 

for not only estimating but also forecasting the crowd count in 

large scale public events. More specifically, this paper 

discusses,  how to prepare time series of crowd counts derived 

from WiFi measurements and utilize it for achieving multi-step 

ahead crowd count predictions via long short-term memory 

(LSTM) neural network. These predictions can ultimately help 

in better management of large scale public events.  

B. Related Works 

Probably the most popular WiFi based crowd counting 

approach is based on channel state information (CSI) [8], [14], 

[15]; which quantifies the impact of crowd density on CSI. 

Though this approach has the merit of being non-intrusive, it 

does not assert the technical aptness for large scale public 

events, where the crowd density surges during peak hours. 

Another crowd counting method relies on direct measurement 

of WiFi received signal strength indicator (RSSI). Authors in 

[16] have used this approach for occupancy estimation in indoor 

and outdoor environments. Only 9 people were considered to 

validate the effectiveness of this technique. An interesting 

development is presented in [17], where WiFi linkage blockage 

patterns are classified using LSTM for crowd counting. It 

remains to be seen whether the system can perform equally well 

in outdoor environments with large and dense crowd. A more 

robust way of crowd count estimation is to utilize probe 

requests (PRs). PRs help a smartphone (or any WiFi enabled 

device) in searching nearby access points (APs). Authors in [9] 

and [10] have used this method to estimate pedestrian density 

/count. These works show that a PR contains device address and 

AP address. In PR based crowd counting, it is important to be 

aware of variable PR frequency in devices. As mentioned in 

[18] and [19], it can be tackled by having two or more sensors 

separated by up to 100 meters for efficient crowd counting. 
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Though PRs can provide more accurate crowd count estimation, 

it could also lead to privacy concerns. Authors in [19], give a 

solution for preserving privacy in terms of SHA256 encrypted 

MAC addresses. Weppner et al. [20] used 31 scanners to 

monitor a motor show for 13 days based on sensing of WiFi 

/Bluetooth enabled devices. The collected data was utilized 

only to create heat maps, which does not give a quantitative 

representation of the crowd. Besides, there is no discussion on 

the possibility of devices anonymizing their media access 

control (MAC) addresses, which could lead to duplicate counts 

[21]. With respect to WiFi based crowd forecasting, there is 

very limited literature available. Authors in [22] use WiFi 

signal detectors for crowd count estimation and an 

autoregressive integrated moving average (ARIMA) model for 

forecasting. Another work on indoor crowd queuing time 

estimation is presented in [23]. The authors used WiFi 

positioning data and nonstandard autoregressive (NAR) model 

to predict the queuing time. Possibly the only work, which 

nearly matches the idea of this paper is highlighted in [24]. It 

vaguely presents the idea of crowd count forecasting based on 

Bluetooth data for a public event.  

Although the purview of this paper is limited to crowd 

forecasting, it is important to highlight the key works in 

localizing crowd using WiFi probes. Authors in [25], present a 

large-scale pedestrian monitoring system, where the importance 

of scanning and hopping time is discussed to avoid packet loss 

and increase localization accuracy. Potorti et al. [26], present a 

fingerprint interpolation based approach and conclude that 

WiFi probes are viable and economic for crowd localization. A 

discussion on range-based and range-free methods and the 

challenges in indoor localization is also presented. Another 

work on ranging and positioning based on WiFi sensing, is 

presented in [27]. The authors manage to achieve an accuracy 

within 2.5m in 80% cases. An experimental study on the usage 

of WiFi probes for user localization, profiling, and device 

classification is reported in [28]. The authors have performed 

tests in both indoor and outdoor environment, leading to three 

crowd databases. The inter-probing times for Apple, Motorola, 

and Samsung devices have also been analyzed. A very well 

elaborated case study of WiFi based crowd localization in TU 

Delft Campus in presented in [29]. The work presents useful 

insights on sensor setup/ calibration, occupancy estimation, 

positioning accuracy/ latency, movement patterns in indoor 

environments.  

C. Proposed Approach 

This work proposes the crowd count estimation based on PRs 

collected by WiFi sensors. Note that, crowd density and crowd 

counts can be used interchangeably because crowd density can 

be easily converted into crowd count for a fixed area. Although 

WiFi sensors face attenuation problem, it is not really difficult 

to estimate their operational range and allocate requisite 

number of sensors for proper monitoring. Aggregating the 

counts from all sensors gives an approximation of the crowd 

count in a monitored area. To account for the people without 

WiFi enabled devices, the aggregated crowd count is multiplied 

by a pre-assessed extrapolation factor to give the net crowd 

count. Received signal strength indicator (RSSI) values is used 

to ensure that each device is counted only once. To ensure 

privacy-preserved crowd counting, the MAC addresses in the 

received PRs are anonymized by default. For each area, a 

univariate time-series is prepared using time-stamped crowd 

counts. It is true that a multivariate case (i.e. forecasts with 

additional variables such as social media response, weather, 

traffic, etc.) might help in giving better crowd forecasts. But 

getting additional data can require further permissions and 

multi-party dependency. The objective of this work is to present 

a self-sufficient crowd monitoring system and therefore only 

WiFi based univariate case is presented. 

In large-scale public events lasting several days, generally the 

granularity of forecast horizon is taken in minutes. Under such 

conditions, short-term fluctuations and unpredictable behaviour 

can make a time series hard to predict via conventional 

methods. Given the abundance of data in such events, LSTM 

becomes a suitable choice for forecasting [30]. Five variants of 

LSTM have been used to make 30 minutes ahead crowd count 

forecasts. The purpose is to make event organizers aware of 

critical crowd density well in advance. The proposed methods 

neither use nor identify trend and seasonality in the time series. 

