Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
  • Ferrada S, Bustos B, Hogan A and Sabou M. Similarity joins and clustering for SPARQL. Semantic Web. 10.3233/SW-243540. 15:5. (1701-1732).

    https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/SW-243540

  • Hamid N. (Nearest) Neighbors You Can Rely On: Formally Verified k-d Tree Construction and Search in Coq. Proceedings of the 39th ACM/SIGAPP Symposium on Applied Computing. (1684-1693).

    https://doi.org/10.1145/3605098.3635960

  • Ukey N, Yang Z, Yang W, Li B and Li R. (2024). kNN Join for Dynamic High-Dimensional Data: A Parallel Approach. Databases Theory and Applications. 10.1007/978-3-031-47843-7_1. (3-16).

    https://link.springer.com/10.1007/978-3-031-47843-7_1

  • Delussu R, Putzu L and Fumera G. (2023). Human-in-the-loop cross-domain person re-identification. Expert Systems with Applications: An International Journal. 226:C. Online publication date: 15-Sep-2023.

    https://doi.org/10.1016/j.eswa.2023.120216

  • Delussu R, Putzu L, Ledda E and Fumera G. Human-in-the-Loop Person Re-Identification as a Defence Against Adversarial Attacks. Image Analysis and Processing - ICIAP 2023 Workshops. (330-342).

    https://doi.org/10.1007/978-3-031-51023-6_28

  • Feng Y, Maeda K, Ogawa T and Haseyama M. (2023). Gaze-Dependent Image Re-Ranking Technique for Enhancing Content-Based Image Retrieval. Applied Sciences. 10.3390/app13105948. 13:10. (5948).

    https://www.mdpi.com/2076-3417/13/10/5948

  • Yanagi R, Togo R, Ogawa T and Haseyama M. Recallable Question Answering-Based Re-Ranking Considering Semantic Region for Cross-Modal Retrieval. IEEE Open Journal of Signal Processing. 10.1109/OJSP.2023.3238280. 4. (1-11).

    https://ieeexplore.ieee.org/document/10022040/

  • Liu J, Yinchai W, Wei F, Han Q, Tao Y, Zhao L, Li X and Sun H. Secure Cloud-Aided Approximate Nearest Neighbor Search on High-Dimensional Data. IEEE Access. 10.1109/ACCESS.2023.3321457. 11. (109027-109037).

    https://ieeexplore.ieee.org/document/10268927/

  • Yanagi R, Togo R, Ogawa T and Haseyama M. (2022). Interactive Re-ranking via Object Entropy-Guided Question Answering for Cross-Modal Image Retrieval. ACM Transactions on Multimedia Computing, Communications, and Applications. 18:3. (1-17). Online publication date: 31-Aug-2022.

    https://doi.org/10.1145/3485042

  • Yanagi R, Togo R, Ogawa T and Haseyama M. Database-adaptive Re-ranking for Enhancing Cross-modal Image Retrieval. Proceedings of the 29th ACM International Conference on Multimedia. (3816-3825).

    https://doi.org/10.1145/3474085.3475681

  • Delussu R, Putzu L, Fumera G and Roli F. (2021). Online Domain Adaptation for Person Re-Identification with a Human in the Loop 2020 25th International Conference on Pattern Recognition (ICPR). 10.1109/ICPR48806.2021.9412485. 978-1-7281-8808-9. (3829-3836).

    https://ieeexplore.ieee.org/document/9412485/

  • Perner P. (2020). Novel Methods for Forensic Multimedia Data Analysis: Part I. Digital Forensic Science. 10.5772/intechopen.92167.

    https://www.intechopen.com/books/digital-forensic-science/novel-methods-for-forensic-multimedia-data-analysis-part-i

  • Putzu L, Piras L and Giacinto G. (2020). Convolutional neural networks for relevance feedback in content based image retrieval. Multimedia Tools and Applications. 10.1007/s11042-020-09292-9.

    http://link.springer.com/10.1007/s11042-020-09292-9

  • Čech P, Lokoč J and Silva Y. (2022). Pivot-based approximate k-NN similarity joins for big high-dimensional data. Information Systems. 87:C. Online publication date: 1-Jan-2020.

    https://doi.org/10.1016/j.is.2019.06.006

  • Ferrada S, Bustos B and Hogan A. (2020). Extending SPARQL with Similarity Joins. The Semantic Web – ISWC 2020. 10.1007/978-3-030-62419-4_12. (201-217).

    http://link.springer.com/10.1007/978-3-030-62419-4_12

  • Kim B and Pardo B. (2018). A Human-in-the-Loop System for Sound Event Detection and Annotation. ACM Transactions on Interactive Intelligent Systems. 8:2. (1-23). Online publication date: 14-Jul-2018.

