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Abstract
Just as the epigenome, the proteome and the electrophysiological properties of a cell 
influence its function, so too do its intrinsic mechanical properties and its extrinsic 
mechanical environment. This is especially true for neurons of the central nervous 
system (CNS) as long-term maintenance of synaptic connections relies on efficient 
axonal transport machinery and structural stability of the cytoskeleton. Recent re-
ports suggest that profound physical changes occur in the CNS microenvironment 
with advancing age which, in turn, will impact highly mechanoresponsive neurons 
and glial cells. Here, we discuss the complex and inhomogeneous mechanical struc-
ture of CNS tissue, as revealed by recent mechanical measurements on the brain and 
spinal cord, using techniques such as magnetic resonance elastography and atomic 
force microscopy. Moreover, ageing, traumatic brain injury, demyelination and 
neurodegeneration can perturb the mechanical properties of brain tissue and trigger 
mechanobiological signalling pathways in neurons, glia and cerebral vasculature. It 
is, therefore, very likely that significant changes in cell and tissue mechanics con-
tribute to age-related cognitive decline and deficits in memory formation which are 
accelerated and magnified in neurodegenerative states, such as Alzheimer's disease. 
Importantly, we are now beginning to understand how neuronal and glial cell me-
chanics and brain tissue mechanobiology are intimately linked with neurophysiology 
and cognition.
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1  |   INTRODUCTION

Mechanobiology, an emerging field at the interface 
of biology, engineering and physics, is a rapidly ex-
panding discipline in neuroscientific research (Jansen 
et al., 2015; Smith, Cho, & Discher, 2018; Xia, Pfeifer, 
Cho, Discher, & Irianto, 2018). The mechanical proper-
ties of cells, and the external and internal forces acting 
on them, can regulate important cellular functions and 
behaviours, such as migration, growth and differentia-
tion (Calvo et  al.,  2013; Wozniak & Chen,  2009), cell 
division and programmed cell death (Kunda et al., 2012; 
Zhu, Gan, Fan, & Yu, 2015), and can also influence cel-
lular regeneration or pathogenesis (Bertalan et al., 2020; 
Schlüßler et  al.,  2018). The brain is one of the softest 
organs in the mammalian body and is encased within a 
much harder skull for protection (Tagge et  al.,  2018). 
However, the brain and the cells that comprise it experi-
ence various physical forces (see Box 1) during develop-
ment, maturation and ageing that affect their underlying 
biology and neurochemistry (Budday, Steinmann, & 
Kuhl, 2015). Importantly, neurons and glial cells possess 
membrane-bound mechanosensors that translate physi-
cal forces into biochemical signals in a process termed 
mechanotransduction. Therefore, perturbations to the 
external mechanical environment of a cell can influence 
its biology and can even trigger pathological signalling 
processes (Jaalouk & Lammerding, 2009). To understand 
and measure the mechanical properties of neurons and 
glia, and the forces that they experience and exert during 
physiological processes, engineers and biophysicists are 
teaming up with neurophysiologists to develop interdis-
ciplinary approaches and techniques to advance the field 
(Jorba et  al.,  2017; Magdesian et  al.,  2016; Robinson, 
Valente, & Willerth,  2019). Such collaborations have 
been important for detailing the mechanical properties of 
different brain regions, such as the hippocampus, which 
is important for memory formation. Here, we will dis-
cuss how techniques such as atomic force microscopy 
(AFM), magnetic resonance elastography (MRE) and 
traction force microscopy (TFM) have revolutionised our 
understanding of how neuronal and glial cell mechanics 
are impacted by ageing, traumatic brain injury (TBI) and 
neurodegeneration (Pogoda & Janmey,  2018). We also 
highlight some areas of controversy in the field that re-
quire clarification. Finally, we argue how a deeper un-
derstanding of the mechanics of CNS pathologies, such 
as Alzheimer's disease (AD), could help to elucidate the 
underlying mechanisms of neurodegeneration (e.g. ex-
cess synapse loss), as well as accelerate the discovery of 
novel drug targets and therapeutic interventions aimed at 
enhancing axonal and myelin repair.

2  |   MECHANOSENSATION IN THE 
CENTRAL NERVOUS SYSTEM

2.1  |  Axonal growth cones

Pioneering research in developmental neurobiology has led 
to the identification of gradients of chemoattractant (e.g. 
netrins) and chemorepellent (e.g. slits and semaphorins) 
molecules that guide migrating axons (Atkinson-Leadbeater 
et al., 2010; Campbell et al., 2001; Piper et al., 2006; Plump 
et  al.,  2002) and facilitate the precise wiring of neural net-
works in the brain and spinal cord (Tessier-Lavigne, Placzek, 
Lumsden, Dodd, & Jessell, 1988). However, evidence from 
experiments performed in the optic tract of the frog (Xenopus 
laevis) suggests that axon guidance may also rely, in part, on 
mechanical cues that steer axonal growth towards the optic 
tectum (Koser et al., 2016; Thompson et al., 2019). As such, 
retinal ganglion cell axons appear to migrate along local stiff-
ness gradients, with growth cones becoming more explora-
tory and terminating in softer optic tectum brain tissue (Koser 
et al., 2016). The stiffness of cell culture substratum also in-
fluences the migration velocities of neurons and glial cells 
in vitro. Neurons preferentially grow and extend processes 
on soft materials of ~700  Pa (Georges, Miller, Meaney, 
Sawyer, & Janmey, 2006). However, when substratum is too 
soft (~300 Pa) neurite extension is retarded. Knocking down 
Piezo1 also disrupts developmental axon guidance (Koser 
et al., 2016), suggesting that growth cone migration is partly 
regulated by mechanosensitive ion channel activity. Similarly, 
the peptide GsMTx4, a negative allosteric modulator of sev-
eral mechanoreceptors (Bae, Sachs, & Gottlieb, 2011), can in-
fluence neurite growth. However, GsMTx4 has been reported 
to both enhance and inhibit neurite extension (Jacques-Fricke, 
Seow, Gottlieb, Sachs, & Gomez, 2006; Koser et al., 2016). 
Because mechanoreceptors influence axonal regeneration and 
the functional recovery of synaptic contacts after CNS injury 
(Song et al., 2019), it will be important to further investigate 
how mechanical cues regulate growth cone behaviour (Kayal, 
Moeendarbary, Shipley, & Phillips, 2019). An understanding 
of growth cone mechanics is also important for the ageing 
and neurodegeneration research fields. For example, exten-
sive somatodendritic sprouting of filopodium-like structures 
(that resemble developmental growth cones) (Ihara,  1988; 
Jørgensen, Hansen, Hoffman, Fülöp, & Stein, 1997) occurs 
in Alzheimer's disease, which likely reflects attempted synap-
tic remodelling in response to presynaptic or axonal damage 
(Scott, 1993). Therefore, the perturbed mechanical properties 
of AD brain tissue (discussed below) may hinder the regen-
eration of meaningful numbers of new functional synaptic 
contacts and contribute to the gradual impairment of cogni-
tion (Hiscox et al., 2020; Levy Nogueira et al., 2016; Murphy 
et al., 2011, 2016).
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BOX 1  Glossary of terms
Mechanical properties can be measured by applying tensile, compression and shear forces. They describe the internal 
resistance of a material to distortion by an external force.
Elasticity: The time-independent property of a solid material which regains its original shape and size upon removal 
of a tensile or compression load.
Young's elastic modulus (E): The elasticity of a material is characterised by Young's elastic modulus (E) which is the 
ratio of applied tensile stress to concomitant tensile strain.
Viscosity: A property of fluids that describes resistance to flow. The viscosity is measured as the ratio of applied shear 
stress to concomitant shear strain rate.
Viscoelasticity: When deformed or loaded, most biological materials exhibit both elastic and viscous properties, and 
the degree of their fluid- or solid-like response depends on the time scale of the applied load or deformation.
Stress: The ratio of the force to the area it is applied to.
Strain: The change in length divided by the initial length of the material under stress.
Stiffness: Stiffness is a degree of material's resistance to deformation under application of force. Similar to elastic 
modulus, it has a unit of Pascal (Pa) which is force per unit area. Stiffness can be derived from the slope of the load–
displacement curve.
Tensile strain: The ratio of change in length to the original length of a material in the loading direction.
Tensile stress: The amount of force per unit area required to stretch the material and induce tensile strain.
Shear strain: Application of force parallel to a plane creates shear strain which is the length of deformation in the direc-
tion of applied force divided by the length of deformation perpendicular to the force direction.
Shear stress: The amount of force per unit area that induces deformation of material along the parallel plane of the 
imposed force.
Shear modulus (G): Describes the elasticity of a material when exposed to transverse/shear deformations. It is defined 
as the ratio of shear stress to the concomitant shear strain and has the unit of Pa. Young's elastic modulus (E) and G are 
related through E = 2G (1 + ν), where ν is the Poisson's ratio which is a measure of material's degree of compressibility.
Shear waves: Shear waves create a transverse movement of material components that propagates in the direction of the 
wavefront. As the shear wave passes through material, it induces shear strain, and therefore, the shear modulus can be 
estimated by calculating the velocity of shear wave propagation.
Damping ratio: It is a measure of dissipation of the shear waves. High values of damping ratio indicate that oscilla-
tions attenuate more rapidly, suggesting a more fluid-like viscous behaviour whereas low values are an indicator of 
solid-like elastic behaviour.
Oscillatory rotational shear test: A shear test performed on a sample positioned between two parallel plates. The 
bottom plate remains stationary and the top plate rotates via application of torque to create oscillations with defined 
rotational speed/frequency.
Storage modulus (G’): It is a measure of elastic behaviour of a viscoelastic material and indicates the amount of energy 
that is elastically stored during oscillatory mechanical loading.
Loss modulus (G’’): It is a measure of viscous behaviour of a viscoelastic material and indicates the amount of energy 
dissipation during oscillatory mechanical loading.
Dynamic modulus (G): It is the ratio of stress to strain when oscillatory mechanical loading is exerted on a viscoelastic 
material. It represents both elastic and viscous behaviour of a viscoelastic material and is related to the dynamic and 
loss moduli through G2 = (G′)2 + (G″)2.
Pascal (Pa): It is the SI unit of pressure used to quantify stress, Young's and shear moduli. It is unit force per unit area 
(one Newton per metre2).
Poroelasticity and fluid-solid interactions: Soft hydrated tissues display poroelastic properties (Esteki et al., 2020; 
Malandrino & Moeendarbary, 2019) meaning that their mechanical behaviour can be understood by considering them 
as a sponge-like porous elastic matrix (comprised of the extracellular matrices and cells) bathed in an interstitial fluid 
(comprised of water and solutes). The mechanical behaviour of a poroelastic material depends on the interactions 
between its fluid and solid phases. Fluid and pressure distribution within different tissues, such as brain, have been 
modelled by poroelastic theory (Guo et al., 2018).
Mechanotransduction: The process whereby cells convert a mechanical stimulus into chemical signals.
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2.2  |  Mechanosensors

