Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
  • Sun C, Chen J, Zhao Y, Han H, Jing R, Tan G and Wu D. (2025). Appformer: A novel framework for mobile app usage prediction leveraging progressive multi-modal data fusion and feature extraction. Expert Systems with Applications. 10.1016/j.eswa.2024.125903. 265. (125903). Online publication date: 1-Mar-2025.

    https://linkinghub.elsevier.com/retrieve/pii/S0957417424027702

  • Flores-Martin D, Laso S and Herrera J. (2024). Enhancing Smartphone Battery Life: A Deep Learning Model Based on User-Specific Application and Network Behavior. Electronics. 10.3390/electronics13244897. 13:24. (4897).

    https://www.mdpi.com/2079-9292/13/24/4897

  • Peters H, Bayer J, Matz S, Chi Y, Vaid S and Harari G. (2024). Social media use is predictable from app sequences. Computers in Human Behavior. 161:C. Online publication date: 1-Dec-2024.

    https://doi.org/10.1016/j.chb.2024.108381

  • Zhang Y, Kang M, Li X, Qiu Y and Li Z. Optimizing Smartphone App Usage Prediction: A Click-Through Rate Ranking Approach. Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. (6281-6290).

    https://doi.org/10.1145/3637528.3671567

  • Peters H, Liu Y, Barbieri F, Baten R, Matz S and Bos M. (2024). Context-aware prediction of active and passive user engagement: Evidence from a large online social platform. Journal of Big Data. 10.1186/s40537-024-00955-0. 11:1.

    https://journalofbigdata.springeropen.com/articles/10.1186/s40537-024-00955-0

  • Fang X, Yang H, Shi L, Wang Y and Li L. BERT-Based Semantic-Aware Heterogeneous Graph Embedding Method for Enhancing App Usage Prediction Accuracy. IEEE Transactions on Human-Machine Systems. 10.1109/THMS.2024.3412273. 54:4. (465-474).

    https://ieeexplore.ieee.org/document/10572262/

  • Khaokaew Y, Xue H and Salim F. (2024). MAPLE. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies. 8:1. (1-25). Online publication date: 6-Mar-2024.

    https://doi.org/10.1145/3643514

  • Zeng F, Li Y, Xiao J and Yang D. (2024). DDHCN. Expert Systems with Applications: An International Journal. 237:PB. Online publication date: 1-Mar-2024.

    https://doi.org/10.1016/j.eswa.2023.121564

  • Wu F, Lyu F, Ren J, Yang P, Qian K, Gao S and Zhang Y. (2024). Characterizing Internet Card User Portraits for Efficient Churn Prediction Model Design. IEEE Transactions on Mobile Computing. 23:2. (1735-1752). Online publication date: 1-Feb-2024.

    https://doi.org/10.1109/TMC.2023.3241206

  • Fang X, Yang H, Ding D, Gao W, Zhang L, Wang Y and Shi L. Enhancing App Usage Prediction Accuracy With GCN-Transformer Model and Meta-Path Context. IEEE Access. 10.1109/ACCESS.2024.3372397. 12. (53031-53044).

    https://ieeexplore.ieee.org/document/10457062/

  • De Masi A and Wac K. Forecasting Smartphone Application Chains: an App-Rank Based Approach. Proceedings of the 22nd International Conference on Mobile and Ubiquitous Multimedia. (87-98).

    https://doi.org/10.1145/3626705.3627802

  • Wang Y, Jiang R, Liu H, Yin D and Song X. Sequence-Graph Fusion Neural Network for User Mobile App Behavior Prediction. Machine Learning and Knowledge Discovery in Databases: Applied Data Science and Demo Track. (105-121).

    https://doi.org/10.1007/978-3-031-43427-3_7

  • Terzimehic N, Bemmann F, Halsner M and Mayer S. (2023). A Mixed-Method Exploration into the Mobile Phone Rabbit Hole. Proceedings of the ACM on Human-Computer Interaction. 7:MHCI. (1-29). Online publication date: 11-Sep-2023.

    https://doi.org/10.1145/3604241

  • Shen Z, Zhao X and Zou J. (2023). GinApp: An Inductive Graph Learning based Framework for Mobile Application Usage Prediction IEEE INFOCOM 2023 - IEEE Conference on Computer Communications. 10.1109/INFOCOM53939.2023.10228935. 979-8-3503-3414-2. (1-10).

    https://ieeexplore.ieee.org/document/10228935/

  • Solomon A, Shapira B and Rokach L. (2022). Predicting application usage based on latent contextual information. Computer Communications. 10.1016/j.comcom.2022.06.005. 192. (197-209). Online publication date: 1-Aug-2022.

    https://linkinghub.elsevier.com/retrieve/pii/S0140366422002079

  • Chen X, Chen J, Lian X and Mai W. (2022). Resolving Data Sparsity via Aggregating Graph-Based User–App–Location Association for Location Recommendations. Applied Sciences. 10.3390/app12146882. 12:14. (6882).

    https://www.mdpi.com/2076-3417/12/14/6882

  • Li T, Xia T, Wang H, Tu Z, Tarkoma S, Han Z and Hui P. Smartphone App Usage Analysis: Datasets, Methods, and Applications. IEEE Communications Surveys & Tutorials. 10.1109/COMST.2022.3163176. 24:2. (937-966).

    https://ieeexplore.ieee.org/document/9745583/

  • Suleiman B, Lu K, Chan H and Alibasa M. DeepPatterns: Predicting Mobile Apps Usage from Spatio-Temporal and Contextual Features. Service-Oriented Computing. (811-818).

    https://doi.org/10.1007/978-3-030-91431-8_58

  • Liang S. (2021). Characterizing and predicting the cross-app behavior in mobile search. Aslib Journal of Information Management. 10.1108/AJIM-08-2021-0220. ahead-of-print:ahead-of-print.

    https://www.emerald.com/insight/content/doi/10.1108/AJIM-08-2021-0220/full/html