Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
  • Ferikoglou A, Kakolyris A, Masouros D, Soudris D and Xydis S. (2024). CollectiveHLS: A Collaborative Approach to High-Level Synthesis Design Optimization. ACM Transactions on Reconfigurable Technology and Systems. 18:1. (1-32). Online publication date: 31-Mar-2025.

    https://doi.org/10.1145/3702005

  • Liu F, Li H, Hu W and He Y. (2024). Review of neural network model acceleration techniques based on FPGA platforms. Neurocomputing. 10.1016/j.neucom.2024.128511. (128511). Online publication date: 1-Aug-2024.

    https://linkinghub.elsevier.com/retrieve/pii/S0925231224012827

  • Jang S and Cho Y. (2024). Reinforcement Learning-Driven Bit-Width Optimization for the High-Level Synthesis of Transformer Designs on Field-Programmable Gate Arrays. Electronics. 10.3390/electronics13030552. 13:3. (552).

    https://www.mdpi.com/2079-9292/13/3/552

  • Wu N and Xie Y. (2022). A Survey of Machine Learning for Computer Architecture and Systems. ACM Computing Surveys. 55:3. (1-39). Online publication date: 31-Mar-2023.

    https://doi.org/10.1145/3494523

  • Ye H, Jun H, Yang J and Chen D. High-level Synthesis for Domain Specific Computing. Proceedings of the 2023 International Symposium on Physical Design. (211-219).

    https://doi.org/10.1145/3569052.3580027

  • Wu N, Xie Y and Hao C. IronMan-Pro: Multiobjective Design Space Exploration in HLS via Reinforcement Learning and Graph Neural Network-Based Modeling. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 10.1109/TCAD.2022.3185540. 42:3. (900-913).

    https://ieeexplore.ieee.org/document/9803218/

  • Hwang D, Yeleuov S, Seo J, Chung M, Moon H and Paek Y. Ambassy: A Runtime Framework to Delegate Trusted Applications in an ARM/FPGA Hybrid System. IEEE Transactions on Mobile Computing. 10.1109/TMC.2021.3086143. 22:2. (708-719).

    https://ieeexplore.ieee.org/document/9446637/

  • Goswami P and Bhatia D. Application of Machine Learning in FPGA EDA Tool Development. IEEE Access. 10.1109/ACCESS.2023.3322358. 11. (109564-109580).

    https://ieeexplore.ieee.org/document/10272331/

  • Singha G, Diamantopoulosb D, Gomez-Lunaa J, Stuijkc S, Corporaalc H and Mutlua O. (2022). LEAPER: Fast and Accurate FPGA-based System Performance Prediction via Transfer Learning 2022 IEEE 40th International Conference on Computer Design (ICCD). 10.1109/ICCD56317.2022.00080. 978-1-6654-6186-3. (499-508).

    https://ieeexplore.ieee.org/document/9978388/

  • Wu N, Xie Y and Hao C. (2022). AI-assisted Synthesis in Next Generation EDA: Promises, Challenges, and Prospects 2022 IEEE 40th International Conference on Computer Design (ICCD). 10.1109/ICCD56317.2022.00039. 978-1-6654-6186-3. (207-214).

    https://ieeexplore.ieee.org/document/9978382/

  • Wu N, Yang H, Xie Y, Li P and Hao C. High-level synthesis performance prediction using GNNs. Proceedings of the 59th ACM/IEEE Design Automation Conference. (49-54).

    https://doi.org/10.1145/3489517.3530408

  • Sawalha L, Abuaita T, Cowley M, Akhmatdinov S and Dubs A. (2022). Accurate Performance and Power Prediction for FPGAs Using Machine Learning 2022 IEEE 30th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM). 10.1109/FCCM53951.2022.9786072. 978-1-6654-8332-2. (1-1).

    https://ieeexplore.ieee.org/document/9786072/

  • Ye H, Hao C, Cheng J, Jeong H, Huang J, Neuendorffer S and Chen D. (2022). ScaleHLS: A New Scalable High-Level Synthesis Framework on Multi-Level Intermediate Representation 2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA). 10.1109/HPCA53966.2022.00060. 978-1-6654-2027-3. (741-755).

