Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
  • Zhang H, Tang L, Song X and Xu T. (2024). NSMD-NAS: Retinal Image Segmentation with Neural Architecture Search and Non-Subsampled Multiscale Decomposition 2024 IEEE Congress on Evolutionary Computation (CEC). 10.1109/CEC60901.2024.10612005. 979-8-3503-0836-5. (1-8).

    https://ieeexplore.ieee.org/document/10612005/

  • Li N, Ma L, Yu G, Xue B, Zhang M and Jin Y. (2023). Survey on Evolutionary Deep Learning: Principles, Algorithms, Applications, and Open Issues. ACM Computing Surveys. 56:2. (1-34). Online publication date: 29-Feb-2024.

    https://doi.org/10.1145/3603704

  • Naulia P, Watada J and Aziz I. A Mathematically Inspired Meta-Heuristic Approach to Parameter (Weight) Optimization of Deep Convolution Neural Network. IEEE Access. 10.1109/ACCESS.2024.3409689. 12. (83299-83322).

    https://ieeexplore.ieee.org/document/10549877/

  • Lu X, Zheng X, Zhang P and Li S. (2023). Automobile Emergency Collision Avoidance Control for Pedestrian Crossing Based on Deep Q-Learning 2023 China Automation Congress (CAC). 10.1109/CAC59555.2023.10450548. 979-8-3503-0375-9. (234-239).

    https://ieeexplore.ieee.org/document/10450548/

  • Watt N and du Plessis M. (2023). Neuro-augmented vision for evolutionary robotics. Machine Vision and Applications. 34:6. Online publication date: 1-Nov-2023.

    https://doi.org/10.1007/s00138-023-01453-8

  • XUE X, HUANG Y and ZHANG Z. (2023). Deep Reinforcement Learning Based Ontology Meta-Matching Technique. IEICE Transactions on Information and Systems. 10.1587/transinf.2022DLP0050. E106.D:5. (635-643). Online publication date: 1-May-2023.

    https://www.jstage.jst.go.jp/article/transinf/E106.D/5/E106.D_2022DLP0050/_article

  • Zhang J, Huang Y, Huang Q, Li Y and Ye X. (2023). Hasse sensitivity level: A sensitivity-aware trajectory privacy-enhanced framework with Reinforcement Learning. Future Generation Computer Systems. 10.1016/j.future.2023.01.008. 142. (301-313). Online publication date: 1-May-2023.

    https://linkinghub.elsevier.com/retrieve/pii/S0167739X23000158

  • Praczyk T. (2023). Emerging Modularity During the Evolution of Neural Networks. Journal of Artificial Intelligence and Soft Computing Research. 10.2478/jaiscr-2023-0010. 13:2. (107-126). Online publication date: 1-Mar-2023.. Online publication date: 1-Mar-2023.

    https://www.sciendo.com/article/10.2478/jaiscr-2023-0010

  • Bai H, Cheng R and Jin Y. (2023). Evolutionary Reinforcement Learning: A Survey. Intelligent Computing. 10.34133/icomputing.0025. 2. Online publication date: 1-Jan-2023.

    https://spj.science.org/doi/10.34133/icomputing.0025

  • Telikani A, Tahmassebi A, Banzhaf W and Gandomi A. (2021). Evolutionary Machine Learning: A Survey. ACM Computing Surveys. 54:8. (1-35). Online publication date: 30-Nov-2022.

    https://doi.org/10.1145/3467477

  • Granato G, Cartoni E, Da Rold F, Mattera A, Baldassarre G and Alexandre F. (2022). Integrating unsupervised and reinforcement learning in human categorical perception: A computational model. PLOS ONE. 10.1371/journal.pone.0267838. 17:5. (e0267838).

    https://dx.plos.org/10.1371/journal.pone.0267838

  • Chen Y, Lin Q, Wei W, Ji J, Wong K and Coello C. (2022). Intrusion detection using multi-objective evolutionary convolutional neural network for Internet of Things in Fog computing. Knowledge-Based Systems. 10.1016/j.knosys.2022.108505. 244. (108505). Online publication date: 1-May-2022.

