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Abstract

This paper deals with the problem of damage detection using output-only vibration

measurements under changing environmental conditions. Two types of features are

extracted from the measurements : eigen properties of the structure using an auto-

mated stochastic subspace identification procedure and peak indicators computed

on the Fourier transform of modal filters. The effects of environment are treated
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using factor analysis and damage is detected using statistical process control with

the multivariate Shewhart-T control charts.

A numerical example of a bridge subject to environmental changes and damage

is presented. The sensitivity of the damage detection procedure to noise on the

measurements, environment and damage is studied. An estimation of the computa-

tional time needed to extract the different features is given, and a table is provided

to summarize the advantages and drawbacks of each of the features studied.

Key words: Damage detection, Structural Health Monitoring, spatial filtering,

modal filters, Environmental effects, output-only measurements, factor analysis,

automatic stochastic subspace identification, statistical process control

1 Introduction

Structural Health Monitoring (SHM) problems have occupied many scientific

communities for the last two decades. The problem is to be able to detect,

locate and assess the extent of damage in a structure so that its remaining

life can be known and possibly extended. As an alternative to the current

local inspection methods, global vibration based methods have been widely

developed over the years [1–4]. For the monitoring of bridges, actual and fu-

ture trends in this domain are the use of vibration signals under ambient,

unknown excitation due to wind or traffic (output-only data [5]), and the use

of very large arrays of sensors (towards the concept of ”smart dust” [6,7]).

Full automation of the damage detection procedure is necessary for remote

(i.e. web-based) monitoring applications.
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The general methodology for detecting damage in structures is to extract

meaningful features from the measured data. The features are monitored in

order to detect changes due to damage. With the current trends of vibration

based SHM, this problem is further complicated by the ”output-only” nature

of the data, the very large amount of information to be processed (due to the

large sensor arrays), as well as the impact of environment which can cause

changes in the monitored features of an order of magnitude equal or greater

than the damage to be detected [8–11].

This paper aims at addressing these three issues. We will therefore focus on

methods using output-only data. In order to overcome the problems linked to

the very large amount of data, we propose to use spatial filtering techniques

[12]. The main focus of this paper is on the effect and the removal of the envi-

ronment. Two complementary approaches can be used for this purpose. The

first one consists in extracting features which are strongly sensitive to damage

but not very sensitive to the variability of the system and its environment.

The second one consists in using a model of the impact of the environment

on the features of interest in order to remove it from the extracted features.

Emphasis is put on the possibility of full automation of the process.

Eigenfrequencies are classically used for damage detection. It is well known

however that these features are often more sensitive to the environment than

to the damage to be detected. On the other hand, mode shapes are less sensi-

tive to the environment but the drawbacks are that the computational time is
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high when large sensor arrays are used, and that the identification is not, up to

now, fully automated. In order to overcome these problems, it was proposed in

[13] to use the appearance of spurious peaks in the outputs of modal filters as

feature for damage detection. It was shown that this feature is very sensitive

to a local damage scenario, but not very sensitive to global changes due for

example to environment. In addition, modal identification needs to be per-

formed only at the beginning of the life of the structure, and the computation

of the peak indicators is very fast and totally automatic. These advantages

make it a very suitable alternative to modal identification techniques for dam-

age detection.

In the second approach where one seeks to remove the effect of environment

on the extracted features, three methods can be used. The first one consists

in direct modelling of the impact of environment on the dynamical charac-

teristics of a structure. This is a difficult task, because on one hand, there

may be many factors which need to be taken into account, and on the other

hand, the types of models (types of constitutive equations, parameters of these

constitutive equations) to be used is generally unknown. One alternative is to

identify models on the basis of measurements on a real structure. The models

are aimed at representing accurately the relationship between measured dy-

namic features and measured environmental variables. They do not however

have a real physical meaning (they only model an input-output relationship,

so that the model and its parameters are not derived from physical laws).

This restricts their use for the structure on which they have been identified.

In practical applications, authors have limited their studies to the modelling of

the relationship between the first eigenfrequencies and one environmental vari-
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able (temperature). Examples of such are : the use of an AR (auto-regressive)

model for the Z24 Bridge [10], the use of SVM (support vector machine) for

the Ting Kau Bridge [14], or the use of a linear filter for the Alamosa Canyon

bridge [15]. A major difficulty of the method is to determine where and which

environmental factors to measure. In order to overcome this drawback, a last

set of methods seeks to remove the variability due to environment without

measuring the environmental factors. These methods rely on a decomposition

of the covariance matrix of the features monitored over a long period of time

with changing (but unmeasured) environmental conditions [16–19].

This paper is divided in four parts. The first part is dedicated to feature ex-

traction using output-only measurements. Two methods are presented : the

traditional approach which consists in extracting the eigen properties of the

structure using stochastic subspace identification methods, and a novel ap-

proach which consists in computing peak indicators on the Fourier transform

of the output of modal filters. For traditional operational modal analysis, a

new process to automate the identification is presented. The second part deals

with the modelling and removal of the environmental effects. A review of the

different methods proposed in the literature which do not require to mea-

sure environmental variables is presented. The similarities between all these

methods is stressed. The third part presents statistical process control as a

tool for detecting deviation from the normal condition. The method consists

in building univariate control charts with control limits which allow auto-

matic and statistic treatment of the features for alarm triggering. In the last

part, a numerical investigation using a finite element model of a three-span

bridge subject to different environmental conditions is carried out. Two differ-
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ent kinds of features are extracted automatically: eigen properties and peak

indicators from modal filters. Factor analysis [16] is used for the removal of

environmental effects. The different features are compared with respect to (i)

their sensitivity to environment, (ii) their robustness to noise, (iii) the effect

of factor analysis, (iv) the associated computational time. Finally, conclusions

and perspectives are given.

2 Feature extraction based on output-only measurements

2.1 Output-only modal analysis

A first approach for feature extraction consists in identifying the eigenproper-

ties of a structure using only the measured output signals. One of the fastest

and most accurate methods is based on stochastic subspace identification

[20,5]. The method identifies a discrete-time state-space model of the structure

from output-only data. The only parameter in this model is the model order.