    https://ieeexplore.ieee.org/document/9773203/

  • Goswami P, Shahshahani M and Bhatia D. (2022). MLSBench: A Benchmark Set for Machine Learning based FPGA HLS Design Flows 2022 IEEE 13th Latin America Symposium on Circuits and System (LASCAS). 10.1109/LASCAS53948.2022.9789084. 978-1-6654-2008-2. (1-4).

    https://ieeexplore.ieee.org/document/9789084/

  • Molina R, Gil-Costa V, Crespo M and Ramponi G. High-Level Synthesis Hardware Design for FPGA-Based Accelerators: Models, Methodologies, and Frameworks. IEEE Access. 10.1109/ACCESS.2022.3201107. 10. (90429-90455).

    https://ieeexplore.ieee.org/document/9864576/

  • Brandner J, Mayer F and Philippsen M. (2022). Reducing OpenMP to FPGA Round-Trip Times with Predictive Modelling. OpenMP in a Modern World: From Multi-device Support to Meta Programming. 10.1007/978-3-031-15922-0_7. (94-108).

    https://link.springer.com/10.1007/978-3-031-15922-0_7

  • Alcorta E, Brisk P and Gerstlauer A. (2022). ML for System-Level Modeling. Machine Learning Applications in Electronic Design Automation. 10.1007/978-3-031-13074-8_18. (545-579).

    https://link.springer.com/10.1007/978-3-031-13074-8_18

  • Huang G, Hu J, He Y, Liu J, Ma M, Shen Z, Wu J, Xu Y, Zhang H, Zhong K, Ning X, Ma Y, Yang H, Yu B, Yang H and Wang Y. (2021). Machine Learning for Electronic Design Automation: A Survey. ACM Transactions on Design Automation of Electronic Systems. 26:5. (1-46). Online publication date: 30-Sep-2021.

    https://doi.org/10.1145/3451179

  • Sun Q, Chen T, Liu S, Miao J, Chen J, Yu H and Yu B. (2021). Correlated Multi-objective Multi-fidelity Optimization for HLS Directives Design 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE). 10.23919/DATE51398.2021.9474241. 978-3-9819263-5-4. (46-51).

    https://ieeexplore.ieee.org/document/9474241/

  • Kwon J and Carloni L. Transfer Learning for Design-Space Exploration with High-Level Synthesis. Proceedings of the 2020 ACM/IEEE Workshop on Machine Learning for CAD. (163-168).

    https://doi.org/10.1145/3380446.3430636

  • Matteis T, Licht J and Hoefler T. (2020). FBLAS: Streaming Linear Algebra on FPGA SC20: International Conference for High Performance Computing, Networking, Storage and Analysis. 10.1109/SC41405.2020.00063. 978-1-7281-9998-6. (1-13).

    https://ieeexplore.ieee.org/document/9355265/

  • Mu J, Zhang W, Liang H and Sinha S. (2020). Optimizing OpenCL-Based CNN Design on FPGA with Comprehensive Design Space Exploration and Collaborative Performance Modeling. ACM Transactions on Reconfigurable Technology and Systems. 13:3. (1-28). Online publication date: 30-Sep-2020.

    https://doi.org/10.1145/3397514

  • Bensalem H, Blaquiere Y and Savaria Y. In-FPGA Instrumentation Framework for OpenCL-Based Designs. IEEE Access. 10.1109/ACCESS.2020.3040081. 8. (212979-212994).

    https://ieeexplore.ieee.org/document/9268055/

  • Mohammadi Makrani H, Farahmand F, Sayadi H, Bondi S, Pudukotai Dinakarrao S, Homayoun H and Rafatirad S. (2019). Pyramid: Machine Learning Framework to Estimate the Optimal Timing and Resource Usage of a High-Level Synthesis Design 2019 29th International Conference on Field Programmable Logic and Applications (FPL). 10.1109/FPL.2019.00069. 978-1-7281-4884-7. (397-403).

    https://ieeexplore.ieee.org/document/8892009/

  • Singh G, Diamantopoulos D, Hagleitner C, Stuijk S and Corporaal H. (2019). NARMADA: Near-Memory Horizontal Diffusion Accelerator for Scalable Stencil Computations 2019 29th International Conference on Field Programmable Logic and Applications (FPL). 10.1109/FPL.2019.00050. 978-1-7281-4884-7. (263-269).

    https://ieeexplore.ieee.org/document/8892056/