This ensures that the proposed methods are generalized and 

apply to the widest class of events. Since the proposed 

forecasting techniques rely on time series, they can be easily 

employed in any other crowd monitoring technique which is 

capable of producing time-stamped crowd counts. The novelty 

and importance of this work is marked by the following key 

contributions: (i) the proposed crowd forecasting is based on 

real measurements taken from an actual event; (ii) a large scale 

public event has been monitored instead of transportation 

systems or indoor crowd; and (iii) a first-hand application of 

LSTM is presented for crowd forecasting, with five different 

variants. 

D. Paper Layout 

This paper is organized as follows: Section II describes the 

crowd counting mechanism. Section III presents the Winter 

Wonders festival, which was used for data collection. Section 

IV offers an overview of LSTM based crowd forecasting.  

Section V presents the results and discussion for crowd 

forecasting. The paper concludes in Section VI, giving some 

important future directions. 

II. CROWD COUNTING VIA WIFI SENSORS  

A. Probe Requests (PRs) Detection using WiFi Sensors 

This paper is written from application perspective and 

therefore only the measurement methodology is described 

hereafter. The crowd counts required for forecasting are derived 

on the basis of PR, which allows a WiFi enabled device to seek 

and connect to a WiFi access point (AP) in its vicinity [9]. Each 

PR frame, contains the source address of the sending device, 

which is basically its MAC address (Refer [10, Fig. 2]). 

Therefore, counting the PRs indirectly accounts for the number 

of people present at an event. To avoid overestimation, it must 

be ensured that the PRs with same MAC address are counted 
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just once. PRs are generally sent as several bursts within a small 

time frame [31], which can be referred to as probe request bursts 

(PRBs). In this work, WiFi sensors were developed, which are 

capable of collecting and sending PRBs to a central server. 

Setup of the WiFi sensor with description of the components is 

shown in Fig. 1. Often the operational range of two or more 

sensors overlap. This is a desirable situation, because it is hard 

to precisely determine the range of a sensor. The operational 

range of a WiFi sensor can vary based on crowd density, 

because the signals are attenuated by human body. A high 

density of sensors ensures that the area of interest is fully 

covered. A typical deployment and detection scenario is 

explained in Fig. 2. Overlapping range implies that several 

sensors may detect identical PRBs. To avoid duplicate 

counting, data from all sensors are jointly processed on a central 

server.  

B. Processing, Counting, and Time Series Preparation 

Consider 𝑛𝑆 sensors deployed in 𝑛𝐴 areas at an event, where 

each sensor and area is represented by their respective IDs: 𝑆𝑖 

and 𝐴𝑗, where 𝑖 ∈ [1, 𝑛𝑆]; 𝑗 ∈ [1, 𝑛𝐴];  𝑛𝑆, 𝑛𝐴 ∈ ℕ; and 𝑛𝐴 ≤ 𝑛𝑆. 

The objective of the processing is to generate a time series with 

crowd counts every 𝑇𝑖 = 5 minutes, corresponding to each area 

𝐴𝑗. The first step consists of computing counts for disjoint and 

contiguous elementary time frames of duration 𝑇𝑒 = 30 

seconds. For each time frame, all the corresponding 

anonymized MAC addresses are extracted from the database. 

This results in an array of 3-tuples. The 𝑘th 3-tuple is 

represented as (𝑆(𝑘), aMAC(𝑘), RSSI(𝑘)). Here, 𝑆(𝑘) is a sensor 

ID 𝑆𝑖, aMAC(𝑘) is the corresponding anonymized MAC 

address, and RSSI(𝑘) is the corresponding RSSI (a number 

quantifying the received power by sensor 𝑆(𝑘) in dBm). It must 

be noted that, aMAC(𝑘) does not reveal the actual MAC address 

of the device corresponding to detected PRB, because it is 

anonymized for preserving privacy. The number of distinct 

PRBs are counted within each elementary time frame per 

sensor. If a PRB is detected by more than one sensor, it is 

counted only for the nearest sensor (i.e., the one which reports 

highest RSSI). With this type of processing, the total crowd 

count per area can be simply obtained by adding the counts 

from all sensors within that area. To prepare a time series, 

counts of ten corresponding elementary time frames are 

averaged to generate counts at every 𝑇𝑖 = 5 minutes. Averaging 

counts over five minutes also alleviates the measurement noise. 

The entire process relies on PRB transmission within a short 

time frame (𝑇𝑒 = 30 seconds). It does not intend long term 

tracking of devices /users by deanonymizing the received PRs 

[32]. In this way, the proposed crowd counting methodology is 

immune to MAC address randomization. To account for the 

people who may not have a WiFi enabled device, the counts are 

multiplied by an extrapolation factor to obtain the net crowd 

count. The extrapolation factor is obviously influenced by the 

number of people who have their WiFi disabled or those who 

might not have smartphones. Therefore, the extrapolation factor 

was obtained by comparing crowd counts generated by WiFi 

sensors, against those provided by a cellular network, in a 

previous event. An extrapolation factor of 3 was found suitable 

for large scale public events.  

III. EVENT DESCRIPTION 

A large scale public event – Winter Wonders, was organized 

in the city of Brussels (Belgium) between November 30, 2018 

and January 6, 2019. This work focuses on the two most 

crowded areas of this event, namely Sainte-Catherine and 

Bourse. Maps of these areas are respectively shown in Fig. 3 

and Fig. 4. Both the areas had arrangements for food and 

leisure, with almost similar setup. These areas are in the center 

of Brussels city, with nearby metro and bus stations serving as 

the major points of crowd influx. The time-series for Sainte-

 
Fig. 1.  Setup of the WiFi sensor: All components are glued inside a robust 

protective enclosure. During deployment, the sensors are mounted on poles 
using zip-ties such that the antenna of WiFi dongle is vertically positioned. 4G 

dongle provides the internet connection for transferring the anonymized probe 

requests from Raspberry Pi to a central server. Power supply is accessed via 
sufficiently long cables from a nearby source.  
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Fig. 2.  Deployment and detection: Pole mounted sensors 𝑆1 and 𝑆2 detect the 

PRBs emanating from users/ devices 𝐷1, 𝐷2, and 𝐷3 in area 𝐴1. The detection 

range of each sensor is depicted by an ellipse and arrows represent the detection 

of PRBs. Devices 𝐷1 and 𝐷3 are respectively detected by their nearest sensors, 

i.e. 𝑆1 and 𝑆2. Being in a common zone, 𝐷2 is detected by both 𝑆1 and 𝑆2. 
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Fig. 3.  Map of Sainte-Catherine area showing approximate sensor locations. 

