Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
  • Heselden J, Paparas D, Stevenson R and Das G. (2024). Enhanced STag Marker System: Materials and Methods for Flexible Robot Localisation. Machines. 10.3390/machines13010002. 13:1. (2).

    https://www.mdpi.com/2075-1702/13/1/2

  • Andersen T, Andersen N, Ravn O and Fumagalli M. (2024). A Reliable and Easily Identifiable Long-Range Fiducial Marker 2024 18th International Conference on Control, Automation, Robotics and Vision (ICARCV). 10.1109/ICARCV63323.2024.10821639. 979-8-3315-1849-3. (958-965).

    https://ieeexplore.ieee.org/document/10821639/

  • Neto B, Araújo T, Meiguins B and Santos C. (2024). Tape-Shaped, Multiscale, and Continuous-Readable Fiducial Marker for Indoor Navigation and Localization Systems. Sensors. 10.3390/s24144605. 24:14. (4605).

    https://www.mdpi.com/1424-8220/24/14/4605

  • Sadrzadeh N, Foris B, Krahn J, von Keyserlingk M, Weary D and Olsson I. (2024). Automated monitoring of brush use in dairy cattle. PLOS ONE. 10.1371/journal.pone.0305671. 19:6. (e0305671).

    https://dx.plos.org/10.1371/journal.pone.0305671

  • Ostapets Y. (2024). Experimental Evaluation of the Effectiveness of Using Visual Cues for Controlling Unmanned Vehicles. Science and Transport ProgressНаука и прогресс транспорта. Вестник Днепропетровского национального университета железнодорожного транспортаНаука та прогрес транспорту. 10.15802/stp2024/306148:2(106). (34-42).

    https://stp.ust.edu.ua/article/view/306148

  • Seth A, James A, Kuantama E, Han R and Mukhopadhyay S. AeroBridge: Autonomous Drone Handoff System for Emergency Battery Service. Proceedings of the 30th Annual International Conference on Mobile Computing and Networking. (573-587).

    https://doi.org/10.1145/3636534.3649382

  • Na S, Rouček T, Ulrich J, Pikman J, Krajník T, Lennox B and Arvin F. Federated Reinforcement Learning for Collective Navigation of Robotic Swarms. IEEE Transactions on Cognitive and Developmental Systems. 10.1109/TCDS.2023.3239815. 15:4. (2122-2131).

    https://ieeexplore.ieee.org/document/10025836/

  • Fenelon M, Lintvedt T, Wold J and Leite A. (2023). A Robot and Sensor Integration Method to Measure Fatty Acid Composition in Salmon Fillets * 2023 IEEE 19th International Conference on Automation Science and Engineering (CASE). 10.1109/CASE56687.2023.10260492. 979-8-3503-2069-5. (1-8).

    https://ieeexplore.ieee.org/document/10260492/

  • Wang L and He T. (2023). Vision geometry-based UAV flocking. The Aeronautical Journal. 10.1017/aer.2022.112. (1-17).

    https://www.cambridge.org/core/product/identifier/S0001924022001129/type/journal_article

  • Rekabi-Bana F, Stefanec M, Ulrich J, Keyvan E, Rouček T, Broughton G, Gündeǧer B, Sahin Ö, Turgut A, Şahin E, Krajník T, Schmickl T and Arvin F. (2023). Mechatronic Design for Multi Robots-Insect Swarms Interactions 2023 IEEE International Conference on Mechatronics (ICM). 10.1109/ICM54990.2023.10102026. 978-1-6654-6661-5. (1-6).

    https://ieeexplore.ieee.org/document/10102026/

  • Ulrich J, Blaha J, Alsayed A, Rouček T, Arvin F and Krajník T. (2023). Real Time Fiducial Marker Localisation System with Full 6 DOF Pose Estimation. ACM SIGAPP Applied Computing Review. 23:1. (20-35). Online publication date: 1-Mar-2023.

    https://doi.org/10.1145/3594264.3594266

  • Bacchewar Y, Morwadkar S, Chandegave R, Dendage P and Dhamgunde S. (2023). Literature Survey: Indoor Navigation Using Augmented Reality. Data Management, Analytics and Innovation. 10.1007/978-981-19-2600-6_28. (387-400).

    https://link.springer.com/10.1007/978-981-19-2600-6_28

  • Shyam R, Lightbody P, Das G, Liu P, Gomez-Gonzalez S and Neumann G. Improving Local Trajectory Optimisation using Probabilistic Movement Primitives. 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). (2666-2671).

    https://doi.org/10.1109/IROS40897.2019.8967980

  • Žampachů K, Ulrich J, Rouček T, Stefanec M, Dvořáček D, Fedotoff L, Hofstadler D, Rekabi-Bana F, Broughton G, Arvin F, Schmickl T and Krajník T. (2022). A Vision-based System for Social Insect Tracking 2022 2nd International Conference on Robotics, Automation and Artificial Intelligence (RAAI). 10.1109/RAAI56146.2022.10092977. 978-1-6654-5944-0. (277-283).

