Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
  • Dou M, Wang Y, Qiao M, Wang D, Gong J and Gu Y. (2024). Public responses to heatwaves in Chinese cities: A social media-based geospatial modelling approach. International Journal of Applied Earth Observation and Geoinformation. 10.1016/j.jag.2024.104205. 134. (104205). Online publication date: 1-Nov-2024.

    https://linkinghub.elsevier.com/retrieve/pii/S1569843224005612

  • Duncan B, Kallumadi S, Berg-Kirkpatrick T and Mcauley J. MAWI Rec: Leveraging Severe Weather Data in Recommendation. Proceedings of the 18th ACM Conference on Recommender Systems. (850-854).

    https://doi.org/10.1145/3640457.3688157

  • Wagener N, Bentvelzen M, Dänekas B, Woźniak P and Niess J. VeatherReflect: Employing Weather as Qualitative Representation of Stress Data in Virtual Reality. Proceedings of the 2023 ACM Designing Interactive Systems Conference. (446-458).

    https://doi.org/10.1145/3563657.3596125

  • Bojić L, Mitrović-Dankulov M and Pantelić N. (2023). Humidity and air temperature predict post count on Twitter in 10 countries: Weather changes & LIWC psychological categories. Ekonomika preduzeca. 10.5937/EKOPRE2303213B. 71:3-4. (213-229).

    https://scindeks.ceon.rs/Article.aspx?artid=0353-443X2303213B

  • GÜNGÖR S and TOMRİS KÜÇÜN N. (2022). Ruh Halimizi Etkileyen Hava Durumu Parametreleri Borsa Verilerini De Etkiler Mi?Do Weather Parameters That Affect Our Mood Also Affect Stock Market Data?. 19 Mayıs Sosyal Bilimler Dergisi. 10.52835/19maysbd.1161210. 3:3. (334-340).

    http://dergipark.org.tr/tr/doi/10.52835/19maysbd.1161210

  • Stevens H, Graham P, Beggs P and Hanigan I. (2020). In Cold Weather We Bark, But in Hot Weather We Bite: Patterns in Social Media Anger, Aggressive Behavior, and Temperature. Environment and Behavior. 10.1177/0013916520937455. 53:7. (787-805). Online publication date: 1-Aug-2021.

    https://journals.sagepub.com/doi/10.1177/0013916520937455

  • Zhang J, Jiang W, Zhang J, Wu J and Wang G. (2021). Exploring Weather Data to Predict Activity Attendance in Event-based Social Network. ACM Transactions on the Web. 15:2. (1-25). Online publication date: 31-May-2021.

    https://doi.org/10.1145/3440134

  • Weaver I, Williams H and Arthur R. (2021). A social Beaufort scale to detect high winds using language in social media posts. Scientific Reports. 10.1038/s41598-021-82808-x. 11:1.

    https://www.nature.com/articles/s41598-021-82808-x

  • Liu C and Fuhrmann S. (2020). Analyzing relationship between user‐generated content and local visual information with augmented reality‐based location‐based social networks. Transactions in GIS. 10.1111/tgis.12630. 24:3. (704-718). Online publication date: 1-Jun-2020.

    https://onlinelibrary.wiley.com/doi/10.1111/tgis.12630

  • Zhu Y, Zhang S, Li Y, Lu H, Shi K and Niu Z. (2019). Social weather: A review of crowdsourcing‐assisted meteorological knowledge services through social cyberspace. Geoscience Data Journal. 10.1002/gdj3.85. 7:1. (61-79). Online publication date: 1-Jun-2020.

    https://rmets.onlinelibrary.wiley.com/doi/10.1002/gdj3.85

  • Taylor S, Jaques N, Nosakhare E, Sano A and Picard R. Personalized Multitask Learning for Predicting Tomorrow's Mood, Stress, and Health. IEEE Transactions on Affective Computing. 10.1109/TAFFC.2017.2784832. 11:2. (200-213).

    https://ieeexplore.ieee.org/document/8226850/

  • Spruce M, Arthur R and Williams H. (2020). Using social media to measure impacts of named storm events in the United Kingdom and Ireland. Meteorological Applications. 10.1002/met.1887. 27:1. Online publication date: 1-Jan-2020.

