Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
  • Paiva B, Gonçalves M, da Rocha L, Marcolino M, Lana F, Souza-Silva M, Almeida J, Pereira P, de Andrade C, Gomes A, Ferreira M, Bartolazzi F, Sacioto M, Boscato A, Guimarães-Júnior M, dos Reis P, Costa F, Jorge A, Coelho L, Carneiro M, Sales T, Araújo S, Silveira D, Ruschel K, Santos F, Cenci E, Menezes L, Anschau F, Bicalho M, Manenti E, Finger R, Ponce D, de Aguiar F, Marques L, de Castro L, Vietta G, Godoy M, Vilaça M and Morais V. (2024). A New Natural Language Processing–Inspired Methodology (Detection, Initial Characterization, and Semantic Characterization) to Investigate Temporal Shifts (Drifts) in Health Care Data: Quantitative Study. JMIR Medical Informatics. 10.2196/54246. 12. (e54246).

    https://medinform.jmir.org/2024/1/e54246

  • Vieira V, Ferreira C, Almeida J, Moreira E, Laender A, Meira W and Gonçalves M. (2024). A network-driven study of hyperprolific authors in computer science. Scientometrics. 129:4. (2255-2283). Online publication date: 1-Apr-2024.

    https://doi.org/10.1007/s11192-024-04940-5

  • Sasikala D and Premalatha K. (2021). RETRACTED ARTICLE: A swarm-optimized tree-based association rule approach for classifying semi-structured data using soft computing approach. Soft Computing - A Fusion of Foundations, Methodologies and Applications. 25:20. (12745-12758). Online publication date: 1-Oct-2021.

    https://doi.org/10.1007/s00500-021-06158-6

  • Ngo Ho A, Eglin V, Ragot N and Ramel J. (2017). A multi-one-class dynamic classifier for adaptive digitization of document streams. International Journal on Document Analysis and Recognition. 20:3. (137-154). Online publication date: 1-Sep-2017.

    https://doi.org/10.1007/s10032-017-0286-6

  • Salles T, Rocha L, Gonçalves M, Almeida J, Mourão F, Meira W and Viegas F. (2016). A quantitative analysis of the temporal effects on automatic text classification. Journal of the Association for Information Science and Technology. 67:7. (1639-1667). Online publication date: 1-Jul-2016.

    https://doi.org/10.1002/asi.23452

  • De Mel N, Hettiarachchi H, Madusanka W, Malaka G, Perera A and Kohomban U. (2016). Machine learning approach to recognize subject based sentiment values of reviews 2016 Moratuwa Engineering Research Conference (MERCon). 10.1109/MERCon.2016.7480107. 978-1-5090-0644-1. (6-11).

    http://ieeexplore.ieee.org/document/7480107/

  • Rocha L, Ramos G, Chaves R, Sachetto R, Madeira D, Viegas F, Andrade G, Daniel S, Gonçalves M and Ferreira R. G-KNN. Proceedings of the 30th Annual ACM Symposium on Applied Computing. (1335-1338).

    https://doi.org/10.1145/2695664.2695967

  • Fukumoto F and Suzuki Y. (2015). Smoothing Temporal Difference for Text Categorization. Information Retrieval Technology. 10.1007/978-3-319-28940-3_16. (203-214).

    http://link.springer.com/10.1007/978-3-319-28940-3_16

  • D’hondt E, Verberne S, Oostdijk N, Beney J, Koster C and Boves L. (2014). Dealing with temporal variation in patent categorization. Information Retrieval. 10.1007/s10791-014-9239-6. 17:5-6. (520-544). Online publication date: 1-Oct-2014.

    http://link.springer.com/10.1007/s10791-014-9239-6

  • Costa M, Couto F and Silva M. Learning temporal-dependent ranking models. Proceedings of the 37th international ACM SIGIR conference on Research & development in information retrieval. (757-766).

    https://doi.org/10.1145/2600428.2609619

  • Aggarwal C. (2014). Mining text and social streams. ACM SIGKDD Explorations Newsletter. 15:2. (9-19). Online publication date: 16-Jun-2014.

    https://doi.org/10.1145/2641190.2641194

  • Bainbridge W. (2014). Text Analysis. Personality Capture and Emulation. 10.1007/978-1-4471-5604-8_7. (151-176).

    https://link.springer.com/10.1007/978-1-4471-5604-8_7

  • Gao K, Zhang H, Li S, Wang W and Qiu J. (2013). Research on classification algorithm and its application in cased-based reasoning. International Journal of Computer Applications in Technology. 48:4. (373-381). Online publication date: 1-Dec-2013.

    https://doi.org/10.1504/IJCAT.2013.058359

  • Fukumoto F, Suzuki Y and Takasu A. Timeline adaptation for text classification. Proceedings of the 22nd ACM international conference on Information & Knowledge Management. (1517-1520).

    https://doi.org/10.1145/2505515.2507833

  • Rocha L, MourãO F, Mota H, Salles T, GonçAlves M and Meira Jr. W. (2013). Temporal contexts. Information Systems. 38:3. (388-409). Online publication date: 1-May-2013.

    https://doi.org/10.1016/j.is.2012.11.001

  • Nishida K, Hoshide T and Fujimura K. Improving tweet stream classification by detecting changes in word probability. Proceedings of the 35th international ACM SIGIR conference on Research and development in information retrieval. (971-980).

    https://doi.org/10.1145/2348283.2348412

  • Fernández-Martínez F, Zablotskaya K and Minker W. (2012). Text categorization methods for automatic estimation of verbal intelligence. Expert Systems with Applications: An International Journal. 39:10. (9807-9820). Online publication date: 1-Aug-2012.

    https://doi.org/10.1016/j.eswa.2012.02.173

  • Šilić A and Dalbelo Bašić B. Exploring classification concept drift on a large news text corpus. Proceedings of the 13th international conference on Computational Linguistics and Intelligent Text Processing - Volume Part I. (428-437).

    https://doi.org/10.1007/978-3-642-28604-9_35

  • Palotti J, Salles T, Pappa G, Goncalves M and Meira W. (2011). Assessing documents' credibility with genetic programming 2011 IEEE Congress on Evolutionary Computation (CEC). 10.1109/CEC.2011.5949619. 978-1-4244-7834-7. (200-207).

    https://ieeexplore.ieee.org/document/5949619/