    https://linkinghub.elsevier.com/retrieve/pii/S0950705122002179

  • Rajesh C and Kumar S. (2022). An evolutionary block based network for medical image denoising using Differential Evolution▪. Applied Soft Computing. 121:C. Online publication date: 1-May-2022.

    https://doi.org/10.1016/j.asoc.2022.108776

  • Tampuu A, Matiisen T, Semikin M, Fishman D and Muhammad N. A Survey of End-to-End Driving: Architectures and Training Methods. IEEE Transactions on Neural Networks and Learning Systems. 10.1109/TNNLS.2020.3043505. 33:4. (1364-1384).

    https://ieeexplore.ieee.org/document/9310544/

  • Martinez A, Del Ser J, Osaba E and Herrera F. Adaptive Multifactorial Evolutionary Optimization for Multitask Reinforcement Learning. IEEE Transactions on Evolutionary Computation. 10.1109/TEVC.2021.3083362. 26:2. (233-247).

    https://ieeexplore.ieee.org/document/9439811/

  • Basu I, Karmakar S, Kundu S, Saha A and Taki G. (2022). Application of Reinforcement Learning for Control of Autonomous Vehicles 2022 Interdisciplinary Research in Technology and Management (IRTM). 10.1109/IRTM54583.2022.9791531. 978-1-6654-7886-1. (1-3).

    https://ieeexplore.ieee.org/document/9791531/

  • Khedkar S, Naik A, Mane O, Gurnani A and Amesur K. (2022). Kids View—A Parents Companion. Innovations in Computational Intelligence and Computer Vision. 10.1007/978-981-19-0475-2_16. (175-188).

    https://link.springer.com/10.1007/978-981-19-0475-2_16

  • Laserna J, Otero A and Torre E. (2022). A Multi-FPGA Scalable Framework for Deep Reinforcement Learning Through Neuroevolution. Applied Reconfigurable Computing. Architectures, Tools, and Applications. 10.1007/978-3-031-19983-7_4. (47-61).

    https://link.springer.com/10.1007/978-3-031-19983-7_4

  • Praczyk T. (2021). Hill Climb Modular Assembler Encoding. Knowledge-Based Systems. 232:C. Online publication date: 28-Nov-2021.

    https://doi.org/10.1016/j.knosys.2021.107493

  • Chen T, Liu J, Li H, Wang S, Niu W, Tong E, Chang L, Chen Q and Li G. (2021). Robustness Assessment of Asynchronous Advantage Actor-Critic Based on Dynamic Skewness and Sparseness Computation: A Parallel Computing View. Journal of Computer Science and Technology. 10.1007/s11390-021-1217-z. 36:5. (1002-1021). Online publication date: 1-Oct-2021.

    https://link.springer.com/10.1007/s11390-021-1217-z

  • Cuccu G, Togelius J and Cudré-Mauroux P. (2021). Playing Atari with few neurons. Autonomous Agents and Multi-Agent Systems. 10.1007/s10458-021-09497-8. 35:2. Online publication date: 1-Oct-2021.

    https://link.springer.com/10.1007/s10458-021-09497-8

  • Xiang X and Foo S. (2021). Recent Advances in Deep Reinforcement Learning Applications for Solving Partially Observable Markov Decision Processes (POMDP) Problems: Part 1—Fundamentals and Applications in Games, Robotics and Natural Language Processing. Machine Learning and Knowledge Extraction. 10.3390/make3030029. 3:3. (554-581).

    https://www.mdpi.com/2504-4990/3/3/29

  • Santara A, Rudra S, Buridi S, Kaushik M, Naik A, Kaul B and Ravindran B. (2021). MADRaS . Journal of Artificial Intelligence Research. 70. (1517-1555). Online publication date: 1-May-2021.

    https://doi.org/10.1613/jair.1.12531

  • Hassanzadeh T, Essam D and Sarker R. 2D to 3D Evolutionary Deep Convolutional Neural Networks for Medical Image Segmentation. IEEE Transactions on Medical Imaging. 10.1109/TMI.2020.3035555. 40:2. (712-721).