2.1.1 Stochastic state-space model

The discrete state-space formulation of the dynamic equations of motion of a

system sampled at constant time intervals k∆t is given by :

xk+1 = Axk + B uk + wk

yk = C xk + D uk + vk (1)

where A is the discrete state matrix, xk is the state vector at sample time

k∆t, B is the input matrix, uk is the excitation force. Additional terms wk
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and vk represent the disturbances and measurement noise respectively. wk and

vk have zero-mean and covariance matrices :
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The corresponding stochastic state-space formulation is defined as (1) without

the deterministic input uk :

xk+1 = Axk + wk

yk = C xk + vk (3)

xk is assumed to be stationary with zero mean(E[xk] = 0) and covariance

matrix Σ = E[xkx
T
k ]. wk and vk are independent of the actual state (E[xkw

T
k ] =

0, E[xkv
T
k ] = 0). For modal analysis, it is necessary to identify the matrices A

and C only.

2.1.2 Stochastic Subspace identification and Operational Modal Analysis

The identification method presented in this paper is the reference-based data

driven stochastic subspace method [5]. It is a generalization of the classical

data-driven stochastic subspace method [20] in which the computation time is

reduced, if necessary, by selecting only a few reference measurements for the

so-called ”past” measurements.

The main steps of the methods are given below in order to give to the reader

a general idea of the computations needed to extract the modal properties.

This will prove useful in section 5.4 where computational costs are discussed.
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For more details on the theoretical aspects of the method, one should refer to

[5].

1) Construction of the Hankel matrix : the output measurements are gathered

in a block Hankel matrix with 2i block rows and j columns. The first i block

rows represent the past, whereas the next i block rows represent the future.

For the future, all l sensors are retained (the number of rows is equal to li)

whereas for the past, only r reference sensors are taken into account (the

number of rows is equal to ri). It is only necessary to select references if

the computation time is a problem (the gain in number of flops fl can be

expressed as flSSI/ref/flSSI = ((l + r)/(2l))2 [21]) and/or if some channels

are clearly more subject to noise than others. The Hankel matrix H reads :
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(4)

The size of the matrix is therefore (l + r)i x j where j is a parameter

chosen by the user. For statistical reasons, it is assumed that j → ∞, so j

should be rather large.
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2) Perform an LQ factorization of H :

H =

(

Y ref
p

Yf

)

= LQT (5)

where Q ∈ R
(l+r)i×j is an orthonormal matrix (QQT = I) and L ∈ R

(l+r)i×(l+r)i

is a lower triangular matrix. Note that the Q factor does not need to be

calculated explicitly, which makes the subspace method computationally ef-

ficient since (l + r)i << j. The row indices of H are split in four parts : 1

corresponds to the r rows of the past, the first l rows of the future (corre-

sponding to yi ...) are split into r (2) and l − r (3) rows, and the following

rows of the future correspond to 4. The LQ factorization therefore reads:
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3) Perform the following singular value decomposition:
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Choose the system order n and split the singular vectors and the singular
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values in two parts:
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in which S1 contains the first n singular values, and n is the chosen model

order.

4) Compute the system matrices A and C:
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where † denotes the Moore-Penrose pseudo-inverse of a matrix, Oi is the

observability matrix and Oi−1 is obtained by removing the last l rows of Oi.

5) Estimate Q, R and S from equation (2) as:
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6) Using matrices A and C, the undamped eigenfrequencies fudi, the damping

ratios ξi and the mode shapes φi of the structure can be calculated from

A = ΨΛΨ−1, Λ = diag(λi) ∈ C
n×n, i = 1, . . . , n (12)

λc
i =

ln λi

∆t
, i = 1, . . . , n (13)

fudi =
|λc

i |
2π

, i = 1, . . . , n (14)
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ξi =
real(λc

i)

|λc
i |

, i = 1, . . . , n (15)

Φ = CΨ, Φ =





φ1 . . . φn



 (16)

in which | · | denotes the complex modulus.

2.1.3 Automatization of the Modal Analysis procedure

As the true system order is often unknown, it is a common practice in modal

analysis to calculate the modal parameters for increasing model orders n.

If n becomes higher than the true system order, also the noise is modeled,

but if the noise is purely white, the mathematical poles that arise in this

way are different for different model orders n which makes that they can

be separated from the physical poles in a stabilization diagram, in which the

eigenfrequencies corresponding to the identified poles are plotted for increasing

model orders. Poles that arise due to the color of the noise can be separated

from the physical poles based on physical criteria, like the value of the damping

ratio or the shape of the mode. To clear out this diagram in order to only

retain physical poles, only the poles of a certain model order for which the

relative difference in eigenfrequency, damping ratio and MAC value with one

of the poles of one lower model order is below a threshold value, are plotted.

However, the stabilization diagram can still show some mathematical poles,

especially for high model orders, which prevents the full automatization of the

modal analysis procedure.

For this reason, recently a new criterion called modal transfer norm [22] has

been introduced into the stabilization diagram which is a big step forward in

the full automatization of modal analysis with subspace identification meth-
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ods. For stochastic subspace identification, the modal transfer norm is based

on the modal decomposition of the positive output power spectral density

S+
yy, which is defined as the Fourier transform of the positive lags of the cross-

correlations between the measured outputs. S+
yy can be calculated from [22]

S+
yy(ω) = C (zI − A) G +

1

2
Λ0, z = ejω∆t (17)

in which G and Λ0 can be calculated from

G = AΣCT + S Λ0 = CΣCT + R Σ = AΣAT + Q (18)

With a change of the state-space basis, the stochastic system description can

be transformed into its modal form:

xm
k+1 = Λxm

k + wm
k

yk = Cmxm
k + vk (19)

Gm = ΛΣmCmT + Sm (20)

in which xm = Ψ−1x, wm
k = Ψ−1wk, Cm = CΨ, wm

k , Σm = Ψ−1ΣΨ−T and

Sm = Ψ−1S. With this description, a modal model reduction of the stochastic

system can be performed, resulting in the positive power spectral density of

the reduced model which contains only mode i [22]:

S+
yy,i(ω) = cm

i (z − λi)
−1gm

i +
Λ0i

2
(21)

in which cm
i is the ith column of Cm, gm

i is the ith row of Gm and Λ0i =

cm
i Σm

ii c
m
i

T with Σm
ii the ith diagonal element of Σm. The quantity that is now

introduced into the stabilization diagram is, for each mode [22]:

‖S+
yy,i‖∞ = max

ω
σ
(

S+
yy,i(ω)

)

(22)
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where σ denotes the singular values of a matrix. The value of this modal

transfer norm gives a measure of the error which is made when the ith mode is

removed from the full model. A stabilization diagram in which only the modes

which have the highest modal transfer norms are plotted, is very clear [22].