Neurons and glia in the brain express well-known mechano-
sensitive receptors (for a detailed review see Tyler, 2012). 
Integrins are transmembrane cell adhesion molecules 
that link the extracellular matrix (ECM) to the cytoskel-
eton and are highly sensitive to both external mechanical 
stimuli (e.g. matrix stiffness) and internal forces gener-
ated via actomyosin contractions or actin polymerisation 
(Schwartz, 2010). Clusters of ECM–integrin–actin filament 
complexes located on the outer cell membrane are known 
as focal adhesion sites and act as specialised mechanosen-
sors that regulate cell motility and behaviour (Ciobanasu, 
Faivre, & Le Clainche, 2013; Kechagia, Ivaska, & Roca-
Cusachs,  2019). Focal adhesion sites are coupled to in-
tracellular signalling molecules, such as focal adhesion 
kinase (FAK), which integrates mechanical signals and 
regulates the activity of second messengers including Rho 
GTPases (RhoA, Rac and Cdc42), Src, extracellular signal-
regulated kinase 2 (ERK2) and mitogen-activated protein 
kinase (MAPK), as well as other cadherin-mediated cell–
cell contacts (Hood & Cheresh, 2002). FAK can also relay 
information to the nucleus via activation of Yes-associated 
protein (YAP) and the transcriptional coactivator with 
PDZ-binding motif (TAZ) (Kaushik & Persson,  2018; 
Lachowski et  al.,  2018; Rausch & Hansen,  2020). 
Moreover, mechanotransduction-associated phosphoryla-
tion of ERK2 and activation of myosin light chain kinase 
(MLCK) can modulate focal adhesion site dynamics and 
control cell motility (Mitra, Hanson, & Schlaepfer, 2005).

FA complexes are also rich in membrane-spanning ion 
channels that can open in response to membrane stretch 
(Chen et al., 2018; Jaalouk & Lammerding, 2009). Stretch-
activated channels (SACs) include the non-selective cation 
channels, Piezo1 and Piezo2 (Coste et al., 2010), which open 
in response to forces generated either internally or external 
to the cell. For example, changes in membrane tension can 
originate from internal cytoskeleton-mediated force gener-
ation (e.g. cell traction forces; Li & Wang,  2010) or from 
the ECM microenvironment (Fletcher & Mullins,  2010). 
SACs conduct calcium (Ca2+) ions and trigger a range of 
mechanotransduction signalling molecules (Jaalouk & 
Lammerding, 2009; Vollrath, Kwan, & Corey, 2007). Recent 
studies have shown that intracellular Ca2+ flickers, mediated 
by Piezo1 channels opening at FA sites, are generated by 
Myosin-II phosphorylation by MLCK (Ellefsen et al., 2019). 
If these discrete mechanotransduction episodes were to occur 
in the small and narrow filopodia located at the tips of growth 
cones (Song et al., 2019), they may facilitate fast and tran-
sient localised signalling events that fine-tune axonal path-
finding or cell migration, for example. SAC activation can 
also lead to inside-out signalling via neuromodulator release. 
Recent studies have shown that Piezo1 activation causes the 

release of adenosine triphosphate (ATP) (Cinar et al., 2015; 
Miyamoto et al., 2014; Mousawi et al., 2020), nitric oxide (Li 
et al., 2014) and endothelin-1 (Solis et al., 2019). Therefore, 
mechanosensors can also indirectly regulate a number of 
important cellular processes, such as vascular tone (Iring 
et  al.,  2019), inflammation (Albarrán-Juárez et  al.,  2018) 
and neurotransmitter release (Chen & Grinnell,  1995). 
Similarly, Piezo1-mediated Ca2+ influx can be modulated 
by several common signalling molecules released into the 
extracellular spaces, such as sphingosine 1-phosphate (S1P), 
which fine-tunes the sensitivity of Piezo1 channel gating 
(Kang et al., 2019). Interestingly, S1P and S1P receptor sig-
nalling are known to be involved in axon guidance in the 
frog optic nerve (Strochlic, Dwivedy, van Horck, Falk, & 
Holt, 2008). Neurons and glia also express other mechano-
sensitive channels that open in response to direct forces, such 
as TRPV4 (upregulated in astrocytes following hypoxic/
ischaemic injury) (Butenko et al., 2012), TRPA1 (expressed 
in layer V pyramidal neurons in the somatosensory cortex) 
(Kheradpezhouh, Choy, Daria, & Arabzadeh, 2017), TRPC1 
(knockout of which abolishes environmental enrichment-in-
duced neurogenesis in the dentate gyrus) (Du et al., 2017), 
NMDA receptor (channel gating is modulated by hydro-
static and osmotic pressures and deformations in the cell 
membrane) (Kloda, Martinac, & Adams,  2007; Paoletti & 
Ascher, 1994) and Ca2+-activated potassium (BK) channels 
(expressed in the outer layers of the cortex and the perforant 
path fibres projecting to the hippocampus) (Li et al., 2019; 
Wanner et al., 1999). Table 1 describes some of the recep-
tors and signalling cascades that may be important in CNS 
mechanosensation.

Neuronally expressed mechanosensitive ion channels 
may play fundamental roles in important cognitive processes 
(Jerusalem et  al.,  2019). For example, long-term potentia-
tion (LTP) and depression (LTD) of synaptic transmission, 
the cellular and electrophysiological correlates of memory 
formation, are dependent on fast (minutes to hours) and 
long-term (days to years) changes in synapse morphology 
which are driven by modulation of actin dynamics and cy-
toskeletal re-arrangements at the level of individual den-
dritic spines (Bramham et  al.,  2010; Huang, Chotiner, & 
Steward,  2007; Lüscher & Malenka,  2012). It is currently 
unknown whether LTP-mediated changes in dendritic spine 
morphology or membrane tension/curvature of the synapse 
are functionally relevant modulators of the mechanosensitiv-
ity of the NMDA receptor (Figure  1), which itself is teth-
ered to actin cytoskeletal proteins and neuronal intermediate 
filaments via the postsynaptic density (PSD) network of an-
choring and scaffolding proteins, for example PSD-95, Shank 
and Homer (Kilinc,  2018; Levy, Omar, & Koleske,  2014; 
Lüscher & Malenka, 2012). As the brain ages and the lipid 
composition of the neuronal membrane changes (Ledesma, 
Martin, & Dotti,  2012), this may alter the mechano-gating 
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of channels, such as the NMDA receptor (Johnson, Battle, & 
Martinac, 2019).

2.3  |  Mechanotransduction and 
electrophysiology

Interestingly, several studies have shown that the intrinsic 
electrical properties of neurons can change in response to 
different mechanical environments (Wen et al., 2018; Zhang 
et al., 2015). Mouse hippocampal neurons cultured on stiff 
substrata displayed enhanced voltage-gated Ca2+ chan-
nel currents compared to neurons on softer substrata (Wen 
et al., 2018; Zhang et al., 2015). As mechanically gated ion 
channels, such as Piezo1, conduct calcium and sodium ions 
(Coste et  al.,  2012; Nilius, Vriens, Prenen, Droogmans, & 

Voets, 2004), and channel expression can be altered by sub-
stratum stiffness (Chen et  al.,  2018), it is possible that the 
mechanical properties of brain tissue could modulate cellular 
Ca2+ levels and tune the electrophysiological properties of 
neurons (Jerusalem et al., 2019). If so, then altered tissue me-
chanics may contribute to calcium dysregulations in the age-
ing or AD brain (Chandran et al., 2019; Kawamoto, Vivar, & 
Camandola, 2012).

The composition of ECM can also alter neuronal elec-
trophysiology. Mouse hippocampal neurons grown on lami-
nin-coated stiff substratum display larger Ca2+ currents than 
those grown on a fibronectin coating (Wen et al., 2018). It 
is worth noting that most in vitro neuronal preparations also 
contain glial cells, and so it is possible that glia also actively 
sense the mechanical properties of their underlying substrata 
and relay this information to neurons (Zhang et  al.,  2015). 

