Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
  • Gabbolini G and Bridge D. (2024). Surveying More Than Two Decades of Music Information Retrieval Research on Playlists. ACM Transactions on Intelligent Systems and Technology. 15:6. (1-68). Online publication date: 31-Dec-2025.

    https://doi.org/10.1145/3688398

  • Menand N and Seshadhri C. (2024). Link prediction using low-dimensional node embeddings: The measurement problem. Proceedings of the National Academy of Sciences. 10.1073/pnas.2312527121. 121:8. Online publication date: 20-Feb-2024.

    https://pnas.org/doi/10.1073/pnas.2312527121

  • Bertram N, Dunkel J and Hermoso R. (2023). I am all EARS. Expert Systems with Applications: An International Journal. 229:PA. Online publication date: 1-Nov-2023.

    https://doi.org/10.1016/j.eswa.2023.120347

  • Chuang Y, Wang G, Chang C, Lai K, Zha D, Tang R, Yang F, Reyes A, Zhou K, Jiang X and Hu X. DiscoverPath: A Knowledge Refinement and Retrieval System for Interdisciplinarity on Biomedical Research. Proceedings of the 32nd ACM International Conference on Information and Knowledge Management. (5021-5025).

    https://doi.org/10.1145/3583780.3614739

  • Liu C, Wang K and Wu A. (2022). Management and Monitoring of Multi-Behavior Recommendation Systems Using Graph Convolutional Neural Networks. International Journal of Foundations of Computer Science. 10.1142/S0129054122420059. 33:06n07. (583-601). Online publication date: 1-Sep-2022.

    https://www.worldscientific.com/doi/10.1142/S0129054122420059

  • Wang T, Yang H, Chen C, Tsai M and Wang C. Item Concept Network: Towards Concept-Based Item Representation Learning. IEEE Transactions on Knowledge and Data Engineering. 10.1109/TKDE.2020.2995859. 34:3. (1258-1274).

    https://ieeexplore.ieee.org/document/9096574/

  • Ssemwogerere R, Faruk W and Mutwalibi N. (2022). A Survey on Building Recommendation Systems Using Data Mining Techniques. Data Mining Approaches for Big Data and Sentiment Analysis in Social Media. 10.4018/978-1-7998-8413-2.ch002. (24-56).

    http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-7998-8413-2.ch002

  • Zhao X, Zhu Z and Caverlee J. Rabbit Holes and Taste Distortion: Distribution-Aware Recommendation with Evolving Interests. Proceedings of the Web Conference 2021. (888-899).

    https://doi.org/10.1145/3442381.3450099

  • Heister H. (2021). Das Prinzip Schärfung (I): Filterung. Kosmos aus Chaos. Musik und Fuzzy Logic. 10.1007/978-3-662-63006-8_5. (209-246).

    https://link.springer.com/10.1007/978-3-662-63006-8_5

  • Heister H. (2021). The Principle of Sharpening (I): Filtering. Cosmos Out of Chaos—Aspects and Elements of the Musical Materials. Music and Fuzzy Logic. 10.1007/978-3-662-62907-9_5. (199-239).

    http://link.springer.com/10.1007/978-3-662-62907-9_5

  • Chen H, Li Y and Yang H. (2021). Graph Data Mining in Recommender Systems. Web Information Systems Engineering – WISE 2021. 10.1007/978-3-030-91560-5_36. (491-496).

    https://link.springer.com/10.1007/978-3-030-91560-5_36

  • Chuang Y, Chen C, Wang C, Tsai M, Fang Y and Lim E. TPR: Text-aware Preference Ranking for Recommender Systems. Proceedings of the 29th ACM International Conference on Information & Knowledge Management. (215-224).

    https://doi.org/10.1145/3340531.3411969

  • Tseng Y. PKE: A Model for Recommender Systems in Online Service Platform. Companion Proceedings of the Web Conference 2020. (289-293).

    https://doi.org/10.1145/3366424.3382090

  • Altaf B, Akujuobi U, Yu L and Zhang X. (2019). Dataset Recommendation via Variational Graph Autoencoder 2019 IEEE International Conference on Data Mining (ICDM). 10.1109/ICDM.2019.00011. 978-1-7281-4604-1. (11-20).

    https://ieeexplore.ieee.org/document/8970775/

  • Huang H. An MPD Player with Expert Knowledge-basedSingle User Music Recommendation. IEEE/WIC/ACM International Conference on Web Intelligence - Companion Volume. (318-321).