This observation is now used for the automatization of operational modal

analysis with the stochastic subspace identification method, which is highly

desirable if the method is used for vibration monitoring. The new automatized

method that is proposed in this paper consists of the following steps:

1) Determine an initial set of modal parameters using stochastic subspace iden-

tification and the stabilization diagram. This is the only step where user

interaction is required.

2) For each new data set, perform a system identification for a certain model

order n, which is sufficiently high so that the identified system certainly

contains all physical poles of interest, and calculate the modal properties.

Retain only the system poles that have realistic damping ratios. Sort the

poles in decreasing order of modal transfer norm.

3) For each of the poles in the ordered new set, search for the pole in the

previous set whose frequency is closest to this pole. Disregard this previous

pole in next searches. If all previous poles are linked to a new pole, stop the

search.

4) Repeat steps 2) and 3).

This automatized operational modal analysis procedure has been successfully

validated on 20 series of 241 simulated bridge data sets, where in each set,

the modal parameters change due to environmental effects and damage of the

bridge, as is illustrated in section 5.3. For each data set, the method described
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in this section succeeded in extracting the first 10 modes as desired. The model

order n was set to 100 in each identification.

2.2 Features extracted from spatial filtering

A second approach for feature extraction is based on the concept of spatial

filtering and peak indicators [23]. It is briefly summarized here below.

2.2.1 Spatial filtering and modal filters

ë2

ë1

ën

+

+
+

linear combiner
. .

.
y1

y

yn

y2structure

f

sensor array

sensor

Fig. 1. Representation of the spatial filter using n discrete sensors and a linear

combiner.

Let us consider a structure equipped with an array of n sensors (Fig.1). Spatial

filtering consists in combining linearly the outputs of the network of sensors

into one single output according to y =
∑

αiyi. Upon proper selection of αi,

various meaningful outputs may be constructed, as, for example, modal filters.

The idea behind modal filtering is to configure the linear combiner such that

it is orthogonal to all N modes of a structure in a frequency band of interest

except mode l. The modal filter is then said to be tuned to mode l and all

the contributions from the other modes are removed from the signal. This
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is illustrated in Fig. 2 where the square root of the power spectral density

(PSD) of such a modal filter is represented, for a structure excited with a

white noise spectrum. Because of spatial aliasing, there are some restrictions

on the frequency band where modal filters can be built, for a given size of the

sensor array.

2.2.2 Modal filtering with an array of sensors

The modal expansion of the FRF of the response on sensor k is given by :

Yk(ω) =
N
∑

i=1

ckibi

(ω2
i − ω2 + 2jξiωiω)

(23)

where cki is the modal output gain of sensor k and bi is the modal input gain.

If the n sensors in the array are connected to a linear combiner with gain αk

for sensor k (Fig.1), the output of the linear combiner is y =
n
∑

k=1
αkyk and the

global frequency response is :

G(ω) =
n
∑

k=1

αkYk(ω) =
N
∑

i=1

{
n
∑

k=1
αkcki}bi

(ω2
i − ω2 + 2jξiωiω)

(24)

A modal filter which isolates mode l can be constructed by selecting the weigh-

ing coefficients αk of the linear combiner in such a way that

n
∑

k=1

αkcki(ω) = δli (25)

Assume that the mode shapes of the system are identified using reference based

stochastic subspace identification described in section 2.1.2. The identified

mode shapes are gathered in the matrix of modal outputs Φ (each column
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corresponds to one modeshape projected on the sensors). Equation (25) is

written in a matrix form :

ΦT α = I (26)

where α is the matrix of modal filter coefficients (column l corresponds to

αl), and I is the identity matrix. The rank of ΦT is equal to the number

of identified modes and it is assumed that there are more sensors than mode

shapes. ΦT is therefore rank deficient. The inverse is computed using a singular

value decomposition of ΦT

ΦT = U S V T (27)

and truncating to the n highest singular values :

(ΦT )+ =
n
∑

i=1

1

σi

viu
T
i (28)

(ΦT )+ is here the regularized pseudo-inverse of ΦT . Matrix α is given by

α = (ΦT )+I (29)

For more details on the determination of the modal filter coefficients, the

reader can refer to [24,25,12]. Note that the coefficients of the modal

filter are independent of the excitation type and location, and that

the construction of modal filters in the case of modes closely spaced

in frequency is not a problem, since the filtering is in the spatial

domain. In previous studies [13,23], the effect of damage on modal filters was

studied. It was shown that a local damage produces spurious peaks in the fre-

quency domain output of modal filters (Fig. 3a), whereas for global changes to
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the structure (i.e. due to environment), the peak of the modal filter is shifted

but the shape remains unchanged (Fig. 3b). The appearance of peaks in

the modal filters is due to the violation of the orthogonality condi-

tion between the initial modes of the structures used to compute

the filters and the mode shapes of the structure in its present state.

Damage usually corresponds to a local stiffness change, whereas

the environmental effects are usually more global and smooth, and

mode shapes are much closer to the initial, undamaged ones. This

explains why no spurious peaks (or only very low amplitude peaks)

will appear and only the frequency of the filter will shift. It is clear

however that if a global damage is considered, only very low ampli-

tude peaks will appear, and if the environmental effect is very local,

spurious peaks are likely to appear. This is of course a limitation of

the method which can be overcome by using an ad-hoc treatment

of the environmental effects as described in Section 3.

dB

!a !l !b

!

Fig. 2. PSD
1

2 of the output of modal filter tuned to mode 1, the structure is excited

with a white noise input spectrum
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a) b)

dB

Undamaged

!a !l

!

