Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
  • Yu C, Wang C, Zhang T, Bu Y and Xu J. (2024). Analyzing research diversity of scholars based on multi-dimensional calculation of knowledge entities. Scientometrics. 129:11. (7329-7358). Online publication date: 1-Nov-2024.

    https://doi.org/10.1007/s11192-023-04821-3

  • Abdellatif A, Badran K, Costa D and Shihab E. A Transformer-based Approach for Augmenting Software Engineering Chatbots Datasets. Proceedings of the 18th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement. (359-370).

    https://doi.org/10.1145/3674805.3686695

  • Dong X, Zhang Z, Zhang Y, Ao X and Tang T. (2024). Post diversity: A new lens of social media WOM. Journal of Business Research. 10.1016/j.jbusres.2023.114329. 170. (114329). Online publication date: 1-Jan-2024.

    https://linkinghub.elsevier.com/retrieve/pii/S0148296323006884

  • Bewong M, Wondoh J, Kwashie S, Liu J, Liu L, Li J, Islam M and Kernot D. DATM: A Novel Data Agnostic Topic Modeling Technique With Improved Effectiveness for Both Short and Long Text. IEEE Access. 10.1109/ACCESS.2023.3262653. 11. (32826-32841).

    https://ieeexplore.ieee.org/document/10083137/

  • Zielinski A. (2022). Impact of model settings on the text-based Rao diversity index. Scientometrics. 10.1007/s11192-022-04312-x. 127:12. (7751-7768). Online publication date: 1-Dec-2022.

    https://link.springer.com/10.1007/s11192-022-04312-x

  • Arencibia-Jorge R, Vega-Almeida R, Jiménez-Andrade J and Carrillo-Calvet H. (2022). Evolutionary stages and multidisciplinary nature of artificial intelligence research. Scientometrics. 10.1007/s11192-022-04477-5. 127:9. (5139-5158). Online publication date: 1-Sep-2022.

    https://link.springer.com/10.1007/s11192-022-04477-5

  • Wang T, Aggarwal V and Wu B. (2020). Capability interactions and adaptation to demand‐side change. Strategic Management Journal. 10.1002/smj.3137. 41:9. (1595-1627). Online publication date: 1-Sep-2020.

    https://onlinelibrary.wiley.com/doi/10.1002/smj.3137

  • Kumara Swamy M and Krishna Reddy P. (2020). A model of concept hierarchy-based diverse patterns with applications to recommender system. International Journal of Data Science and Analytics. 10.1007/s41060-019-00203-2.

    http://link.springer.com/10.1007/s41060-019-00203-2

  • Chowdhary A, Liu C, Chen L, Zhou R and Yang Y. (2020). Finding Attribute Diversified Communities in Complex Networks. Database Systems for Advanced Applications. 10.1007/978-3-030-59419-0_2. (19-35).

    http://link.springer.com/10.1007/978-3-030-59419-0_2

  • Leydesdorff L, Wagner C and Bornmann L. (2019). Interdisciplinarity as diversity in citation patterns among journals: Rao-Stirling diversity, relative variety, and the Gini coefficient. Journal of Informetrics. 10.1016/j.joi.2018.12.006. 13:1. (255-269). Online publication date: 1-Feb-2019.

    https://linkinghub.elsevier.com/retrieve/pii/S1751157718303535

  • Yuan B, Gao X and Niu Z. (2018). Discovering Latent Aspects for Diversity-Induced Image Retrieval. IEEE MultiMedia. 25:4. (19-33). Online publication date: 1-Oct-2018.

    https://doi.org/10.1109/MMUL.2018.112142809

  • Derezinski M, Rohanimanesh K and Hydrie A. Discovering Surprising Documents with Context-Aware Word Representations. Proceedings of the 23rd International Conference on Intelligent User Interfaces. (31-35).

    https://doi.org/10.1145/3172944.3173011

  • Azarbonyad H, Dehghani M, Kenter T, Marx M, Kamps J and De Rijke M. HiTR: Hierarchical Topic Model Re-estimation for Measuring Topical Diversity of Documents. IEEE Transactions on Knowledge and Data Engineering. 10.1109/TKDE.2018.2874246. (1-1).

    https://ieeexplore.ieee.org/document/8482296/

  • Dias L, Gerlach M, Scharloth J and Altmann E. (2018). Using text analysis to quantify the similarity and evolution of scientific disciplines. Royal Society Open Science. 10.1098/rsos.171545. 5:1. (171545). Online publication date: 1-Jan-2018.

    http://rsos.royalsocietypublishing.org/lookup/doi/10.1098/rsos.171545

  • Pan X, Ye J, Tang F, Dong W, Huang F and Zhang X. Content-based measure of image set diversity. SIGGRAPH Asia 2017 Posters. (1-2).