T A B L E  1   Mechanosensitive ion channels expressed in the brain

Mechanosensitive 
receptor

Areas expressed in the 
brain

Signalling cascades 
activated

Potential physiological or 
pathological functions References

Piezo1 Cortical neurons Calpain activation Neuronal apoptosis Wang, Zhang, 
et al. (2019)

Retinal ganglion cells Ca2+ signalling Axon guidance Koser et al. (2016)

Reactive astrocytes Ca2+ signalling Inhibition of cytokine release Velasco-Estevez, Rolle, 
et al. (2020)

Oligodendrocyte 
precursor cells

Ca2+ signalling Inhibition of OPC 
differentiation into mature 
myelinating oligodendrocytes

Segel et al. (2019)

Piezo2 Cortical and hippocampal 
pyramidal neurons, 
cerebellar Purkinje cells 
and olfactory mitral cells

??? Synchronisation of neural 
networks by transducing 
intracranial pressure pulses

Wang and Hamill 
(2020pre-print)

Astrocytes in the optic 
nerve head

??? Traumatic injury Choi, Sun, and Jakobs 
(2015)

TRPV4 Cortical neurons Ca2+ signalling Epileptic seizures and 
neuronal apoptosis

Chen et al. (2016)

Hippocampal CA1 and 
CA3 astrocytes and 
microglia

NLRP3, apoptosis-related 
spotted protein (ASC) and 
caspase-1

Activation enhances 
neuroinflammation and cell 
death in pilocarpine-induced 
model of epilepsy

Wang, Zhou, 
et al. (2019)

IL-1β, TNF-α and IL-6 
release

TRPC1 Hippocampal CA1 and 
CA3 pyramidal neurons

Ca2+ signalling and activation 
of Egr-1, an immediate early 
gene

LTP and LTD maintenance
Spatial working memory

Lepannetier et al. (2018)

TRPA1 Layer V pyramidal 
cortical neurons

Ca2+ signalling Neuronal depolarisation Kheradpezhouh 
et al. (2017)

Hippocampal astrocytes 
(upregulated in AD 
mice)

Ca2+ signalling, NF-kB and 
NFAT transcription

Enhances Aβ42-induced 
neuroinflammation and 
amyloid plaque deposition

Lee et al. (2016)

NMDA receptor Hippocampal neurons Ca2+ signalling and activation 
of Calpain and Caspase-3

TBI and stretch-induced 
apoptosis

DeRidder et al. (2006)

Note: This table gives a brief overview of several ion channels that are expressed in neurons and glia in the brain and have been shown to possess mechanosensitive 
gating properties. Those listed are mainly cation channels (permeable to Ca2+ and Na+ ions) and play functional roles in both health and disease/trauma.
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In vitro studies consistently report that astrocytes possess a 
more organised F-actin cytoskeleton and display a flat ex-
tended morphology on stiffer materials. In contrast, they 
exhibit lower adhesion to softer materials and become more 
spherical in shape (Georges et al., 2006). Ageing also influ-
ences astrocyte morphology, and they display larger soma 
and thicker shorter processes in the brains of elderly humans 
(Jyothi et al., 2015). Future mechanobiology experiments in 
the CNS should aim to elucidate the role of astrocytes and 
other glial cells in communicating mechanobiological infor-
mation to local neural networks (Blumenthal, Hermanson, 
Heimrich, & Shastri, 2014).

The studies described above provide some mechanistic 
insight into how cell and tissue mechanics can influence 
brain development (Barnes, Przybyla, & Weaver,  2017; 
Farge, 2011; Guo et al., 2019; Heisenberg & Bellaïche, 2013; 
Koser et al., 2016; Wozniak & Chen, 2009). In contrast, our 
current understanding of how the brain's mechanical proper-
ties change in old age or in response to neuropathologies like 
Alzheimer's disease is somewhat limited (Wu, Fannin, Rice, 

Wang, & Blough, 2011). This is due to some experimental and 
technical hurdles, for example: (a) the difficulty in modelling 
the full complexity of human brain ageing or neurodegener-
ation using animal models that generally do not recapitulate 
the full range of cellular pathologies observed in human brain 
disorders (Dawson, Golde, & Lagier-Tourenne,  2018), and 
(b) the requirement for contact indentation methods when 
investigating microscale mechanical changes which is cur-
rently only possible with in vitro human tissue (Bouchonville 
et al., 2016), although AFM has been performed in vivo in 
the embryonic Xenopus laevis brain (Thompson et al., 2019). 
Therefore, we are still a long way from obtaining high-res-
olution in vivo AFM maps of the mechanical changes that 
occur in human brain structures during the normal ageing 
process versus neurodegenerative disease (for a more detailed 
discussion of AFM studies, see Box 2). Once achieved, the 
next goal will be to investigate whether age- or disease-re-
lated mechanical disturbances impact mechanosensation or 
mechanotransduction in neurons or glial cells in different 
brain regions. In the following sections, we summarise what 
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F I G U R E  1   Schematic diagram showing the key mechanical components of the extracellular matrix (ECM) which surrounds neurons in 
the brain. (1) The neural interstitial matrix differs from that of the rest of the body and is formed of hyaluronic acid, CSPGs, tenascin-R, elastin 
and laminin. There is very little collagen in healthy brain ECM (Suttkus et al., 2016), and, when present, it is mostly localised to the basement 
membrane which surrounds vasculature (Novak & Kaye, 2000). Upon injury or disease, ECM composition can change which is detected by 
mechanosensitive microglia, astrocytes and neurons. (2) There are specialised regions of ECM in the brain, called perineuronal nets, which form 
a barrier around certain types of neurons. These are composed of chains of hyaluronic acid and proteoglycans and cross-linked with tenascin-R. 
There is evidence to suggest that perineuronal nets protect neurons from neurodegeneration (Baig et al., 2005; Miyata et al., 2007; Morawski 
et al., 2010). (3) Astrocyte endfeet contact blood vessels and can sense blood flow and shear stress (Mishra, 2017). Astrocyte processes also 
wrap around neuronal synapses and release gliotransmitters that can modulate neurotransmission and synaptic plasticity (Paixão & Klein, 2010). 
Therefore, changes in astrocytic function due to mechanical perturbations in the brain may impact key neuronal processes (De Luca, Colangelo, 
Virtuoso, Alberghina, & Papa, 2020). (4) Cell mechanics is also important at the level of individual synapses. F-actin and neurofilaments that 
compose the cytoskeleton regulate synapse morphology (Konietzny, Bär, & Mikhaylova, 2017). (5) Cytoskeletal filaments are also connected to the 
ECM via integrin receptors (Shi & Ethell, 2006). Integrins are known regulators of synaptic plasticity and can activate signalling molecules such 
as FAK, Src and the RhoA/ROCK pathway (Lilja & Ivaska, 2018) which can modulate the activity and nuclear localisation of mechanoresponsive 
transcriptional co-activators, such as Yap1 (Nardone et al., 2017; Rojek et al., 2019). Integrin-mediated modulation of cytoskeletal processes 
may also modulate the gating of presynaptic stretch-activated ion channels (SACs) (which facilitate Ca2+ influx). This, in turn, could regulate 
neurotransmitter (e.g. glutamate) release (Hu, An, & Chen, 2015; Kneussel & Wagner, 2013). (6) Neurotransmission and synaptic plasticity can 
also modulate postsynaptic mechanics through influx of Ca2+, activation of CaMKII and actin remodelling (Khan, Downing, & Molloy, 2019). 
This may lead to changes in membrane tension and altered mechanosensitivity of NMDA receptors (e.g. unblocking the channel pore of Mg2+ 
ions) or opening of other SACs leading to further Ca2+ influx (Kloda, Lua, Hall, Adams, & Martinac, 2007; Kloda, Martinac, et al., 2007). SAC-
mediated activation of nNOS and production of nitric oxide (NO) could, in theory, lead to modulation of neurotransmission (Garthwaite, 2008; 
Song et al., 2019) via presynaptic activation of soluble guanylate cyclase (sGC), production of cyclic GMP, activation of protein kinase G (PKG) 
and upregulation of phosphatidylinositol 4,5-bisphosphate (PIP2), which ultimately regulates neurotransmitter release probability (Hardingham, 
Dachtler, & Fox, 2013). This theoretical model which integrates SACs into known plasticity pathways needs confirmation. However, what is 
known is that both neuronal cell mechanics and pre- and postsynaptic function are intimately linked with the ECM and cell adhesion molecules, 
as well as signalling molecules that associate with membrane-bound scaffolds and functionally connect the ECM to the cytoskeleton (Lilja & 
Ivaska, 2018)

BOX 2  Atomic Force Microscopy (AFM)
AFM has the ability to measure small, but significant, differences in the mechanical properties of neurons and 
glial cell types. For example, bipolar and amacrine retinal neurons and hippocampal pyramidal neurons (measured 
between 480 and 970 Pa) are all twice as stiff as glial cells (Lu et al., 2006). Cortical neurons are slightly softer at 
~200 Pa (Spedden, White, Naumova, Kaplan, & Staii, 2012), whilst oligodendrocytes, which form CNS myelin, 
are ~150 Pa (Jagielska et al., 2012). This has led some to propose that glial cells, in addition to their many other 
supportive functions, may provide a compliant “shock-absorbing” environment which protects neurons against 
compressive trauma (Lu et al., 2006). However, the functional implications of these slight differences in cellular 
mechanics are an area of intensive research. Recent advances in generating high-resolution AFM mechanical maps 
of distinct subregions of the brain are advancing our understanding of how relative changes in tissue stiffness (in 
response to ageing, brain trauma and neurodegenerative disease) can impact neuronal and glial cell physiology. To 
date, however, it has not been possible to conduct AFM indentation tests on humans in vivo as it requires direct 
physical contact between the indenter and the tissue. However, AFM experiments can extract high-resolution me-
chanical maps of CNS tissue ex vivo (Figure 2a). For example, in rat hippocampal slices the CA3 stratum radiatum 
appears to be significantly stiffer than the CA1 and dentate gyrus (Elkin, Azeloglu, Costa, & Morrison, 2007). A 
variation of the AFM technique, called ferrule-top dynamic indentation, measured cell body-dense regions, such as 
the granule cell layer of the hippocampal dentate gyrus, as softer than regions with a lower density of cell bodies, 
such as the stratum radiatum of the CA3 and CA1 and the stratum lacunosum-moleculare (Antonovaite, Beekmans, 
Hol, Wadman, & Iannuzzi, 2018). Moreover, the surrounding entorhinal cortex was stiffer than hippocampal re-
gions. Therefore, AFM has revolutionised our ability to map relatively small changes in cell and tissue stiffness 
in different brain regions at the micron-scale, providing a basis for understanding how changes in mechanics and 
mechanosensitivity can regulate fundamental CNS processes.
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is currently known regarding the mechanobiology of the age-
ing brain.