    https://ieeexplore.ieee.org/document/9247280/

  • Bi Y, Xue B and Zhang M. (2021). Evolutionary Deep Learning Using GP with Convolution Operators. Genetic Programming for Image Classification. 10.1007/978-3-030-65927-1_5. (97-115).

    http://link.springer.com/10.1007/978-3-030-65927-1_5

  • Watt N and du Plessis M. (2020). Towards robot vision using deep neural networks in evolutionary robotics. Evolutionary Intelligence. 10.1007/s12065-020-00490-w.

    http://link.springer.com/10.1007/s12065-020-00490-w

  • Law P, Yip Lau W, Poon L, Chung A and Lai K. (2020). Smart Prison - Video Analysis for Human Action Detection IECON 2020 - 46th Annual Conference of the IEEE Industrial Electronics Society. 10.1109/IECON43393.2020.9255402. 978-1-7281-5414-5. (513-516).

    https://ieeexplore.ieee.org/document/9255402/

  • Pérez‐Benito F, García‐Gómez J, Navarro‐Pardo E and Conejero J. (2020). Community detection‐based deep neural network architectures: A fully automated framework based on Likert‐scale data. Mathematical Methods in the Applied Sciences. 10.1002/mma.6567. 43:14. (8290-8301). Online publication date: 30-Sep-2020.

    https://onlinelibrary.wiley.com/doi/10.1002/mma.6567

  • Martinez A, Osaba E, Sery J and Herrera F. (2020). Simultaneously Evolving Deep Reinforcement Learning Models using Multifactorial optimization 2020 IEEE Congress on Evolutionary Computation (CEC). 10.1109/CEC48606.2020.9185667. 978-1-7281-6929-3. (1-8).

    https://ieeexplore.ieee.org/document/9185667/

  • Uriot T and Izzo D. Safe crossover of neural networks through neuron alignment. Proceedings of the 2020 Genetic and Evolutionary Computation Conference. (435-443).

    https://doi.org/10.1145/3377930.3390197

  • Choy J, Lee K and Oh S. (2020). Sparse Actor-Critic: Sparse Tsallis Entropy Regularized Reinforcement Learning in a Continuous Action Space 2020 17th International Conference on Ubiquitous Robots (UR). 10.1109/UR49135.2020.9144780. 978-1-7281-5715-3. (68-73).

    https://ieeexplore.ieee.org/document/9144780/

  • Li Y, Wen Y, Tao D and Guan K. Transforming Cooling Optimization for Green Data Center via Deep Reinforcement Learning. IEEE Transactions on Cybernetics. 10.1109/TCYB.2019.2927410. 50:5. (2002-2013).

    https://ieeexplore.ieee.org/document/8772127/

  • Lee S, Ha M and Moon B. Understanding features on evolutionary policy optimizations. Proceedings of the 35th Annual ACM Symposium on Applied Computing. (1112-1118).

    https://doi.org/10.1145/3341105.3373966

  • Hassanzadeh T, Essam D and Sarker R. EvoU-Net. Proceedings of the 35th Annual ACM Symposium on Applied Computing. (181-189).

    https://doi.org/10.1145/3341105.3373856

  • Hassanzadeh T, Essam D and Sarker R. An Evolutionary DenseRes Deep Convolutional Neural Network for Medical Image Segmentation. IEEE Access. 10.1109/ACCESS.2020.3039496. 8. (212298-212314).

    https://ieeexplore.ieee.org/document/9265246/

  • Ye Y, Zhang X and Sun J. (2019). Automated vehicle’s behavior decision making using deep reinforcement learning and high-fidelity simulation environment. Transportation Research Part C: Emerging Technologies. 10.1016/j.trc.2019.08.011. 107. (155-170). Online publication date: 1-Oct-2019.

    https://linkinghub.elsevier.com/retrieve/pii/S0968090X19311301

  • Kotyan S, Vargas D and Venkanna U. (2019). Self Training Autonomous Driving Agent 2019 58th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE). 10.23919/SICE.2019.8859883. 978-4-9077-6467-8. (1456-1461).