Damaged

dB

!a !l !b

!

Fig. 3. Modal filter tuned to mode 1. a) Effect of damage, b) Effect of environment

2.2.3 Feature extraction

Each frequency point of the PSD
1

2 of a modal filter can be used as a feature

for damage detection. In practice however, this leads to a too large amount

of features so that there is a need for data reduction. It is proposed to use a

peak indicator, which reduces the amount of features to nf x ne where nf is

the number of modal filters considered and ne is the number of eigenfrequen-

cies in the frequency bandwidth of the modal filter. The computation of this

indicator follows the method presented in [26], where a discrete formulation is

proposed. Here we use different notations and a continuous formulation. The

entire frequency bandwidth is divided in frequency bands [f1, f2] around each

natural frequency of the structure (the bandwidth is given in % of the natural

frequency, typical values are 10 or 20 %). The following mean and variances

are computed :
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• The frequency center (FC) =

∫ f2

f1
fs(f)df

∫ f2

f1
s(f)df

• The root variance frequency (RVF) =




∫ f2

f1
(f − FC)2 s(f)df
∫ f2

f1
s(f)df





1

2

f1

s(f)

f2

The peak indicator is given by :

Ipeak =
RV F

√
3

FC(f2 − f1)
(30)

It has the following properties :

• if s(f) is a Dirac function, Ipeak = 0

• if s(f) = Cst, Ipeak = 1

• A drop in Ipeak corresponds to the appearance of a peak.

2.2.4 Pre-processing of the modal filters for feature extraction

In order for the peak indicator to be more sensitive (increase of signal-to-noise

ratio), we use a technique called ”second derivative matched filtering” [27].

Let x(ω) be the signal to be filtered and f(Ω) be the filtering function. The

filtered signal is given by :

y(ω) =

∞
∫

−∞

f(Ω)x(ω + Ω)dΩ (31)

In order to remove background noise, the second derivative is computed :

y′′(ω) =

∞
∫

−∞

f(Ω)x′′(ω + Ω)dΩ =

∞
∫

−∞

f ′′(Ω − ω)x(Ω)dΩ (32)

This last expression shows that it is only necessary to derive the filtering

function, which is much less sensitive to the noise than deriving the signal
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itself. On the other hand, the filtering function needs to be twice differentiable.

Although the philosophy of matched filtering is to have a filtering function

equal to the equation of the peak to be detected, this choice is not adopted

here (due to the complicated expression of the second derivative). Instead, a

simpler and typical choice for such a function is a Gaussian distribution. There

is in fact an analogy of this method with wavelet analysis where the so-called

”mexican-hat” corresponds to the second derivative of the Gaussian [28]. The

scaling factor in wavelet analysis is analog to the standard deviation of the

Gaussian. An optimal choice of this factor allows to remove efficiently the

noise in the initial signal. One example of second derivative matched filtering

is given in Fig. 4. The filtered signal has a flat spectrum due to the second

derivative and the peaks are enhanced by the filtering which makes Ipeak more

sensitive.

dB

!

dB

!

Fig. 4. Effect of Gaussian second derivative filtering using a ”mexican hat” function

: a) Original signal, b) Filtered signal

2.2.5 Further processing of features

In order to perform damage detection, features sensitive to damage should be

selected. In the example of Fig. 3, one sees that the peak indicator for peak

number 1 is not sensitive to damage since the peak is already present in the
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undamaged filter. Therefore the number of features retained for damage de-

tection is nf x (ne−1). In the case where two peaks are very close in frequency,

the frequency bands corresponding to these natural frequencies are merged,

which reduces the number of features without affecting the efficiency of the

peak detection (the peak indicator will be sensitive to the appearance of one,

or the other, or both peaks).

There are two main advantages to this approach : (i) the number of sensors

can be greatly reduced due to the spatial filtering, which reduces the amount

of data, (ii) the feature extraction is very fast and fully automatic. It is there-

fore particularly well suited for remote web-based damage detection.

Note that in the case where the input excitation is not white noise,

extra peaks can appear in the PSD of the modal filters due to the

color of noise. This is however not a problem if, in the identification

process, these peaks have not been identified (which, has stated in

Section 2.1.3 can be done easily based on physical criteria). Indeed,

the peak indicators are computed only in frequency bands around

the identified natural frequencies. This may therefore cause a false

alarm only in the case where the peaks coming from the color of

noise are close in frequency with the system poles.
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3 Modelling and removal of environmental effects

Many structures are subject to varying environmental conditions which affect

their dynamical behavior. Examples are bridges subject to outdoors environ-

mental variables such as temperature and humidity. Due to the difficulty of

accurately modeling the impact of environment on the features extracted, it is

desirable to be able to remove this impact without measuring environmental

variables. The key idea is to identify a linear subspace in which the environ-

mental effects lie. Projecting the features in the subspace orthogonal to the

linear subspace identified allows to get rid of the environemntal effects. This

is explained in more details in the next section.

3.1 General model of the environment

Let us assume that all the features are arranged in a vector x, one can write :

x = f(T, h, ...) + g(η) (33)

where η is the vector of variables independent of the environment (i.e. struc-

tural changes, damage, noise, ...), and (T, h, ...) are the environmental variables

(i.e. Temperature, humidity, ...). As mentioned earlier, function f is very diffi-

cult to identify, the general form being dependent on the structure considered

and the type of features extracted. This general mapping function f can be

decomposed into two different mappings as shown on Figure 5. The environ-

mental factors (T, h...) are transformed into a vector of unobservable factors

ξ, by means of a non-linear mapping M :

f(T, h, ...) = Λ (M(T, h, ...)) (34)
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The terminology unobservable factors is borrowed from factor analysis [16].

This non-linear mapping is generally unknown and there is no need to identify

it. The unobservable factors ξ are assumed to be statistically independent

variables. A linear mapping Λ is used between the unobservable factors and

the features (Fig 6). Equation (33) becomes :

x = Λξ + g(η) (35)

Environmental

factors

Unobservable

factors

Features

T, h, ... x x

M, non-linear L, linear

Fig. 5. Function f relating the dynamical features with the environmental variables

is decomposed into a non-linear mapping M and a linear mapping Λ, introducing

statistically independent unobservable factors ξ

If the number of unobservable factors is equal to the number of features, the

new mapping is identical to function f , Λ can be seen as an orthogonalization

of the feature vector x. In this case g(η) = 0 and the environment cannot

be distinguished from the other variables in η. In order to remove the effects

of environment on features and keep information about damage or structural

changes, the dimension of ξ needs to be smaller than the number of features.