3  |   THE EXTRACELLULAR 
MATRIX

3.1  |  The ageing ECM

The brain's ECM is composed of perineuronal nets (PNNs) 
which envelop neurons, the basement membrane which sur-
rounds blood vessels, and the interstitial matrix, as illustrated 
in Figure 1. In contrast to other connective tissues, the brain's 
ECM is not abundant in collagen and, when present, collagen 
is mostly limited to the cerebral vasculature and meninges 
(Rutka, Apodaca, Stern, & Rosenblum, 1988). Instead, brain 
ECM is mainly composed of glycosaminoglycans, which 
can be unbound in the form of hyaluronan (HA), or bound to 
proteins forming proteoglycans such as chondroitin sulphate 
proteoglycans (CSPGs) (Ruoslahti,  1996). The basement 
membrane does contain collagen and is also composed of fi-
bronectin and proteoglycans. PNNs are formed of HA, tenas-
cin-R (a glycoprotein) and CSPGs. The functions of PNNs 
include the regulation of ion homeostasis, stabilisation of 
synapses, control of synaptic plasticity and neuroprotection 

(Suttkus, Morawski, & Arendt, 2016). The cytoskeletons of 
neurons and glia are connected to the ECM at focal adhe-
sion complexes via transmembrane integrin receptors, which 
transmit forces (mechanotransduction) from the ECM to the 
cell's interior and vice versa (Holle et al., 2018). As discussed 
above, mechanosensitive and Ca2+ permeable channels, such 
as Piezo1, cluster around focal adhesion sites and open in 
response to traction forces generated by the cytoskeleton of 
cells (Ellefsen et al., 2019).

The composition, structure and stiffness of brain ECM 
can regulate neuronal and glial function. Moreover, growth 
cone mechanosensing, traction force generation (see Box 3), 
axon guidance, stem cell differentiation and synapse mainte-
nance are regulated by the mechanical properties of the extra-
cellular environment (Betz, Koch, Lu, Franze, & Käs, 2011; 
Heisenberg & Bellaïche, 2013; Koser et al., 2016). Therefore, 
changes in the composition and stiffness of the ECM with 
ageing and neuropathology alter the mechanosensitivity of 
neurons and glial cells and may contribute to the progres-
sion of neurodegenerative disease. Matrix metalloproteinases 
are increased in neurodegenerative disorders and cause the 
degradation of ECM proteins, the remodelling of cerebral 
vasculature, and increase the permeability of the blood–brain 
barrier (BBB) (Raffetto & Khalil, 2008; Rosenberg, 2009). 
The BBB is a specialised layer of endothelial cells and 

F I G U R E  2   Schematic diagram of three different techniques for measuring the mechanical properties of tissue and cells. (a) Stiffness map of 
the rat cerebral cortex obtained using atomic force microscopy (AFM), image adapted from Moeendarbary et al. (2017). (b) Traction stress field 
of a primary rat dorsal root ganglion (DRG) growth cone cultured on a soft polyacrylamide hydrogel. Image was obtained using traction force 
microscopy and adapted from Polackwich, Koch, McAllister, Geller, and Urbach (2015). (c) Elastogram depicting viscoelastic dynamic modulus 
obtained using magnetic resonance elastography (MRE), image adapted from Klein et al. (2014)
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basement membrane that separates the cerebrospinal fluid 
(CSF) of the brain from the main blood circulatory sys-
tem. In vitro models of the BBB estimate its stiffness to be 
~5  kPa, which presents a significant mechanical barrier to 
the brain (Reinhart-King, Dembo, & Hammer, 2005; Schrot, 
Weidenfeller, Schäffer, Robenek, & Galla, 2005). However, 
the BBB is leaky in Alzheimer's disease and vascular demen-
tia (Erickson & Banks, 2013) and, therefore, it is likely that 
the mechanical properties of the BBB are also significantly 
altered by ageing and neurodegeneration.

Extracellular matrix components also play key functional 
roles in the healthy ageing brain. HA degradation in the hip-
pocampus affects neurogenesis and synapse formation, sug-
gesting a functional link between ECM structure and learning 
and memory (Yoshino et al., 2018). Healthy ageing does not 
appear to cause drastic changes in the ECM, but increased ex-
pression of HA in the cortex and cerebellum was seen in aged 

24-month-old mice compared to young 4-month-old mice 
(Reed et al., 2018). HA is the major component of PNNs, along 
with glycoprotein, tenascin-R and CSPGs. Glycosaminoglycan 
chains sulphated in position 6, which are permissive to axon 
growth, are decreased in 18-month-old versus 3-month-old rats. 
This suggests that PNNs in 18-month-old rats are more inhibi-
tory to axon growth than PNNs in 3-month old rats, which may 
explain why synaptic plasticity is attenuated in the ageing brain 
(Foscarin, Raha-Chowdhury, Fawcett, & Kwok, 2017).

3.2  |  The neurogenic niche

The stiffness of brain ECM also modulates stem cell plas-
ticity. The hippocampal dentate gyrus is a mechanically 
heterogeneous brain structure. The granule cell layer is ap-
proximately twice as stiff as the subgranular zone and hilus 
(Luque, Kang, Schaffer, & Kumar, 2016). This is notewor-
thy, as the subgranular zone (neurogenic niche) is highly 
populated by newborn and immature granule neurons (whilst 
the hilus is formed of mossy cell types). Interestingly, 
adult-born neurons mature more slowly in the aged brain 
versus younger dentate tissue. Is it possible that the speed 
of neuronal maturation is related to the stiffness of the neu-
rogenic niche? Recent studies have shown that neuronal 
differentiation, oligodendrocyte maturation and myelin for-
mation are enhanced on soft (<1 kPa) substrata (Leipzig & 
Shoichet, 2009). Interestingly, the mechanical properties of 
ECM in the rat cortex, in which oligodendrocyte progeni-
tor cells (OPCs) reside, stiffen with age (Segel et al., 2019). 
This inhibits OPC proliferation and differentiation (Leipzig 
& Shoichet, 2009). This is reversible by transplanting aged 
OPCs into the prefrontal cortex of neonatal rats that possess 
softer brain tissue or by plating aged OPCs on decellularised 
neonatal ECM or soft hydrogels in vitro. It is also possible to 
increase the differentiation and proliferation of aged OPCs 
by reducing Piezo1 channel expression using short interfer-
ing RNA (siRNA) (Segel et  al.,  2019). This has potential 
implications for the optimisation of stem cell therapies for 
the treatment of a range of CNS injuries and demyelinating 
pathologies. However, a more recent study showed that the 
neurogenic niche of the subependymal zone of the lateral 
ventricles is stiffer than non-neurogenic cortical and striatal 
tissue, with values measured in the range of 50–400 Pa (Kjell 
et al., 2020). Does this suggest that stem cell migration from 
the subependymal zone to the olfactory bulb may, in part, be 
regulated by mechanical cues (durotaxis)? Alternatively, per-
haps differentiation of neural stem cells into neurons requires 
slightly stiffer ECM and astrocytic or OPC maturation may 
be favoured in softer neonatal ECM (Pathak et al., 2014). We 
still have much to learn about how the mechanical properties 
of ECM regulate neural stem cell differentiation into neu-
rons, astrocytes or myelinating oligodendrocytes.

BOX 3  Traction Force Microscopy (TFM)
TFM can be used to measure small (piconewton 
level) forces exerted by adhered or moving cells and 
growth cones. This method involves growing and 
monitoring cells plated on soft gels (ideally elastic 
hydrogels such as polyacrylamide) with fluores-
cent microbeads embedded inside (see Figure  2b). 
By tracking the displacement of each bead, it is 
possible to calculate the cell-generated force field 
(Colin-York et al., 2019; Ferrari, 2019). Using this 
technique, it has been shown that microglia exert 
higher forces on stiffer substrata and tend to mi-
grate towards regions of higher stiffness (durotaxis) 
on stiffness gradient gels (Bollmann et  al.,  2015). 
TFM also revealed that neuronal growth cones exert 
stresses in the order of ~30 Pa (where 1 Pa = 1 pN/
μm2) (Betz et al., 2011). Most TFM measurements 
to date have been obtained via 2D cell culture. We 
know, however, that cells function very differently 
in vivo and in 3D cell culture matrices (Watson, 
Kavanagh, Allenby, & Vassey, 2017). The morphol-
ogy of astrocytes, for example, is much more “star-
like” in 3D cell culture versus the flat and stretched 
“fried egg” morphology often observed on stiff glass 
and hard 2D substrata. As cell morphology and func-
tion are intimately linked, recent advances that com-
bine live super-resolution microscopy (Colin-York 
et al., 2019) with 3D TFM (Steinwachs et al., 2016) 
in native hydrogels will allow us to more precisely 
approximate how trauma or disease can alter the 
force-generating capabilities of different types of 
brain cells in more native 3D microenvironments.
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3.3  |  The ECM in Alzheimer's disease

