Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
  • Marand E, Sheikhahmadi A, Challenger M, Moradi P and Khalilipour A. Recommender Systems for Unified Modeling Language and Vice Versa—A Systematic Literature Review. IEEE Access. 10.1109/ACCESS.2025.3535527. 13. (23426-23460).

    https://ieeexplore.ieee.org/document/10855999/

  • Guresci E, Tekinerdogan B, Babur Ö and Liu Q. (2024). Feasibility of Low-Code Development Platforms in Precision Agriculture: Opportunities, Challenges, and Future Directions. Land. 10.3390/land13111758. 13:11. (1758).

    https://www.mdpi.com/2073-445X/13/11/1758

  • Almonte L, Guerra E, Cantador I and de Lara J. (2024). Engineering recommender systems for modelling languages: concept, tool and evaluation. Empirical Software Engineering. 10.1007/s10664-024-10483-3. 29:4. Online publication date: 1-Jul-2024.

    https://link.springer.com/10.1007/s10664-024-10483-3

  • López J, Cuadrado J, Rubei R and Di Ruscio D. (2024). ModelXGlue: a benchmarking framework for ML tools in MDE. Software and Systems Modeling. 10.1007/s10270-024-01183-z.

    https://link.springer.com/10.1007/s10270-024-01183-z

  • Oakes B, Famelis M and Sahraoui H. (2023). Building Domain-Specific Machine Learning Workflows: A Conceptual Framework for the State of the Practice. ACM Transactions on Software Engineering and Methodology. 33:4. (1-50). Online publication date: 31-May-2024.

    https://doi.org/10.1145/3638243

  • Liu D, Jiang H, Guo S, Chen Y and Qiao L. What's Wrong With Low-Code Development Platforms? An Empirical Study of Low-Code Development Platform Bugs. IEEE Transactions on Reliability. 10.1109/TR.2023.3295009. 73:1. (695-709).

    https://ieeexplore.ieee.org/document/10203030/

  • Rosa-Bilbao J, Boubeta-Puig J and Rutle A. (2023). EDALoCo. Computer Standards & Interfaces. 84:C. Online publication date: 1-Mar-2023.

    https://doi.org/10.1016/j.csi.2022.103676

  • Bucaioni A, Cicchetti A and Ciccozzi F. (2022). Modelling in low-code development: a multi-vocal systematic review. Software and Systems Modeling. 10.1007/s10270-021-00964-0. 21:5. (1959-1981). Online publication date: 1-Oct-2022.

    https://link.springer.com/10.1007/s10270-021-00964-0

  • Rokis K and Kirikova M. (2022). Challenges of Low-Code/No-Code Software Development: A Literature Review. Perspectives in Business Informatics Research. 10.1007/978-3-031-16947-2_1. (3-17).

    https://link.springer.com/10.1007/978-3-031-16947-2_1

  • Almonte L, Pérez-Soler S, Guerra E, Cantador I and de Lara J. Automating the synthesis of recommender systems for modelling languages. Proceedings of the 14th ACM SIGPLAN International Conference on Software Language Engineering. (22-35).

    https://doi.org/10.1145/3486608.3486905

  • Di Sipio C, Di Rocco J, Di Ruscio D and Nguyen D. A Low-Code Tool Supporting the Development of Recommender Systems. Proceedings of the 15th ACM Conference on Recommender Systems. (741-744).

    https://doi.org/10.1145/3460231.3478885

  • Almonte L, Guerra E, Cantador I and de Lara J. (2021). Recommender systems in model-driven engineering. Software and Systems Modeling. 10.1007/s10270-021-00905-x.

    https://link.springer.com/10.1007/s10270-021-00905-x