One important parameter in the method is therefore the number of unobserv-

able factors. This is discussed in the following section.

23



3.2 Model identification

In order to identify the linear mapping Λ between the unobservable factors

and the features, it is necessary to measure the feature vector under changing

environmental conditions, while the influence of other factors (η) is small :

ε = g(η) << Λξ (36)

This requires to extract features from the undamaged structure during a pe-

riod of time in which all of the environmental effects to be removed manifest

themselves (i.e. : monitoring a bridge after construction during a one year

period of time).

Based on these measured features, two different approaches are presented,

covariance based and data based techniques.

3.2.1 Covariance based model identification

Assume that the feature vector x is sampled during a certain period of time.

The covariance matrix of the features is given by :

Σx = E[xxT ] = E[(Λξ + ε)(Λξ + ε)T ] (37)

where E is the mathematical expectation over the whole sampling time. Unob-

servable factors are supposed to have zero-mean and covariance matrix equal

to identity. Equation (37) therefore reduces to :

Σx = ΛΛT + Ψ (38)
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where Ψ is the covariance matrix of ε. The problem is to be able to split the

covariance matrix of measured features into the contribution of environment

and the residual part. This is possible because of the assumption that ε << Λξ.

Using singular value decomposition (SVD) of Σx, one gets :

Σx = USUT (39)

with

UT U = I, S =

















S1 0

0 S2

















(40)

The left and right vectors are identical because Σx is a symmetric matrix, this

is therefore equivalent to finding the eigenvalues and eigenvectors of Σx.

Matrix S is split in two parts : S1 = diag(σ2
1, σ

2
2...σ

2
m) is a diagonal matrix with

the square of the first m singular values on the diagonal, ranked by decreasing

order, and S2 = diag(σ2
m+1...σ

2
n), where n is the size of the feature vector x.

The splitting (value of m) can be done in two ways:

• Plotting the singular values ranked in decreasing order, a drop in the sin-

gular values occurs : m is chosen as the value before this drop. This is

equivalent to finding the rank of Σx, i.e. the size of the subspace of Σx.

In practice, however, this drop rarely occurs clearly, which is the

motivation for the second method of splitting:

• Define the indicator :

I =

∑m
i=1 σ2

i
∑n

i=1 σ2
i

(41)
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and determine m as the lowest integer such that I > e(%), where e is a

threshold valued (i.e. 95 %) The meaning of this threshold is as follows : m

unobservable factors are needed in order to explain e% of the variance in

the observed data.

Matrix U is also split in two parts :

U = [U1U2] (42)

and this splitting allows to identify Λ and Ψ :

Λ = U1

√

S1 (43)

Ψ = U2S2U
T
2 (44)

This method is often referred to as Principal Component Analysis (PCA,

[17,29,18]), the vectors of U1 are called principal components. In factor anal-

ysis, the column vectors of Λ are called factor loadings. Each column of the

factor loading matrix is equal to a principal component multiplied by the

square root of the corresponding singular value. A slight difference with the

method of PCA, lies in the fact that ε are called unique factors and are as-

sumed to be uncorrelated, which means that Ψ is diagonal. In order to achieve

this, an iterative process is needed in which the first iteration corresponds to

the PCA described here above. Further iterations allow to converge to a di-

agonal matrix Ψ [30]. Practical applications show however that the resulting

linear subspace Λ only slightly changes during the iterations. Moreover, the

validity of the hypothesis of a diagonal Ψ matrix is somehow doubtful in many

applications in which the processing needed to extract the features results in

a non-diagonal covariance matrix for ε.
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3.2.2 Data based model identification

An alternative to covariance based methods is to perform the SVD directly

on the sampled feature vector :

x = U
√

SV T (45)

It can easily be shown that the matrices U and S are identical to the ones

found when performing the SV D on Σx. One drawback of the method is that

the SV D is performed on a large rectangular matrix, which makes it computa-

tionally less attractive (note that in applications where matrix V is of interest,

the situation is different). Selecting the size of the linear subspace can be done

in the same way as for the covariance based method. Note however that the

interpretation of the threshold as the representation of a given percentage of

the covariance matrix is not straightforward and usually not given when data

based SV D is performed (see i.e. [19]).

3.3 Removal of environmental effects

In the previous section, we have discussed the identification of the linear op-

erator Λ. In order to remove the part of the features which belongs to the

linear subspace from the measured features, we need to solve the following

estimation problem : find ξ̃ which minimizes :

‖x − Λξ̃‖2 (46)
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The choice of the norm ‖.‖2 leads to different well known estimators : using

an L2 (euclidian) norm leads to the classical least-square estimator, which is

the Moore-Penrose pseudo-inverse of Λ:

ξ̃ = (ΛT Λ)−1ΛT x (47)

Because of the properties of the SV D (UT
1 U1 = Id), this expression reduces

to :

ξ̃ = S1U
T
1 x (48)

If the subspace of principal components U1 is used instad of Λ, the estimated

value of ξ̃ is given by :

ξ̃ = (UT
1 U1)

−1UT
1 x (49)

which reduces to :

ξ̃ = UT
1 x (50)

This approach is the most widely used [17–19].

Two alternatives which come from statistical analysis are presented in [31].

The first one is derived using a maximum likelihood approach (Bartlett’s factor

score) :

ξ̃ = (ΛT Ψ−1Λ)−1ΛT Ψ−1x (51)
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and the second one is derived using a Bayesian approach (Thomson’s factor

score) :

ξ̃ = (I + ΛT Ψ−1Λ)−1ΛT Ψ−1x (52)

Bartlett’s factor score is unbiased whereas Thomson’s factor score is biased.