This figure has been generated using ‘My Maps’ tool from Google.  

 

 

 

  

S1

S2

S3

S4

S5

S6

S7

S8

S950 m



 

 

4 

Catherine area, obtained by aggregating the crowd counts from 

sensors 𝑆1 to 𝑆9, is shown in Fig. 5. For Bourse, the time series 

is obtained by aggregating crowd counts from sensors 𝑆13 to 

𝑆19, and is shown in Fig. 6. The readers are requested to zoom 

in the figures for clarity. Only those days are shown, when all 

the sensors were continuously online in the respective areas. 

Each day has 216 time steps between the time range of interest 

(6 AM to 12 AM). The variations in crowd counts can be 

perfectly captured in the mentioned time range, and therefore, 

forecasting results will also be shown for the same. 

IV. CROWD FORECASTING WITH LSTM 

A. Description of LSTM 

 LSTM is a type of recurrent neural network which propagates 

or forgets information over a long and recurrent training period, 

so as to improve the prediction performance. The capability to 

correlate between the previous and current information makes 

it a suitable candidate for time series forecasting. The basic unit 

in LSTM modeling is known as a cell. Fig. 7 shows the 

architecture of an LSTM cell, which is the most basic unit of an 

LSTM neural network. All bold notations henceforth represent 

vector quantities. Let 𝒙𝒕  be a sequence vector, where sample 

index 𝑡 = 1, 2, … 𝑇 and 𝑇 is the total time samples in the sequence. 

At each index 𝒕, LSTM takes an input sample from 𝒙𝒕, past cell 

state 𝒂𝒕−𝟏, and past hidden state 𝒉𝒕−𝟏. The learning of temporal 

relations in LSTM is defined by the following equations [33]: 

Г𝒇
𝒕 = 𝜎(𝑊𝑓ℎ𝒉𝒕−𝟏 + 𝑊𝑓𝑥𝒙𝒕 + 𝒃𝒇)          (1) 

Г𝒊
𝒕 = 𝜎(𝑊𝑖ℎ𝒉𝒕−𝟏 + 𝑊𝑖𝑥𝒙𝒕 + 𝒃𝒊)       (2) 

Г𝒈
𝒕 = 𝜌(𝑊𝑔ℎ𝒉𝒕−𝟏 + 𝑊𝑔𝑥𝒙𝒕 + 𝒃𝒈)      (3) 

Г𝒐
𝒕 = 𝜎(𝑊𝑜ℎ𝒉𝒕−𝟏 + 𝑊𝑜𝑥𝒙𝒕 + 𝒃𝒐)      (4) 

𝒂𝒕 = Г𝒇
𝒕  ⨀ 𝒂𝒕−𝟏 + Г𝒊

𝒕  ⨀ Г𝒈
𝒕        (5) 

𝒉𝒕 = Г𝒐 
𝒕 ⨀ 𝜌(𝒂𝒕)          (6) 

Here, 𝑊𝑓ℎ, 𝑊𝑓𝑥, 𝑊𝑖ℎ, 𝑊𝑖ℎ, 𝑊𝑔ℎ, 𝑊𝑔ℎ, 𝑊𝑜ℎ, 𝑊𝑜ℎ, are the 

weight matrices and 𝒃𝒇, 𝒃𝒊, 𝒃𝒈, 𝒃𝒐 are the bias vectors which 

lead to the respective resultant vectors of Г𝒇
𝒕 , Г𝒊

𝒕, Г𝒈
𝒕 , Г𝒐

𝒕 . The 

subscripts 𝒇, 𝒊, 𝒈, and 𝒐 respectively represent the forget gate, 

input gate, input node, and output gate. Symbol ‘⨀’ represents 

elementwise product. In (1)-(6), the dimension of all vector 

quantities is 𝑇 × 1 and the weight matrices is 𝑇 × 𝑇, where 𝑇 

represents total time samples in input sequence. Cell state is the 

memory of an LSTM cell, whereas hidden state is virtually its 

output. Before the operations inside an LSTM cell can be 

deciphered, it is important to understand the role of activation 

functions. In this work, sigmoid and rectified linear unit (ReLU) 

activation functions are used. The expression for sigmoid 

activation is given as 𝜎(𝑧) =
1

1+𝑒−𝑧 which gives an output in the 

range (0, 1)  for any input 𝑧. The expression for the ReLU is 

given as 𝜌(𝑧) = max (𝑧, 0). The sigmoid activation is used in 

the input, output, and forget gate; where its output decides 

whether an information should be propagated (values closer to 

1) or rejected (values closer to 0). Training of LSTM involves 

gradient computation, which may lead to vanishing gradient 

problem if the gradients shrink to zero (see [34] for further 

details). This problem is solved by the choice of ReLU 

activation, whose gradients are faster to compute and do not 

vanish easily [35]. From Fig. 7, it can be seen that the forget 

gate decides what information to omit from 𝒉𝒕−𝟏 and 𝒙𝒕. This 

resulting vector Г𝒇
𝒕  (see (1)) contains values in (0,1) which helps 

in omitting irrelevant values from cell state 𝒂𝒕−𝟏 via 

elementwise product (see (5)). Using a sigmoid activation, the 

input gate decides the indices at which new information should 

 
Fig. 4.  Map of Bourse area showing approximate sensor locations. This figure 

has been generated using ‘My Maps’ tool from Google.  
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Fig. 5.  Time series (ground truth) for Sainte-Catherine area. 