In Alzheimer's disease, certain glycosaminoglycans are up-
regulated around amyloid plaques and neurofibrillary tan-
gles and downregulated in blood vessels in affected brain 
regions (Bonneh-Barkay & Wiley,  2009). CSPGs are also 
upregulated around amyloid plaques and neurofibrillary 
tangles in Alzheimer's disease (DeWitt, Silver, Canning, 
& Perry,  1993). Expression levels of collagen IV, perle-
can (a proteoglycan) and fibronectin are enhanced in the 
brain as amyloid deposition increases in subclinical AD 
and AD patients (Lepelletier, Mann, Robinson, Pinteaux, & 
Boutin, 2017). The plasma concentration of high-molecular-
weight fibronectin is also usually greater in AD patients than 
controls (Lemańska-Perek, Leszek, Krzyzanowska-Gołab, 
Radzik, & Katnik-Prastowska,  2009), suggesting that fi-
bronectin may be a by-product of the disease. Moreover, the 
PNNs that surround neurons (e.g. GABAergic parvalbumin-
positive neurons) and astrocytic processes are thought to be 
neuroprotective (Miyata, Nishimura, & Nakashima,  2007; 
Morawski, Brückner, Jäger, Seeger, & Arendt, 2010). In AD 
patients, there is a significant reduction in PNNs surround-
ing GABAergic parvalbumin-positive neurons in the cor-
tex (Baig, Wilcock, & Love,  2005) and a distinct absence 
of colocalisation between PNNs and phosphorylated tau 
(Miyata et  al.,  2007; Morawski et  al.,  2010). Notably, do-
paminergic neurons in the substantia nigra pars compacta, 
which degenerate in Parkinson's disease, are not ensheathed 
by PNNs (Brückner, Morawski, & Arendt,  2008). In vitro, 
primary neurons ensheathed by PNNs were protected from 
Aβ toxicity, whilst neurons without PNNs were susceptible 
to degeneration (Miyata et  al.,  2007). Tau distribution is 
more widespread in organotypic slice cultures prepared from 
knockout mice deficient in the PNN components, tenascin-R 
and the hyaluronan and proteoglycan link protein (HAPLN1) 
(Suttkus et  al.,  2016). Moreover, in the early stages of tau 
hyperphosphorylation and microtubule breakdown, there is a 
redistribution of hyaluronan synthase 1 (Has1) from axons to 
cell bodies (Li, Li, Jin, Wang, & Zhao, 2017). Taken together, 
age- and AD-associated changes in the composition of ECM, 
and loss of protective PNNs surrounding neurons, may exac-
erbate neuronal loss and alter brain tissue mechanics.

4  |   MECHANOBIOLOGY OF THE 
BRAIN

4.1  |  MRE measurements of the ageing 
brain

Oscillatory rotational shear tests on different regions of 
post-mortem human brain tissue indicate that the adult brain 
is 3–4 times stiffer than infant brain tissue (Chatelin, Vappou, 

Roth, Raul, & Willinger, 2012). However, studies that inves-
tigate the mechanical properties of the aged brain are ham-
pered by the fact that ex vivo tissue is no longer perfused 
with blood and CSF (Goriely et al., 2015; Guo et al., 2018). 
Ageing has detrimental effects on the glymphatic system, 
and the exchange of CSF and interstitial fluid is impaired 
in old mice. Moreover, disrupted interstitial solute clearance 
impacts glial cell functioning and BBB integrity and exac-
erbates neurovascular disease (Kress et al., 2014; Simon & 
Iliff,  2016). Characterisation of the mechanical properties 
of the brain of healthy aged volunteers in vivo using MRE 
(see Box 4) revealed that the viscoelasticity of brain tissue 
decreases ~0.75% per year and brain volume decreases at a 
rate of ~0.23% per year (Sack et al., 2009). Therefore, tis-
sue atrophy may contribute to age-related decreases in brain 
stiffness (Sack, Streitberger, Krefting, Paul, & Braun, 2011). 
Moreover, as the viscoelastic modulus decreases with age, 
but the geometry and structure of brain tissue remains rela-
tively constant, the softening appears to be caused by a solid–
fluid phase transition, termed “tissue liquefaction” (Sack 
et al., 2009). MRE on adults aged 56–89 years, who showed 
no signs of elevated amyloid burden, suggests that the stiff-
ness of the cerebrum decreases by 11  Pa per year (Arani 
et al., 2015). Age-related softening is region-dependent, with 
sub-cortical brain structures softening more rapidly than the 
cerebral cortex (Sack et al., 2011). In adolescents, however, 
all sub-cortical structures, except for the hippocampus, are 
significantly stiffer than the cerebrum (McIlvain, Schwarb, 
Cohen, Telzer, & Johnson, 2018). Correcting for the volume 
of each region of interest, the stiffness of the total cerebrum, 
including all sub-cortical structures (with the exception of 
the hippocampus), decreases with age (Hiscox et al., 2018). 
This suggests that the hippocampus displays a higher resist-
ance to mechanical changes compared to the other brain 
regions.

Regional heterogeneity in brain tissue stiffness may be 
explained by differences in cytoarchitecture and the ratio 
of white matter to grey matter (Johnson et al., 2013). MRE 
studies have found that white matter-rich areas of the brain 
are stiffer than grey matter (Kruse et al., 2008; McCracken, 
Manduca, Felmlee, & Ehman, 2005), although some stud-
ies find no statistically significant differences (Zhang, 
Green, Sinkus, & Bilston, 2011) or the inverse relationship 
(Green, Bilston, & Sinkus, 2008). The elasticity values re-
ported for MRE are, however, well outside the range mea-
sured using AFM and are likely subject to strain differences 
(Franze, Janmey, & Guck, 2013). The elastic moduli values 
of white matter versus grey matter measured in different 
studies are displayed in the semi-log plot in Figure 3. The 
variation in stiffness measurements is likely due to differ-
ent length and time scales associated with each measure-
ment technique, variations in the size and type of probe 
used, different methods of sample preparation, the animal 
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species being investigated and whether measurements were 
performed in vivo or ex vivo. This range of experimen-
tal variables is illustrated in Figure 4, with further details 
provided in Table  S1. Recent developments in the field 
may help to standardise protocols and ensure that results 
are repeatable between laboratories using different mea-
surement tools (Budday, Ovaert, Holzapfel, Steinmann, & 
Kuhl, 2019).

4.2  |  AFM indentation measurements

To limit the effects of cell death on ex vivo tissue elastic-
ity calculations, human brain samples should be meas-
ured quickly (1–2 hr) after excision (Chatelin et al., 2012). 
However, there may be some flexibility if tissue is kept 
under optimal physiological conditions as AFM experi-
ments performed on mammalian brain slices show no signifi-
cant changes in tissue stiffness within 6 hr of death (Christ 
et al., 2010; Garo, Hrapko, van Dommelen, & Peters, 2007; 
Shulyakov, Fernando, Cenkowski, & Del Bigio,  2009). 
Moreover, AFM indentation studies on ex vivo brain tissue 
found no significant differences in the elasticity of the cortex 
or hippocampus of 18-month-old mice compared to 2-month-
old mice (Jorba et  al.,  2017). However, the cerebellum of 
2-month-old mice was measured as significantly softer than 
the cortex. This could be due to a higher white matter content 
or a larger proportion of small granule neurons in the cerebel-
lum versus the cortex. Several other AFM studies have also 
reported stiffness heterogeneity within the CNS, the most 
notable observation being that grey matter is twice as stiff 
as white matter (Christ et al., 2010; Koser et al., 2015). For 
example, in SJL mouse spinal cord the apparent elastic mod-
ulus of grey matter and white matter was 159 ± 26 Pa and 
60 ± 7 Pa, respectively (Koser, Moeendarbary, Kuerten, & 
Franze, 2018), which is similar to measurements in C57Bl/6 
mice (123 ± 9 Pa for grey matter vs. 55 ± 9 Pa for white mat-
ter) (Koser et al., 2015). In contrast, bovine brain tissue stiff-
ness positively correlates with myelin content. Macroscale 
indentation tests performed on fresh bovine brain slices re-
corded the stiffness of white matter as 1.33 ± 0.63 kPa, and 
grey matter was measured as 0.68 ± 0.2 kPa (Weickenmeier, 
De Rooij, Budday, Ovaert, & Kuhl,  2017). Interestingly, 
demyelination of embryonic chick spinal cord significantly 
reduces the stiffness and tensile stress of the spinal cord 
compared to myelinated (uninjured) neural tissue (Shreiber, 
Hao, & Elias, 2009). Given that different studies have found 
opposing results for grey and white matter tissue mechan-
ics (Figure  3) (Bartlett, Choi, & Phillips,  2016), it will be 
important to try to resolve these discrepancies at various 
length scales (Ayad, Kaushik, & Weaver, 2019) and to de-
velop models that can correlate AFM and MRE measure-
ments. This will benefit clinicians interested in diagnosing 

BOX 4  Magnetic resonance elastography 
(MRE)
MRE is a non-invasive and non-contact method to 
measure the viscoelasticity of brain tissue in live 
human volunteers and has been extremely use-
ful in advancing our limited knowledge of the me-
chanical properties of the human brain (Mariappan, 
Glaser, & Ehman,  2010). Briefly, MRE involves 
generating shear waves of specific frequencies that 
travel through brain tissue whilst the subject lies in-
side a magnetic resonance imaging (MRI) scanner 
(Figure 2c). Whilst the brain is exposed to oscilla-
tory shear waves, MRI images are captured and con-
verted to elastograms which display the viscoelastic 
properties of the distinct brain regions. A major 
limiting factor of MRE elastograms is their spatial 
resolution (1–2  mm), as shear waves must propa-
gate through an entire plane of the brain (Fehlner 
et al., 2017). The brain has a complex inhomogenous 
cytoarchitecture, and factors such as cell body den-
sity (Thompson et  al.,  2019), myelination, axonal 
orientation (Koser, Moeendarbary, Hanne, Kuerten, 
& Franze,  2015) and ECM composition (Kjell 
et al., 2020) contribute to the mechanical heteroge-
neity of different brain regions. Therefore, the direc-
tion of shear wave propagation through brain tissue 
and the spatial resolution of MRI could significantly 
influence the stiffness values estimated by MRE. 
If inhomogeneity of brain tissue is factored in, the 
elastogram calculations require accurate modelling 
of boundary conditions (Yin, Romano, Manduca, 
Ehman, & Huston, 2018). Therefore, measuring the 
stiffness of small or sub-cortical brain regions, such 
as the hippocampus or thalamus, has been difficult 
until more recently. The incorporation of high spa-
tial resolution MRE with corrections to accurately 
define sub-cortical regions has shown variations in 
damping ratio and shear modulus of sub-cortical 
grey matter regions in healthy human adults (Hiscox 
et al., 2018; Johnson et al., 2016). This suggests that 
even regions with similar cell compositions display 
different mechanical properties. Experiments com-
bined with computational simulations that consider 
the compression-tension asymmetry of the human 
brain, using a modified Ogden model, calculate shear 
modulus values ranging between 300 and 700  Pa 
(Budday et al., 2017). This is within the range meas-
ured by AFM of ex vivo mammalian brain slices, 
suggesting that the Ogden model may be a better fit 
for MRE experiments.
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and treating patients with various neurological disorders and 
neurophysiologists interested in understanding the functional 
and biological relevance of changes in brain tissue stiffness 
with age or disease.