    https://ieeexplore.ieee.org/document/8859883/

  • Risi S and Stanley K. Deep neuroevolution of recurrent and discrete world models. Proceedings of the Genetic and Evolutionary Computation Conference. (456-462).

    https://doi.org/10.1145/3321707.3321817

  • Pang L, Zhang Y, Coleman S and Cao H. (2019). Efficient Hybrid-Supervised Deep Reinforcement Learning for Person Following Robot. Journal of Intelligent & Robotic Systems. 10.1007/s10846-019-01030-0.

    http://link.springer.com/10.1007/s10846-019-01030-0

  • Muhammad Masum A, Abdur Rahman M, Abdullah M, Bin Sarwar Chowdhury S, Faysal Khan T and Kaiser Raihan M. (2019). A Supervised Learning Approach to An Unmanned Autonomous Vehicle 2019 International Conference on Intelligent Computing and Control Systems (ICCS). 10.1109/ICCS45141.2019.9065485. 978-1-5386-8113-8. (1549-1554).

    https://ieeexplore.ieee.org/document/9065485/

  • Baldominos A, Saez Y and Isasi P. (2019). On the automated, evolutionary design of neural networks: past, present, and future. Neural Computing and Applications. 10.1007/s00521-019-04160-6.

    http://link.springer.com/10.1007/s00521-019-04160-6

  • Zhu W, Yeh W, Chen J, Chen D, Li A and Lin Y. Evolutionary Convolutional Neural Networks Using ABC. Proceedings of the 2019 11th International Conference on Machine Learning and Computing. (156-162).

    https://doi.org/10.1145/3318299.3318301

  • Baldominos A, Saez Y, Isasi P and Scarpiniti M. (2019). Hybridizing Evolutionary Computation and Deep Neural Networks: An Approach to Handwriting Recognition Using Committees and Transfer Learning. Complexity. 10.1155/2019/2952304. 2019:1. Online publication date: 1-Jan-2019.

    https://onlinelibrary.wiley.com/doi/10.1155/2019/2952304

  • Ellefsen K and Torresen J. (2019). Self-adapting Goals Allow Transfer of Predictive Models to New Tasks. Nordic Artificial Intelligence Research and Development. 10.1007/978-3-030-35664-4_3. (28-39).

    http://link.springer.com/10.1007/978-3-030-35664-4_3

  • Kato K, Chin W, Toda Y and Kubota N. (2018). A Multi-channel Episodic Memory Model for Human Action Learning and Recognition 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC). 10.1109/SMC.2018.00151. 978-1-5386-6650-0. (843-849).

    https://ieeexplore.ieee.org/document/8616147/

  • Vasilyev V, Sulavko A, Fofanov G and Inivatov D. (2018). Applicability of Classical and Hybrid Neural Network Algorithms in Problems of Recognition of Biometric Patterns 2018 XIV International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering (APEIE). 10.1109/APEIE.2018.8545122. 978-1-5386-7054-5. (563-568).

    https://ieeexplore.ieee.org/document/8545122/

  • Bári G. (2018). Modelling the situation of driving on the grip limit with DDPG algorithm. IOP Conference Series: Materials Science and Engineering. 10.1088/1757-899X/393/1/012031. 393. (012031).

    https://iopscience.iop.org/article/10.1088/1757-899X/393/1/012031

  • Lorenzo P and Nalepa J. Memetic evolution of deep neural networks. Proceedings of the Genetic and Evolutionary Computation Conference. (505-512).

    https://doi.org/10.1145/3205455.3205631

  • Garciarena U, Santana R and Mendiburu A. Evolved GANs for generating pareto set approximations. Proceedings of the Genetic and Evolutionary Computation Conference. (434-441).

    https://doi.org/10.1145/3205455.3205550

  • Lehman J, Chen J, Clune J and Stanley K. Safe mutations for deep and recurrent neural networks through output gradients. Proceedings of the Genetic and Evolutionary Computation Conference. (117-124).

    https://doi.org/10.1145/3205455.3205473

  • Assuncao F, Sereno D, Lourenco N, Machado P and Ribeiro B. (2018). Automatic Evolution of AutoEncoders for Compressed Representations 2018 IEEE Congress on Evolutionary Computation (CEC). 10.1109/CEC.2018.8477874. 978-1-5090-6017-7. (1-8).

