Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
  • Bao S, Xu Q, Yang Z, He Y, Cao X and Huang Q. Improved Diversity-Promoting Collaborative Metric Learning for Recommendation. IEEE Transactions on Pattern Analysis and Machine Intelligence. 10.1109/TPAMI.2024.3412687. 46:12. (9004-9022).

    https://ieeexplore.ieee.org/document/10553349/

  • Sun R. AI-based Human-Centered Recommender Systems: Empirical Experiments and Research Infrastructure. Proceedings of the 18th ACM Conference on Recommender Systems. (1308-1313).

    https://doi.org/10.1145/3640457.3688012

  • Aftab S and Ramampiaro H. (2024). Improving top- recommendations using batch approximation for weighted pair-wise loss . Machine Learning with Applications. 10.1016/j.mlwa.2023.100520. 15. (100520). Online publication date: 1-Mar-2024.

    https://linkinghub.elsevier.com/retrieve/pii/S2666827023000737

  • Zhang Y, Bai G, Gao Z, Zhu P and Li S. Modeling Long- and Short-Term Project Relationships for Project Management Systems. IEEE Access. 10.1109/ACCESS.2024.3402448. 12. (72242-72251).

    https://ieeexplore.ieee.org/document/10534065/

  • Shi H, Gu Y, Zhou Y, Zhao B, Gao S and Zhao J. Everyone's preference changes differently. Proceedings of the 40th International Conference on Machine Learning. (31228-31242).

    /doi/10.5555/3618408.3619700

  • Zhang X, Liu J, Chang S, Gong P, Wu Z, Han B and Kong X. (2023). MIRN: A multi-interest retrieval network with sequence-to-interest EM routing. PLOS ONE. 10.1371/journal.pone.0281275. 18:2. (e0281275).

    https://dx.plos.org/10.1371/journal.pone.0281275

  • Omanović A, Oblak P and Curk T. Matrix Tri-Factorization Over the Tropical Semiring. IEEE Access. 10.1109/ACCESS.2023.3287833. 11. (69022-69032).

    https://ieeexplore.ieee.org/document/10156842/

  • Pancha N, Zhai A, Leskovec J and Rosenberg C. PinnerFormer. Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. (3702-3712).

    https://doi.org/10.1145/3534678.3539156

  • Fu Z, Lian T, Yao Y and Zheng W. (2022). MulSimNet: A multi-branch sub-interest matching network for personalized recommendation. Neurocomputing. 10.1016/j.neucom.2022.04.109. 495. (37-50). Online publication date: 1-Jul-2022.

    https://linkinghub.elsevier.com/retrieve/pii/S0925231222005033

  • Khoali M, Laaziz Y, Tali A and Salaudeen H. (2022). A Survey of One Class E-Commerce Recommendation System Techniques. Electronics. 10.3390/electronics11060878. 11:6. (878).

    https://www.mdpi.com/2079-9292/11/6/878

  • Omanović A, Kazan H, Oblak P and Curk T. (2021). Sparse data embedding and prediction by tropical matrix factorization. BMC Bioinformatics. 10.1186/s12859-021-04023-9. 22:1. Online publication date: 1-Dec-2021.

    https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-021-04023-9

  • Barkan O, Hirsch R, Katz O, Caciularu A and Koenigstein N. Anchor-based Collaborative Filtering. Proceedings of the 30th ACM International Conference on Information & Knowledge Management. (2877-2881).

    https://doi.org/10.1145/3459637.3482056

  • Li S, Zhang Y and Pan R. (2020). Bi-Directional Recurrent Attentional Topic Model. ACM Transactions on Knowledge Discovery from Data. 14:6. (1-30). Online publication date: 31-Dec-2021.

    https://doi.org/10.1145/3412371

  • Ma Q, Gu Y, Lee W, Yu G, Liu H and Wu X. (2020). REMIAN. ACM Transactions on Knowledge Discovery from Data. 14:6. (1-38). Online publication date: 31-Dec-2021.

    https://doi.org/10.1145/3412364

  • Savva F, Anagnostopoulos C, Triantafillou P and Kolomvatsos K. (2020). Large-scale Data Exploration Using Explanatory Regression Functions. ACM Transactions on Knowledge Discovery from Data. 14:6. (1-33). Online publication date: 31-Dec-2021.

    https://doi.org/10.1145/3410448

  • Hu R, Liu Y, Li Y, Zhou J, Ma S and Xiong H. (2020). Exploiting User Preference and Mobile Peer Influence for Human Mobility Annotation. ACM Transactions on Knowledge Discovery from Data. 14:6. (1-18). Online publication date: 31-Dec-2021.

    https://doi.org/10.1145/3406600

  • Nikolakopoulos A and Karypis G. (2020). Boosting Item-based Collaborative Filtering via Nearly Uncoupled Random Walks. ACM Transactions on Knowledge Discovery from Data. 14:6. (1-26). Online publication date: 31-Dec-2021.

    https://doi.org/10.1145/3406241

  • Pang G and Cao L. (2020). Heterogeneous Univariate Outlier Ensembles in Multidimensional Data. ACM Transactions on Knowledge Discovery from Data. 14:6. (1-27). Online publication date: 31-Dec-2021.

    https://doi.org/10.1145/3403934

  • Mohotti W and Nayak R. (2020). Efficient Outlier Detection in Text Corpus Using Rare Frequency and Ranking. ACM Transactions on Knowledge Discovery from Data. 14:6. (1-30). Online publication date: 31-Dec-2021.

    https://doi.org/10.1145/3399712

  • Xu J, Luo Y, Tao J, Fan C, Zhao Z and Lu J. (2020). NGUARD+. ACM Transactions on Knowledge Discovery from Data. 14:6. (1-24). Online publication date: 31-Dec-2021.

