Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
  • Zhou K and Gong W. (2022). Error Estimates for Finite Element Approximation of Dirichlet Boundary Control for Stokes Equations in . Journal of Scientific Computing. 91:2. Online publication date: 1-May-2022.

    https://doi.org/10.1007/s10915-022-01831-w

  • Benner P, Heiland J and Werner S. (2022). Robust output-feedback stabilization for incompressible flows using low-dimensional -controllers. Computational Optimization and Applications. 82:1. (225-249). Online publication date: 1-May-2022.

    https://doi.org/10.1007/s10589-022-00359-x

  • Hu W, Shen J, Singler J, Zhang Y and Zheng X. (2020). A superconvergent hybridizable discontinuous Galerkin method for Dirichlet boundary control of elliptic PDEs. Numerische Mathematik. 144:2. (375-411). Online publication date: 1-Feb-2020.

    https://doi.org/10.1007/s00211-019-01090-2

  • Burns J, He X and Hu W. (2016). Feedback stabilization of a thermal fluid system with mixed boundary control. Computers & Mathematics with Applications. 71:11. (2170-2191). Online publication date: 1-Jun-2016.

    https://doi.org/10.1016/j.camwa.2016.01.011

  • Of G, Phan T and Steinbach O. (2015). An energy space finite element approach for elliptic Dirichlet boundary control problems. Numerische Mathematik. 129:4. (723-748). Online publication date: 1-Apr-2015.

    https://doi.org/10.1007/s00211-014-0653-x

  • Ravindran S. (2005). Real-Time Computational Algorithm for Optimal Control of an MHD Flow System. SIAM Journal on Scientific Computing. 26:4. (1369-1388). Online publication date: 1-Jan-2005.

    https://doi.org/10.1137/S1064827502400534

  • Prudencio E, Byrd R and Cai X. Domain decomposition methods for PDE constrained optimization problems. Proceedings of the 6th international conference on High Performance Computing for Computational Science. (569-582).

    https://doi.org/10.1007/11403937_43

  • Ravindran S. (2000). Reduced-Order Adaptive Controllers for Fluid Flows Using POD. Journal of Scientific Computing. 15:4. (457-478). Online publication date: 19-Dec-2000.

    https://doi.org/10.1023/A:1011184714898

  • Hou L and Ravindran S. (1999). Numerical Approximation of Optimal Flow Control Problems by a Penalty Method. SIAM Journal on Scientific Computing. 20:5. (1753-1777). Online publication date: 1-Jan-1999.

    https://doi.org/10.1137/S1064827597325153