Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
  • Tao X, Jiazheng S, Xiangqiang Z, Chongchong Y and Wenbin F. (2024). Efficient Design and Implementation of Binocular Stereo Matching Algorithm for Embedded Systems 2024 43rd Chinese Control Conference (CCC). 10.23919/CCC63176.2024.10662045. 978-9-8875-8158-1. (7948-7954).

    https://ieeexplore.ieee.org/document/10662045/

  • Liang Y, Lin D, Chen Z, Zhi Y, Tan J, Yang Z and Li J. (2024). Research and implementation of adaptive stereo matching algorithm based on ZYNQ. Journal of Real-Time Image Processing. 21:2. Online publication date: 1-Apr-2024.

    https://doi.org/10.1007/s11554-024-01428-6

  • Yang Z, Liang Y, Lin D, Li J, Chen Z and Li X. Real-Time Stereo Vision Hardware Accelerator: Fusion of SAD and Adaptive Census Algorithm. IEEE Access. 10.1109/ACCESS.2024.3479230. 12. (154975-154989).

    https://ieeexplore.ieee.org/document/10716391/

  • Mandal S, Cholachgudda K, Chamakura L, Biradar R and Devanagavi G. (2023). JetVision: A Low-Cost Real-Time Depth Estimation System using Jetson Computing Platform 2023 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT). 10.1109/CONECCT57959.2023.10234820. 979-8-3503-3439-5. (1-6).

    https://ieeexplore.ieee.org/document/10234820/

  • Choi C, Oh H, Han J and Shin J. Cell-Based Refinement Processor Utilizing Disparity Characteristics of Road Environment for SGM-Based Stereo Vision Systems. IEEE Access. 10.1109/ACCESS.2023.3338649. 11. (138122-138140).

    https://ieeexplore.ieee.org/document/10339275/

  • Ling Y, He T, Zhang Y, Meng H, Huang K and Chen G. Lite-Stereo: A Resource-Efficient Hardware Accelerator for Real-Time High-Quality Stereo Estimation Using Binary Neural Network. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 10.1109/TCAD.2022.3163629. 41:12. (5357-5366).

    https://ieeexplore.ieee.org/document/9745102/

  • Lu Z, Wang J, Li Z, Chen S and Wu F. A Resource-Efficient Pipelined Architecture for Real-Time Semi-Global Stereo Matching. IEEE Transactions on Circuits and Systems for Video Technology. 10.1109/TCSVT.2021.3061704. 32:2. (660-673).

    https://ieeexplore.ieee.org/document/9363929/

  • Chen Y, Chen W, Liao S, Chen P, Fang H and Tai T. A High-Speed Low-Cost Hardware Implementation for Depth Estimation Using Disparity Fusion Method. IEEE Access. 10.1109/ACCESS.2022.3189008. 10. (72850-72865).

    https://ieeexplore.ieee.org/document/9817129/

  • Ling Y, He T, Meng H, Zhang Y and Chen G. (2021). Hardware accelerator for an accurate local stereo matching algorithm using binary neural network. Journal of Systems Architecture: the EUROMICRO Journal. 117:C. Online publication date: 1-Aug-2021.

    https://doi.org/10.1016/j.sysarc.2021.102110

  • Leon V, Lentaris G, Petrongonas E, Soudris D, Furano G, Tavoularis A and Moloney D. (2021). Improving Performance-Power-Programmability in Space Avionics with Edge Devices: VBN on Myriad2 SoC. ACM Transactions on Embedded Computing Systems. 20:3. (1-23). Online publication date: 31-May-2021.

    https://doi.org/10.1145/3440885

  • Wan Z, Yu B, Li T, Tang J, Zhu Y, Wang Y, Raychowdhury A and Liu S. A Survey of FPGA-Based Robotic Computing. IEEE Circuits and Systems Magazine. 10.1109/MCAS.2021.3071609. 21:2. (48-74).

    https://ieeexplore.ieee.org/document/9439435/

  • Saidi T, Khouas A and Amira A. (2020). Accelerating Stereo Matching on Mutlicore ARM Platform 2020 IEEE International Symposium on Circuits and Systems (ISCAS). 10.1109/ISCAS45731.2020.9180982. 978-1-7281-3320-1. (1-5).

    https://ieeexplore.ieee.org/document/9180982/

  • Li Y, Claesen L, Huang K and Zhao M. A Real-Time High-Quality Complete System for Depth Image-Based Rendering on FPGA. IEEE Transactions on Circuits and Systems for Video Technology. 10.1109/TCSVT.2018.2825022. 29:4. (1179-1193).

    https://ieeexplore.ieee.org/document/8334297/

  • Lentaris G, Maragos K, Soudris D, Zabulis X and Lourakis M. (2019). Single- and Multi-FPGA Acceleration of Dense Stereo Vision for Planetary Rovers. ACM Transactions on Embedded Computing Systems. 18:2. (1-27). Online publication date: 31-Mar-2019.

    https://doi.org/10.1145/3312743

  • Rahnama O, Cavalleri T, Golodetz S, Walker S and Torr P. (2018). R3SGM: Real-Time Raster-Respecting Semi-Global Matching for Power-Constrained Systems 2018 International Conference on Field-Programmable Technology (FPT). 10.1109/FPT.2018.00025. 978-1-7281-0214-6. (102-109).