    https://doi.org/10.1145/3145690.3145700

  • Ramachandran L, Gehringer E and Yadav R. (2017). Automated Assessment of the Quality of Peer Reviews using Natural Language Processing Techniques. International Journal of Artificial Intelligence in Education. 10.1007/s40593-016-0132-x. 27:3. (534-581). Online publication date: 1-Sep-2017.

    http://link.springer.com/10.1007/s40593-016-0132-x

  • Yang S, Lu W, Yang D, Li X, Wu C and Wei B. (2017). KeyphraseDS. Neurocomputing. 224:C. (58-70). Online publication date: 8-Feb-2017.

    https://doi.org/10.1016/j.neucom.2016.10.052

  • Azarbonyad H, Dehghani M, Kenter T, Marx M, Kamps J and de Rijke M. (2017). Hierarchical Re-estimation of Topic Models for Measuring Topical Diversity. Advances in Information Retrieval. 10.1007/978-3-319-56608-5_6. (68-81).

    http://link.springer.com/10.1007/978-3-319-56608-5_6

  • Liang S, Cai F, Ren Z and de Rijke M. (2016). Efficient Structured Learning for Personalized Diversification. IEEE Transactions on Knowledge and Data Engineering. 28:11. (2958-2973). Online publication date: 1-Nov-2016.

    https://doi.org/10.1109/TKDE.2016.2594064

  • Cai F, Reinanda R and Rijke M. (2016). Diversifying Query Auto-Completion. ACM Transactions on Information Systems. 34:4. (1-33). Online publication date: 14-Sep-2016.

    https://doi.org/10.1145/2910579

  • Naim H, Aznag M, Quafafou M and Durand N. (2016). Probabilistic Approach for Diversifying Web Services Discovery and Composition 2016 IEEE International Conference on Web Services (ICWS). 10.1109/ICWS.2016.19. 978-1-5090-2675-3. (73-80).

    http://ieeexplore.ieee.org/document/7557987/

  • Wu L, Liu Q, Chen E, Yuan N, Guo G and Xie X. (2016). Relevance Meets Coverage. ACM Transactions on Intelligent Systems and Technology. 7:3. (1-30). Online publication date: 1-Apr-2016.

    https://doi.org/10.1145/2700496

  • Azarbonyad H, Saan F, Dehghani M, Marx M and Kamps J. Are Topically Diverse Documents Also Interesting?. Proceedings of the 6th International Conference on Experimental IR Meets Multilinguality, Multimodality, and Interaction - Volume 9283. (215-221).

    https://doi.org/10.1007/978-3-319-24027-5_19

  • Hu S, Dou Z, Wang X and Wen J. (2015). Search Result Diversification Based on Query Facets. Journal of Computer Science and Technology. 10.1007/s11390-015-1567-5. 30:4. (888-901). Online publication date: 1-Jul-2015.

    http://link.springer.com/10.1007/s11390-015-1567-5

  • González-Bailón S and Paltoglou G. (2015). Signals of Public Opinion in Online Communication. The ANNALS of the American Academy of Political and Social Science. 10.1177/0002716215569192. 659:1. (95-107). Online publication date: 1-May-2015.

    https://journals.sagepub.com/doi/10.1177/0002716215569192

  • Kravvaris D, Kermanindis K and Chorianopoulos K. (2015). Ranking educational videos: The impact of social presence 2015 IEEE 9th International Conference on Research Challenges in Information Science (RCIS). 10.1109/RCIS.2015.7128895. 978-1-4673-6630-4. (342-350).

    http://ieeexplore.ieee.org/document/7128895/

  • Jenders M, Lindhauer T, Kasneci G, Krestel R and Naumann F. (2015). A Serendipity Model for News Recommendation. KI 2015: Advances in Artificial Intelligence. 10.1007/978-3-319-24489-1_9. (111-123).

    http://link.springer.com/10.1007/978-3-319-24489-1_9

  • Liang S, Ren Z and de Rijke M. Personalized search result diversification via structured learning. Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. (751-760).

    https://doi.org/10.1145/2623330.2623650

  • Nie Y, Huang J, Li A and Zhou B. (2014). Identifying Users Based on Behavioral-Modeling across Social Media Sites. Web Technologies and Applications. 10.1007/978-3-319-11116-2_5. (48-55).

    http://link.springer.com/10.1007/978-3-319-11116-2_5

  • Wang K, Sha C, Wang X and Zhou A. (2014). Based on Citation Diversity to Explore Influential Papers for Interdisciplinarity. Web Technologies and Applications. 10.1007/978-3-319-11116-2_30. (343-354).

    http://link.springer.com/10.1007/978-3-319-11116-2_30