The average prediction error of Thomson’s factor score is however lower. The

last two estimators take into account the covariance matrix of ε. This can

prove useful if different types of features affected by different levels of noise

are used (i.e. it is well known that extracted mode shapes are much more

noisy than eigenfrequencies). The estimation will put less weight on the more

uncertain parameters (large terms on the diagonal of Ψ), which will result

in a better estimation, taking into account the uncertainties on the different

features. This approach is well known in statistical estimation theory [32] but

of rather limited application because matrix Ψ is generally not known. Here

however, matrix Ψ is given by the identification, so that the approach can be

used. It should be noted however that there may be problems in computing

the inverse of Ψ if the classical PCA is used. In fact, if the iterative method

of factor analysis is used, matrix Ψ is diagonal which makes it invertible. On

the other hand, matrix Ψ resulting from a first iteration of the PCA is not of

order n, so that it cannot be inverted. One way to work around this problem

is to keep only the diagonal terms in Ψ. In this manner, the simplified matrix

is invertible, and one keeps the weighting between the uncertainties related

to the different features in the estimation. This is also motivated by the fact

that the iterations do not modify the subspace Λ by a large extent as stated in

section 3.2.1, so that the Ψ matrix can be approximated with a good accuracy

by keeping only the diagonal terms.
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Using one of the estimators defined above, we can now compute the residual,

which is the part of the features orthogonal to the linear subspace spanned by

Λ :

ε = x − Λξ̃ (53)

The new feature vector is given by ε, it corresponds to the dynamic features

from which the environmental effects have been removed.
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x1 x2 xp

"1 "2 "p

õ22
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õ11

õ21
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õ2m

õpm

…

…

…

Fig. 6. Orthogonal factor model.

4 Statistical Process Control

Control charts [33] are used here for damage detection. They are a tool of

statistical quality control to detect if the process is out of control. It plots the

quality characteristic as a function of the sample number. The chart has lower

and upper control limits, which are computed from those samples only when

the process is assumed to be in control. When unusual sources of variability

are present, sample statistics will plot outside the control limits. In that oc-

casion an alarm is triggered. There exist different control charts, differing on
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their plotted statistics. Several univariate and multivariate control charts for

damage detection were studied in [34].

In this paper the features for damage detection are the largest principal com-

ponents of all of the unique factors. The number of principal components was

determined using the criterion that they explained at least 99.9% of the vari-

ation in the features of all samples.

Principal component analysis, PCA is a linear transformation that transforms

the data to a new coordinate system such that the greatest variance by any

projection of the data comes to lie on the first coordinate (called the first

principal component), the second greatest variance on the second coordinate,

and so on. PCA can be used for dimensionality reduction in a dataset while

retaining those characteristics of the dataset that contribute most to its vari-

ance, by keeping the first principal components and ignoring the remaining

ones.

It can be shown that principal component analysis reduces to finding the

eigenstructure of the data covariance matrix. Alternatively, PCA can be done

by finding the singular value decomposition (SVD) of the data matrix or a

spectral decomposition of the data covariance matrix. [30]. The first principal

component is the eigenvector corresponding to the largest eigenvalue of the

covariance matrix, The second principal component is the eigenvector corre-

sponding to the second largest eigenvalue, and so on. In the following, the

spectral decomposition of the covariance matrix is only presented.
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Let X be an n × p data matrix. Since the data covariance matrix ΣX (p × p)

is symmetric, its spectral decomposition can be written as

ΣX = E(XTX) = PΛPT (54)

where Λ is a diagonal matrix whose elements are the eigenvalues of the sym-

metric covariance matrix ΣX. P is a p×p orthogonal matrix (PPT = PTP = I)

whose j th column is the eigenvector corresponding to the j th eigenvalue.

The scores Y are the new values expressed in the principal component base

and are computed by

Y = XP (55)

and the covariance matrix of Y is

ΣY = E(YTY) = E[(XP)T (XP)] = E(PTXTXP) = PTΣXP (56)

Substituting Equation (54) we get

ΣY = PTPΛPTP = Λ (57)

The new variables are therefore uncorrelated and have a variance equal to

the corresponding eigenvalue. In the dimensionality reduction, only the first

eigenvectors (first columns of P) are used to compute the new variables.
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The multivariate control chart used in this study is the Shewhart T control

chart [33], where the plotted characteristic is:

T 2 = n(x̄ − ¯̄x)TS−1(x̄ − ¯̄x) (58)

where x̄ is the subgroup average, ¯̄x is the process average, which is the mean

of the subgroup averages when the process is in control, and S is the matrix

consisting of the grand average of the subgroup variances and covariances.

The upper control limit is

UCL =
p(m + 1)(n − 1)

mn − m − p + 1
Fγ,p,mn−m−p+1 (59)

where p is the dimension of the variable, n is the subgroup size, m is the number

of subgroups when the process is assumed to be in control, and Fγ,p,mn−m−p+1

denotes the γ percentage point of the F distribution with p and mn−m−p+1

degrees of freedom. The F distribution is used because in factor analysis x is

assumed to be Gaussian.

5 Numerical example

5.1 Presentation of the structure

The structure considered is a three-span bridge similar to the one presented

in [18,23] (Fig 7). The motion is restricted to in plane vibrations. It is made

of two materials : steel and concrete. The Young’s modulus of these materials

is assumed to be temperature dependant (Fig 8). During the monitoring, the

structure is subject to gradients of temperature. The reference temperature
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(right hand side) varies from -15 to +45 �, whereas it varies from -15 to 0 �

on the left hand side (a linear interpolation is assumed between the left and

right end temperatures). The system is excited by a uniform pressure acting

on the first span of the bridge (see Fig 7). The pressure is assumed to be a

band limited white noise excitation (0-100 Hz, containing the first 10 mode

shapes of the structure).

