Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
  • Libgober J. (2024). Identifying Wisdom (of the Crowd): A Regression Approach. Journal of Political Economy Microeconomics. 10.1086/733781.

    https://www.journals.uchicago.edu/doi/10.1086/733781

  • Filos-Ratsikas A, Giannakopoulos Y, Hollender A and Kokkalis C. On the Computation of Equilibria in Discrete First-Price Auctions. Proceedings of the 25th ACM Conference on Economics and Computation. (379-399).

    https://doi.org/10.1145/3670865.3673509

  • Kong Y. (2024). Dominantly Truthful Peer Prediction Mechanisms with a Finite Number of Tasks. Journal of the ACM. 71:2. (1-49). Online publication date: 30-Apr-2024.

    https://doi.org/10.1145/3638239

  • Dorner F, Konstantinov N, Pashaliev G and Vechev M. Incentivizing honesty among competitors in collaborative learning and optimization. Proceedings of the 37th International Conference on Neural Information Processing Systems. (7659-7696).

    /doi/10.5555/3666122.3666459

  • Du J and Jiang C. (2023). Cooperative Trustworthiness Evaluation and Trustworthy Service Rating. Cooperation and Integration in 6G Heterogeneous Networks. 10.1007/978-981-19-7648-3_16. (389-416).

    https://link.springer.com/10.1007/978-981-19-7648-3_16

  • Schoenebeck G and Yu F. (2023). Two Strongly Truthful Mechanisms for Three Heterogeneous Agents Answering One Question. ACM Transactions on Economics and Computation. 10:4. (1-26). Online publication date: 31-Dec-2022.

    https://doi.org/10.1145/3565560

  • Liu Y, Wang J and Chen Y. (2023). Surrogate Scoring Rules. ACM Transactions on Economics and Computation. 10:3. (1-36). Online publication date: 30-Sep-2022.

    https://doi.org/10.1145/3565559

  • Bai Y, Hu Q, Seo S, Kang K and Lee J. Public Participation Consortium Blockchain for Smart City Governance. IEEE Internet of Things Journal. 10.1109/JIOT.2021.3091151. 9:3. (2094-2108).

    https://ieeexplore.ieee.org/document/9462451/

  • Azrieli Y. (2022). Delegated expertise: Implementability with peer-monitoring. Games and Economic Behavior. 10.1016/j.geb.2021.12.008. Online publication date: 1-Jan-2022.

    https://linkinghub.elsevier.com/retrieve/pii/S0899825622000069

  • Azrieli Y. (2021). Monitoring experts. Theoretical Economics. 10.3982/TE4017. 16:4. (1313-1350).

    https://econtheory.org/ojs/index.php/te/article/view/4017

  • Wang W, An B and Jiang Y. Optimal Spot-Checking for Improving the Evaluation Quality of Crowdsourcing: Application to Peer Grading Systems. IEEE Transactions on Computational Social Systems. 10.1109/TCSS.2020.2998732. 7:4. (940-955).

    https://ieeexplore.ieee.org/document/9120177/

  • Moti M, Chatzopoulos D, Hui P, Faltings B and Gujar S. (2020). Orthos: A Trustworthy AI Framework for Data Acquisition. Engineering Multi-Agent Systems. 10.1007/978-3-030-66534-0_7. (100-118).

    http://link.springer.com/10.1007/978-3-030-66534-0_7

  • Moti M, Chatzopoulos D, Hui P and Gujar S. FaRM. Proceedings of the 28th International Joint Conference on Artificial Intelligence. (506-512).

    /doi/10.5555/3367032.3367105

  • Xu J, Wang S, Bhargava B and Yang F. A Blockchain-Enabled Trustless Crowd-Intelligence Ecosystem on Mobile Edge Computing. IEEE Transactions on Industrial Informatics. 10.1109/TII.2019.2896965. 15:6. (3538-3547).

    https://ieeexplore.ieee.org/document/8632682/

  • Du J, Gelenbe E, Jiang C, Zhang H, Ren Y and Poor H. (2019). Peer Prediction-Based Trustworthiness Evaluation and Trustworthy Service Rating in Social Networks. IEEE Transactions on Information Forensics and Security. 14:6. (1582-1594). Online publication date: 1-Jun-2019.

    https://doi.org/10.1109/TIFS.2018.2883000

  • Wang R, Lian X and Zhao D. Feedback Elicitation Mechanism Design. IEEE Access. 10.1109/ACCESS.2019.2919999. 7. (73656-73665).

    https://ieeexplore.ieee.org/document/8726327/

  • Hu Z, Liang Y, Zhang J, Li Z and Liu Y. Inference aided reinforcement learning for incentive mechanism design in crowdsourcing. Proceedings of the 32nd International Conference on Neural Information Processing Systems. (5512-5522).