 

 

 

  

 
Fig. 6.  Time series (ground truth) for Bourse area. 

 

 

 

  

 
Fig. 7.  LSTM Cell structure. All vectors are represented in bold. Weight 

matrices are symbolized by 𝑾. 
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be added, which leads to representative vector Г𝒊
𝒕 (see (2)). The 

ReLU activation in input node, gives the new values to be added 

in terms of vector Г𝒈
𝒕  (see (3)). The resultant of elementwise 

product of Г𝒊
𝒕 and Г𝒈

𝒕  contains new values which are added to 

Г𝒇
𝒕  ⨀ 𝒂𝒕−𝟏, resulting in an updated cell state 𝒂𝒕 (see (5)). Finally, 

the output gate passes a filtered or relevant values form the 

updated cell state 𝒂𝒕, as the new hidden state 𝒉𝒕. The values to 

be passed in the new hidden state 𝒉𝒕 are obtained by passing 

updated cell state 𝒂𝒕 through ReLU activation, which gives 

𝜌(𝒂𝒕). The locations of the updated cell state vector which will 

hold the filtered values are decided by sigmoid activation (see 

(4)), resulting in vector Г𝒐
𝒕 . The new hidden state 𝒉𝒕 is finally 

obtained by elementwise product of Г𝒐
𝒕  and 𝜌(𝒂𝒕) (see (6)). 

The handling of a time series can be understood by the 

unrolled representation of an LSTM at subsequent time samples 

as shown in Fig. 8. From the application perspective the cells 

are referred to as neurons. Vertical stacking of time-unrolled 

cells represents the LSTM layers. Fig. 8 shows the 𝑇 samples 

of the unrolled sequence and also 𝐿 different layers which can 

be stacked on top of each other for deep learning. Deep learning 

symbolizes automatic feature learning capability of the LSTM 

which enables it to enhance its predictive performance. For 

example, it can read a crowd density time series and learn the 

time dependent variations in crowd density using several LSTM 

layers to predict the crowd density for a desired time horizon. 

An LSTM can have several intermediate layers which are 

known as the hidden layers. As seen in Fig. 8, each cell passes 

an output 𝒚𝒕 to the subsequent layer. This output is essentially 

the hidden state 𝒉𝒕, as mentioned earlier. If LSTM inputs are 

encoded, then 𝒉𝒕 is passed through another activation function 

to obtain the output 𝒚𝒕. If inputs are not encoded, then the 

hidden state is simply passed as the output, i.e. 𝒉𝒕 = 𝒚𝒕. 

B. Forecasting Methodology  

LSTM is considered suitable for time series forecasting 

because of sequential input support, mapping of input data to 

vector output for multistep ahead predictions, and effective 

modeling of non-stationary and non-linear processes. It is a 

common practice to remove non-stationarity in time series 

through various transformations, which removes trends and 

seasonality [36]. However, in this paper, such transformations 

shall not be used, because LSTM has been shown to perform 

well even without accounting for non-stationarity [30], [33], 

[37]. A general model for LSTM based multistep ahead 

forecasting is shown in Fig. 9. The objective of forecasting in 

this paper, is to obtain 𝑀 future crowd counts given 𝐾 past 

crowd counts. A sequence vector of crowd counts is created 

with past 𝐾 values, represented as 𝒙𝒕 = {𝑐𝑡−𝐾 , … , 𝑐𝑡−2, 𝑐𝑡−1}. 

LSTM computations are sensitive to data scale, therefore the 

sequence vector must be normalized in the range [0, 1]. Min-

max normalization is used for this purpose and the resulting 

vector is represented as 𝒙𝒕̃ = {𝑐̃𝑡−𝐾 , … , 𝑐̃𝑡−2, 𝑐̃𝑡−1}. This 

normalized vector is fed to the first LSTM layer. Inside the 

LSTM, the sequence vectors are utilized to train weights and 

biases, which will in-turn help in making predictions. During 

training, the weights are initialized randomly and the biases are 

initialized as one to prevent information loss. The initialization 

of cell state and hidden state vectors is generally done with zero. 

After the training is finished, the output of LSTM is passed 

through one or more dense layers. An LSTM dense layer is a 

fully connected layer which links each input neuron to the 

output neuron, just like in a conventional neural network.  In 

simpler terms, it helps in mapping an input of different size to 

an output of desired size. The output received from dense layer 

is normalized and needs to be inverted to its min-max scale. The 

scale inverted output vector gives the 𝑀 step ahead predictions, 

which can be represented as 𝒚𝒕 = {𝑑𝑡 , 𝑑𝑡+1, … , 𝑑𝑡+𝑀}. This 

paper presents 6-step (30-minutes) ahead crowd forecasts, 

therefore the output sequence length is chosen as 𝑀 = 6 

samples. The size of input sequence can be flexible. An input 

sequence of size 𝐾 = 12 samples (twice that of output size) is 

chosen in this work, based on trial and error method.  

Five different variants of LSTM are used in this paper: (i) 

Vanilla LSTM (VLSTM), (ii) Bidirectional LSTM (BiLSTM), 

 
Fig. 8.  Unrolled and layered representation of LSTM. Rolled over 𝑻 time 

samples of time sequence 𝒙𝒕, depicting 𝑳 layers of LSTM with hidden layers in 

between. For example, 𝐋𝐒𝐓𝐌𝑻
𝟏 represents 𝑻th cell in layer 1, which has past 

cell state 𝒂𝑻−𝟏
𝟏  and past hidden state 𝒉𝑻−𝟏

𝟏  with present input 𝒙𝑻, giving the 

output      𝒚𝑻
𝟏 to subsequent cell in layer 2. An LSTM model can have any 

number of cell (neurons) or layers, as required by the problem in hand. 
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(iii) Encoder-Decoder LSTM (EDLSTM), (iv) Convolutional 

Neural Network LSTM (CNNLSTM), (v) Convolutional 

LSTM (ConvLSTM). VLSTM is the simplest variant of LSTM 

which has only one LSTM layer which is immediately followed 

by a dense output layer to make predictions. BiLSTM consists 

of 2 layers in opposite directions connected to same output. 