4.3  |  Cerebellar mechanics

Cerebellar pathology is often disregarded when attempt-
ing to clinically diagnose neurodegenerative conditions, 
especially in the absence of ataxia as a symptom (Liang 
& Carlson,  2019). One recent study aimed to identify 
cerebellar atrophy in seven different neurodegenerative 
conditions (i.e. Alzheimer's disease, Parkinson's disease, 
Huntington's disease, frontotemporal dementia, amyo-
trophic lateral sclerosis, multiple system atrophy and 
progressive supranuclear palsy) (Gellersen et  al.,  2017). 
Notably, their meta-analysis did not reveal consistent 
cerebellar atrophy in patients with Parkinson's disease 
(PD) or Huntington's disease (HD). They note that this 
may be due to the high clinical variability in PD and HD 
samples. The most affected cerebellar regions across all 
diseases were Crus I and Crus II, but overall, different 

patterns of atrophy were observed. This suggests that cer-
ebellar grey matter loss is disease-specific and not due to 
regional susceptibility to neurodegeneration. There is lim-
ited evidence of cerebellar pathology in AD, and there is 
no clear link suggesting an age-dependent loss of integrity 
or function (Liang & Carlson,  2019). However, diseases 
such as frontotemporal dementia and chronic traumatic 
encephalopathy (CTE) do show age-dependent loss of 
tissue integrity and function in the cerebellum. The stiff-
ness of the mouse cerebellum, measured using microin-
dentation and AFM, is less than half that of the cerebral 
cortex (Jorba et al., 2017; MacManus, Pierrat, Murphy, & 
Gilchrist, 2015), potentially reflecting extensive myelina-
tion of Purkinje axons in the arbour vitae regions of the cer-
ebellar lobules. MRE studies also reported the cerebellum 
to be significantly softer than that of the cerebrum (Arani 
et al., 2015; McIlvain et al., 2018; Millward et al., 2015; 
Zhang et al., 2011). Interestingly, cerebellar stiffness does 
not vary significantly with age (Arani et al., 2015). This is 
noteworthy, as further investigation into the mechanical 
properties and apparent resilience of the cerebellum may 
provide insight and uncover potential new drug targets for 
cortical or hippocampal degeneration.

F I G U R E  3   Graphed are the wide-ranging stiffness values obtained for CNS white matter (WM) and grey matter (GM) using various 
mechanical measurement techniques. Displayed are the stiffness measurements (in kPa) for brain or spinal cord (SC) WM and GM tissue obtained 
from experiments conducted in mouse, rat, human, cow or pig using a range of indentation or indirect elastography techniques. Most AFM 
studies find that white matter is softer than grey matter, whilst the MRE studies find the opposite relationship. These values are taken from the 
studies Weickenmeier et al., 2017; van Dommelen, van der Sande, Hrapko, & Peters, 2010; Koser et al., 2015; Christ et al., 2010; Moeendarbary 
et al., 2017; Elkin, Ilankovan, & Morrison, 2011; Koser et al., 2018; Schmidt et al., 2018; and Kruse et al., 2008. Further experimental details can 
be found in Table S1
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5  |   TRAUMATIC BRAIN INJURY 
(TBI)  AND CYTOSKELETAL 
MECHANICS

There is now strong evidence linking TBI to dementia, es-
pecially when the head trauma occurs in later life (Fann 

et al., 2018; Gardner et  al., 2014, 2015, 2018). Severe and 
recurrent head injuries cause mechanical damage to brain 
cells and can trigger pathophysiological cascades that lead 
to CTE (McKee, Stein, Kiernan, & Alvarez, 2015). Several 
forms of dementia, including CTE, involve the gradual and 
chronic hyperphosphorylation, misfolding and missorting of 

F I G U R E  4   Schematic diagram showing stiffness measurements for various regions of the mammalian brain. All values are from experiments 
on living tissue (in vivo or ex vivo) and are expressed in kPa. The elastic modulus value is either the Young's modulus, shear modulus or storage 
modulus, that is the ratio of stress to strain of brain regions. Stiffness measurements from different healthy adult mammalian species (human, 
porcine, rabbit and rodent) are depicted by the black silhouette images. Arrows emanating from brain regions are colour-coded according 
to the method used to measure brain stiffness. Red, microindentation methods such as atomic force microscopy; green, macroindentation 
methods; orange, shear tests; blue, magnetic resonance elastography; and yellow, ultrasound elastography. A methods key is provided below, 
and the corresponding symbol is used for clarity. The data for this figure come from the studies Arani et al., 2015; Budday et al., 2017; Christ 
et al., 2010; Eberle et al., 2018; Elkin et al., 2007; Elkin et al., 2011; Gefen & Margulies, 2004; Guertler et al., 2018; Hiscox et al., 2018; Huston 
et al., 2016; Jorba et al., 2017; Lee et al., 2014; Liu et al., 2018; MacManus et al., 2015; McIlvain et al., 2018; Moeendarbary et al., 2017; Prange 
& Margulies, 2002; Sack et al., 2011; van Dommelen et al., 2010; and Weickenmeier et al., 2018. Additional experimental details can be found 
in Table S1. From this diagram, it is clear that measured stiffness values of adult mammalian brain vary considerably. Whilst some of this is 
undoubtedly due to differences in species and the experimental method used, there are occasions when studies using the same method on the 
same species still report different stiffness values. As discussed in the main text, standardising experimental protocols will perhaps increase the 
repeatability across studies
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microtubule-associated protein, tau. When tau is phosphoryl-
ated, it detaches from microtubules at the axon initial segment 
and breaks down the barrier that normally prevents retro-
grade flow of axonal tau (Hatch, Wei, Xia, & Götz,  2017; 
Li et al., 2011). This may cause the neuron to become stiffer 
due to accumulation of tau in the somatodendritic com-
partment (Hagestedt, Lichtenberg, Wille, Mandelkow, & 
Mandelkow, 1989; Zempel et  al.,  2017). Therefore, hyper-
phosphorylation of tau causes intrinsic mechanical distur-
bances in damaged neurons.

Microtubules are a major component of the neuronal 
cytoskeleton. AFM studies in which the microtubules, mi-
crofilaments (F-actin) and neurofilaments had been phar-
macologically disrupted found that microtubules are the 
largest contributor to axonal stiffness (Ouyang, Nauman, 
& Shi, 2013). They contribute to the intrinsic mechanical 
properties and structural integrity of the cell and influence 
its mechanical behaviour (Kapitein & Hoogenraad, 2015). 
The actin component of the cytoskeleton is also an im-
portant link between cell mechanics and neurophysiol-
ogy (Kilinc, 2018). F-actin polymerisation increases with 
ageing and may lead to a decrease in membrane fluidity 
(i.e. increased membrane rigidity) which can modulate 
ion channel properties (Garcia & Miller,  2011; Phillip, 
Aifuwa, Walston, & Wirtz, 2015; Yuan, O'Connell, Jacob, 
Mason, & Treistman, 2007). Therefore, age- or trauma-re-
lated perturbations to the intrinsic mechanical properties of 
neurons or their surrounding ECM may trigger changes in 
parameters such as neuronal excitability, spontaneous fir-
ing rates, basal calcium levels or the frequency of sponta-
neous Ca2+ transients (Matute, 2010; Sheng, Leshchyns’ka, 
& Sytnyk,  2013; Sheridan, Moeendarbary, Pickering, 
O'Connor, & Murphy,  2014; Sohn et  al.,  2019; Yang 
et al., 2019; Yu, Chang, & Tan, 2009; Zhang et al., 2015). 
A better understanding of how cytoskeletal and lipid 
membrane mechanics are linked to the intrinsic electro-
physiological properties of neurons will be key to fully 
comprehend the aetiology of cognitive decline and demen-
tia in old age (Rizzo, Richman, & Puthanveettil, 2014).

