Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
  • Guo J, Xia W, Hu X and Ma H. (2022). A spatiotemporal attention-based neural network to evaluate the route risk for unmanned aerial vehicles. Applied Intelligence. 10.1007/s10489-021-03029-3. 52:14. (15735-15750). Online publication date: 1-Nov-2022.

    https://link.springer.com/10.1007/s10489-021-03029-3

  • García A, González H and Schupke D. (2022). Hybrid Route Optimisation for Maximum Air to Ground Channel Quality. Journal of Intelligent and Robotic Systems. 105:2. Online publication date: 1-Jun-2022.

    https://doi.org/10.1007/s10846-022-01590-8

  • de Sousa Paula P, Sarmento W, Paillard G and de Castro M. Using swarm intelligence in unmanned aerial vehicles for unknown location fixed target search. Proceedings of the 10th Euro-American Conference on Telematics and Information Systems. (1-8).

    https://doi.org/10.1145/3401895.3401931

  • Exposito A, Schupke D and Esteban H. Route Optimisation for Maximum Air to Ground Channel Quality. IEEE Access. 10.1109/ACCESS.2020.3037075. 8. (203619-203630).

    https://ieeexplore.ieee.org/document/9253515/

  • Iranmanesh S, Raad R, Raheel M, Tubbal F and Jan T. Novel DTN Mobility-Driven Routing in Autonomous Drone Logistics Networks. IEEE Access. 10.1109/ACCESS.2019.2959275. 8. (13661-13673).

    https://ieeexplore.ieee.org/document/8932497/

  • Iranmanesh S and Raad R. (2019). A Novel Data Forwarding Strategy for a Drone Delay Tolerant Network with Range Extension. Electronics. 10.3390/electronics8060659. 8:6. (659).

    https://www.mdpi.com/2079-9292/8/6/659

  • Pelosi M and Brown M. (2017). Improved search paths for camera-equipped UAVS in wilderness search and rescue 2017 IEEE Symposium Series on Computational Intelligence (SSCI). 10.1109/SSCI.2017.8280972. 978-1-5386-2726-6. (1-8).

    http://ieeexplore.ieee.org/document/8280972/

  • Heidari A and Abaspour R. (2017). An Efficient UAS Path Planning Strategy Based on Improved Imperialist Competitive Algorithm. Journal of Geospatial Information Technology. 10.29252/jgit.4.4.83. 4:4. (83-102).

    http://jgit.kntu.ac.ir/article-1-157-en.html

  • Lin N, Huang S, Gong C, Zhao L and Tang J. (2017). UAV Path Planning Based on Adaptive Weighted. Neural Information Processing. 10.1007/978-3-319-70136-3_31. (287-297).

    http://link.springer.com/10.1007/978-3-319-70136-3_31

  • Rudnick-Cohen E, Herrmann J and Azarm S. (2016). Risk-Based Path Planning Optimization Methods for Unmanned Aerial Vehicles Over Inhabited Areas 1. Journal of Computing and Information Science in Engineering. 10.1115/1.4033235. 16:2. (021004).

    http://computingengineering.asmedigitalcollection.asme.org/article.aspx?doi=10.1115/1.4033235

  • Atten C, Channouf L, Danoy G and Bouvry P. (2016). UAV Fleet Mobility Model with Multiple Pheromones for Tracking Moving Observation Targets. Applications of Evolutionary Computation. 10.1007/978-3-319-31204-0_22. (332-347).

    http://link.springer.com/10.1007/978-3-319-31204-0_22

  • Giagkos A, Tuci E and Wilson M. (2015). Advancing Evolutionary Coordination for Fixed-Wing Communications UAVs. Towards Autonomous Robotic Systems. 10.1007/978-3-319-22416-9_14. (124-135).

    https://link.springer.com/10.1007/978-3-319-22416-9_14

  • Giagkos A, Tuci E, Wilson M and Charlesworth P. (2014). Evolutionary Coordination System for Fixed-Wing Communications Unmanned Aerial Vehicles. Advances in Autonomous Robotics Systems. 10.1007/978-3-319-10401-0_5. (48-59).

    http://link.springer.com/10.1007/978-3-319-10401-0_5

  • Mingsheng Gao , Jun Jiang , Ng Kien Ming , Teo Kwong Meng and Kim-Leng Poh . (2013). Cooperative path planning for UAVs with UAV loss considerations 2013 IEEE Symposium on Computational Intelligence for Security and Defense Applications (CISDA). 10.1109/CISDA.2013.6595425. 978-1-4673-5911-5. (38-44).

    http://ieeexplore.ieee.org/document/6595425/

  • Drews Jr. P, Macharet D and Campos M. A Terrain-Based Path Planning for Mobile Robots with Bounded Curvature. Proceedings of the 2012 Brazilian Robotics Symposium and Latin American Robotics Symposium. (202-207).

    https://doi.org/10.1109/SBR-LARS.2012.40

  • Pelosi M, Kopp C and Brown M. (2012). RANGE-LIMITED UAV TRAJECTORY USING TERRAIN MASKING UNDER RADAR DETECTION RISK. Applied Artificial Intelligence. 26:8. (743-759). Online publication date: 1-Sep-2012.

    https://doi.org/10.1080/08839514.2012.713308

  • Agogino A, HolmesParker C and Tumer K. Evolving large scale UAV communication system. Proceedings of the 14th annual conference on Genetic and evolutionary computation. (1023-1030).

    https://doi.org/10.1145/2330163.2330306

  • Waldock A and Corne D. Multiple objective optimisation applied to route planning. Proceedings of the 13th annual conference on Genetic and evolutionary computation. (1827-1834).

    https://doi.org/10.1145/2001576.2001821

  • Macharet D, Neto A and Campos M. Feasible UAV path planning using genetic algorithms and Bézier curves. Proceedings of the 20th Brazilian conference on Advances in artificial intelligence. (223-232).

    /doi/10.5555/1929622.1929650

  • Besada-Portas E, de la Torre L, de la Cruz J and de Andrés-Toro B. (2010). Evolutionary trajectory planner for multiple UAVs in realistic scenarios. IEEE Transactions on Robotics. 26:4. (619-634). Online publication date: 1-Aug-2010.

    https://doi.org/10.1109/TRO.2010.2048610

  • Low M, Chandramohan M and Choo C. Application of multi-objective bee colony optimization algorithm to automated red teaming. Winter Simulation Conference. (1798-1808).

    /doi/10.5555/1995456.1995704

  • Moreno A, Risco-Martín J, Besada E, Mittal S and Aranda J. DEVS/SOA. Proceedings of the 2009 13th IEEE/ACM International Symposium on Distributed Simulation and Real Time Applications. (144-153).

    https://doi.org/10.1109/DS-RT.2009.18

  • Xu Y, Low M and Choo C. Enhancing automated red teaming with evolvable simulation. Proceedings of the first ACM/SIGEVO Summit on Genetic and Evolutionary Computation. (687-694).

    https://doi.org/10.1145/1543834.1543928