EDLSTM is a variant which is specially used for sequence to 

sequence prediction problems. The length of input and output 

sequences in EDLSTM can be same or different, as per the 

requirement of forecasting problem. Mapping between input 

and output vectors of different length is done using coded 

vector representations. The CNNLSTM and ConvLSTM 

variants involve convolutional neural networks for input (time 

series) feature extraction, followed by LSTM for sequence 

prediction. The only difference between CNN LSTM and 

ConvLSTM is that, the latter has convolutional reading of input 

is built directly into LSTM layer. The objective of this paper is 

only to apply and compare the performance of mentioned 

LSTM variants for crowd forecasting. Due to length 

restrictions, it is not possible to describe each variant in detail. 

Therefore, the readers are kindly requested to follow references 

[38]-[41], which elucidate the architecture and modeling of the 

LSTM variants. 

C. Hyperparameter Selection  

Hyperparameters are those parameters whose values are 

chosen before training a machine learning model. Obtaining the 

optimal hyperparameters is a computation intensive process. 

Moreover, it is contextual and may not be optimal for different 

problems. Therefore, this paper will only follow the best 

practices in LSTM hyperparameter selection. Similar approach 

has been used in [33], [37]. The aim is to obtain forecasting 

models which can perform well across different test cases. The 

choice of parameters common to all models is given as follows:  

Batch Size: A batch is the number of samples of training set 

needed to update the coefficients, i.e., weights and biases. 

Based on trial and error approach, a batch size of 18 is chosen. 

Epochs: It is number of times an overall training set is passed 

through the network. Based on trial and error approach, 70 

epochs were found suitable in this work.  

Optimizer/ learning rate: Due to its proven performance [33], 

ADAM optimizer has been used in this work with its default 

parameters (learning rate = 0.001). 

Loss function: Being the most common choice, mean squared 

error (MSE) is chosen as the loss function in this work. 

Neurons or cells: 100 neurons per hidden layer were chosen 

based on performance analysis in the search space of 20 to 200, 

as recommended in [42]. Using more neurons may lead to 

slightly better performance, but the training time is too high. 

Hidden layers: Based on the discussion given in [42] and tests 

performed, single LSTM hidden layer has been chosen in this 

work apart from the model specific layers. Adding further 

layers complicates the training without giving better results. 

D. Training 

As seen in Fig. 5 and Fig. 6, Sainte-Catherine and Bourse 

time series have 8 days of available data. These days are divided 

in training and test sets, as shown in Table I. The training and 

test sets are selected sequentially from the two time series. 

However, it should not lead to any bias in LSTM forecasts, 

because the days in time series are not consecutive. An insight 

in the training procedure is given in Fig. 10. It can be seen how 

the 216 samples (crowd counts) available from each day of 

training data are restructured to create 199 training sets, each 

having an input window of 12 samples and target or output 

window of 6 samples. An overfitting check has been 

implemented via walk-forward validation, also known as 

‘rolling forecast’. In walk-forward validation, LSTM models 

will be required to make 6-step ahead crowd count forecasts. 

Thereafter, the actual data will be made available to predict the 

next 6 steps. Since this method does not provide complete data 

to the model at once, therefore overfitting is prevented by 

default. The training process is dynamic in nature because 

LSTM preserves memory across the training samples. An 

underfitting check is also implemented by comparing the 

performance metrics of LSTM model against a random walk 

(RW) baseline model [Section V-A]. If the LSTM models show 

worse metrics than the baseline model, then it would be 

considered as underfitting.  

V. CROWD FORECASTING RESULTS 

A. Metrics and Baseline Model 

Two metrics are chosen in this work for performance 

assessment, root mean square error (RMSE) and mean absolute 

percentage error (MAPE). Let 𝒙𝒕 be actual crowd count at any 

time instance 𝒕 and 𝒚𝒕 be the corresponding predicted count, 

where 𝒕 varies from 1 to 𝑇. Then, the RMSE can be expressed 

as: 

RMSE = √
1

𝑇
∑ (𝒙𝒕 − 𝒚𝒕)2𝑇

𝑡=1        (7) 

From (7), it can be seen that RMSE penalizes large errors 

because the errors are squared before averaging. Though RMSE 

is suitable for the situation where large errors are undesirable, 

its sensitivity to outliers can also lead to misjudgment of a 

forecasting model. This is where MAPE can be useful. The 

expression for MAPE is given as: 

MAPE = 
100%

𝑇
∑

|𝒙𝒕−𝒚𝒕|

𝒙𝒕

𝑇
𝑡=1         (8) 

 
Fig. 10.  An insight into LSTM Training: Training data of 216 samples is 

restructured such that an input window of 12 samples targets an output window 

of next 6 samples. LSTM learns to predict for the chosen horizon of (6 

samples×5minutes) 30 minutes. This results in 199 training sets [input + target] 

without hindering temporal dependency in the time series data. A collection of 

18 training sets forms one batch.  
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Since MAPE focuses on absolute errors (|𝒙𝒕 − 𝒚𝒕|), it is less 

sensitive to outliers as compared to RMSE. Owing to the 

normalization of the absolute error, it offers a way to minimize 

relative error in the predictions. Clearly, RMSE and MAPE 

have different ways to account for errors. But, this would also 

help in having a balanced performance assessment of the 

forecasting models. The metrics RMSE and MAPE, do not take 

into account the sign of the error. Due to the peculiarity of the 

application it would be interesting to see if the forecasting 

techniques underestimate or overestimate the crowd count. For 

this, the average error (AE) will also be reported for each case 

as follows: 

AE = 
1

𝑇
∑ (𝒙𝒕 − 𝒚𝒕)𝑇

𝑡=1         (9) 

To prove that the LSTM models perform well, their RMSE 

and MAPE values must be compared against a baseline model 

and must perform better than it. A random walk (RW), 

alternatively known as naive persistence model can be used as 

a baseline for comparison [43], [44]. It works on an assumption 

that a time series is constant over the required forecast horizon. 