    https://doi.org/10.1145/3214366

  • Gonalves F, Guilherme I and Pedronette D. (2018). Semantic Guided Interactive Image Retrieval for plant identification. Expert Systems with Applications: An International Journal. 91:C. (12-26). Online publication date: 1-Jan-2018.

    https://doi.org/10.1016/j.eswa.2017.08.035

  • Putzu L, Piras L and Giacinto G. (2018). Ten Years of Relevance Score for Content Based Image Retrieval. Machine Learning and Data Mining in Pattern Recognition. 10.1007/978-3-319-96133-0_9. (117-131).

    https://link.springer.com/10.1007/978-3-319-96133-0_9

  • Piras L and Giacinto G. (2017). Information fusion in content based image retrieval. Information Fusion. 37:C. (50-60). Online publication date: 1-Sep-2017.

    https://doi.org/10.1016/j.inffus.2017.01.003

  • Boteanu B, Mironicăź I and Ionescu B. (2017). Pseudo-relevance feedback diversification of social image retrieval results. Multimedia Tools and Applications. 76:9. (11889-11916). Online publication date: 1-May-2017.

    https://doi.org/10.1007/s11042-016-3678-6

  • Kim B and Pardo B. I-SED. Proceedings of the 22nd International Conference on Intelligent User Interfaces. (553-557).

    https://doi.org/10.1145/3025171.3025231

  • Patel C, Lei Y, Liu L, Vernica R, Fan J, Short B, Liu J and Simske S. (2017). Learning in the 21st century cyber-physical age. APSIPA Transactions on Signal and Information Processing. 10.1017/ATSIP.2017.10. 6.

    https://www.cambridge.org/core/product/identifier/S2048770317000105/type/journal_article

  • Čech P, Maroušek J, Lokoč J, Silva Y and Starks J. (2017). Comparing MapReduce-Based k-NN Similarity Joins on Hadoop for High-Dimensional Data. Advanced Data Mining and Applications. 10.1007/978-3-319-69179-4_5. (63-75).

    https://link.springer.com/10.1007/978-3-319-69179-4_5

  • Arevalillo-Herráez M, Ferri F and Moreno-Picot S. (2015). Improving distance based image retrieval using non-dominated sorting genetic algorithm. Pattern Recognition Letters. 53:C. (109-117). Online publication date: 1-Feb-2015.

    https://doi.org/10.1016/j.patrec.2014.05.008

  • Boteanu B, Mironica I and Ionescu B. (2014). A relevance feedback perspective to image search result diversification 2014 IEEE International Conference on Intelligent Computer Communication and Processing (ICCP). 10.1109/ICCP.2014.6936979. 978-1-4799-6569-4. (47-54).

    http://ieeexplore.ieee.org/document/6936979/

  • van Oosten J and Schomaker L. (2014). Separability versus prototypicality in handwritten word-image retrieval. Pattern Recognition. 47:3. (1031-1038). Online publication date: 1-Mar-2014.

    https://doi.org/10.1016/j.patcog.2013.09.006

  • Patil P and Kokare M. Content Based Image Retrieval with Relevance Feedback Using Riemannian Manifolds. Proceedings of the 2014 Fifth International Conference on Signal and Image Processing. (26-29).

    https://doi.org/10.1109/ICSIP.2014.9

  • Moreno-Picot S, Ferri F and Arevalillo-Herráez M. A NSGA Based Approach for Content Based Image Retrieval. Proceedings, Part I, of the 18th Iberoamerican Congress on Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications - Volume 8258. (359-366).

    https://doi.org/10.1007/978-3-642-41822-8_45

  • Mironica I, Ionescu B, Uijlings J and Sebe N. Fisher kernel based relevance feedback for multimodal video retrieval. Proceedings of the 3rd ACM conference on International conference on multimedia retrieval. (65-72).

    https://doi.org/10.1145/2461466.2461478

  • Khanapuri J and Kulkarni L. (2013). Efficient Color Image Retrieval with Selective Relevance Feedback. Proceedings of International Conference on VLSI, Communication, Advanced Devices, Signals & Systems and Networking (VCASAN-2013). 10.1007/978-81-322-1524-0_41. (333-341).

    http://link.springer.com/10.1007/978-81-322-1524-0_41

  • Li G, Zhou C, Wang W and Liu Y. (2013). A Semi-Supervised Active Learning FSVM for Content Based Image Retrieval. Proceedings of the 2012 International Conference on Information Technology and Software Engineering. 10.1007/978-3-642-34531-9_45. (429-437).