    https://ieeexplore.ieee.org/document/8477874/

  • Zhang Y, Sun P, Yin Y, Lin L and Wang X. (2018). Human-like Autonomous Vehicle Speed Control by Deep Reinforcement Learning with Double Q-Learning 2018 IEEE Intelligent Vehicles Symposium (IV). 10.1109/IVS.2018.8500630. 978-1-5386-4452-2. (1251-1256).

    https://ieeexplore.ieee.org/document/8500630/

  • Zhigang Z, Guangxue D, Huan L, Guangbing Z, Nan W and Wenjie Y. (2018). Human behavior recognition method based on double-branch deep convolution neural network 2018 Chinese Control And Decision Conference (CCDC). 10.1109/CCDC.2018.8408093. 978-1-5386-1244-6. (5520-5524).

    https://ieeexplore.ieee.org/document/8408093/

  • Baldominos A, Saez Y and Isasi P. (2018). Evolutionary Design of Convolutional Neural Networks for Human Activity Recognition in Sensor-Rich Environments. Sensors. 10.3390/s18041288. 18:4. (1288).

    http://www.mdpi.com/1424-8220/18/4/1288

  • Ma Z, Wang C, Niu Y, Wang X and Shen L. (2018). A saliency-based reinforcement learning approach for a UAV to avoid flying obstacles. Robotics and Autonomous Systems. 10.1016/j.robot.2017.10.009. 100. (108-118). Online publication date: 1-Feb-2018.

    https://linkinghub.elsevier.com/retrieve/pii/S0921889017301136

  • Vasilyev V, Lozhnikov P, Sulavko A, Fofanov G and Zhumazhanova S. S. (2018). Flexible fast learning neural networks and their application for building highly reliable biometric cryptosystems based on dynamic features. IFAC-PapersOnLine. 10.1016/j.ifacol.2018.11.272. 51:30. (527-532).

    https://linkinghub.elsevier.com/retrieve/pii/S2405896318329458

  • Meraoumia A, Chitroub S, Chergui O and Bendjenna H. (2018). Investments in Deep Learning Techniques for Improving the Biometric System Accuracy. 5th International Symposium on Data Mining Applications. 10.1007/978-3-319-78753-4_15. (197-209).

    http://link.springer.com/10.1007/978-3-319-78753-4_15

  • Baldominos A, Saez Y and Isasi P. (2018). Model Selection in Committees of Evolved Convolutional Neural Networks Using Genetic Algorithms. Intelligent Data Engineering and Automated Learning – IDEAL 2018. 10.1007/978-3-030-03493-1_39. (364-373).

    https://link.springer.com/10.1007/978-3-030-03493-1_39

  • Desell T. (2017). Developing a Volunteer Computing Project to Evolve Convolutional Neural Networks and Their Hyperparameters 2017 IEEE 13th International Conference on e-Science (e-Science). 10.1109/eScience.2017.14. 978-1-5386-2686-3. (19-28).

    http://ieeexplore.ieee.org/document/8109119/

  • Chae H, Kang C, Kim B, Kim J, Chung C and Choi J. (2017). Autonomous braking system via deep reinforcement learning 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC). 10.1109/ITSC.2017.8317839. 978-1-5386-1526-3. (1-6).

    http://ieeexplore.ieee.org/document/8317839/

  • Alvernaz S and Togelius J. Autoencoder-augmented neuroevolution for visual doom playing. 2017 IEEE Conference on Computational Intelligence and Games (CIG). (1-8).

    https://doi.org/10.1109/CIG.2017.8080408

  • Poulsen A, Thorhauge M, Funch M and Risi S. (2017). DLNE: A hybridization of deep learning and neuroevolution for visual control 2017 IEEE Conference on Computational Intelligence and Games (CIG). 10.1109/CIG.2017.8080444. 978-1-5386-3233-8. (256-263).