For an actual value 𝒙𝒕 at time sample 𝑡, the RW model gives a 

prediction at time 𝑡 + ℋ as 𝒚𝒕+𝓗 = 𝒙𝒕, where ℋ is the required 

time horizon.  

B. Results and Discussion 

All the simulations are performed in Python (version 3.6) and 

the figures are plotted using MATLAB (version 9.4). LSTM 

models have been prepared using Keras library (version 2.2.4)   

in Python environment. The test cases mentioned in Table I 

have been considered to check whether the prediction 

performance of models improve with more training data or not, 

which generally does happen in deep learning models. 

Improvement in performance with increase in training days 

would thus validate the correctness of developed models. Also, 

consideration of three different cases would help in averaging 

the performance (metrics) of each model for the purpose of 

comparison. Best model would be determined on the basis of 

percentage (%) improvement in average RMSE and MAPE 

values as compared to RW model. Fig. 5 and Fig. 6 represent 

the ground truth for respective areas. It should be noted that the 

reported metrics are computed only in those parts of time series, 

where the crowd counts have an increasing trend. This is 

because during early and late hours, the changes in crowd 

counts are not critical. The aim is to forecast in range where the 

crowd builds up until its peak count. The time range of interest 

for metrics computation in Sainte-Catherine area is 4 PM to 8 

PM, whereas in Bourse area it is 10.30 AM to 4.30 PM.  

 Table II and Table III respectively show the results for 6-step 

(30 minutes) ahead crowd count forecasts for Sainte-Catherine 

and Bourse area. All reported values are rounded to two decimal 

places. Average RMSE and MAPE values corresponding to the 

three test cases are shown. From the RMSE and MAPE values, 

it is evident that the LSTM models outperform RW model in all 

cases. Except some deviations in Table II, the metrics generally 

improve with increase in training data, which confirms that the 

models tend to perform better with more training data. It can 

also be seen that the metrics reported for Sainte-Catherine are 

bigger as compared to Bourse area. This is obvious, given the 

fact that crowd counts are much higher and random in Sainte-

Catherine. High counts in Sainte-Catherine area can be 

TABLE I 
TRAINING AND TEST SETS 

Sainte-Catherine 

Case Training days Test Days 

1  Dec 01 
Dec 10, Dec 13, Dec 14, Dec 15, 

Dec 17, Dec 18, Dec 28 

2 Dec 01, Dec 10 
Dec 13, Dec 14, Dec 15, Dec 17, 

Dec 18, Dec 28 

3 Dec 01, Dec 10, Dec 13 
Dec 14, Dec 15, Dec 17, Dec 18, 

Dec 28 

Bourse 

Case Training days Test Days 

1 Dec 25 
Dec 26, Dec 27, Dec 28, Dec 29, 

Dec 30, Jan 04, Jan 05 

2 Dec 25, Dec 26 
Dec 27, Dec 28, Dec 29, Dec 30, 

Jan 04, Jan 05 

3 Dec 25, Dec 26, Dec 27 
Dec 28, Dec 29, Dec 30, Jan 04, 

Jan 05 

 

 

TABLE II 
CROWD COUNT FORECAST ERRORS FOR SAINTE-CATHERINE AREA 

RMSE values 

Model Case 1 Case 2 Case 3 Avg. (+ %) * 

RW 272.60 282.16 274.46 276.41 - 

VLSTM 265.08 251.92 214.30 243.77 13.39 

BiLSTM 201.71 206.95 223.17 210.61 31.24 

EDLSTM 212.01 178.94 197.44 196.13 40.93 

CNNLSTM 180.91 194.80 206.39 194.03 42.46 

ConvLSTM 184.10 200.73 190.18 191.67 44.21 

MAPE values 

Model Case 1 Case 2 Case 3 Avg. (+ %) * 

RW 7.16 7.15 6.89 7.07 - 

VLSTM 7.30 6.52 5.24 6.35 11.34 

BiLSTM 5.26 5.17 5.59 5.34 32.40 

EDLSTM 5.52 4.35 4.72 4.86 45.47 

CNNLSTM 4.67 4.58 5.20 4.82 46.68 

ConvLSTM 4.72 5.00 4.52 4.75 48.84 

* (+%) represents percentage improvement in average metrics attained by 

LSTM variants as compared to average metrics of RW model. The average is 
taken over the three different test cases having different number of training 

days. 

 

TABLE III 

CROWD COUNT FORECAST ERRORS FOR BOURSE AREA 

RMSE values 

Model Case 1 Case 2 Case 3 Avg. (+ %) * 

RW 240.16 236.37 229.40 235.31 - 

VLSTM 176.48 166.74 158.49 167.24 40.70 

BiLSTM 193.85 155.55 146.59 165.33 42.33 

EDLSTM 183.01 151.24 149.64 161.30 45.88 

CNNLSTM 163.83 148.60 156.06 156.16 50.69 

ConvLSTM 162.37 152.99 142.68 152.68 54.12 

MAPE values 

Model Case 1 Case 2 Case 3 Avg. (+ %) * 

RW 10.33 10.22 9.97 10.17 - 

VLSTM 7.15 6.72 6.28 6.72 51.34 

BiLSTM 7.95 6.31 5.84 6.70 51.79 

EDLSTM 7.29 5.97 5.95 6.40 58.91 

CNNLSTM 6.77 5.73 6.18 6.23 63.24 

ConvLSTM 6.49 5.98 5.52 6.00 69.50 

* (+%) represents percentage improvement in average metrics attained by 

LSTM variants as compared to average metrics of RW model. The average is 
taken over the three different test cases having different number of training 

days. 
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accredited to its bigger size than Bourse (compare scales in Fig. 