Concrete Concrete

DL1

DL2 DL3
Uniform pressure

T=-15 to 0°C

T=-15 to 45°C

Damage
Damage Damage

Fig. 7. Three-span bridge subject to different temperature gradients and damage

a) b)

Fig. 8. Temperature dependence for the Young’s Modulus of the two materials :

a) Steel, b) Concrete

5.2 Computation of the response of the bridge

The bridge is discretized with 32 Euler Bernoulli finite elements using the

Structural Dynamics Toolbox (SDT [35]) under Matlab. The response is com-

34



puted in the time domain using an in-house time integration scheme based on

the Duhamel’s formula [36] . A total of 29 accelerometers are placed, one at

each node of the finite element model (except boundary conditions). The time

domain response (100s at a sampling rate of 1000 Hz) for each accelerometer

is computed for different values of reference temperature ranging from -15 to

+45 � by step of .25 � (240 samples). For each of these samples, noise is

added to the measurements in the following form:

ai(t) = ai(t) + [β max(ai(t))]N (0, 1)(t) (60)

where ai(t) is the acceleration measured at sensor i, N (0, 1)(t) is a random

Gaussian variable with zero-mean and unitary standard deviation and β is

the noise amplitude. For the simulations, different levels of noise were added

to the measurements : β = 0, 0.05, 0.1 and 0.2. The same computations are

repeated after the structure has been damaged (samples 241-480). We consider

here four damage scenarios d1 − d4 described in Table 1, the locations DL1,

DL2 and DL3 are as shown on Fig 7. The different levels of noise are added

to the four damage scenarios, so that overall 20 scenarios of 240 samples are

computed (5 states : undamaged, d1 − d4, and 4 noise levels).
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damage case DL1 DL2 DL3

d1 1.25 % 3.75 % 2.5 %

d2 2.5 % 7.5 % 5 %

d3 5 % 15 % 10 %

d4 10 % 30 % 20 %

Table 1

Stiffness reduction at locations DL1,DL2,DL3 for the four damage scenarios con-

sidered

5.3 Feature extraction, factor analysis and statistical process control

Each set of data studied is made of the undamaged state and one of the dam-

aged states. The noise level is the same for the undamaged and the damaged

state. The set is made of 480 samples of output-only time responses on the 29

accelerometers situated at the nodes of the finite element model that have a

nonzero displacement (Fig 7). Two kinds of feature extraction are performed as

explained in section 2: automatic output-only modal analysis using stochastic

subspace identification (10 eigenfrequencies and mode shapes for each case),

and extraction of peak indicators from the output of the first 9 modal filters.

In this second case, a total of 61 features are extracted from the measurements

(taking into account the merging of closely spaced eigenfrequencies 3 and 4,

and 7 and 8).

The features are then processed in the following manner :
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1. A principal component analysis is performed and the first principal compo-

nents which describe 99.9 % of the variation in the data are kept.

2. Samples 1 through 160 are assumed to be in control, and T 2 is computed

using equation (58) and the principal components retained in step 1. A

subgroup size of 4 is used which results in a reduction of the number of

samples from 480 to 120 (60 undamaged and 60 damaged).

3. The upper control limit is computed using equation (59), with γ = .999 and

the Shewhart-T control chart is plotted.

4. Factor analysis is performed using 1 out of 2 samples ([1:2:240]) from the

undamaged structure, which spans the whole temperature range without

including all the samples.

5. Steps 1-3 are repeated for the data after factor analysis.

In Figures 9 through 12, the control charts are presented for damage case d4

and noise level β = 0. The following features are considered:

• the first 10 eigenfrequencies identified using automatic stochastic subspace

identification : 10 features.

• mode shapes 1 through 5 extracted using automatic stochastic subspace

identification. The mode shapes are normalized with respect to the output

of the first accelerometer (out of 29), which results in 28 features for each

mode shape : 140 features.

• mode shapes 6 through 10 extracted using automatic stochastic subspace

identification. The mode shapes are normalized with respect to the output

of the first accelerometer (out of 29), which results in 28 features for each

mode shape : 140 features.

• Peak indicators extracted from the output of modal filters : 61 features.

37



T 2 is represented for both the undamaged and the damaged case d4 as a

function of the temperature (from -15 � to 45 � ), together with the upper

control limit.

a) b)

In control

UCL

In control

UCL

Fig. 9. Shewhart-T control chart for the 10 first eigenfrequencies extracted using

stochastic subspace identification a) Raw data, b) After removal of environmental

effects (factor analysis)

a) b)

In control

UCL

In control

UCL

Fig. 10. Shewhart-T control chart for mode shapes 1-5 extracted using stochas-

tic subspace identification a) Raw data, b) After removal of environmental effects

(factor analysis)
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a) b)

In control

UCL

In control

UCL

Fig. 11. Shewhart-T control chart for mode shapes 6-10 extracted using stochas-

tic subspace identification a) Raw data, b) After removal of environmental effects

(factor analysis)

a) b)

In control

UCL

In control

UCL

Fig. 12. Shewhart-T control chart for the 61 features extracted from modal filters.

a) Raw data, b) After removal of environmental effects (factor analysis)

The figures show that :

(i) The effects of environment are very pronounced on the eigenfrequencies for

which it is impossible to differentiate the damaged state from the undam-

aged state.

(ii) This effect is much smaller when using mode shapes. For the control limits

however, the F-distribution does not seem to be very well suited, since

although the damaged state can be differentiated from the undamaged state,
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false alarms arise even for the in control data.

(iii) For the peak indicators extracted from modal filters, the effect of environ-

ment is also very small, and there are false alarms only for the data which

is not in control. From that point of view, this indicator seems to be su-

perior to all the others if nothing is done in order to remove the effects of

environment.

(iv) In all cases, factor analysis is efficient in order to remove the effects of

environment. A few false alarms still arise for the case of mode shapes 6-10.

(v) Sensitivity of damage after factor analysis can be compared using the statis-

tics value at damaged state: Frequencies (10 features) 80; mode shapes 1-5

(140 features) 4000; mode shapes 6-10 (140 features) 30 000; peaks from

modal filters (61 features) 50 000. High frequency mode shapes are there-

fore better suited for damage detection than eigenfrequencies, and features

extracted from modal features are even more sensitive than all of the other

features compared in this paper.