    /doi/10.5555/3327345.3327455

  • Ito K, Ohsawa S and Tanaka H. Information Diffusion Enhanced by Multi-Task Peer Prediction. Proceedings of the 20th International Conference on Information Integration and Web-based Applications & Services. (96-104).

    https://doi.org/10.1145/3282373.3282410

  • Kong Y and Schoenebeck G. Eliciting Expertise without Verification. Proceedings of the 2018 ACM Conference on Economics and Computation. (195-212).

    https://doi.org/10.1145/3219166.3219172

  • Chen J, Li B and Li Y. (2018). Information Elicitation for Bayesian Auctions. Algorithmic Game Theory. 10.1007/978-3-319-99660-8_5. (43-55).

    https://link.springer.com/10.1007/978-3-319-99660-8_5

  • Paruchuri P and Gujar S. (2018). Fusion of Game Theory and Big Data for AI Applications. Big Data Analytics. 10.1007/978-3-030-04780-1_4. (55-69).

    https://link.springer.com/10.1007/978-3-030-04780-1_4

  • Bjelde A, Fischer F and Klimm M. (2017). Impartial Selection and the Power of Up to Two Choices. ACM Transactions on Economics and Computation. 5:4. (1-20). Online publication date: 30-Nov-2017.

    https://doi.org/10.1145/3107922

  • Faltings B and Radanovic G. (2017). Game Theory for Data Science: Eliciting Truthful Information. Synthesis Lectures on Artificial Intelligence and Machine Learning. 10.2200/S00788ED1V01Y201707AIM035. 11:2. (1-151). Online publication date: 19-Sep-2017.

    http://www.morganclaypool.com/doi/10.2200/S00788ED1V01Y201707AIM035

  • Frongillo R and Witkowski J. (2017). A Geometric Perspective on Minimal Peer Prediction. ACM Transactions on Economics and Computation. 5:3. (1-27). Online publication date: 31-Aug-2017.

    https://doi.org/10.1145/3070903

  • Liu Y and Chen Y. Machine-Learning Aided Peer Prediction. Proceedings of the 2017 ACM Conference on Economics and Computation. (63-80).

    https://doi.org/10.1145/3033274.3085126

  • Liu Y and Chen Y. Sequential peer prediction. Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. (607-613).

    /doi/10.5555/3298239.3298329

  • Kong Y, Ligett K and Schoenebeck G. Putting Peer Prediction Under the Microeconomicscope and Making Truth-Telling Focal. Proceedings of the 12th International Conference on Web and Internet Economics - Volume 10123. (251-264).

    https://doi.org/10.1007/978-3-662-54110-4_18

  • Du J, Jiang C, Wang J, Yu S and Ren Y. (2016). Trustable service rating in social networks: A peer prediction method 2016 IEEE Global Conference on Signal and Information Processing (GlobalSIP). 10.1109/GlobalSIP.2016.7905875. 978-1-5090-4545-7. (415-419).

    http://ieeexplore.ieee.org/document/7905875/

  • Radanovic G, Faltings B and Jurca R. (2016). Incentives for Effort in Crowdsourcing Using the Peer Truth Serum. ACM Transactions on Intelligent Systems and Technology. 7:4. (1-28). Online publication date: 14-Jul-2016.

    https://doi.org/10.1145/2856102

  • Liu Y and Chen Y. Learning to incentivize. Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence. (3782-3788).

    /doi/10.5555/3061053.3061148

  • Shnayder V, Frongillo R and Parke D. Measuring performance of peer prediction mechanisms using replicator dynamics. Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence. (2611-2617).