3 and Fig. 4). For both areas, it is observed that the net 

improvement achieved is more for MAPE values as compared 

to RMSE values. This signifies that the forecasting models 

better track the small variations in crowd count as compared to 

drastic variations. In general, the large and sudden variations in 

a crowd time series are less predictable. Comparing the LSTM 

forecasts in Sainte-Catherine and Bourse, it is seen that the 

metrics are improved more in Bourse area. This is because 

Bourse time series being smoother and thus more predictable 

(compare Fig. 5 and Fig. 6). This in-turn implies that the LSTM 

models would not achieve significant improvements as 

compared to RW model. To comment on individual 

performances of LSTM models, it can be said that the encoding 

decoding of time series helps in achieving better predictions. 

See in Table II and Table III that, EDLSTM, CNNLSTM, and 

ConvLSTM models report more improvements as compared to 

VLSTM and BiLSTM. Based on the overall improvement in 

metrics, ConvLSTM is deemed as the best crowd forecasting 

model. This could be accredited to its convolutional reading 

capability, where it creates two or more subsequences from an 

input sequence to learn temporal dependencies. Overall, all the 

observations are found to be in close conformity with the 

expectations. For a quick qualitative analysis, 6-step ahead (30 

minutes) predictions achieved by different models are shown in 

Fig. 11. For further assessment of the forecasts, a summary of 

average errors (AE) is shown in Table IV for the three training 

cases of both areas. As expected, the LSTM models report 

lesser error in general as compared to RW model. Except in two 

cases, the proposed models underestimate the crowd counts as 

shown by the positive average error. The overestimations 

(negative error) in EDLSTM and CNNLSTM may be 

subjective. The obtained results are favourable in two ways: (i) 

The event managers prefer underestimations so as not to raise 

frequent false alarms; and (ii) The average errors seem 

reasonable, with ConvLSTM giving the most consistent and 

reliable performance. The total runtime taken in training, 

testing and computing the metrics for different models are 

reported in Table V. All computations were performed on Intel 

i7 1.80 GHz CPU, with 16 GB RAM and Intel 620 Integrated 

GPU. Since RW model simply reiterates past values, it has least 

runtime in all cases. In LSTM variants, the runtime is obviously 

higher and it increases with the increases with increase in size 

of training data. ConvLSTM shows high runtime owing to the 

convolutions performed during training.  

In general, the runtime can vary from system to system based 

on hardware specifications. Therefore, time complexity 

notations are often used to specify the computational 

requirements of an algorithm. Time complexity of the preferred 

ConvLSTM model can be obtained by adding the complexities 

of convolutional layer and LSTM hidden layer. Based on the 

derivations given in [45], the overall time complexity of 

ConvLSTM can be interpreted as: 𝒪 ((∑ (p𝑗 . q𝑗
2. r𝑗 . s𝑗

2) +𝐶
𝑗=1

𝝎). 𝛸. 𝛦). Here, 𝑗 is convolutional layer number, 𝐶 is total 

number of convolutional layer, p is number of input channels, 

q is spatial size of filter, r is number of filters, s is spatial size 

of output feature map, 𝝎 is number of weights in hidden LSTM 

layer, 𝛸 is input length, and 𝛦 is number of epochs. In a 

 
Fig. 11.  Comparison of predictions made by different models against ground truth: (a) Sainte-Catherine with 1 training day, (b) Sainte-Catherine with 2 training 

days, (c) Sainte-Catherine with 3 training days, (d) Bourse with 1 training day, (e) Bourse with 2 training days, and (f) Bourse with 3 training days.  
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univariate forecasting scenario, ConvLSTM can be used by 

reshaping the input into subsequences within a single 

convolutional layer (kindly refer to [36] for modeling insights). 

Considering single convolutional layer, the complexity of 

ConvLSTM can be redefined as: 𝒪((p. q2. r. s2 + 𝝎). 𝛸. 𝛦). 

The obtained expression explains the high runtime of 

ConvLSTM as compared to the other models. But given its 

impressive performance, it can be readily given preference over 

other variants. As reported in [46], the complexity of RSSI 

based localization process can be given as 𝒪(𝒩), where 𝒩 is 

the number of measurements. Combining the complexities of 

sensing and forecasting, the overall complexity of the proposed 

crowd monitoring approach may be given as 𝒪((p. q2. r. s2 +

𝝎). 𝛸. 𝛦) + 𝒪(𝒩). This will be effectively equal to 

𝒪((p. q2. r. s2 + 𝝎). 𝛸. 𝛦) because the complexity of 

forecasting algorithm is more dominant. 

VI. CONCLUSION 

This paper presented a first-hand application of WiFi sensors 

and LSTM for crowd forecasting.  A procedure for privacy-

preserved crowd counting based on probe request detection was 

described. A large scale public event (Winter Wonders 2018-

2019, Brussels) was monitored to obtain crowd counts and 

corresponding time series. Five different LSTM based 

univariate forecasting models were used to make 6-step (30 

minutes) ahead predictions on the resulting time series. All 

LSTM models outperformed the random walk model, which 

was used as a baseline. ConvLSTM was found to be most 

suitable model for crowd forecasting. As compared to random 

walk model, respective improvements of 44.21% and 48.84% 

were observed in average RMSE and MAPE values for St. 