    http://ieeexplore.ieee.org/document/8080444/

  • Poulsen A, Thorhauge M, Funch M and Risi S. A deep learning / neuroevolution hybrid for visual control. Proceedings of the Genetic and Evolutionary Computation Conference Companion. (93-94).

    https://doi.org/10.1145/3067695.3076016

  • Wolf P, Hubschneider C, Weber M, Bauer A, Hartl J, Durr F and Zollner J. (2017). Learning how to drive in a real world simulation with deep Q-Networks 2017 IEEE Intelligent Vehicles Symposium (IV). 10.1109/IVS.2017.7995727. 978-1-5090-4804-5. (244-250).

    http://ieeexplore.ieee.org/document/7995727/

  • Chebotar Y, Kalakrishnan M, Yahya A, Li A, Schaal S and Levine S. (2017). Path integral guided policy search 2017 IEEE International Conference on Robotics and Automation (ICRA). 10.1109/ICRA.2017.7989384. 978-1-5090-4633-1. (3381-3388).

    http://ieeexplore.ieee.org/document/7989384/

  • Kulkarni T, Narasimhan K, Saeedi A and Tenenbaum J. Hierarchical deep reinforcement learning. Proceedings of the 30th International Conference on Neural Information Processing Systems. (3682-3690).

    /doi/10.5555/3157382.3157509

  • Nogueira R and Cho K. End-to-end goal-driven web navigation. Proceedings of the 30th International Conference on Neural Information Processing Systems. (1911-1919).

    /doi/10.5555/3157096.3157310

  • Kempka M, Wydmuch M, Runc G, Toczek J and Jaskowski W. (2016). ViZDoom: A Doom-based AI research platform for visual reinforcement learning 2016 IEEE Conference on Computational Intelligence and Games (CIG). 10.1109/CIG.2016.7860433. 978-1-5090-1883-3. (1-8).

    http://ieeexplore.ieee.org/document/7860433/

  • Rawal A and Miikkulainen R. Evolving Deep LSTM-based Memory Networks using an Information Maximization Objective. Proceedings of the Genetic and Evolutionary Computation Conference 2016. (501-508).

    https://doi.org/10.1145/2908812.2908941

  • Sigaud O and Droniou A. Towards Deep Developmental Learning. IEEE Transactions on Cognitive and Developmental Systems. 10.1109/TAMD.2015.2496248. 8:2. (99-114).

    http://ieeexplore.ieee.org/document/7312936/

  • Rui L, Ma S, Liu L, Wen J and Ahmad B. (2016). Human Action Recognition Based on Angle Descriptor. Theory, Methodology, Tools and Applications for Modeling and Simulation of Complex Systems. 10.1007/978-981-10-2666-9_61. (609-617).

    http://link.springer.com/10.1007/978-981-10-2666-9_61

  • Mohamed S and Rezende D. Variational information maximisation for intrinsically motivated reinforcement learning. Proceedings of the 29th International Conference on Neural Information Processing Systems - Volume 2. (2125-2133).

    /doi/10.5555/2969442.2969477

  • Young S, Rose D, Karnowski T, Lim S and Patton R. Optimizing deep learning hyper-parameters through an evolutionary algorithm. Proceedings of the Workshop on Machine Learning in High-Performance Computing Environments. (1-5).

    https://doi.org/10.1145/2834892.2834896

  • Yong Du , Wang W and Wang L. (2015). Hierarchical recurrent neural network for skeleton based action recognition 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 10.1109/CVPR.2015.7298714. 978-1-4673-6964-0. (1110-1118).

    http://ieeexplore.ieee.org/document/7298714/

  • Koutník J, Schmidhuber J and Gomez F. (2014). Online Evolution of Deep Convolutional Network for Vision-Based Reinforcement Learning. From Animals to Animats 13. 10.1007/978-3-319-08864-8_25. (260-269).

    http://link.springer.com/10.1007/978-3-319-08864-8_25

  • HassanZadeh T, Essam D and Sarker R. Eevou-Net: An Ensemble of Evolutionary Deep Fully Convolutional Neural Networks for Medical Image Segmentation. SSRN Electronic Journal. 10.2139/ssrn.4108586.

    https://www.ssrn.com/abstract=4108586