On Fig 13, we study the effect of noise (added in the form of (60) ) on the

damage detection for damage case d4. For clarity, only the damaged case is

shown, the undamaged case always lies below the control limit which is the

same for all levels of noise, and removal of the environmental effects has been

performed.
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a) b)

UCL

b

b

b
b

UCL

b

b

b
b

c) d)

UCL

b

b

b
b

UCL

b

b

b
b

Fig. 13. Shewhart-T control chart for damage case d4 effect of noise on a) 10 first

eigenfrequencies, b) mode shapes 1-5, c) mode shapes 6-10, d) features extracted

from modal filters

The figures show that :

(i) the frequencies have a very small sensitivity to noise, the damage detection

is not affected by the noise level (even for β = 0.2).

(ii) Modeshapes have a high sensitivity to noise, the sensitivity to damage is

reduced due to the addition of noise.

(iii) Modal filter features have a very high sensitivity to noise, the sensitivity to

damage is greatly reduced by the presence of noise.
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This is further illustrated on Fig 14 where we plot for each noise level a

comparison of the value of T 2 for the four different types of features considered.

When no noise is added, the features extracted from modal filters are superior

to the others, but the performance is degrading fast with the level of noise.

For a level of noise of β = 0.20, the best features are the frequencies, which

are the worst features when no noise is added. Modeshapes 6-10 present a

good compromise, as they are more sensitive than frequencies for low levels of

noise, but still comparable for high levels of noise.

a) b)

UCL UCL

c) d)

UCL

UCL

Fig. 14. Shewhart-T control chart for damage case d4 : comparison of the different

features for increasing level of noise: a) β = 0, b) β = 0.05, c) β = 0.10 , d) β = 0.20

On Fig 15, we represent the control charts for each of the features for the
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different damage scenarios and β = 0.05. All four types of features have a

good behavior (the damage indicator increases with the level of damage), but

mode shapes 6-10 are clearly the best indicator for this noise level. Modal

filters perform quite poorly due to the presence of a rather small amount of

noise.

a) b)

UCL

UCL

c) d)

UCL

UCL

Fig. 15. Shewhart-T control charts for a noise level of β = 0.05, evolution of the

damage indicator with the level of damage using the following features a) 10 first

eigenfrequencies, b) mode shapes 1-5, c) mode shapes 6-10, d) features extracted

from modal filters
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5.4 Estimation of computational time

The computations have been run on a PC pentium 4 3.2 Ghz in Matlab un-

der linux environment. Table 2 gives the average computational time for the

extraction of features based on the 29 acceleration responses (one set of simu-

lated measurements). Of course efforts could be made to improve the efficiency

of the computations for both techniques of feature extraction, this is only an

estimation of the initial algorithms. One interesting thing is that both tech-

niques are able to do the extraction of the features in a time smaller than the

acquisition time (here 100 s), which means that the features can be estimated

in real time in both cases.

Features Modal filters Modal data

Computational time (sec) 0.825 40

Table 2

Mean computational time for the extraction of features for one sample of data, using

a P4, 3.2 Ghz running linux

Other issues need to be addressed if the methods have to be implemented

on a some kind of ’onboard’ hardware, such as the memory needed for the

computations and the effect of lowering the speed of the processor. These

issues are not addressed in the present paper.

5.5 Summary

On table 3, we summarize the advantages and drawbacks of the different

features considered in this paper. This table helps to assess which features
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should be used depending on the situation (fast computation needed, high

level of noise, low level of damage, ....)

Sensitivity to Freq Modes 1-5 Modes 6-10 Modal filters

Environment ++ - - - - - -

Noise - - + + ++

Damage - + ++ ++

Comp time - - - - -

Table 3

Summary of the sensitivity of the different features to environment, noise, damage,

and the associated computational time (- - very low, - low, + high, ++ very high)

6 Conclusions

In this paper, we have studied the problem of output-only vibration based

damage detection under changing environmental conditions. Two types of fea-

tures extracted from ambient vibration data have been analyzed : (i) the widely

used eigenfrequencies and mode shapes which have been identified using an au-

tomated subspace identification procedure and (ii) peak indicators extracted

from the output of modal filters. In order to detect damage, statistical process

control using Shewhart-T multivariate control chart and principal component

analysis have been used. In a last step, based on long term monitoring of the

undamaged structure, a statistical model of the effect of environment has been

built using factor analysis. This model allows post-processing of the features

extracted from the ambient vibration data in order to remove the effect of
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environment.

The methodology has been applied to a numerical model of a bridge simulated

in the time domain. The bridge is made of different materials whose properties

have different variations with respect to temperature. It is subjected to a wide

range of temperature gradients, and also to different levels of damage. The

numerical results have shown that if nothing is done in order to remove the

effects of environment, eigenfrequencies cannot be used in order to detect dam-

age, whereas mode shapes and peaks from modal filters could be used. On the

other hand, if factor analysis is used to remove the effects of environment, all

the features considered are able to differentiate between the damaged and the

undamaged case. When no noise is present in the measurement, the features

can be ranked in terms of increasing sensitivity: the least sensitive features are

the eigenfrequencies, followed by the low frequency mode shapes, the higher

frequency mode shapes and the features extracted from modal filters (most

sensitive). When noise is added however, the ranking is different. Frequencies

have a very low sensitivity to noise while mode shapes have a much higher

sensitivity. The present procedure to compute peak indicators is extremely

sensitive to noise, so that even for a relatively low level of noise, the dam-

age detection is strongly affected, and these features are the least sensitive to

damage. In the example studied, all the features can be extracted in real time

and in an automated way (the time to extract the features is smaller than the

length of the acquired signals), which makes them suitable for an automated

real-time SHM system.

For average levels of noise, it seems that mode shapes are the ideal candi-
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date for output-only SHM under changing environmental conditions. For real

structures with very large arrays of sensors (hundreds, thousands ...), it may

be that the time needed for the identification becomes prohibitively high.

Data reduction is therefore necessary in order to perform the identification in

real time. Spatial filters could be used for this purpose. This will be the sub-

ject of a future research. An alternative to performing the identification is to

use the method of stochastic subspace damage detection described in [37] for

which a procedure to treat the environmental effects has also been proposed.

A comparison of this method with the procedure presented in this paper is the

subject of ongoing research. Finally, experimental investigations are developed

in the framework of the ESF Eurocores S3HM project (http://www.s3hm.be)

in order to validate the present results on real measurements. A small scale

mock-up of a cable-stayed bridge has been built and instrumented for that

purpose.
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