    https://doi.org/10.1145/3399711

  • Guo J and Wu W. (2020). Influence Maximization. ACM Transactions on Knowledge Discovery from Data. 14:6. (1-22). Online publication date: 31-Dec-2021.

    https://doi.org/10.1145/3399661

  • Matheny M, Xie D and Phillips J. (2020). Scalable Spatial Scan Statistics for Trajectories. ACM Transactions on Knowledge Discovery from Data. 14:6. (1-24). Online publication date: 6-Oct-2020.

    https://doi.org/10.1145/3394046

  • Pal A, Eksombatchai C, Zhou Y, Zhao B, Rosenberg C and Leskovec J. PinnerSage. Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. (2311-2320).

    https://doi.org/10.1145/3394486.3403280

  • Li C, Liu Z, Wu M, Xu Y, Zhao H, Huang P, Kang G, Chen Q, Li W and Lee D. Multi-Interest Network with Dynamic Routing for Recommendation at Tmall. Proceedings of the 28th ACM International Conference on Information and Knowledge Management. (2615-2623).

    https://doi.org/10.1145/3357384.3357814

  • Wang M, Meng C, Long G, Wu C, Yang J, Lin W and Jia Y. (2019). Characterizing Deep Learning Training Workloads on Alibaba-PAI 2019 IEEE International Symposium on Workload Characterization (IISWC). 10.1109/IISWC47752.2019.9042047. 978-1-7281-4045-2. (189-202).

    https://ieeexplore.ieee.org/document/9042047/

  • Nikolakopoulos A, Berberidis D, Karypis G and Giannakis G. Personalized diffusions for top-n recommendation. Proceedings of the 13th ACM Conference on Recommender Systems. (260-268).

    https://doi.org/10.1145/3298689.3346985

  • Li Y and Mu K. (2019). Matrix Factorization Model with Dual Preferences for Rating Prediction 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC). 10.1109/COMPSAC.2019.00060. 978-1-7281-2607-4. (364-372).

    https://ieeexplore.ieee.org/document/8754471/

  • Karaev S and Miettinen P. (2019). Algorithms for approximate subtropical matrix factorization. Data Mining and Knowledge Discovery. 33:2. (526-576). Online publication date: 1-Mar-2019.

    https://doi.org/10.1007/s10618-018-0599-1

  • Nikolakopoulos A and Karypis G. RecWalk. Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining. (150-158).

    https://doi.org/10.1145/3289600.3291016

  • Christakopoulou E and Karypis G. Local Latent Space Models for Top-N Recommendation. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. (1235-1243).

    https://doi.org/10.1145/3219819.3220112

  • Grbovic M and Cheng H. Real-time Personalization using Embeddings for Search Ranking at Airbnb. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. (311-320).

    https://doi.org/10.1145/3219819.3219885

  • Taijala T, Willemsen M and Konstan J. MovieExplorer. Proceedings of the 33rd Annual ACM Symposium on Applied Computing. (1383-1392).

    https://doi.org/10.1145/3167132.3167281

  • Dhakad L, Das M, Bhattacharyya C, Datta S, Kale M and Mehta V. SOPER. Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. (1609-1618).

    https://doi.org/10.1145/3132847.3133007

  • Akbari M, Hu X, Wang F and Chua T. Wellness Representation of Users in Social Media: Towards Joint Modelling of Heterogeneity and Temporality. IEEE Transactions on Knowledge and Data Engineering. 10.1109/TKDE.2017.2722411. 29:10. (2360-2373).

    http://ieeexplore.ieee.org/document/7967681/

  • Verstrepen K, Bhaduriy K, Cule B and Goethals B. (2017). Collaborative Filtering for Binary, Positiveonly Data. ACM SIGKDD Explorations Newsletter. 19:1. (1-21). Online publication date: 1-Sep-2017.

    https://doi.org/10.1145/3137597.3137599

  • Lei X, Qian X and Zhao G. (2016). Rating Prediction Based on Social Sentiment From Textual Reviews. IEEE Transactions on Multimedia. 18:9. (1910-1921). Online publication date: 1-Sep-2016.

    https://doi.org/10.1109/TMM.2016.2575738

  • Wu Y, Liu X, Xie M, Ester M and Yang Q. CCCF. Proceedings of the Ninth ACM International Conference on Web Search and Data Mining. (73-82).

    https://doi.org/10.1145/2835776.2835836

  • Karaev S and Miettinen P. (2016). Cancer: Another Algorithm for Subtropical Matrix Factorization. Machine Learning and Knowledge Discovery in Databases. 10.1007/978-3-319-46227-1_36. (576-592).

    http://link.springer.com/10.1007/978-3-319-46227-1_36

  • Zhao T, McAuley J and King I. Improving Latent Factor Models via Personalized Feature Projection for One Class Recommendation. Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. (821-830).

    https://doi.org/10.1145/2806416.2806511

  • Wang J and Hardtke D. User Latent Preference Model for Better Downside Management in Recommender Systems. Proceedings of the 24th International Conference on World Wide Web. (1209-1219).

    https://doi.org/10.1145/2736277.2741126

  • Kabbur S and Karypis G. (2014). NLMF: NonLinear Matrix Factorization Methods for Top-N Recommender Systems 2014 IEEE International Conference on Data Mining Workshop (ICDMW). 10.1109/ICDMW.2014.108. 978-1-4799-4274-9. (167-174).

    http://ieeexplore.ieee.org/document/7022594/

  • Liu L and Dzyabura D. Capturing Multi-Taste Preferences: A Machine Learning Approach. SSRN Electronic Journal. 10.2139/ssrn.2729468.

    http://www.ssrn.com/abstract=2729468