    https://rmets.onlinelibrary.wiley.com/doi/10.1002/met.1887

  • Shah Z, Martin P, Coiera E, Mandl K and Dunn A. (2019). Modeling Spatiotemporal Factors Associated With Sentiment on Twitter: Synthesis and Suggestions for Improving the Identification of Localized Deviations. Journal of Medical Internet Research. 10.2196/12881. 21:5. (e12881).

    https://www.jmir.org/2019/5/e12881/

  • Garcia-Mancilla J, Ramirez-Marquez J, Lipizzi C, Vesonder G and Gonzalez V. (2018). Characterizing negative sentiments in at-risk populations via crowd computing: a computational social science approach. International Journal of Data Science and Analytics. 10.1007/s41060-018-0135-9. 7:3. (165-177). Online publication date: 1-Apr-2019.

    http://link.springer.com/10.1007/s41060-018-0135-9

  • Al-Shehhi A, Grey I and Thomas J. (2019). Big Data and Wellbeing in the Arab World. Positive Psychology in the Middle East/North Africa. 10.1007/978-3-030-13921-6_8. (159-182).

    http://link.springer.com/10.1007/978-3-030-13921-6_8

  • Wu X, Shi B, Dong Y, Huang C, Faust L and Chawla N. RESTFul. Proceedings of the 27th ACM International Conference on Information and Knowledge Management. (1073-1082).

    https://doi.org/10.1145/3269206.3271794

  • Lu H, Zhu Y, Shi K, Lv Y, Shi P and Niu Z. (2018). Using Adverse Weather Data in Social Media to Assist with City-Level Traffic Situation Awareness and Alerting. Applied Sciences. 10.3390/app8071193. 8:7. (1193).

    https://www.mdpi.com/2076-3417/8/7/1193

  • Qian J, Niu Z and Shi C. Sentiment Analysis Model on Weather Related Tweets with Deep Neural Network. Proceedings of the 2018 10th International Conference on Machine Learning and Computing. (31-35).

    https://doi.org/10.1145/3195106.3195111

  • Mayr K. (2018). Sonnwende und Sonnwendfeiern. Psychologie der Rituale und Bräuche. 10.1007/978-3-662-56219-2_6. (55-65).

    https://link.springer.com/10.1007/978-3-662-56219-2_6

  • Zimmerman S and Kruschwitz U. (2017). Speaking of the weather: Detection of meteorological influences on sentiment within social media 2017 9th Computer Science and Electronic Engineering (CEEC). 10.1109/CEEC.2017.8101590. 978-1-5386-3007-5. (1-6).

    http://ieeexplore.ieee.org/document/8101590/

  • Jung J and Uejio C. (2017). Social media responses to heat waves. International Journal of Biometeorology. 10.1007/s00484-016-1302-0. 61:7. (1247-1260). Online publication date: 1-Jul-2017.

    http://link.springer.com/10.1007/s00484-016-1302-0

  • Dzogang F, Lansdall-Welfare T and Cristianini N. (2016). Seasonal Fluctuations in Collective Mood Revealed by Wikipedia Searches and Twitter Posts 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW). 10.1109/ICDMW.2016.0136. 978-1-5090-5910-2. (931-937).

    http://ieeexplore.ieee.org/document/7836767/

  • Modoni G and Tosi D. (2016). Correlation of Weather and Moods of the Italy Residents through an Analysis of Their Tweets 2016 IEEE 4th International Conference on Future Internet of Things and Cloud Workshops (FiCloudW). 10.1109/W-FiCloud.2016.53. 978-1-5090-3946-3. (216-219).

    http://ieeexplore.ieee.org/document/7592727/

  • Arunraj N and Ahrens D. (2016). (2016). Estimation of non-catastrophic weather impacts for retail industry. International Journal of Retail & Distribution Management. 10.1108/IJRDM-07-2015-0101. 44:7. (731-753). Online publication date: 11-Jul-2016.. Online publication date: 11-Jul-2016.

    https://www.emerald.com/insight/content/doi/10.1108/IJRDM-07-2015-0101/full/html

  • Palomino M, Taylor T, Göker A, Isaacs J and Warber S. (2016). The Online Dissemination of Nature–Health Concepts: Lessons from Sentiment Analysis of Social Media Relating to “Nature-Deficit Disorder”. International Journal of Environmental Research and Public Health. 10.3390/ijerph13010142. 13:1. (142).

    https://www.mdpi.com/1660-4601/13/1/142