In rats, tau phosphorylation decreases with healthy ageing 
(Watanabe et  al.,  1993), but increases with age in humans 
(Braak, Thal, Ghebremedhin, & Del Tredici, 2011). Primary 
age-related tauopathy (PART) is characterised by the accu-
mulation of neurofibrillary tangles in the absence of amy-
loid plaque pathology (Crary et  al.,  2014). Aggregation of 
abnormally phosphorylated tau protein in astrocytes is also 
relatively common in older humans, a condition known as 
“ageing-related tau astrogliopathy” (ARTAG) (Kovacs 
et al., 2016). Interestingly, depending on the brain regions af-
fected, individuals that present with either PART or ARTAG 
usually display only mild or undetectable cognitive impair-
ment. This suggests that ageing neurons and glia may tol-
erate a certain degree of mechanical stress. However, more 

severe breakdown in axonal transport machinery occurs in 
neurodegenerative and neuroinflammatory disorders such as 
Alzheimer's disease, amyotrophic lateral sclerosis and mul-
tiple sclerosis (Li et  al., 2011; Millecamps & Julien, 2013; 
Sorbara et al., 2014). Because axonal transport is dependent 
on a normal functioning cytoskeleton, marked changes in the 
stiffness of neurons may be a useful and novel biomarker of 
neurodegenerative disease (Nötzel et al., 2018). Moreover, a 
deeper comprehension of how distinct neuropathologies im-
pact the intrinsic mechanical properties of neurons and glia 
will help to identify novel molecular targets for treating the 
symptoms of dementia in older individuals.

6  |   MECHANOBIOLOGY OF 
ALZHEIMER'S DISEASE

6.1  |  Amyloid plaques

Neurodegenerative disorders, such as Alzheimer's disease, 
are likely to cause more severe perturbations to brain mecha-
nobiology than “normal” ageing. The major neuropathologi-
cal hallmarks of AD include severe cortical and hippocampal 
atrophy, reduced glucose metabolism in temporoparietal 
regions, formation of neurofibrillary tangles of hyperphos-
phorylated tau and the deposition of extracellular amyloid 
plaques (Dubois et  al.,  2010; Fox et  al.,  1996). Amyloid 
plaques are formed of a dense core and surrounded by diffuse 
oligomeric fibrils (Dickson & Vickers, 2001). Interestingly, 
longer fibrils fold into a more disorganised plaque, allowing 
for more bending in response to indentation. Using a com-
putational simulation, the contact moduli of plaques formed 
of 50, 100 and 200  nm amyloid fibrils are approximately 
3.26  GPa (i.e. GPa  =  109 Pascal), 1.88 and 0.67  GPa, re-
spectively (Paparcone, Cranford, & Buehler,  2011). Other 
studies have used Brillouin microscopy, high-pressure X-ray 
diffraction and image analysis of electron micrographs and 
found that the Young's modulus of amyloid fibrils lies within 
the GPa range (Knowles & Buehler, 2011; Mattana, Caponi, 
Tamagnini, Fioretto, & Palombo, 2017). This indicates that 
amyloid plaques are far stiffer than surrounding brain tissue. 
On the oligomeric scale, AFM has been used to investigate 
the effects of Aβ40 and Aβ42 on neuronal membrane stiff-
ness. Primary hippocampal neurons were stressed in vitro 
using cell culture medium lacking antioxidants and trophic 
factors, which resulted in “accelerated ageing” of the 21-day-
old rat neurons (measured as an increase in lipofuscin levels) 
(Ungureanu et al., 2016). The Young's modulus of these neu-
rons was significantly reduced after one-hour incubation with 
10 µM Aβ40 and Aβ42. This was also true of 21-day in vitro 
(DIV) neurons cultured under standard conditions, but only 
after incubation with 10 µM Aβ42. However, the opposite ef-
fect was observed in the mouse neuronal cell lines, N2a and 
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HT22; that is, Aβ42 exposure increased membrane stiffness 
(Lulevich, Zimmer, Hong, Jin, & Liu,  2010). Whilst these 
discrepancies may reflect different cell sources (primary tis-
sue versus cell lines), it is also possible that the higher forces 
used in the latter study led to strain-dependent stiffening ef-
fects. This occurs in nonlinear materials such as mammalian 
brain tissue, wherein higher forces cause more cross links in 
polymer chains and result in a higher measured stiffness.

The structure of Aβ42 is similar to the fusion domain of 
the virus influenza hemagglutinin (Crescenzi et al., 2002). 
Aβ42-mediated neurotoxicity may, in part, be explained by 
the formation of membrane pores (Ambroggio et al., 2005; 
Arispe, Pollard, & Rojas,  1993; Lee et  al.,  2017; Poojari, 
Kukol, & Strodel,  2013; Quist et  al.,  2005; Sciacca 
et al., 2012; Valincius et al., 2008), which could also explain 
how Aβ42 reduces membrane stiffness so rapidly (Kim & 
Frangos, 2008). Non-amyloid peptides do not interact with 
membranes in this way (Quist et al., 2005). In addition, Aβ42 
causes dysregulations to calcium-mediated homeostatic 
processes, induces oxidative stress and alters the biophys-
ical properties of cell membranes (for review see Yang, 
Askarova, & Lee, 2010). Therefore, novel methods to inter-
fere with the physical interaction of Aβ42 and neuronal and 
glial cell membranes could help to slow down its neurotoxic 
actions in Alzheimer's disease. We have recently shown in 
a transgenic rat model of AD that astrocytes surrounding 
amyloid plaques upregulate mechanosensitive Piezo1 cat-
ion channels (Velasco-Estevez et  al.,  2018). The function 
of this upregulation in mechanosensitive channels is as yet 
unknown. Our recent data suggest that Piezo1 may play a 
role in neuroinflammation as pharmacological activation of 
Piezo1 in reactive mouse astrocytes in vitro causes extra-
cellular Ca2+ influx and Ca2+ release from internal stores 
and suppresses the secretion of pro-inflammatory cytokines 
(Velasco-Estevez, Rolle, Mampay, Dev, & Sheridan, 2020). 
Upregulation of astrocytic Piezo1 also suggests that glial 
cells may sense stiff plaques and adjust mechanotransduc-
tion-associated signalling cascades induced by changes in 
their surrounding mechanical microenvironment. Whether 
this re-tuning of cellular mechanosensation is harmful or 
beneficial in the AD brain is yet to be determined.

6.2  |  Neurofibrillary tangles

Intracellular neurofibrillary tangles formed of hyperphospho-
rylated tau protein are also present in the Alzheimer's dis-
ease brain and are a better predictor of cognitive dysfunction 
than amyloid plaques (Arriagada, Growdon, Hedley-Whyte, 
& Hyman, 1992; Nagy et al., 1995; Wilcock & Esiri, 1982). 
Interestingly, tau protein becomes stiff upon phosphorylation 
(Hagestedt et al., 1989). Tangles disrupt the microtubule cy-
toskeleton of neurons, altering their morphology, connectivity 

and the intrinsic mechanical properties of axons which, in 
turn, likely contributes to the perturbed synaptic plasticity 
associated with Alzheimer's disease (Palop & Mucke, 2010; 
Shankar et al., 2008). Microtubules in the axon initial seg-
ment are highly dynamic in healthy neurons but become 
less so when exposed to amyloid-β. This results in reduced 
F-actin remodelling (Zempel et al., 2017) and tau missorting. 
Recently, a specific tau mutation observed in frontotemporal 
dementia was shown to impair activity-dependent plasticity 
of the cytoskeleton in the axon initial segment. This coin-
cided with neuronal hyperactivity in response to chronic de-
polarisation (Sohn et al., 2019). This study elegantly shows 
how cytoskeletal perturbations, caused by disease, lead to 
altered neuronal function.

6.3  |  Tissue mechanics in 
Alzheimer's disease

Despite microscopic structural changes caused by NFTs and 
amyloid plaques, there is no obvious direct relationship be-
tween amyloid load or neurofibrillary tangle density and the 
macroscale changes in brain tissue stiffness that occurs in 
Alzheimer's disease. However, there is a positive correlation 
between increasing amyloid load and reduced brain stiffness 
in mild cognitive impairment (Murphy et al., 2016). Overall, 
MRE measurements in AD patients show a decrease in brain 
stiffness compared to healthy controls (Hiscox et al., 2020; 
Levy Nogueira et  al.,  2016; Murphy et  al.,  2011, 2016). 
Moreover, intracranial pressure, resulting from fluid–solid 
interactions between cerebral microvasculature, brain pa-
renchyma and the CSF, can be as much as 42% higher in 
Alzheimer's disease patients compared to healthy age-
matched adults (Levy Nogueira et al., 2016). Factors such as 
a decrease in the neuron-to-glial cell ratio may also contrib-
ute to the overall softening of Alzheimer's disease brains, at 
least on the macroscale of MRE elastograms.

MRE in transgenic APP23 mice suggests that hippocam-
pal viscosity, elasticity and cell numbers are reduced com-
pared to controls (Munder et  al.,  2018). This supports the 
observation in the embryonic brain of frogs that cell body 
density positively correlates with tissue stiffness (Koser 
et  al.,  2016), although contrasts with a more recent study 
in the mouse hippocampus (Antonovaite et  al.,  2018). In a 
different transgenic AD mouse model, AFM measurements 
showed that cortical stiffness was also reduced compared to 
wild-type controls (Menal et al., 2018). The cell loss that oc-
curs in neurodegenerative diseases may explain the global de-
creases in tissue stiffness measured. That said, the elasticity 
of the hippocampus increases with the number of Aβ-positive 
cells, but only in animals housed under environmentally en-
riched conditions (Munder et  al.,  2018). This suggests that 
internalisation of Aβ may enhance cellular elasticity and this 
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may be more noticeable in environmentally enriched animals 
due to the enhanced survival of both aged and adult-born hip-
pocampal cells. Indeed, hippocampal viscoelasticity also pos-
itively correlates with aerobic fitness (Schwarb et al., 2017) 
and higher levels of exercise correlate with increased neu-
rogenesis (Brown et al., 2003; Holmes, Galea, Mistlberger, 
& Kempermann,  2004). Therefore, moderate exercise and 
staying physically fit and active into old age, lifestyle in-
terventions that are known to promote neurogenesis in the 
hippocampus, could potentially rescue at least some of the 
decreases in brain tissue stiffness that occur in old age and in 
people with dementia.