    /doi/10.5555/3060832.3060986

  • Gan Y, Jiang C, Beaulieu N, Wang J and Ren Y. Secure Collaborative Spectrum Sensing: a Peer-Prediction Method. IEEE Transactions on Communications. 10.1109/TCOMM.2016.2600563. (1-1).

    http://ieeexplore.ieee.org/document/7544560/

  • Qu L, Wang Y and Orgun M. (2016). An Uncertain Assessment Compatible Incentive Mechanism for Eliciting Continual and Truthful Assessments of Cloud Services. Service-Oriented Computing. 10.1007/978-3-319-46295-0_21. (335-351).

    http://link.springer.com/10.1007/978-3-319-46295-0_21

  • Liu S, Miao C, Liu Y, Yu H, Zhang J and Leung C. An Incentive Mechanism to Elicit Truthful Opinions for Crowdsourced Multiple Choice Consensus Tasks. Proceedings of the 2015 IEEE / WIC / ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT) - Volume 01. (96-103).

    https://doi.org/10.1109/WI-IAT.2015.46

  • Gan Y, Jiang C, Zhang W, Beaulieu N and Ren Y. (2015). Incentive Attack Prevention for Collaborative Spectrum Sensing: A Peer-Prediction Method GLOBECOM 2015 - 2015 IEEE Global Communications Conference. 10.1109/GLOCOM.2015.7417576. 978-1-4799-5952-5. (1-6).

    http://ieeexplore.ieee.org/document/7417576/

  • Radanovic G and Faltings B. Incentive Schemes for Participatory Sensing. Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems. (1081-1089).

    /doi/10.5555/2772879.2773289

  • Gan Y, Jiang C, Zhang W, Beaulieu N and Ren Y. (2014). Incentive Attack Prevention for Collaborative Spectrum Sensing: A Peer-Prediction Method GLOBECOM 2015 - 2015 IEEE Global Communications Conference. 10.1109/GLOCOM.2014.7417576. 978-1-4799-5952-5. (1-6).

    http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7417576

  • Ghosh A, Ligett K, Roth A and Schoenebeck G. Buying private data without verification. Proceedings of the fifteenth ACM conference on Economics and computation. (931-948).

    https://doi.org/10.1145/2600057.2602902

  • Gao X, Mao A, Chen Y and Adams R. Trick or treat. Proceedings of the fifteenth ACM conference on Economics and computation. (507-524).

    https://doi.org/10.1145/2600057.2602865

  • Fischer F and Klimm M. Optimal impartial selection. Proceedings of the fifteenth ACM conference on Economics and computation. (803-820).

    https://doi.org/10.1145/2600057.2602836

  • Zhang P and Chen Y. Elicitability and knowledge-free elicitation with peer prediction. Proceedings of the 2014 international conference on Autonomous agents and multi-agent systems. (245-252).

    /doi/10.5555/2615731.2615773

  • MATSUBARA S and WANG M. (2014). Preventing Participation of Insincere Workers in Crowdsourcing by Using Pay-for-Performance Payments. IEICE Transactions on Information and Systems. 10.1587/transinf.2013EDP7441. E97.D:9. (2415-2422).

    http://jlc.jst.go.jp/DN/JST.JSTAGE/transinf/2013EDP7441?lang=en&from=CrossRef&type=abstract

  • Faltings B, Li J and Jurca R. (2014). Incentive Mechanisms for Community Sensing. IEEE Transactions on Computers. 63:1. (115-128). Online publication date: 1-Jan-2014.

    https://doi.org/10.1109/TC.2013.150

  • Dasgupta A and Ghosh A. Crowdsourced judgement elicitation with endogenous proficiency. Proceedings of the 22nd international conference on World Wide Web. (319-330).

    https://doi.org/10.1145/2488388.2488417

  • Faltings B, Li J and Jurca R. (2012). Eliciting truthful measurements from a community of sensors 2012 3rd International Conference on the Internet of Things (IOT). 10.1109/IOT.2012.6402303. 978-1-4673-1346-9. (47-54).

    http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6402303

  • Ito K. Consensus-Building on Citations in Peer-to-Peer Systems. SSRN Electronic Journal. 10.2139/ssrn.3936833.

    https://www.ssrn.com/abstract=3936833

  • Galanis S. No Trade in a Blockchain. SSRN Electronic Journal. 10.2139/ssrn.3581822.

    https://www.ssrn.com/abstract=3581822

  • Prelec D. Bayesian Truth Serum on Tree Graphs. SSRN Electronic Journal. 10.2139/ssrn.2996377.

    https://www.ssrn.com/abstract=2996377