Catherine area. Corresponding improvements in Bourse area 

were 54.12% and 69.50%. The average errors (AE) reported by 

ConvLSTM were also found to be most reliable and consistent. 

It provides most significant improvements in metrics by slightly 

compromising on the time.  Clearly, the forecast performance 

is different for different areas, which possibly depends on a time 

series being more or less predictable. Overall, the proposed 

crowd forecasting system can be deemed suitable for 

monitoring the large scale public events. In the future work, 

multivariate crowd forecasting models can be developed by 

assuming interdependency between crowd counts of two or 

more areas in proximity or by considering additional features 

such as social media response, weather, and traffic updates. It 

can lead to more efficient forecasts and offer more insight into 

the crowd behaviour.   

ACKNOWLEDGMENTS  

 The authors thank Innoviris for funding this research through 

the MUFINS project. The authors are also thankful to Brussels 

Major Events for their active collaboration. 

REFERENCES 

[1] G. Cardone, A. Cirri, A. Corradi, L. Foschini, R. Ianniello, and R. 

Montanari, “Crowdsensing in urban areas for city-scale mass gathering 
management: Geofencing and activity recognition,” IEEE Sensors 

Journal, vol. 14, no. 12, pp. 4185-4195, 2014.  

[2] N. Shiwakoti, S. Xiaomeng, and Y. Zhirui, “A review on the performance 
of an obstacle near an exit on pedestrian crowd evacuation,” Safety 

science, vol. 113, pp. 54-67, 2019. 

[3] J. C. S. Jacques, Jr., S. R. Musse, and C. R. Jung, “Crowd analysis using 
computer vision techniques,” IEEE Signal Processing Magazine, vol. 27, 

no. 5, pp. 66–77, Sep. 2010.  

[4] S. Gong, C. C. Loy, and T. Xiang. “Security and surveillance.” In Visual 

analysis of humans, pp. 455-472. Springer, London, 2011.  

[5] F. Calabrese, M. Colonna, P. Lovisolo, D. Parata, and C. Ratti, “Real-time 

urban monitoring using cell phones: A case study in Rome,” IEEE 

Intelligent Transportation Systems Magazine, vol. 12, no. 1, pp. 141–151, 

Mar. 2011. 

[6] M. Wirz, T. Franke, D. Roggen, E. Mitleton-Kelly, P. Lukowicz, and G. 

Troster, “Inferring crowd conditions from pedestrians’ location traces for 

real-time crowd monitoring during city-scale mass gatherings,” in Proc. 

IEEE WETICE, Jun. 2012, pp. 367–372. 

[7] M. Versichele, T. Neutens, M. Delafontaine, and N. Van de Weghe, “The 

use of bluetooth for analysing spatiotemporal dynamics of human 

movement at mass events: A case study of the Ghent festivities,” Appl. 

Geograph., vol. 32, no. 2, pp. 208–220, 2012. 

[8] W. Xi, J. Zhao, X.-Y. Li, K. Zhao, S. Tang, X. Liu, and Z. Jiang, 

“Electronic frog eye: Counting crowd using wifi,” in IEEE INFOCOM 

2014-IEEE Conference on Computer Communications. IEEE, 2014, pp. 
361–369. 

[9] A. Kurkcu and K. Ozbay, “Estimating pedestrian densities, wait times, 

and flows with WiFi and bluetooth sensors,” Transportation Research 
Record, vol. 2644, no. 1, pp. 72–82, 2017. 

[10] A. Guillén-Pérez and M. D. C. Baños, “A wifi-based method to count and 
locate pedestrians in urban traffic scenarios,” in 2018 14th International 

Conference on Wireless and Mobile Computing, Networking and 

Communications (WiMob). IEEE, 2018, pp. 123–130. 
[11] L. Ascorti, S. Savazzi, G. Soatti, M. Nicoli, E. Sisinni, and S. Galimberti, 

“A wireless cloud network platform for industrial process automation: 

Critical data publishing and distributed sensing,” IEEE Transactions on 
Instrumentation and Measurement, vol. 66, no. 4, pp. 592-603, 2017. 

[12] P. Giri, K. Ng, and W. Phillips, “Wireless Sensor Network System for 

Landslide Monitoring and Warning,” IEEE Transactions on 
Instrumentation and Measurement, vol. 68, no. 4, pp.1210-1220, 2018. 

[13] L. Lombardo, S. Corbellini, M. Parvis, A. Elsayed, E. Angelini, and S. 

Grassini, “Wireless sensor network for distributed environmental 

TABLE IV 
AVERAGE ERRORS (AE) FOR TRAINING CASES IN RESPECTIVE AREAS 

Model 
Sainte-Catherine Bourse 

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 

RW 168.86 173.27 166.15 166.08 160.14 153.51 

VLSTM 204.00 171.52 117.34 77.67 77.74 56.10 

BiLSTM 103.41 117.81 136.05 134.76 39.77 29.98 

EDLSTM 124.33 -2.84 62.70 116.37 2.34 39.53 

CNNLSTM 43.37 -53.45 122.73 75.04 50.17 75.47 

ConvLSTM 66.63 78.50 46.46 59.08 43.39 30.41 

 

  

TABLE V 
RUNTIME IN SECONDS FOR TRAINING CASES IN RESPECTIVE AREAS 

Model 
Sainte-Catherine Bourse 

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 

RW 0.01 0.01 0.01 0.01 0.01 0.01 

VLSTM 7.90 15.75 20.62 7.21 13.55 20.56 

BiLSTM 8.51 14.92 24.37 9.46 17.83 24.20 

EDLSTM 10.29 21.52 30.60 11.92 22.79 32.71 

CNNLSTM 7.49 14.67 22.24 8.45 15.86 23.59 

ConvLSTM 11.01 23.05 34.23 13.23 23.07 33.88 
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