Bao S, Xu Q, Yang Z, He Y, Cao X and Huang Q. Improved Diversity-Promoting Collaborative Metric Learning for Recommendation. IEEE Transactions on Pattern Analysis and Machine Intelligence. 10.1109/TPAMI.2024.3412687. 46:12. (9004-9022).
Sun R. AI-based Human-Centered Recommender Systems: Empirical Experiments and Research Infrastructure. Proceedings of the 18th ACM Conference on Recommender Systems. (1308-1313).
Aftab S and Ramampiaro H.
(2024).
Improving top-
recommendations using batch approximation for weighted pair-wise loss
. Machine Learning with Applications. 10.1016/j.mlwa.2023.100520. 15. (100520). Online publication date: 1-Mar-2024.
Zhang Y, Bai G, Gao Z, Zhu P and Li S. Modeling Long- and Short-Term Project Relationships for Project Management Systems. IEEE Access. 10.1109/ACCESS.2024.3402448. 12. (72242-72251).
Shi H, Gu Y, Zhou Y, Zhao B, Gao S and Zhao J. Everyone's preference changes differently. Proceedings of the 40th International Conference on Machine Learning. (31228-31242).
Zhang X, Liu J, Chang S, Gong P, Wu Z, Han B and Kong X.
(2023). MIRN: A multi-interest retrieval network with sequence-to-interest EM routing. PLOS ONE. 10.1371/journal.pone.0281275. 18:2. (e0281275).
Pancha N, Zhai A, Leskovec J and Rosenberg C. PinnerFormer. Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. (3702-3712).
Fu Z, Lian T, Yao Y and Zheng W.
(2022). MulSimNet: A multi-branch sub-interest matching network for personalized recommendation. Neurocomputing. 10.1016/j.neucom.2022.04.109. 495. (37-50). Online publication date: 1-Jul-2022.
Khoali M, Laaziz Y, Tali A and Salaudeen H.
(2022). A Survey of One Class E-Commerce Recommendation System Techniques. Electronics. 10.3390/electronics11060878. 11:6. (878).
Omanović A, Kazan H, Oblak P and Curk T.
(2021). Sparse data embedding and prediction by tropical matrix factorization. BMC Bioinformatics. 10.1186/s12859-021-04023-9. 22:1. Online publication date: 1-Dec-2021.
Barkan O, Hirsch R, Katz O, Caciularu A and Koenigstein N. Anchor-based Collaborative Filtering. Proceedings of the 30th ACM International Conference on Information & Knowledge Management. (2877-2881).
Li S, Zhang Y and Pan R.
(2020). Bi-Directional Recurrent Attentional Topic Model. ACM Transactions on Knowledge Discovery from Data. 14:6. (1-30). Online publication date: 31-Dec-2021.
Ma Q, Gu Y, Lee W, Yu G, Liu H and Wu X.
(2020). REMIAN. ACM Transactions on Knowledge Discovery from Data. 14:6. (1-38). Online publication date: 31-Dec-2021.
Savva F, Anagnostopoulos C, Triantafillou P and Kolomvatsos K.
(2020). Large-scale Data Exploration Using Explanatory Regression Functions. ACM Transactions on Knowledge Discovery from Data. 14:6. (1-33). Online publication date: 31-Dec-2021.
Hu R, Liu Y, Li Y, Zhou J, Ma S and Xiong H.
(2020). Exploiting User Preference and Mobile Peer Influence for Human Mobility Annotation. ACM Transactions on Knowledge Discovery from Data. 14:6. (1-18). Online publication date: 31-Dec-2021.
Nikolakopoulos A and Karypis G.
(2020). Boosting Item-based Collaborative Filtering via Nearly Uncoupled Random Walks. ACM Transactions on Knowledge Discovery from Data. 14:6. (1-26). Online publication date: 31-Dec-2021.
Pang G and Cao L.
(2020). Heterogeneous Univariate Outlier Ensembles in Multidimensional Data. ACM Transactions on Knowledge Discovery from Data. 14:6. (1-27). Online publication date: 31-Dec-2021.
Mohotti W and Nayak R.
(2020). Efficient Outlier Detection in Text Corpus Using Rare Frequency and Ranking. ACM Transactions on Knowledge Discovery from Data. 14:6. (1-30). Online publication date: 31-Dec-2021.
Xu J, Luo Y, Tao J, Fan C, Zhao Z and Lu J.
(2020). NGUARD+. ACM Transactions on Knowledge Discovery from Data. 14:6. (1-24). Online publication date: 31-Dec-2021.
Matheny M, Xie D and Phillips J.
(2020). Scalable Spatial Scan Statistics for Trajectories. ACM Transactions on Knowledge Discovery from Data. 14:6. (1-24). Online publication date: 6-Oct-2020.
Li C, Liu Z, Wu M, Xu Y, Zhao H, Huang P, Kang G, Chen Q, Li W and Lee D. Multi-Interest Network with Dynamic Routing for Recommendation at Tmall. Proceedings of the 28th ACM International Conference on Information and Knowledge Management. (2615-2623).
Wang M, Meng C, Long G, Wu C, Yang J, Lin W and Jia Y.
(2019). Characterizing Deep Learning Training Workloads on Alibaba-PAI 2019 IEEE International Symposium on Workload Characterization (IISWC). 10.1109/IISWC47752.2019.9042047. 978-1-7281-4045-2. (189-202).
Li Y and Mu K.
(2019). Matrix Factorization Model with Dual Preferences for Rating Prediction 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC). 10.1109/COMPSAC.2019.00060. 978-1-7281-2607-4. (364-372).
Karaev S and Miettinen P.
(2019). Algorithms for approximate subtropical matrix factorization. Data Mining and Knowledge Discovery. 33:2. (526-576). Online publication date: 1-Mar-2019.
Christakopoulou E and Karypis G. Local Latent Space Models for Top-N Recommendation. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. (1235-1243).
Grbovic M and Cheng H. Real-time Personalization using Embeddings for Search Ranking at Airbnb. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. (311-320).
Akbari M, Hu X, Wang F and Chua T. Wellness Representation of Users in Social Media: Towards Joint Modelling of Heterogeneity and Temporality. IEEE Transactions on Knowledge and Data Engineering. 10.1109/TKDE.2017.2722411. 29:10. (2360-2373).
Lei X, Qian X and Zhao G.
(2016). Rating Prediction Based on Social Sentiment From Textual Reviews. IEEE Transactions on Multimedia. 18:9. (1910-1921). Online publication date: 1-Sep-2016.
Karaev S and Miettinen P.
(2016). Cancer: Another Algorithm for Subtropical Matrix Factorization. Machine Learning and Knowledge Discovery in Databases. 10.1007/978-3-319-46227-1_36. (576-592).
Zhao T, McAuley J and King I. Improving Latent Factor Models via Personalized Feature Projection for One Class Recommendation. Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. (821-830).
Wang J and Hardtke D. User Latent Preference Model for Better Downside Management in Recommender Systems. Proceedings of the 24th International Conference on World Wide Web. (1209-1219).
Kabbur S and Karypis G.
(2014). NLMF: NonLinear Matrix Factorization Methods for Top-N Recommender Systems 2014 IEEE International Conference on Data Mining Workshop (ICDMW). 10.1109/ICDMW.2014.108. 978-1-4799-4274-9. (167-174).