    https://link.springer.com/10.1007/978-3-642-34531-9_45

  • Tronci R, Murgia G, Pili M, Piras L and Giacinto G. (2013). ImageHunter: A Novel Tool for Relevance Feedback in Content Based Image Retrieval. New Challenges in Distributed Information Filtering and Retrieval. 10.1007/978-3-642-31546-6_4. (53-70).

    https://link.springer.com/10.1007/978-3-642-31546-6_4

  • Oosten J and Schomaker L. Separability versus Prototypicality in Handwritten Word Retrieval. Proceedings of the 2012 International Conference on Frontiers in Handwriting Recognition. (8-13).

    https://doi.org/10.1109/ICFHR.2012.269

  • Piras L, Giacinto G and Paredes R. Enhancing image retrieval by an exploration-exploitation approach. Proceedings of the 8th international conference on Machine Learning and Data Mining in Pattern Recognition. (355-365).

    https://doi.org/10.1007/978-3-642-31537-4_28

  • Tronci R, Piras L and Giacinto G. (2012). Performance Evaluation of Relevance Feedback for Image Retrieval by "Real-World" Multi-Tagged Image Datasets. International Journal of Multimedia Data Engineering & Management. 3:1. (1-16). Online publication date: 1-Jan-2012.

    https://doi.org/10.4018/jmdem.2012010101

  • Tronci R, Falqui L, Piras L and Giacinto G. (2011). A Study on the Evaluation of Relevance Feedback in Multi-tagged Image Datasets 2011 IEEE International Symposium on Multimedia (ISM). 10.1109/ISM.2011.80. 978-1-4577-2015-4. (452-457).

    http://ieeexplore.ieee.org/document/6123388/

  • Piras L and Giacinto G. Dissimilarity representation in multi-feature spaces for image retrieval. Proceedings of the 16th international conference on Image analysis and processing: Part I. (139-148).

    /doi/10.5555/2042620.2042638

  • Gao K. (2011). Presenting implicit relevance feedback in educational search engine. Computer Applications in Engineering Education. 10.1002/cae.20311. 19:2. (294-304). Online publication date: 1-Jun-2011.

    https://onlinelibrary.wiley.com/doi/10.1002/cae.20311

  • Arevalillo-Herráez M and Ferri F. Interactive image retrieval using smoothed nearest neighbor estimates. Proceedings of the 2010 joint IAPR international conference on Structural, syntactic, and statistical pattern recognition. (708-717).

    /doi/10.5555/1887003.1887087

  • Piras L and Giacinto G. (2010). Unbalanced learning in content-based image classification and retrieval 2010 IEEE International Conference on Multimedia and Expo (ICME). 10.1109/ICME.2010.5583045. 978-1-4244-7491-2. (36-41).

    http://ieeexplore.ieee.org/document/5583045/

  • Arevalillo-Herráez M, Ferri F and Domingo J. (2010). A naive relevance feedback model for content-based image retrieval using multiple similarity measures. Pattern Recognition. 43:3. (619-629). Online publication date: 1-Mar-2010.

    https://doi.org/10.1016/j.patcog.2009.08.010

  • Xu S, Tang S, Li J and Zhang Y. Pseudo relevance feedback with incremental learning for high level feature detection. Proceedings of the 2009 IEEE international conference on Multimedia and Expo. (594-597).

    /doi/10.5555/1698924.1699070

  • Shaoxi Xu , Sheng Tang , Jintao Li and Yongdong Zhang . (2009). Pseudo relevance feedback with incremental learning for high level feature detection 2009 IEEE International Conference on Multimedia and Expo (ICME). 10.1109/ICME.2009.5202566. 978-1-4244-4290-4. (594-597).

    http://ieeexplore.ieee.org/document/5202566/

  • Piras L and Giacinto G. (2009). Neighborhood-based feature weighting for relevance feedback in content-based retrieval 2009 10th Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS). 10.1109/WIAMIS.2009.5031477. 978-1-4244-3609-5. (238-241).

    http://ieeexplore.ieee.org/document/5031477/

  • Deselaers T, Paredes R, Vidal E and Ney H. (2008). Learning weighted distances for relevance feedback in image retrieval 2008 19th International Conference on Pattern Recognition (ICPR). 10.1109/ICPR.2008.4761730. 978-1-4244-2174-9. (1-4).

    http://ieeexplore.ieee.org/document/4761730/

  • Thomee B, Huiskes M, Bakker E and Lew M. (2008). Using an artificial imagination for texture retrieval 2008 19th International Conference on Pattern Recognition (ICPR). 10.1109/ICPR.2008.4761476. 978-1-4244-2174-9. (1-4).

    http://ieeexplore.ieee.org/document/4761476/