    https://doi.org/10.1145/3358695.3360919

  • Chen M. (2019). Music Streaming Service Prediction with MapReduce-based Artificial Neural Network 2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON). 10.1109/UEMCON47517.2019.8993063. 978-1-7281-3885-5. (0924-0928).

    https://ieeexplore.ieee.org/document/8993063/

  • Chen C, Wang T, Wang C and Tsai M. SMORe. Proceedings of the 13th ACM Conference on Recommender Systems. (582-583).

    https://doi.org/10.1145/3298689.3346953

  • Fiorini S, Lourenco V, Santos R, Costa P and Moreno M. (2019). Towards Leveraging the Music Industry with Hyperknowledge 2019 Second International Conference on Artificial Intelligence for Industries (AI4I). 10.1109/AI4I46381.2019.00020. 978-1-7281-4087-2. (50-53).

    https://ieeexplore.ieee.org/document/9027803/

  • Chen C, Wang C, Tsai M and Yang Y. Collaborative Similarity Embedding for Recommender Systems. The World Wide Web Conference. (2637-2643).

    https://doi.org/10.1145/3308558.3313493

  • Yu T, Mengshoel O, Meroux D and Jiang Z. (2019). Machine Learning with Decision Trees and Multi-Armed Bandits: An Interactive Vehicle Recommender System WCX SAE World Congress Experience. 10.4271/2019-01-1079. .

    https://www.sae.org/content/2019-01-1079/

  • Vall A, Dorfer M, Eghbal-Zadeh H, Schedl M, Burjorjee K and Widmer G. (2019). Feature-combination hybrid recommender systems for automated music playlist continuation. User Modeling and User-Adapted Interaction. 29:2. (527-572). Online publication date: 1-Apr-2019.

    https://doi.org/10.1007/s11257-018-9215-8

  • Rakesh V, Tang L and Liu H. (2019). Feature Learning from Social Graphs. Encyclopedia of Big Data Technologies. 10.1007/978-3-319-77525-8_273. (745-754).

    http://link.springer.com/10.1007/978-3-319-77525-8_273

  • Lai K, Chen C, Tsai M and Wang C. (2018). NavWalker: Information Augmented Network Embedding 2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI). 10.1109/WI.2018.0-113. 978-1-5386-7325-6. (9-16).

    https://ieeexplore.ieee.org/document/8609570/

  • Richthammer C and Pernul G. (2018). Situation awareness for recommender systems. Electronic Commerce Research. 10.1007/s10660-018-9321-z.

    http://link.springer.com/10.1007/s10660-018-9321-z

  • Zhu L, He B, Ji M, Ju C and Chen Y. Automatic Music Playlist Continuation via Neighbor-based Collaborative Filtering and Discriminative Reweighting/Reranking. Proceedings of the ACM Recommender Systems Challenge 2018. (1-6).

    https://doi.org/10.1145/3267471.3267481

  • Wang M, Xiao Y, Zheng W, Jiao X and Hsu C. (2018). Tag-Based Personalized Music Recommendation 2018 15th International Symposium on Pervasive Systems, Algorithms and Networks (I-SPAN). 10.1109/I-SPAN.2018.00040. 978-1-5386-8534-1. (201-208).

    https://ieeexplore.ieee.org/document/8636311/

  • Jia R and Li R. (2018). Modeling User Purchase Preference Based on Implicit Feedback* 2018 IEEE 22nd International Conference on Computer Supported Cooperative Work in Design (CSCWD). 10.1109/CSCWD.2018.8465380. 978-1-5386-1482-2. (832-836).

    https://ieeexplore.ieee.org/document/8465380/

  • Rakesh V, Tang L and Liu H. (2018). Feature Learning from Social Graphs. Encyclopedia of Big Data Technologies. 10.1007/978-3-319-63962-8_273-1. (1-10).

    http://link.springer.com/10.1007/978-3-319-63962-8_273-1

  • Patel A and Dharwa J. (2016). An integrated hybrid recommendation model using graph database 2016 International Conference on ICT in Business Industry & Government (ICTBIG). 10.1109/ICTBIG.2016.7892680. 978-1-5090-5515-9. (1-5).

    http://ieeexplore.ieee.org/document/7892680/

  • Liu C, Yu J, Liu Y, Yu M, Yu R, Li X, Zhao M, Xu T, Liu H and Xu L. RL4HIN: Representation Learning for Heterogeneous Information Networks. 2019 IEEE Global Communications Conference (GLOBECOM). (1-6).

    https://doi.org/10.1109/GLOBECOM38437.2019.9013559