7  |   GLIAL CELL MECHANICS

7.1  |  Reactive astrocytes and glial scarring

The role of glia in the mechanobiological signature of spe-
cific disorders often seems contradictory, and several studies 
have now shown differences between acute injury, chronic 
scarring and inherited disturbances in glial morphology. A 
recent study that used a mouse model of Alexander disease 
in which the astrocytic gene, glial fibrillary acidic protein 
(GFAP), has a gain-of-function mutation, showed that there 
was enhanced F-actin formation and an approximate 30% in-
crease in brain tissue stiffness (Wang etal.,2018). Moreover, 
at the cellular scale, Müller glial cells damaged by ischaemia–
reperfusion injury show elevated expression of vimentin and 
GFAP and a corresponding increase in elastic modulus (Lu 
etal.,2011). We have shown, however, that gliosis markers 
such as vimentin and GFAP, in addition to the ECM compo-
nents laminin and collagen IV, are positively correlated with 
softening of cerebral cortical tissue following a sterile stab 
injury (Moeendarbary etal.,2017). In this study, we mapped 
the mechanical properties of rat glial scar tissue using AFM 
indentation and showed it to be softer than healthy cortical 
brain tissue (Moeendarbary etal.,2017). Glial scars form 
gradually as a result of CNS injury and are composed of re-
active astrocytes, microglia, basement membrane and blood-
derived immune cells. The softening of CNS tissue may be 
detrimental to neuronal regeneration and repair, as axonal 
growth is faster and more directional on stiff (~10kPa) than 
very soft (~100Pa) substratum (Koser etal.,2016). However, 
the exact function of the glial scar in aiding or hindering ax-
onal repair after damage is unknown. It is also possible that 
the soft mechanical nature of the glial scar is beneficial in 
promoting healing after injury, by creating a softer micro-
environment which may promote neurogenesis, OPC dif-
ferentiation and remyelination (Keung, Dong, Schaffer, & 
Kumar,2013; Saha etal.,2008; Teixeira etal.,2009). The glial 
scar may also encourage microglial activation, as micro-
glia become more amoeboid on softer substrata (Bollmann 

etal.,2015) and, as a consequence, may be more effective in 
clearing debris (Neumann, Kotter, & Franklin,2009). Elegant 
studies have argued that the glial scar does not inhibit regen-
eration of neurons as ablation of the glial scar after tissue 
injury hinders axonal regeneration and, in fact, can worsen 
functional recovery (Anderson etal.,2016). Astrocytes and 
proteoglycans, key components of the glial scar (Rolls, 
Shechter, & Schwartz,2009), are also associated with neu-
rogenesis (Gates etal.,1995; Ida etal.,2006; Ma, Ming, & 
Song,2005). However, evidence suggests that the chronic 
overexpression of molecules secreted by the glial scar in-
hibit differentiation and neuronal maturation, which would 
ultimately hinder functional recovery from injury (Fitch & 
Silver,2008; Sofroniew,2009).

7.2  |  Demyelination

In addition to neuronal damage, recurrent head traumas are 
often accompanied by demyelination of axons (Mamere, 
Saraiva, Matos, Carneiro, & Santos, 2009). White matter dam-
age reduces action potential conduction velocity and exacer-
bates neurodegeneration (Leviton & Gressens, 2007; Nashmi 
& Fehlings, 2001), thus increasing the likelihood of irrevers-
ible loss of neurons. However, the functional consequences 
of demyelination on neuronal cell mechanics are still largely 
unknown (Heredia, Bui, Suter, Young, & Schäffer,  2007). 
Myelination and different forms of myelin damage can exert 
a range of effects on CNS tissue mechanics; in some cases 
causing increased tissue stiffness and in others tissue soften-
ing (Eberle et  al.,  2018; Urbanski, Brendel, & Melendez-
Vasquez,  2019; Weickenmeier et  al.,  2017). Traumatic 
CNS injury also induces changes in the extracellular matrix 
(e.g. CSPGs) which can inhibit remyelination of the injured 
area (Lau, Cua, Keough, Haylock-Jacobs, & Yong,  2013). 
Moreover, chemical (cuprizone) demyelination in mice leads 
to the accumulation of glycosaminoglycans, mucopolysac-
charides and fibronectin in the brain, as well as a decrease in 
corpus callosum viscoelasticity measured by MRE (Schregel 
et  al.,  2012). Interestingly, recent AFM evidence also sug-
gests that acute cuprizone-induced demyelination leads to 
corpus callosum tissue softening. However, this effect was 
not measured in the shiverer mouse model of inherited hy-
pomyelination (Eberle et al., 2018). Shiverer mice possess an 
autosomal recessive loss-of-function mutation in the myelin 
basic protein gene. Acquired neuroinflammatory disorders in 
humans, such as multiple sclerosis, display an accumulation 
of laminin, hyaluronic acid and matrix metalloproteinase-19 
within the core of demyelinating CNS lesions (Bonneh-
Barkay & Wiley, 2009). Moreover, astrocytes in chronically 
demyelinated lesions secrete a high-molecular-weight HA 
which prevents the maturation of OPCs, thereby preventing 
remyelination (Back et  al.,  2005). We have recently shown 
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that demyelination of organotypic mouse brain slices (using 
the cytotoxic sphingolipid, psychosine) can be attenuated by 
inhibition of mechanosensitive ion channels with the block-
ing peptide, GsMTx4 (Velasco-Estevez, Gadalla, et al., 2020). 
In the absence of any cytotoxic chemicals, GsMTx4 also en-
hanced developmental myelination of these cerebellar slice 
cultures. Recent observations by others also suggest that OPC 
maturation is, in part, regulated by mechanosensitive Piezo1 
channels (Segel et al., 2019). Interestingly, missense mutations 
in a gene known as TMEM63A, which encodes for a mecha-
nosensitive ion channel that is highly expressed in oligoden-
drocytes, result in a transient infantile disorder in humans that 
resembles a hypomyelinating leukodystrophy, which some-
how resolves within the first 4 years of life (Yan et al., 2019). 
These and other studies (Espinosa-Hoyos et al., 2018; Jagielska 
et al., 2017; Mei et al., 2014) point towards an important role 
for mechanosensation in developmental myelin formation in 
the brain.

8  |   CONCLUSIONS AND FUTURE 
DIRECTIONS

Neuro-mechanobiology research is developing at an excit-
ing and promising pace. In this review, we have identified 
several key questions that should help to advance the field 
(see Box 5). Answering some of these questions could ul-
timately lead to improved therapeutics for TBI or neurode-
generative disease. Firstly, it would be useful to confirm 
the relationship between cell body density, cell type and 
tissue stiffness in different brain regions. It is interesting 
that one of the most neuron-dense structures in the brain, 
the cerebellum, is relatively soft. Another important point 
to clarify is whether white matter is softer or stiffer than 
grey matter and the functional significance of these me-
chanical measurements in healthy and disease states. We 
also need to better understand how pathological proteins 
and peptides, such as Aβ42 and hyperphosphorylated tau, 
alter the mechanical properties of neurons and glia and 
how the chronic neuroinflammation that they cause im-
pacts tissue stiffness in different brain regions. Aberrant 
cell signalling is a hallmark of neurodegeneration, and, as 
such, it is important to discover what role, if any, neuronal 
mechanotransduction plays in ageing and disease-related 
cognitive decline, especially at the level of the synapse. 
To overcome some of the limitations of high-resolution 
indentation methods, such as AFM, and low-resolution 
non-invasive imaging techniques, such as MRE, emerging 
tools for mechanobiology research are continually being 
developed and refined. Brillouin microscopy, for exam-
ple, is a non-contact imaging method that can be com-
bined with Raman spectroscopy (Traverso et al., 2015) or 
fluorescence microscopy (Elsayad et al., 2016) to measure 

the mechanical properties of cells or tissues at high spa-
tial resolution (Schlüßler et  al.,  2018). The introduction 
of novel high-resolution instruments for measuring me-
chanical forces is sure to spark many new and innovative 
collaborations between neuroscientists, bioengineers and 
clinicians and will help to answer some of the outstanding 
questions discussed above. However, it is also important to 
understand the limitations of material science techniques 
when they are applied to interrogate biological systems 
(Prevedel, Diz-Muñoz, Ruocco, & Antonacci,  2019; Wu 
et  al.,  2018). This will ensure that the functional signifi-
cance of mechanical measurements of neuronal and glial 
cell stiffness can be fully integrated into biomedical hy-
potheses and experimental designs that aim to investigate 
how the healthy brain ages and how neurodegeneration be-
gins and progresses. Combining such knowledge could be 
vital for developing novel therapeutics and interventions 
for cognitive decline in old age and for memory impair-
ment in people living with Alzheimer's disease.

BOX 5  Outstanding questions in CNS 
mechanobiology
1) What is the relationship between cell body den-
sity, cell type and brain tissue stiffness?
2) What is the relationship between axonal orienta-
tion and brain tissue stiffness?
3) Is CNS white matter softer or stiffer than grey 
matter?
4) Does ageing impact the mechanical properties of 
white matter to a greater degree than neighbouring 
grey matter?
5) Does the stiffness of the neurogenic niche pro-
mote neurogenesis or stem cell migration?
6) How does altered mechanotransduction impact 
calcium homeostasis in neurons and glial cell types?
7) How do extracellular mechanical forces impact 
the intrinsic electrical properties of neurons?
8) How do ageing and neurodegenerative diseases 
affect neuronal and glial mechanotransduction?
9) How do tau tangles, amyloid plaques and other 
protein/ peptide aggregates alter the mechanical 
properties of the brain?
10) Does chronic neuroinflammation contribute 
to ECM remodelling and changes to brain tissue 
stiffness?
11) Does the stiffness of the glial scar affect neural 
regeneration?
12) Are mechanosensitive ion channels potential 
drug targets for CNS pathologies?
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