Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
  • Pani T, Weissenbacher G and Zuleger F. (2023). Thread-modular counter abstraction: automated safety and termination proofs of parameterized software by reduction to sequential program verification. Formal Methods in System Design. 10.1007/s10703-023-00439-6. 64:1-3. (108-145). Online publication date: 1-Dec-2024.

    https://link.springer.com/10.1007/s10703-023-00439-6

  • Farzan A, Klumpp D and Podelski A. (2024). Commutativity Simplifies Proofs of Parameterized Programs. Proceedings of the ACM on Programming Languages. 8:POPL. (2485-2513). Online publication date: 5-Jan-2024.

    https://doi.org/10.1145/3632925

  • Farzan A. (2023). Commutativity in Automated Verification 2023 38th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). 10.1109/LICS56636.2023.10175734. 979-8-3503-3587-3. (1-7).

    https://ieeexplore.ieee.org/document/10175734/

  • Long T, Ren X, Wang Q and Wang C. (2022). Verifying the safety properties of distributed systems via mergeable parallelism. Journal of Systems Architecture. 10.1016/j.sysarc.2022.102646. 130. (102646). Online publication date: 1-Sep-2022.

    https://linkinghub.elsevier.com/retrieve/pii/S1383762122001655

  • Long T, Ren X, Wang Q and Wang C. Verifying the Correctness of Distributed Systems via Mergeable Parallelism. Dependable Software Engineering. Theories, Tools, and Applications. (122-140).

    https://doi.org/10.1007/978-3-030-91265-9_7

  • Mathur U, Madhusudan P and Viswanathan M. What’s Decidable About Program Verification Modulo Axioms?. Tools and Algorithms for the Construction and Analysis of Systems. (158-177).

    https://doi.org/10.1007/978-3-030-45237-7_10

  • Farzan A and Vandikas A. (2019). Reductions for safety proofs. Proceedings of the ACM on Programming Languages. 4:POPL. (1-28). Online publication date: 1-Jan-2020.

    https://doi.org/10.1145/3371081

  • Mathur U, Madhusudan P and Viswanathan M. (2019). Decidable verification of uninterpreted programs. Proceedings of the ACM on Programming Languages. 3:POPL. (1-29). Online publication date: 2-Jan-2019.

    https://doi.org/10.1145/3290359

  • Feldman Y, Wilcox J, Shoham S and Sagiv M. (2019). Inferring Inductive Invariants from Phase Structures. Computer Aided Verification. 10.1007/978-3-030-25543-5_23. (405-425).

    http://link.springer.com/10.1007/978-3-030-25543-5_23

  • Konnov I, Lazić M, Veith H and Widder J. (2017). Para$$^2$$2. Formal Methods in System Design. 51:2. (270-307). Online publication date: 1-Nov-2017.

    https://doi.org/10.1007/s10703-017-0297-4

  • Hoenicke J, Majumdar R and Podelski A. (2017). Thread modularity at many levels: a pearl in compositional verification. ACM SIGPLAN Notices. 52:1. (473-485). Online publication date: 11-May-2017.

    https://doi.org/10.1145/3093333.3009893

  • Hoenicke J, Majumdar R and Podelski A. Thread modularity at many levels: a pearl in compositional verification. Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages. (473-485).

    https://doi.org/10.1145/3009837.3009893

  • Delzanno G. (2016). A unified view of parameterized verification of abstract models of broadcast communication. International Journal on Software Tools for Technology Transfer (STTT). 18:5. (475-493). Online publication date: 1-Oct-2016.

    https://doi.org/10.1007/s10009-016-0412-7

  • Gleissenthall K, Bjørner N and Rybalchenko A. (2016). Cardinalities and universal quantifiers for verifying parameterized systems. ACM SIGPLAN Notices. 51:6. (599-613). Online publication date: 1-Aug-2016.

    https://doi.org/10.1145/2980983.2908129

  • Farzan A, Kincaid Z and Podelski A. Proving Liveness of Parameterized Programs. Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science. (185-196).

    https://doi.org/10.1145/2933575.2935310

  • Gleissenthall K, Bjørner N and Rybalchenko A. Cardinalities and universal quantifiers for verifying parameterized systems. Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation. (599-613).

    https://doi.org/10.1145/2908080.2908129

  • Bloem R, Jacobs S, Khalimov A, Konnov I, Rubin S, Veith H and Widder J. (2015). Decidability of Parameterized Verification. Synthesis Lectures on Distributed Computing Theory. 10.2200/S00658ED1V01Y201508DCT013. 6:1. (1-170). Online publication date: 29-Sep-2015.

    http://www.morganclaypool.com/doi/10.2200/S00658ED1V01Y201508DCT013

  • Cousot P. Verification by abstract interpretation, soundness and abstract induction. Proceedings of the 17th International Symposium on Principles and Practice of Declarative Programming. (1-4).

    https://doi.org/10.1145/2790449.2790451

  • Farzan A, Heizmann M, Hoenicke J, Kincaid Z and Podelski A. (2015). Automated Program Verification. Language and Automata Theory and Applications. 10.1007/978-3-319-15579-1_2. (25-46).

    https://link.springer.com/10.1007/978-3-319-15579-1_2

  • Murphy C and Kincaid Z. (2019). A Practical Algorithm for Structure Embedding. Verification, Model Checking, and Abstract Interpretation. 10.1007/978-3-030-11245-5_16. (342-362).

    http://link.springer.com/10.1007/978-3-030-11245-5_16

  • Iosif R and Xu X. (2019). Alternating Automata Modulo First Order Theories. Computer Aided Verification. 10.1007/978-3-030-25543-5_3. (43-63).

    http://link.springer.com/10.1007/978-3-030-25543-5_3

  • Farzan A and Vandikas A. (2019). Automated Hypersafety Verification. Computer Aided Verification. 10.1007/978-3-030-25540-4_11. (200-218).

    http://link.springer.com/10.1007/978-3-030-25540-4_11

  • Liu P, Wahl T and Lal A. (2019). Verifying Asynchronous Event-Driven Programs Using Partial Abstract Transformers. Computer Aided Verification. 10.1007/978-3-030-25543-5_22. (386-404).

    http://link.springer.com/10.1007/978-3-030-25543-5_22

  • Iosif R and Xu X. (2018). Abstraction Refinement for Emptiness Checking of Alternating Data Automata. Tools and Algorithms for the Construction and Analysis of Systems. 10.1007/978-3-319-89963-3_6. (93-111).

    http://link.springer.com/10.1007/978-3-319-89963-3_6

  • Iosif R, Rogalewicz A and Vojnar T. Abstraction Refinement and Antichains for Trace Inclusion of Infinite State Systems. Proceedings of the 22nd International Conference on Tools and Algorithms for the Construction and Analysis of Systems - Volume 9636. (71-89).

    https://doi.org/10.1007/978-3-662-49674-9_5

  • Holík L and Meyer R. (2015). Antichains for the Verification of Recursive Programs. Networked Systems. 10.1007/978-3-319-26850-7_22. (322-336).

    http://link.springer.com/10.1007/978-3-319-26850-7_22

  • Pani T, Weissenbacher G and Zuleger F. (2023). Thread-modular counter abstraction: automated safety and termination proofs of parameterized software by reduction to sequential program verification. Formal Methods in System Design. 10.1007/s10703-023-00439-6.

    https://link.springer.com/10.1007/s10703-023-00439-6