Stankovič M and Bartocci E. Probabilistic Loop Synthesis from Sequences of Moments. Quantitative Evaluation of Systems and Formal Modeling and Analysis of Timed Systems. (233-248).
Klaus J, Blacher M, Goral A, Lucas P and Giesen J.
(2023). A visual analytics workflow for probabilistic modeling. Visual Informatics. 10.1016/j.visinf.2023.05.001. 7:2. (72-84). Online publication date: 1-Jun-2023.
Andriushchenko R, Češka M, Junges S and Katoen J.
(2021). Inductive Synthesis for Probabilistic Programs Reaches New Horizons. Tools and Algorithms for the Construction and Analysis of Systems. 10.1007/978-3-030-72016-2_11. (191-209).
Laurel J and Misailovic S.
(2020). Continualization of Probabilistic Programs With Correction. Programming Languages and Systems. 10.1007/978-3-030-44914-8_14. (366-393).
Sherman B, Michel J and Carbin M.
(2019). Sound and robust solid modeling via exact real arithmetic and continuity. Proceedings of the ACM on Programming Languages. 3:ICFP. (1-29). Online publication date: 26-Jul-2019.
Paraskevopoulou Z and Appel A.
(2019). Closure conversion is safe for space. Proceedings of the ACM on Programming Languages. 3:ICFP. (1-29). Online publication date: 26-Jul-2019.
Delaware B, Suriyakarn S, Pit-Claudel C, Ye Q and Chlipala A.
(2019). Narcissus: correct-by-construction derivation of decoders and encoders from binary formats. Proceedings of the ACM on Programming Languages. 3:ICFP. (1-29). Online publication date: 26-Jul-2019.
Cong Y, Osvald L, Essertel G and Rompf T.
(2019). Compiling with continuations, or without? whatever.. Proceedings of the ACM on Programming Languages. 3:ICFP. (1-28). Online publication date: 26-Jul-2019.
Vákár M, Kammar O and Staton S.
(2019). A domain theory for statistical probabilistic programming. Proceedings of the ACM on Programming Languages. 3:POPL. (1-29). Online publication date: 2-Jan-2019.
Gorinova M, Gordon A and Sutton C.
(2019). Probabilistic programming with densities in SlicStan: efficient, flexible, and deterministic. Proceedings of the ACM on Programming Languages. 3:POPL. (1-30). Online publication date: 2-Jan-2019.
Češka M, Dehnert C, Jansen N, Junges S and Katoen J.
(2019). Model Repair Revamped. From Reactive Systems to Cyber-Physical Systems. 10.1007/978-3-030-31514-6_7. (107-125).
Češka M, Hensel C, Junges S and Katoen J.
(2019). Counterexample-Driven Synthesis for Probabilistic Program Sketches. Formal Methods – The Next 30 Years. 10.1007/978-3-030-30942-8_8. (101-120).
Drews S, Albarghouthi A and D’Antoni L.
(2019). Efficient Synthesis with Probabilistic Constraints. Computer Aided Verification. 10.1007/978-3-030-25540-4_15. (278-296).
Češka M, Jansen N, Junges S and Katoen J.
(2019). Shepherding Hordes of Markov Chains. Advances in Knowledge Discovery and Data Mining. 10.1007/978-3-030-17465-1_10. (172-190).
Cusumano-Towner M, Bichsel B, Gehr T, Vechev M and Mansinghka V. Incremental inference for probabilistic programs. Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation. (571-585).
Nandi C, Grossman D, Sampson A, Mytkowicz T and McKinley K. Debugging probabilistic programs. Proceedings of the 1st ACM SIGPLAN International Workshop on Machine Learning and Programming Languages. (18-26).
Huot M, Ghavami M, Lew A, Schaechtle U, Freer C, Shelby Z, Rinard M, Saad F and Mansinghka V.
(2024). GenSQL: A Probabilistic Programming System for Querying Generative Models of Database Tables. Proceedings of the ACM on Programming Languages. 8:PLDI. (790-815). Online publication date: 20-Jun-2024.
Saad F, Cusumano-Towner M, Schaechtle U, Rinard M and Mansinghka V.
(2019). Bayesian synthesis of probabilistic programs for automatic data modeling. Proceedings of the ACM on Programming Languages. 3:POPL. (1-32). Online publication date: 2-Jan-2019.
Gehr T, Misailovic S, Tsankov P, Vanbever L, Wiesmann P and Vechev M. Bayonet: probabilistic inference for networks. Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation. (586-602).
Chasins S and Phothilimthana P.
(2017). Data-Driven Synthesis of Full Probabilistic Programs. Computer Aided Verification. 10.1007/978-3-319-63387-9_14. (279-304).
Heule S, Schkufza E, Sharma R and Aiken A. Stratified synthesis: automatically learning the x86-64 instruction set. Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation. (237-250).
Singh R and Gulwani S.
(2016). Transforming spreadsheet data types using examples. ACM SIGPLAN Notices. 51:1. (343-356). Online publication date: 8-Apr-2016.
Raychev V, Bielik P, Vechev M and Krause A. Learning programs from noisy data. Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. (761-774).
Singh R and Gulwani S. Transforming spreadsheet data types using examples. Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. (343-356).