    https://ieeexplore.ieee.org/document/10092977/

  • Kabore K and Guler S. Distributed Formation Control of Drones With Onboard Perception. IEEE/ASME Transactions on Mechatronics. 10.1109/TMECH.2021.3110660. 27:5. (3121-3131).

    https://ieeexplore.ieee.org/document/9543115/

  • Gupta S, Shekhar S, Karpe K, Ghosh A, JS G, Srinivas P, Kumar M, Sharma P, Sinha A, Singh K, Ramamoorthy K and Dhanalakshmi S. (2022). LOGISWARM: A low-cost multi-robot testbed for cooperative transport research. Multimedia Tools and Applications. 81:19. (27339-27362). Online publication date: 1-Aug-2022.

    https://doi.org/10.1007/s11042-022-12689-3

  • Ulrich J, Alsayed A, Arvin F and Krajník T. Towards fast fiducial marker with full 6 DOF pose estimation. Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing. (723-730).

    https://doi.org/10.1145/3477314.3507043

  • Wang H, Pei X, Li J, Zhang S, Wang T and Hou T. (2021). Location estimation method based on circular target by UAV’s monocular 2021 5th Asian Conference on Artificial Intelligence Technology (ACAIT). 10.1109/ACAIT53529.2021.9731175. 978-1-6654-2630-5. (637-642).

    https://ieeexplore.ieee.org/document/9731175/

  • Kalaitzakis M, Cain B, Carroll S, Ambrosi A, Whitehead C and Vitzilaios N. (2021). Fiducial Markers for Pose Estimation. Journal of Intelligent and Robotic Systems. 101:4. Online publication date: 1-Apr-2021.

    https://doi.org/10.1007/s10846-020-01307-9

  • Yu J, Jiang W, Luo Z and Yang L. (2021). Application of a Vision-Based Single Target on Robot Positioning System. Sensors. 10.3390/s21051829. 21:5. (1829).

    https://www.mdpi.com/1424-8220/21/5/1829

  • Kabore K and Güler S. (2021). Deep Learning Based Formation Control of Drones. Deep Learning for Unmanned Systems. 10.1007/978-3-030-77939-9_11. (383-413).

    https://link.springer.com/10.1007/978-3-030-77939-9_11

  • Lee G and Kim H. (2020). A Hybrid Marker-Based Indoor Positioning System for Pedestrian Tracking in Subway Stations. Applied Sciences. 10.3390/app10217421. 10:21. (7421).

    https://www.mdpi.com/2076-3417/10/21/7421

  • Morar A, Moldoveanu A, Mocanu I, Moldoveanu F, Radoi I, Asavei V, Gradinaru A and Butean A. (2020). A Comprehensive Survey of Indoor Localization Methods Based on Computer Vision. Sensors. 10.3390/s20092641. 20:9. (2641).

    https://www.mdpi.com/1424-8220/20/9/2641

  • Kirk R, Cielniak G and Mangan M. (2020). L*a*b*Fruits: A Rapid and Robust Outdoor Fruit Detection System Combining Bio-Inspired Features with One-Stage Deep Learning Networks. Sensors. 10.3390/s20010275. 20:1. (275).

    https://www.mdpi.com/1424-8220/20/1/275

  • Hu C, Xiong C, Peng J and Yue S. Coping With Multiple Visual Motion Cues Under Extremely Constrained Computation Power of Micro Autonomous Robots. IEEE Access. 10.1109/ACCESS.2020.3016893. 8. (159050-159066).

    https://ieeexplore.ieee.org/document/9167216/

  • Muñoz-Salinas R and Medina-Carnicer R. (2020). UcoSLAM: Simultaneous Localization and Mapping by Fusion of KeyPoints and Squared Planar Markers. Pattern Recognition. 10.1016/j.patcog.2019.107193. (107193). Online publication date: 1-Jan-2020.

    https://linkinghub.elsevier.com/retrieve/pii/S0031320319304923

  • Štěpán P, Krajník T, Petrlík M and Saska M. (2018). Vision techniques for on‐board detection, following, and mapping of moving targets. Journal of Field Robotics. 10.1002/rob.21850. 36:1. (252-269). Online publication date: 1-Jan-2019.

    https://onlinelibrary.wiley.com/doi/10.1002/rob.21850

  • Arvin F, Krajník T and Emre Turgut A. PSS: An Open-Source Experimental Setup for Real-World Implementation of Swarm Robotic Systems in Long-Term Scenarios. Modelling and Simulation for Autonomous Systems. (351-364).

    https://doi.org/10.1007/978-3-030-14984-0_26

  • Fu Q, Hu C, Peng J and Yue S. (2018). Shaping the collision selectivity in a looming sensitive neuron model with parallel ON and OFF pathways and spike frequency adaptation. Neural Networks. 10.1016/j.neunet.2018.04.001. 106. (127-143). Online publication date: 1-Oct-2018.

    https://linkinghub.elsevier.com/retrieve/pii/S0893608018301217

  • Lightbody P, Baxter P and Hanheide M. Studying Table-Top Manipulation Tasks. Companion of the 2018 ACM/IEEE International Conference on Human-Robot Interaction. (177-178).

    https://doi.org/10.1145/3173386.3177045