    https://ieeexplore.ieee.org/document/8742334/

  • Bonny T, Rabie T and Hafez A. (2018). Multiple histogram-based face recognition with high speed FPGA implementation. Multimedia Tools and Applications. 77:18. (24269-24288). Online publication date: 1-Sep-2018.

    https://doi.org/10.1007/s11042-018-5647-8

  • Leech C, Kumar C, Acharyya A, Yang S, Merrett G and Al-Hashimi B. (2017). Runtime Performance and Power Optimization of Parallel Disparity Estimation on Many-Core Platforms. ACM Transactions on Embedded Computing Systems. 17:2. (1-19). Online publication date: 31-Mar-2018.

    https://doi.org/10.1145/3133560

  • Vala C, Immadisetty K, Acharyya A, Leech C, Balagopal V, Merrett G and Al-Hashimi B. High-Speed Low-Complexity Guided Image Filtering-Based Disparity Estimation. IEEE Transactions on Circuits and Systems I: Regular Papers. 10.1109/TCSI.2017.2729084. 65:2. (606-617).

    http://ieeexplore.ieee.org/document/8006314/

  • Puglia L, Vigliar M and Raiconi G. Real-Time Low-Power FPGA Architecture for Stereo Vision. IEEE Transactions on Circuits and Systems II: Express Briefs. 10.1109/TCSII.2017.2691675. 64:11. (1307-1311).

    http://ieeexplore.ieee.org/document/7893762/

  • Dehnavi M and Eshghi M. (2017). FPGA based real-time on-road stereo vision system. Journal of Systems Architecture: the EUROMICRO Journal. 81:C. (32-43). Online publication date: 1-Nov-2017.

    https://doi.org/10.1016/j.sysarc.2017.10.002

  • Poggi M, Tosi F and Mattoccia S. (2017). Efficient Confidence Measures for Embedded Stereo. Image Analysis and Processing - ICIAP 2017. 10.1007/978-3-319-68560-1_43. (483-494).

    https://link.springer.com/10.1007/978-3-319-68560-1_43

  • Li Y, Huang K and Claesen L. (2017). A Novel Hardware-Oriented Stereo Matching Algorithm and Its Architecture Design in FPGA. VLSI-SoC: System-on-Chip in the Nanoscale Era – Design, Verification and Reliability. 10.1007/978-3-319-67104-8_11. (213-232).

    http://link.springer.com/10.1007/978-3-319-67104-8_11

  • Ma N, Men Y, Men C and Li X. (2016). Accurate Dense Stereo Matching Based on Image Segmentation Using an Adaptive Multi-Cost Approach. Symmetry. 10.3390/sym8120159. 8:12. (159).

    http://www.mdpi.com/2073-8994/8/12/159

  • Poggi M and Mattoccia S. (2016). Evaluation of variants of the SGM algorithm aimed at implementation on embedded or reconfigurable devices 2016 International Conference on 3D Imaging (IC3D). 10.1109/IC3D.2016.7823457. 978-1-5090-5743-6. (1-8).

    http://ieeexplore.ieee.org/document/7823457/

  • Yanzhe Li , Kai Huang and Claesen L. (2016). SoC oriented real-time high-quality stereo vision system 2016 IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC). 10.1109/VLSI-SoC.2016.7753558. 978-1-5090-3561-8. (1-6).

    http://ieeexplore.ieee.org/document/7753558/

  • Sichao Wang and Maruyama T. (2016). An implementation method of the box filter on FPGA 2016 26th International Conference on Field Programmable Logic and Applications (FPL). 10.1109/FPL.2016.7577364. 978-2-8399-1844-2. (1-8).

    http://ieeexplore.ieee.org/document/7577364/

  • Masmoudi M, Jerad C and Attia R. (2016). On-the-Fly Architecture Design and Implementation of a Real-Time Stereovision System. Advanced Concepts for Intelligent Vision Systems. 10.1007/978-3-319-48680-2_62. (711-722).

    http://link.springer.com/10.1007/978-3-319-48680-2_62

  • Wang W, Yan J, Xu N, Wang Y and Hsu F. Real-Time High-Quality Stereo Vision System in FPGA. IEEE Transactions on Circuits and Systems for Video Technology. 10.1109/TCSVT.2015.2397196. 25:10. (1696-1708).

    http://ieeexplore.ieee.org/document/7027849/

  • Mattoccia S and Poggi M. A passive RGBD sensor for accurate and real-time depth sensing self-contained into an FPGA. Proceedings of the 9th International Conference on Distributed Smart Cameras. (146-151).

    https://doi.org/10.1145/2789116.2789148

  • Kenter T, Schmitz H and Plessl C. (2015). Exploring trade-offs between specialized dataflow kernels and a reusable overlay in a stereo matching case study. International Journal of Reconfigurable Computing. 2015. (12-12). Online publication date: 1-Jan-2015.

    https://doi.org/10.1155/2015/859425

  • Kenter T, Schmitz H and Plessl C. (2014). Kernel-centric acceleration of high accuracy stereo-matching 2014 International Conference on ReConFigurable Computing and FPGAs (ReConFig). 10.1109/ReConFig.2014.7032535. 978-1-4799-5944-0. (1-8).

    http://ieeexplore.ieee.org/document/7032535/