Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
  • Xu P, Gao H and Wang Y. (2025). Sparse dual-weighting ensemble clustering. Cluster Computing. 28:2. Online publication date: 1-Apr-2025.

    https://doi.org/10.1007/s10586-024-04864-y

  • Barwey S and Raman V. (2024). Jacobian-scaled K-means clustering for physics-informed segmentation of reacting flows. Journal of Computational Physics. 514:C. Online publication date: 1-Oct-2024.

    https://doi.org/10.1016/j.jcp.2024.113227

  • Lähderanta T, Lovén L, Ruha L, Leppänen T, Launonen I, Riekki J and Sillanpää M. (2024). Capacitated spatial clustering with multiple constraints and attributes. Engineering Applications of Artificial Intelligence. 127:PA. Online publication date: 1-Jan-2024.

    https://doi.org/10.1016/j.engappai.2023.107182

  • Abramowicz K, Sjöstedt de Luna S and Strandberg J. (2023). Nonparametric bagging clustering methods to identify latent structures from a sequence of dependent categorical data. Computational Statistics & Data Analysis. 177:C. Online publication date: 1-Jan-2023.

    https://doi.org/10.1016/j.csda.2022.107583

  • Li M. (2022). The bi-criteria seeding algorithms for two variants of k-means problem. Journal of Combinatorial Optimization. 44:3. (1693-1704). Online publication date: 1-Oct-2022.

    https://doi.org/10.1007/s10878-020-00537-9

  • Li M, Xu D, Yue J, Zhang D and Zhang P. (2020). The seeding algorithm for k-means problem with penalties. Journal of Combinatorial Optimization. 39:1. (15-32). Online publication date: 1-Jan-2020.

    https://doi.org/10.1007/s10878-019-00450-w

  • Zhang D, Hao C, Wu C, Xu D and Zhang Z. (2019). Local search approximation algorithms for the k-means problem with penalties. Journal of Combinatorial Optimization. 37:2. (439-453). Online publication date: 1-Feb-2019.

    https://doi.org/10.1007/s10878-018-0278-6

  • Garg V and Kalai A. Supervising unsupervised learning. Proceedings of the 32nd International Conference on Neural Information Processing Systems. (4996-5006).

    /doi/10.5555/3327345.3327407

  • Lan K, Wang D, Fong S, Liu L, Wong K and Dey N. (2018). A Survey of Data Mining and Deep Learning in Bioinformatics. Journal of Medical Systems. 42:8. (1-20). Online publication date: 1-Aug-2018.

    https://doi.org/10.1007/s10916-018-1003-9

  • Kasim S, Fudzee M, Salamat M, Ramli A, Mahdin H and Abdullah M. An improved computational framework using one stage filtration by incorporating knowledge in gene expression clustering. Proceedings of the International Conference on Artificial Intelligence and Robotics and the International Conference on Automation, Control and Robotics Engineering. (1-5).

    https://doi.org/10.1145/2952744.2952752

  • Bender M, Berry J, Hammond S, Moore B, Moseley B and Phillips C. k-Means Clustering on Two-Level Memory Systems. Proceedings of the 2015 International Symposium on Memory Systems. (197-205).

    https://doi.org/10.1145/2818950.2818977

  • Pirim H, Ekşioğlu B, Perkins A and Yüceer Ç. (2012). Clustering of high throughput gene expression data. Computers and Operations Research. 39:12. (3046-3061). Online publication date: 1-Dec-2012.

    https://doi.org/10.1016/j.cor.2012.03.008

  • Sun J, Garibaldi J and Kenobi K. (2012). Robust Bayesian Clustering for Replicated Gene Expression Data. IEEE/ACM Transactions on Computational Biology and Bioinformatics. 9:5. (1504-1514). Online publication date: 1-Sep-2012.

    https://doi.org/10.1109/TCBB.2012.85